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3 Linköpings universitet, Department of Computer and Information Science, Linköping
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Part I

Overview
During the span of the European Network of Excellence REWERSE the Composition and
Typing working group I3 has developed both composition and typing technology for the rule-
based languages used on the Web and the Semantic Web. Focus has in particular been on the
semi-structured data query language Xcerpt [3, 5]. This deliverable provides tutorials, use-cases
and examples of these technologies to show how they can be beneficial to end-users.

Part II gives examples on how the composition technology can advantageously be used by
end-users in order to construct modular query programs and ontologies. Part III then gives
use-cases and examples on how typing technology can be deployed to help query programmers
detect errors in their query programs.

Part II

Composition Framework

1 Introduction

Composition technology has been made available that is able to provide languages, such as
Xcerpt, with component-oriented language extensions. This technology has been developed
in the composition framework Reuseware.1 The general goal is to provide intuitive reusable
entities to end-users, that is, to every-day programmers and users of the addressed languages.
For the case of Xcerpt, equip Xcerpt programmers with the possibility to define reusable query
entities. For Xcerpt in particular, the module concept was developed, enabling the separation
of query programs into reusable and better understood parts (modules). For some published
papers in this directions see [1, 2, 6, 7]. The composition framework is static in the sense that
composition is done at compile-time, and not during run-time. Modules for Xcerpt are, for
example, composed statically, enabling the Xcerpt interpreter to be reused as a black-box when
executing modular Xcerpt programs.

Not only rule-based query languages like Xcerpt have been addressed, but also ontology
languages such as OWL [9]. For ontology languages the concept of role models is provided as
reusable entities.

Section 2 contains three composition applications with accompanying examples.

2 Composition Applications

First, in Section 2.1, the notion of modules for Datalog is discussed and exemplified. Then, in
Section 2.2, the module concept is transferred to Xcerpt. Finally, in Section 2.3, role models for
ontology languages are discussed. It should be noted and highlighted that all these applications
have been developed and realized using the composition framework Reuseware.

1http://www.reuseware.org

1
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2.1 Modular Datalog

Datalog programs consist of a number of predicates, so-called facts and rules, all written in
one single file. If the number of predicates grows too big, the resulting program becomes large
and unhandy to maintain. In order to split up the program into manageable parts, a module
system would be useful. Having added that module concept to Datalog, the Modular Datalog
language was born.

2.1.1 The original program

The example Datalog program is a simulation of a small company. The company consists of
three departments, sale, marketing and research, each of which has employees and a manager.
There are rules with which to decide who of the employees and managers will get a bonus
for good work, and who will be get a serious talk under four eyes with the boss because
of bad job performance. The performance of both the employees and the departments are
rated. Managers’ performance equals the performance of their respective departments. In the
following, the program’s fragments are presented in detail, along with some comments.

First of all, there is a fact base of employees and managers.

1 manages(steward,sales).

worksat(george,sales).

3 worksat(lisa,sales).

5 manages(james,research).

worksat(steve,research).

7 worksat(marco,research).

9 manages(helen,marketing).

worksat(john,marketing).

11 worksat(sarah,marketing).

13 worksat(E,D) :- manages(E,D).

The predicate worksat assigns an employee to a department. The predicate manages assigns
a manager. The last rule says that a department’s manager works at this very department.

In order to decide whom to give a bonus, the performance of both the departments and the
individual employees must be rated.

1 performance(george, extremelygood).

performance(lisa,bad).

3 departmentperformance(sales,good).

5 performance(steve,average).

performance(marco,bad).

7 departmentperformance(research,bad).

9 performance(john,average).

performance(sarah,good).

11 departmentperformance(marketing,average).

13 performance(E,P) :- manages(E,D),departmentperformance(D,P).

The predicate performance assigns a performance rating to an employee. The predicate
departmentperformance assigns a performance rating to a whole department. The last rule
says that the performance of a manager is defined by the performance of his department. The
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performance ratings can be one of the following: extremelygood, good, average or bad. As
they are not comparable by default, an order is defined.

1 performancebetter(average,bad).

performancebetter(good,average).

3 performancebetter(extremelygood,good).

performancebetter(X,Z) :- performancebetter(X,Y),performancebetter(Y,Z).

5 performanceworse(X,Z) :- performancebetter(Z,X).

The first three facts establish the actual order: average is better than bad, good is better
than average, extremelygood is better than good. The following rule computes the transitive
closure of the performance rating, for instance that good is better than bad. The last rule is
just a helper rule that says rating X is worse than rating Z if rating Z is better than rating X.

Now that the data is set up, the “query rules” can be introduced. First of all we would like
to know who gets paid. Paying all employees is usually a good idea. This leads to the following
rule.

1 payroll(E) :- worksat(E,_).

Everyone who works at some department (including managers) is considered employee and
therefore paid.

Next we would like to know who performed good enough to get a bonus. In order to qualify
for a bonus, the job performance must be above average.

1 bonuslimitabove(average).

The exact rule is as follows:

• The employee must have a performance above the limit (i.e. more than average)

• The employee must work in a department whose performance is above the limit (also
more than average)

This results in the following Datalog rule.

1 bonus(E,D) :- bonuslimitabove(L),

worksat(E,D),

3 departmentperformance(D,DP),

performancebetter(DP,L),

5 performance(E,EP),

performancebetter(EP,L).

Finding out who did bad is completely analogous.

• The employee must have a performance below the limit (i.e. less than average)

• The employee must work in a department whose performance is below the limit (also less
than average)

foureyestalklimitbelow(average).

2 foureyestalk(E,D) :- foureyestalklimitbelow(L),

worksat(E,D),

4 departmentperformance(D,DP),

performanceworse(DP,L),

6 performance(E,EP),

performanceworse(EP,L).
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2.1.2 The modular program

Once a Datalog program grows the code becomes unhandy. Therefore a module system has
been added, which allows to separate unrelated facts and rules from each other and store them
in different files. Each module is stored in its own file. Modules can be imported by the
main program and by other modules. Additionally, there are different visibilities for predicates:
public and private. While private predicates can only be used from within a module, public
ones can be used by the importing module.

In the example program, the facts have been moved to modules. There is one module for each
department containing the employees, managers and performances for this department. The
module department merges these individual modules. Finally, there is a module performance
which contains the order of the performance ratings. The modules and their usage will now be
shown in more detail.

The modules for the individual departments have all the same structure. The sales depart-
ment module shall serve as an example here.

1 MODULE sales

3 @ manages(steward,sales).

@ worksat(george,sales).

5 @ worksat(lisa,sales).

7 @ performance(george, extremelygood).

@ performance(lisa,bad).

9

@ departmentperformance(sales,good).

A module starts with the keyword MODULE, followed by the module name. The name has
no special meaning and is used to differentiate rules from different modules. For a better
understandability one should choose a descriptive name that indicates the module’s purpose.
Below the module declaration are the individual facts. Predicates that have an @-sign in front
of them are considered public. They can be accessed from other modules. The sales department
module from above consists exclusively of public facts.

All the modules from the individual departments must somehow be aggregated to access
their data. In order to keep the main program tidy and not clutter it with aggregation code,
an additional module, department has been introduced.

MODULE department

2

IMPORT /salesdepartment.mdatalog AS sales

4 IMPORT /marketingdepartment.mdatalog AS marketing

IMPORT /researchdepartment.mdatalog AS research

6

@worksat(E,D) :- worksat(E,D).

8 @manages(E,D) :- manages(E,D).

@performance(E,P) :- performance(E,P).

10 @departmentperformance(D,P) :- departmentperformance(D,P).

12

worksat(E,D) :- in sales (worksat(E,D)).

14 worksat(E,D) :- in marketing (worksat(E,D)).

worksat(E,D) :- in research (worksat(E,D)).

16

manages(E,D) :- in sales (manages(E,D)).
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18 manages(E,D) :- in marketing (manages(E,D)).

manages(E,D) :- in research (manages(E,D)).

20

performance(E,P) :- in sales (performance(E,P)).

22 performance(E,P) :- in marketing (performance(E,P)).

performance(E,P) :- in research (performance(E,P)).

24

departmentperformance(D,P) :- in sales (departmentperformance(D,P)).

26 departmentperformance(D,P) :- in marketing (departmentperformance(D,P)).

departmentperformance(D,P) :- in research (departmentperformance(D,P)).

The first line is the already known module declaration. The following lines contain import
statements for modules. The path after the IMPORT keyword indicates a module’s location. The
name after the AS keyword is the name with which the imported module will be referenced from
within the importing module.

Following the import declarations there are four public rules, followed by a number of private
rules. The public rules do only forward the data from the private rules. The private rules in
turn get their data from the individual department modules that have been described above.
As one can see, modules’ public rules are accessed via in <modulename> ( <predicate> ).

The department module has been written the way it is to show how public and private
predicates can be used in parallel within a module. Even identical names do not conflict.
However, as no data of the module should be hidden from the calling module, one could easily
rewrite the module by making all rules public. The first four rules, that forward the private
rules’ data, could then be removed.

MODULE department

2

IMPORT /salesdepartment.mdatalog AS sales

4 IMPORT /marketingdepartment.mdatalog AS marketing

IMPORT /researchdepartment.mdatalog AS research

6

@worksat(E,D) :- in sales (worksat(E,D)).

8 @worksat(E,D) :- in marketing (worksat(E,D)).

@worksat(E,D) :- in research (worksat(E,D)).

10

@manages(E,D) :- in sales (manages(E,D)).

12 @manages(E,D) :- in marketing (manages(E,D)).

@manages(E,D) :- in research (manages(E,D)).

14

@performance(E,P) :- in sales (performance(E,P)).

16 @performance(E,P) :- in marketing (performance(E,P)).

@performance(E,P) :- in research (performance(E,P)).

18

@departmentperformance(D,P) :- in sales (departmentperformance(D,P)).

20 @departmentperformance(D,P) :- in marketing (departmentperformance(D,P)).

@departmentperformance(D,P) :- in research (departmentperformance(D,P)).

The last module is the performance module in which the order of the performance ratings
is specified. It follows the same principles that have already been described.

1 MODULE performance

3 @ performancebetter(X,Y) :- performancebetter(X,Y).

5 performancebetter(average,bad).

performancebetter(good,average).

5



7 performancebetter(extremelygood,good).

performancebetter(X,Z) :- performancebetter(X,Y),performancebetter(Y,Z).

The first rule exposes the information from the private predicates to other modules. Again,
this module could be rewritten by removing the first rule and making all predicates public.

The main program essentially imports the modules discussed above and defines the “query
rules” payroll, bonus and foureyestalk, along with some helper rules.

IMPORT /department.mdatalog AS department

2 IMPORT /performance.mdatalog AS performance

4 worksat(E,D) :- in department(worksat(E,D)).

worksat(E,D) :- in department(manages(E,D)).

6 manages(E,D) :- in department(manages(E,D)).

8 performance(E,P) :- in department(performance(E,P)).

performance(E,P) :- manages(E,D),departmentperformance(D,P).

10

departmentperformance(D,P) :- in department(departmentperformance(D,P)).

12

performancebetter(P1,P2) :- in performance(performancebetter(P1,P2)).

14 performanceworse(P1,P2) :- in performance(performancebetter(P2,P1)).

16

payroll(E) :- worksat(E,_).

18

20 bonuslimitabove(average).

foureyestalklimitbelow(average).

22

bonus(E,D) :- bonuslimitabove(L),

24 worksat(E,D),

departmentperformance(D,DP),

26 performancebetter(DP,L),

performance(E,EP),

28 performancebetter(EP,L).

30

foureyestalk(E,D) :- foureyestalklimitbelow(L),

32 worksat(E,D),

departmentperformance(D,DP),

34 performanceworse(DP,L),

performance(E,EP),

36 performanceworse(EP,L).

2.1.3 Summary

Modules have been used in Datalog to divide a large set of predicates into manageable modules.
Predicates within modules can either be public or private, i.e. the developer can decide which
data to expose to the public and which to hide. Additionally, it has been shown that modules
can be nested.
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2.2 Modular Xcerpt

2.2.1 Motivation

Xcerpt is a powerful new query language for XML documents. It consists of a number of rules
that specify patterns of nodes to be matched along with rewrite actions. As Xcerpt lacks the
concept of modules, all collaborating rules have to be written in one single file. This makes
larger programs hard to extend and maintain. With the help of Reuseware module support has
been added to Xcerpt. The resulting version of Xcerpt is called Modular Xcerpt and shall be
introduced in the following. This is not an introduction to the original Xcerpt language, basic
knowledge is assumed.

2.2.2 Syntax

This section briefly explains the syntax used for Modular Xcerpt. Modular Xcerpt extends the
syntax of Xcerpt. For an overview of the syntax of Xcerpt, please see, e.g., [5].

• Module definition. An Xcerpt module is associated with a name, it optionally imports
other modules and contains a set of Xcerpt rules realizing the module. Furthermore, a
module can define its interfaces that will be used by other modules or programs.

– Module declaration. We can group sets of rules into modules and give such a set an
identifier. This module can than be imported into other modules or programs.
〈module〉 ::= ‘MODULE’ 〈module-id〉 〈import〉* 〈rules〉*

– Module interfaces. We can declare allowed access points to a module to facilitate
encapsulation and proper interfaces. Any construct term can be annotated with the
public keyword to indicate that it can be queried by importing modules (see below).
〈interface-out〉 ::= ‘public’ 〈construct-term〉
Conversely, importing modules may provide data to an imported module. This data
is used exclusively by public queries of the imported module.
〈interface-in〉 ::= ‘public’ 〈query〉

• Module deployment. Not only is it possible to define modules, but they can be im-
ported into other modules or programs. This part explains the constructs provided for
this purpose.

– Module import. We can import modules into other modules or programs. The only
effect of a module import is that the associated module alias becomes available for
use in module querying or provision statements.
〈import〉 ::= ‘IMPORT’ 〈module-id〉 ‘AS’ 〈alias-id〉

– Module querying. We can query the consequences of the public construct terms of
a module. The given query is matched only against the results from public rules of
the given module but not against other rules from the current module.
〈module-access〉 ::= ‘in’ 〈module-id〉 ‘(’ 〈query〉 ‘)’

– Module provision. We can feed or provide data to the public query terms of a module.
The result of a rule with such a construct term is only sent to public queries in the
given module. Private queries and queries of the current module are not executed.
〈module-provision〉 ::= ‘to’ 〈module-id〉 ‘(’ 〈construct-term〉 ‘)’

7



2.2.3 Examples

In the following we will explain how modules are used and what advantages they have. Our
example shall be a mashup program that collects data of Audio CDs from various websites and
displays it uniformly in a nicely formatted document. Please note that the original webpages
are not used in this tutorial due to their huge size and hard-to-understand structure. Instead,
strongly stripped-down copies are used. In this example the terms “tag” and “node” for the
elements of an XML or Xcerpt tree are used interchangeably. “Tag” is used when referring to
a textual representation whereas “node” is used when regarding the tree structure.

Starting simple - Collecting CD data from Amazon The first version of our Mashup
program does not need to do much. It should be able to extract CD data from Amazon web
pages and create an HTML file to display all titles and artists in a table.

Our program’s “internal data” should be a list of all CDs, including title, artist, URL of the
cover image and songs. Using pseudo-Xcerpt code, the structure looks like this:

cd [

2 artist,

title,

4 coverlink,

songs [

6 song, song ... song

]

8 ]

We decided to include the cover image and the songs, even though we do not need them
yet. It is not hard and saves work when we later want to add them to the output.

Our program needs a goal rule, in which the data to be output is specified. As already said,
we would like to have a table with all CD titles and artists. The output should be an HTML
document called mashup.html. The goal rule looks as follows:

GOAL

2 out {

resource {"file:mashup.html", "xml"},

4 html [

head [

6 title [ "Mashup" ]

],

8 body [

table [

10 all tr [

td [ var ARTIST ],

12 td [ var TITLE ]

]

14 ]

]

16 ]

}

18 FROM

cd [[

20 artist [var ARTIST],

title [var TITLE]

22 ]]

END

8



In the FROM block the rule matches all [cd] nodes with both an artist and a title. The
contents of the artist and the title nodes are written to the HTML table constructed in the
GOAL block. This rule alone does nothing, however. We have to provide the data that can be
matched, i.e. one or more cd nodes with an artist and a title child node.

To do so, we have to convert the existing data from the Amazon format to our internal data
format with another rule. Figure 1 shows what the page looks like (or rather the stripped-down
copies).

Figure 1: An input document for the mashup program

9



The following listing displays the HTML structure of the Amazon web pages.

1 <html>

<head>

3 <title>Amazon.com: TITLE: Music: ARTIST</title>

</head>

5 <body>

ATRIST<br/>

7 TITLE<br/>

<img src=COVERLINK ... />

9 <hr/>

<b>Product Details</b>

11 <br />

<ul>

13 <li><b>Audio CD</b> ...</li>

<li><b>Number of Discs:</b> 1</li>

15 <li><b>Label:</b> ...</li>

<li><b>ASIN:</b> ...</li>

17 </ul>

<hr/>

19 <b>Listen to Samples</b>

<table ... >

21 <tr>

<th ... > ... </th>

23 <th ... > ... </th>

</tr>

25 <tr>

<td>SONGTITLE 1</td>

27 <td>

<a ... >Listen</a>

29 <img .../> <!−− listen icon −−>
</td>

31 </tr>

33 ...

35 <tr>

<td>SONGTITLE x</td>

37 <td>

<a ... >Listen</a>

39 <img .../> <!−− listen icon −−>
</td>

41 </tr>

</table>

43 </body>

</html>

The contents of the Amazon web pages must be converted into our internal data format.
The subsequent rule does this for the copy of “Blue Man Group - The Complex”. Note how
the FROM clause mirrors the HTML structure of the input document.

CONSTRUCT

2 cd [

artist[var ARTIST],

4 title[var TITLE],

coverlink[var COVERLINK],

6 songs[

all song [var SONGTITLE]

8 ]

10



]

10 FROM

in { resource { "file:data/amazon-blue_man_group-the_complex.html", "xml" },

12 html [

head [[]],

14 body [[

var ARTIST, br,

16 var TITLE, br,

img {

18 attributes {

src{var COVERLINK}

20 }

},

22 table [[

tr[

24 th [[]]

],

26 tr[

td [var SONGTITLE],

28 td [[]]

]

30 ]]

]]

32 ]

}

34 END

Running the program now results in an HTML document containing a table with only one
row.

<html>

2 <head>

<title>Mashup</title>

4 </head>

<body>

6 <table>

<tr>

8 <td>Blue Man Group</td>

<td>The Complex [Enhanced]</td>

10 </tr>

</table>

12 </body>

</html>

For all CDs to appear in the mashup the rule must be repeated for all Amazon web pages.
The only difference is the resource location. To add data from different websites, similar rules
must be written, specifically tailored to the web pages’ structure. Again, if there is one CD per
web page, we have to provide one rule for each CD.

Figure 2 shows the final output, involving four CDs from two different websites: Amazon
and Buch.de.

Figure 3 shows the overall structure of the program. Each box corresponds to a rule. The
data being passed between the rules is annotated at the arrows.

As one can see, this naive approach has several disadvantages. The file becomes very huge
very fast and the program is hardly maintainable due to the enormous amount of code doubling.
Therefore we would like to split up the program into modules. Code should be reused when
possible.
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Figure 2: Final output of the simple mashup program

Goal Rule

Blue Man Group
web page

Chicane
web page

2raumwohnung
web page

Gorillaz
web page

html htmlhtmlhtml

cd cd
cdcd

html

mashup.html

Figure 3: Rule chaining of the simple mashup program

Introducing data import modules The code that can be reused are the transformation
rules that convert the web pages’ data into our internal data format. Therefore we need two
modules, one for the Amazon importer and one for the Buch.de importer.

Figure 4 shows the structure of the mashup program with data import modules present.
A module is stored in its own file and looks very much like the main program. The most

notable difference is that it starts with a module declaration.

1 MODULE AmazonImport

...
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Goal Rule

Blue Man Group
web page

Chicane
web page

2raumwohnung
web page

Gorillaz
web page

html htmlhtmlhtml

cd

html

mashup.html

html

cd

html

cdcd

virtualroot virtualroot

Main Program

Amazon Module Buch.de module

html

html

html

html

Figure 4: Rule chaining of the mashup program with data import modules

The name after the MODULE keyword is entirely arbitrary. It does not need to reflect the ac-
tual filename and it is not used anywhere. For comprehensibility one should choose a describing
name, though. After the module declaration the actual transformation rules follow. Below is
the complete content of the Amazon module file.

MODULE AmazonImport

2

CONSTRUCT

4 public cd [

artist[var ARTIST],

6 title[var TITLE],

coverlink[var COVERLINK],

8 songs[

all song [var SONGTITLE]

10 ]

]

12 FROM

public html [

14 head [[]],

body [[

16 var ARTIST, br,

var TITLE, br,

18 img {

attributes {

20 src{var COVERLINK}

}

22 },

table [[

24 tr[

th [[]]

26 ],
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tr[

28 td [var SONGTITLE],

td [[]]

30 ]

]]

32 ]]

]

34 END

This rule is mostly identical to the rules from the main program that convert the Amazon
data. The differences are that there is no resource statement — we do not want to tie the
importer to a specific resource — and the addition of the public keyword to both the CONSTRUCT
and the FROM clause.

Adding public to the CONSTRUCT clause makes the rule public, i.e. available for use from
outside the module. When no public modifier is added, the rule is considered private and can
only be used by other rules within the same module. For a module to be useful at least one
rule must be public.

Adding public to the FROM clause makes the rule available for data injection from outside
the module. Without the public modifier the rule can only match data from the same module
or the module’s submodules.

Conceptually speaking, a module is a component with inputs and outputs, i.e. an interface.
All public FROM clauses are inputs, all public CONSTRUCT clauses are outputs. The behaviour of
the module is hidden and unknown to the calling modules. The module inputs and outputs are
reflected by the red arrows in figure 4.

Modular Xcerpt does, of course, also offer facilities to actually use the declared modules.
First of all, the modules to be used must be imported. We want to use the modules from the
main program, therefore we add the following import statements at the beginning of the file.

IMPORT /import/Amazon.mxcerpt AS Amazon

2 IMPORT /import/Buchde.mxcerpt AS BuchDE

The path after the IMPORT keyword is the location to the file in which the module is defined.
The name after the AS keyword defines the alias with which the module will be accessed. This
name does not have to be the same as the actual name of the module.

Having the imports declared, we can shorten the rules that access the webpage data:

CONSTRUCT to Amazon (

2 var DATA

)

4 FROM

in {

6 resource { "file:data/amazon-blue_man_group-the_complex.html", "xml" },

var DATA

8 }

END

The CONSTRUCT to <ModuleName> ( ... ) is Modular Xcerpt’s way to connect to the input of a
module. The above rule takes the input resource’s complete data and passes it to the Amazon
module without any change. There is one such rule for each webpage to be processed. The
Buch.de pages are sent to the BuchDE module, of course.

Now that the data can be fed into the modules, we need a way to get it out of the modules
again. This is done by another short rule, which is connected to the Amazon import module’s
output.
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CONSTRUCT

2 virtualroot[all var CDINFO]

FROM in Amazon (

4 var CDINFO →cd[[]]

)

6 END

This rule retrieves all datasets that the Amazon module computed. Note that in contrast to
the original, non-modular program, we have to introduce an artificial root node, virtualroot.
Construct clauses with nothing than a variable usage are only allowed when constructing to a
module. This is not the case here. For the BuchDE module there is an analogous rule.

The complete data can now uniformly be accessed via the virtualroot tag. The original GOAL
rule that writes the HTML document must be slightly altered. Instead of only matching the
cd nodes, it does now have to match virtualroot with the cd nodes as children embedded.

GOAL

2 out {

resource {"file:mashup.html", "xml"},

4 html [

head [

6 title [ "Mashup" ]

],

8 body [

table [

10 all tr [

td [ var ARTIST ],

12 td [ var TITLE ]

14 ]

]

16 ]

]

18 }

FROM

20 virtualroot [[

cd [[

22 artist [var ARTIST],

title [var TITLE]

24 ]]

]]

26 END

It is important to note that rules which send data to a module and rules which retrieve data
from the module must both be defined in the same module or the main program, i.e. in the
same file. It is, for example, not possible to query in the main program a rule from module X,
which is fed by a rule from module Y.

Summary With the introduction of modules we were able to reuse code and split the Xcerpt
program up into managable parts. A module is a component that accepts some input and
computes output, which can be accessed by the calling module.

Introducing data export modules As time progresses, the simple HTML output is not
sufficient anymore. Something more sophisticated is needed. The new output shall be in the
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HTML format again. Additionally to the CD title and the artist it should display the album
cover and a list of all songs.

As we expect the need for more output formats in the future, we will use modules to be
more flexible.

The output will be created by multiple cooperating modules. The HtmlCreator module
creates the final HTML document, i.e. the html tags and the head, including title and (CSS)
style. The actual html body is also added to the final document. It is not computed by the
HtmlCreator module, however.

The actual content of the body is produced by the TableLayout modules, either MobileTable-
Layout or ElaborateTableLayout.

• The simple layout that has been used so far is adequate to display data on mobile devices.
It will be computed by the MobileTableLayout module.

• A more advanced layout is reasonable for bigger screens and faster internet connections.
It will be computed by the ElaborateTableLayout module.

As HTML documents can easily be customized using CSS, we also want to have flexibility
there. The StyleSheet module offers easy exchangeability for CSS stylesheets.

Figure 5 shows how the modules interact. The import modules are left out due to space
restrictions.

mashup.html

Main ProgramHtmlCreator Module
MobileTableLayout Module
(inactive)

ElaborateTableLayout Module

StyleSheet Module

virtualroot virtualroot

cd

cd

alldata

tabletable

 html
creator

 html
creator

 html
creator

style
sheetlink

link
style
sheet

style

webpage
data

html html

html

Goal Rule

Figure 5: Rule chaining of the mashup program with data export modules

In the following, each of the modules is described in more detail.
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The Main program With the module approach the GOAL rule is drastically simplified.

GOAL

2 out {

resource {"file:mashup.html", "xml"},

4 var DATA

}

6 FROM

in HtmlCreator (

8 var DATA

)

10 END

It receives the fully computed output from the HtmlCreator module and writes it directly
to the HTML file. In order to retrieve data from the HtmlCreator, some other data has to be
input first. This is done in the following rule.

CONSTRUCT

2 to HtmlCreator (

htmlcreator [

4 title [ "Music Center" ],

stylesheet [ "data/yellowstyle.css" ],

6 body [

var BodyContents

8 ]

]

10 )

FROM

12 in MobileTableLayout (

var BodyContents

14 )

END

The HtmlCreator module is fed with an htmlcreator node containing three child nodes
which can be seen as a kind of parameters: the title of the page to be produced, the CSS
stylesheet to be applied and the actual page content. The specification of the stylesheet is
optional. This fact is specified in the HtmlCreator module and must be documented in its
interface description. The page content, stored in variable BodyContents is drawn from another
module, the MobileTableLayout in this example.

The MobileTableLayout, too, must get its data from somewhere.

1 CONSTRUCT

to MobileTableLayout (

3 var CDINFO

)

5 FROM

virtualroot[[var CDINFO]]

7 END

This rule sends all cd nodes from the virtualroot and sends it to the MobileTableLayout
module. The virtualroot nodes are created by the data import facility that has been explained
above. Note that, even though CDINFO does not match all children cd nodes at once but one
after another, there is no all keyword in the construct clause. The matched data is sent to the
module sequentially.
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The TableLayout modules As already explained, there are two modules that compute the
body content of the final output document. Only one of them can be active at a time.

The MobileTableLayout module contains a rule to make a simple table from the data that
it receives.

1 MODULE MobileTableLayout

3 CONSTRUCT

public

5 table [

all tr [

7 td [ var ARTIST ],

td [ var TITLE ]

9 ]

]

11 FROM

public cd [[

13 artist [var ARTIST],

title [var TITLE]

15 ]]

END

The table construction code is the same code that was originally in the GOAL rule, before
we started employing modules for output computation. Consequently, the output is the same
as depicted in figure 2.

The ElaborateTableLayout module produces a more sophisticated table, which also includes
CD covers and the list of songs.

MODULE ElaborateTableLayout

2

CONSTRUCT

4 public

table [

6 attributes {

class {"maintable"}

8 },

all var DATASET

10 ]

FROM

12 alldata[[

dataset[[var DATASET]]

14 ]]

END

16

18 CONSTRUCT

alldata [

20 all dataset [

tr [

22 attributes {

class {"heading"}

24 },

td [

26 attributes {

colspan { "2" }

28 },

var ARTIST, ":", var TITLE

30 ]
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],

32 tr [

attributes {

34 class {"value"}

},

36 td [

img[

38 attributes {

src { var COVERLINK },

40 width { "250" },

height { "250" }

42 }

]

44 ],

td [

46 table [

attributes {

48 class { "songtitles" }

},

50 all tr [

td [ var SONG ]

52 ]

]

54 ]

]

56 ]

]

58 FROM

public cd [[

60 artist [var ARTIST],

title [var TITLE],

62 coverlink [var COVERLINK],

songs [[

64 song [var SONG]

]]

66 ]]

END

Here we see a module that consists of two rules. This is due to a limitation in Xcerpt. The
layout should use two table rows for each data set, the first one for artist and title, the second
one for cover and songlist.

1 <table>

<tr>

3 <td colspan="2">artist 1 : title 1</td>

</tr>

5 <tr>

<td>cover 1</td>

7 <td>list of songs 1</td>

</tr>

9 ...

<tr>

11 <td colspan="2">artist x : title x</td>

</tr>

13 <tr>

<td>cover x</td>

15 <td>list of songs x</td>

</tr>

17 </table>
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To build a table containing all CD data, the all keyword has to be used in the construction
clause. Unfortunately, it cannot. Placing the all keyword in front of the table tag would
result in an individual table for each CD data set.

1 <table>

data 1

3 </table>

...

5 <table>

data x

7 </table>

Placing the all keyword in front of each table row (tr tag) would result in a table which
contains all rows with artists and titles, followed by all rows with covers and songlists.

1 <table>

<tr>

3 <td colspan="2">artist 1 : title 1</td>

</tr>

5 ...

<tr>

7 <td colspan="2">artist x : title x</td>

</tr>

9 <tr>

<td>cover 1</td>

11 <td>list of songs 1</td>

</tr>

13 ...

<tr>

15 <td>cover x</td>

<td>list of songs x</td>

17 </tr>

</table>

We actually need something between the table and the tr node to place the all keyword
in front of, but this would result in invalid HTML. Splitting the construction into two rules
solves the dilemma.

The lower rule creates the two table rows and groups them together under a temporary
dataset node. All dataset nodes (one for each CD data) are grouped together under the
alldata node.

The upper rule takes all table rows from the dataset nodes and adds them under a table
node, which results in valid HTML. Figure 6 shows the created output in a browser.

The HtmlCreator module As already mentioned, the HtmlCreator module creates the
HTML output. It receives the page title, the CSS stylesheet location and the actual body
content from outside and puts them together.

MODULE HtmlCreator

2

CONSTRUCT

4 public

html [

6 attributes {

xmlns { "http://www.w3.org/1999/xhtml" },

8 lang { "en" }

},
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Figure 6: Output produced by ElaborateTableLayout

10 head [ var TITLE, optional var STYLE],

var BODY

12 ]

FROM

14 or {

webpagedata [ var TITLE, var BODY ],

16 style [var STYLE]

}

18 END

The FROM clause matches all webpagedata and style nodes. The keyword optional in
front of the STYLE variable in the CONSTRUCT clause indicates that the rule can be applied even
if there is no style available.

The webpagedata and style nodes are produced by the following helper rules.

CONSTRUCT
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2 webpagedata [ var TITLE, var BODY ]

FROM

4 public

htmlcreator [[

6 var TITLE →title [[ ]],

var BODY →body [[ ]]

8 ]]

END

10

12 CONSTRUCT to StyleSheet (

var DATA

14 )

FROM

16 public

htmlcreator [[

18 var DATA →stylesheet [[ ]]

]]

20 END

22

CONSTRUCT

24 style[ var STYLE ]

FROM

26 in StyleSheet (

var STYLE

28 )

END

Both the rules for webpagedata and style match the htmlcreator node that is being
passed to the HtmlCreator module from the main program. The former rule just wraps the
title and body “parameters” in a webpagedata tag. The latter rule creates the HTML code
for CSS inclusion with the help of the StyleSheet module. This additional module has been
introduced to display the usage of nested modules.

The StyleSheet module In the main program one can easily specify the CSS stylesheet to
be used by the final HTML output. The StyleSheet module builds the appropriate HTML code
around it.

1 MODULE StyleSheet

3 CONSTRUCT

public

5 link [

attributes {

7 rel {"Stylesheet"},

type {"text/css"},

9 href {var STYLESHEET}

}

11 ]

FROM

13 public

stylesheet [var STYLESHEET]

15 END

For example, specifying stylesheet [ ”data/yellowstyle.css” ] will result in the following
HTML code:
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1 <link rel="Stylesheet" type="text/css" href="data/yellowstyle.css" />

Figure 7 shows the output created with the ElaborateTableLayout module and the yellow-
style stylesheet applied.

Figure 7: ElaborateTableLayout output with stylesheet applied

Summary Modules have been used to create a flexible set of rules. These can be easily
exchanged and parameterized to control the final output of the program. Furthermore, it has
been shown that modules can be nested.

2.3 Role modeling with Ontologies

For ontologies we have investigated another kind of component, the role model. A role model
is a unit of deployment in role modeling, a discipline going back as far as to the advent of
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database modeling. We do not introduce role modeling here in detail, but for a starting point
for role modeling in ontologies see [10] and references therein.

Essentially, a role model constitutes a set of related concepts (in role modeling called role
types) and their relationships. We believe that role models constitute useful and natural units for
component-based ontology engineering. Role models are developed as components and intended
to be deployed as such, in contrast to existing approaches aimed at extracting ontological units
from ontologies not necessarily designed to be modular. In the following we give some simple
examples of role models and how they can be reused in ontologies.

A role model can be said to capture a particular concern of a more fundamental domain.
What makes role models reusable is that a particular concern can be reused in different domains,
hence, different ontologies. The role model below describes the product concerns and introduces
concepts such as Product, Producer, Consumer etc. What is important in role modeling, and
in particular for role types, are relationships. Hence, the role model below describes the rela-
tionships between the introduced concepts, relationships that hold for the concepts regardless
of the domain they are used in. That is, a producer always produces some product, which is
being consumed by someone (the consumer) etc.

1 Rolemodel: Product

3 Role: Product

EquivalentTo: ( maker SOME Producer )

5

Role: Producer

7 EquivalentTo: ( produces SOME Product )

9 Role: Consumer

EquivalentTo: ( consumes SOME Product )

The role model above is based on Manchester Syntax, a syntactical variant for OWL [8]. For
the purpose of defining role models we extend the considered syntax with the constructs Role-
model and Role (demonstrated above, the other syntactical constructs belong to the Manchester
Syntax). For example, in the above, the role type Product is stated to be equal to the set of
individuals that are in the relationship maker with some individual of concept (role type) Pro-
ducer. Essentially, the domain of the relationship maker is stated to be the role type Product.
The other concepts (role types) are defined in a similar fashion.

The above role model describes role types related to products. Thus, any domain ontology
that needs to talk about, or model, products can reuse the role model. Below is a domain
ontology relating to wines that reuses the role model.

Ontology:

2

Import /Product.rowlm

4

Class: Wine

6 Plays: Product

DisjointWith: Pizza

8

Class: RedWine

10 SubClassOf: Wine

EquivalentTo: hasColor

12

Class: WhiteWine

14 SubClassOf: Wine
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EquivalentTo: hasColor

16

Class: Pizza

18 Plays: Product

20 Class: Winery

Plays: Producer

22

Wine(merlot99_1)

24 Pizza(fourseasons_1)

The ontology above is also based on the Manchester Syntax, but it is additionally extended
with two constructs to import and integrate role models: Import and Plays. A role model can
be imported using the Import construct. Concepts in the ontology can then be associated to
the role types in the imported role model using the Plays construct. In the ontology above, for
example, it is stated that wines can play the role of being products. The benefit is that all the
relationships between role types encoded in the role model are reused for the Wine concept.
The same holds for the concept Pizza etc.

The above ontology, written in an extended language for the purpose of role modeling, is
compiled down to an ontology written in the underlying non-extended language. This compi-
lation can be described by the following algorithm:

1. Make all imported role type definitions available as classes in the ontology.

2. For each role type R used in the ontology:

(a) Let {C1, . . . , Cn} be the set of classes which R is said to play (using the Plays
construct). Then add the axiom R v C1 t . . . t Cn t ⊥ to the ontology.

(b) For each role assertion R(a), make the same assertion available in the resulting
ontology, now referring to the class-representative for the role type R.

3. Remove Import and Plays statements.

The above semantics implies that a non-played role R may not be instantiated by any
individual since R v ⊥ would be added to the ontology (i.e. R is always interpreted as the
empty set). The semantics of our role modeling extension is an immediate consequence of the
translation by using the standard semantics of standard ontology languages (such as OWL).

For example, our ontology above would be compiled into the following non–role-based on-
tology.

Ontology:

2 Class: Consumer

SubClassOf: Bottom

4 EquivalentTo: ( consumes SOME Product )

6 Class: Producer

SubClassOf: Winery

8 EquivalentTo: ( produces SOME Product )

10 Class: Product

SubClassOf: (Pizza OR Wine)

12 EquivalentTo: ( maker SOME Producer )

14 Class: Wine
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DisjointWith: Pizza

16

Class: RedWine

18 SubClassOf: Wine

EquivalentTo: hasColor

20

Class: WhiteWine

22 SubClassOf: Wine

EquivalentTo: hasColor

24

Class: Pizza

26 Class: Winery

28 Wine ( merlot99_1 )

Pizza ( fourseasons_1 )

Figure 8 shows a screenshot of the environment for composing ontologies using role models.

Figure 8: Screenshot of the Product role models and an ontology importing the role model.
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Summary In the above we have shown the definition and use of role models. Role models are
interesting reuse units for ontologies since they cross-cut domains, and hence, domain ontologies.

Part III

Typing
This part describes typing technologies for finding errors in the rule-based query and transfor-
mation language Xcerpt.

3 Typing tool

This section presents a prototype of the type system (typechecker) XcerptT. Similarly to the
prototypical runtime system for Xcerpt, it has been implemented in the functional language
Haskell. The prototype has been attached as a module to the Xcerpt prototype. The cur-
rent version of the typechecker supports type specifications given with the formalisms of Type
Definitions or DTDs.

The prototype is restricted to the fragment of Xcerpt for which the formal semantics is pro-
vided. Moreover, it is restricted to non recursive Xcerpt programs. It is still under development
and the goal is to extend it towards the full Xcerpt.

The prototype of the type system together with the Xcerpt runtime system can be accessed
online via the link http://ida.liu.se/~artwi/XcerptT.

3.1 Usage of the Prototype

This section uses the notation where square brackets [ ] and the elements denoted by triangle
parentheses <...> belong to a metalanguage2.

The type system is invoked like the standard Xcerpt runtime system (i.e. executing xcerpt
or xcerpt.exe). To perform type checking (or type inference) of a program a parameter -t is
used:

xcerpt -t <program file> [<type specification>]

The typing mechanism can also be invoked using the interactive Xcerpt command mode with
the command:

:type <program file> [<type specification>]

In the abovementioned commands <program file> is an Xcerpt program and <type specification>
is a text file specifying the types of external resources (i.e. the resources referred to in targeted
query terms in(r, q) in the program) and the types of expected results. <type specification>
file may contain:

• a Type Definition i.e. rules defining types,

• input type specifications; each such specification specifies a type type(r) of a queried
resource r,

2[ ] represents optional part and <...> is a nonterminal which can be replaced with a text without spaces.
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• output type specifications specifying result types for particular rules.

The input type specification has the syntax:

Input::
[ resource = <resource URI> ]
[ typedef = <typedef location> ]
typename = <type name>

and the output type specification has the syntax:

Output::
[ rule = <index> ]
[ typedef = <typedef location> ]
typename = <type name>

where

• <resource URI> is an URI of the resource being queried whose type we specify. If
the parameter resource is omitted the input type specification specifies a type of every
resource occurring in the <program file> whose type was not specified (overridden) by
other input type specification. A <type specification> can contain at most one input type
specification without the parameter resource.

• <typedef location> is a URI of an external file containing a Type Definition (or DTD). If
the the parameter typedef is omitted the input or output type specification refers to the
local Type Definition i.e. specified in the current <type specification> file.

• <type name>, if used in an input type specification, it is a type name specifying the type
of the resource the specification refers to. If it is used in an output type specification it
is a type name specifying the result type of the rule the specification refers to. It can be
the most general type Top or a type name which is defined in the Type Definition or the
DTD the input or output type specification refers to. If the specification refers to a DTD
then a type name can be one of the element names declared in the DTD.

• <index> is a number of the query rule in the Xcerpt program whose output type we
specify. It can be obtained by counting the query rules in the program starting from one
e.g. the index of the second query rule in a program is 2. If the parameter rule is omitted
the output type specification concerns the first goal in the Xcerpt program (or the first
query rule if the program contains no goals). A <type specification> can contain at most
one output type specification without the parameter rule.

This is an example of a <type specification> file books.xts:

Publications -> publications[ Book* Article* ]

Article -> article[ Title Author+ Proceedings ]

Proceedings -> proceedings[ Title Editor+ ]

Book -> book[ Title Author+ Editor+ ]

Title -> title[Text ]

Author -> author[ P ]

Editor -> editor[ P’ ]
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P -> person[ S ]

P’ -> person[ F? S? ]

Person -> person[ F+ S ]

F -> firstname[ Text ]

S -> surname[ Text ]

AuthorsEditors -> authors-editors[ Person+ ]

Input::

resource = file:publications.xml

typename = Publications

Output::

rule = 1

typename = AuthorsEditors

Invoking the typing mechanism (e.g. with the command xcerpt -t
<program file> <type specification>) starts the process of type inference for the program.
The type inference is done using the knowledge of types of resources given by input type speci-
fications. If the type of a resource is not specified by any input type specification it is assumed
to be the most general type > (which can be seen as a default type of a resource). After the
type of results for each query rule of the program has been inferred, type checking is performed
for each query rule for which output type specification is provided and for which the inferred
result type is not empty. Type checking for a rule includes an inclusion check: it is checked
whether the inferred result type is included in the corresponding output type (specified by the
output type specification). If the check fails an intersection emptiness check is performed: it
is checked whether the intersection of the inferred result type and the specified output type is
empty. Thus there are three possible results of type checking for a rule:

• OK - the inferred result type is included in the specified type i.e. the rule is correct wrt.
the specified type,

• Failed - the intersection of the inferred result type and the specified type is empty i.e.
there is a weak type error for the rule,

• Unsuccessful - the inferred result type is not included in the specified type but the in-
tersection of both types is not empty i.e. the rule may be incorrect wrt. the specified
type.

Invoking the typing mechanism without <type specification> parameter has the same effect
as invoking it with an empty <type specification> file.

As a result of typing an Xcerpt program we get a printout that for each query rule of the
program, contains:

• the inferred result type for the rule, for example, Rule 2: Person (0 stands for empty
result type)

• if there is a result type specified for the rule and if the inferred result type is not empty,
the result of type checking, for example,
Type checking: Failed,

• variable-type mappings for variables occurring in the rule
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Moreover the printout contains a Type Definition defining all the inferred types and the types
of the queried resources.

For the types being intersection of other types their content model is provided by a DFA
instead of a regular type expression. A DFA is presented by descriptions of all its states. Each
such a description is of the form Si => a1 > Ski1 . . . an > Skin , where Si is the number of the
state being described, a1, . . . , an are the symbols of the alphabet on which the DFA is defined
and each Skij

is the number of the state reached from the state Si by reading the symbol
aj . Additionally, the number of the state being described may be preceded by the character
’>’ which denotes the initial state or it may be followed by the character ’!’ which denotes a
final state. This is an example of a DFA corresponding to the language defined by a regular
expression AF ∗:

0 => A>0 F>0
>1 => A>2 F>0
2! => A>0 F>2

A name given by the system for a type being the intersection of types T1,T2 is T1^T2. The
type checker also invents type names for the newly inferred types. The devised new type names
are the labels of the corresponding construct terms occurring in heads of query rules. If there
is a need to define a type with a type name which has already been used the new type name
is augmented with an index i.e. a number added at the and of the type name (underscore
separated). If a type name with a given index already exists the new type name has the index
increased by 1.

Here we present an output of the type system prototype for the following Xcerpt program:

1 GOAL

authors-editors[ all var X ]

3 FROM

books[[

5 book{{

title[ var Y ],

7 author[ var X ],

editor[ var X ]

9 }}

]]

11 END

13 CONSTRUCT

books[ all var X ]

15 FROM

in{ resource{ "file:publications.xml" },

17 desc var X →book{{ }}

}

19 END

A type specification for the program is given by publications.xts file from the previous
example. The obtained output is:

=========================================================

Rule 1: authors-editors

Type checking: Failed (no results of type AuthorsEditors)

---------------------------------------------------------

Y->Text, X->P^P’
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=========================================================

Rule 2: books

---------------------------------------------------------

X->Book

=========================================================

=========================================================

Type Definition:

---------------------------------------------------------

authors-editors -> authors-editors[ P^P’+ ]

books -> books[ Book+ ]

Publications -> publications[ Book* Article* ]

Article -> article[ Title Author+ Proceedings ]

Proceedings -> proceedings[ Title Editor+ ]

Book -> book[ Title Author+ Editor+ ]

Title -> title[ Text ]

Author -> author[ P ]

Editor -> editor[ P’ ]

P -> person[ S ]

P’ -> person[ F? S? ]

Person -> person[ F+ S ]

F -> firstname[ Text ]

S -> surname[ Text ]

AuthorsEditors -> authors-editors[ Person+ ]

P^P’ -> person[

0 => S>0

>1 => S>2

2! => S>0

]

=========================================================

The printout contains the inferred result types for the first and the second rule, which are
respectively, authors-editors and books. It also contains information of the inferred types for
the particular variables occurring in the rules. All the types are defined by the Type Definition
from the bottom of the printout. As an output type specification is provided for the first rule
the printout contains the result of type checking for the rule.

Figure 9 presents a screenshot of the online type system interface.

4 Use-cases and examples

This section presents examples of simple scenarios showing the way the presented type system
can be helpful for programmers for checking correctness of Xcerpt programs. The examples show
the way the type system can facilitate finding errors in programs. The programs presented in
this section, except the last one (as the prototype is not operational for recursive programs),
have been type checked by our prototype and the corresponding printouts are presented in
Section 4.4.

4.1 Usecase 1: CD Store

Consider a Type Definition:
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Figure 9: Type system prototype interface.

Cds → bib [ Cd∗ ]
Cd → cd [ Title Artist+ Category? ]
Title → title [ Text ]
Artist → artist [ Text ]
Category → ”pop” | ”rock” | ”classic”

The query rule below queries a document cds.xml of the type Cds defined above. The
intention of the query rule is to collect artists together with all the titles of the CD’s of the
category ”pop”.

1 CONSTRUCT

pop-entries[

3 all entry[

var ARTIST,

5 all var TITLE

]

7 ]

FROM
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9 in{ resource[ "file:cds.xml" ],

bib{{

11 cd[[ var TITLE, var ARTIST, "pop" ]]

}}

13 }

END

First, we assume that no result type specification is given for the rule.
Printout CDstore.1 in Section 4.4 is the result of typing the query rule by the type-

checker. We assume that the intention of an author of the query rule is that the variable
TITLE will be bound to data terms title[...] and the variable ARTIST will be bound to
data terms artist [...]. The type system infers the types of variables used in the query rule.
They are given by the following variable-type mappings: [TITLE 7→Title, ARTIST 7→Artist],
[TITLE 7→Artist, ARTIST 7→Artist]. As the variable TITLE is intended (by the programmer)
to take values only of the type Title, the inferred types for variables suggest that the query rule
is incorrect with respect to the programmer’s expectations.

Based on the inferred types of variables the query rule result type is inferred. The inferred
result type is pop-entries defined as

pop-entries → pop-entries [ entry+ ]
entry → entry [ Artist (Title | Artist)+ ]
Artist → artist [ Text ]
Title → title [ Text ]

Looking at this definition of the inferred result type of the rule, the programmer can also
realize that the results of the rule may be different from expected ones (as an entry should not
contain more than one artist).

Now, let us assume that a result type specification is provided for the rule and the specified
result type is Entries as defined below:

Entries → pop-entries [ Entry∗ ]
Entry → entry [ Artist Title+ ]
Artist → artist [ Text ]
Title → title [ Text ]

Printout CDstore.2 in Section 4.4 corresponds to this case. Now the system can auto-
matically check that the inferred result type pop-entries is not included in the type Entries (as
the type entry is not a subtype of the type Entry). This information suggests a type error.
However, a type inclusion check failure is not a proof of a type incorrectness of the program
as the inferred result type pop-entries is not exact3 (as the query rule uses the construct all).
There is no weak type error for the rule as the intersection of the types Entries and pop-entries
is not empty. Nevertheless, there is a type error for the rule. The intention for the query rule
is to produce a result containing entries with one artist and all his/her titles (at least one).
However, the query rule may produce a result with entries containing more than one artist, for
example:

3 The inferred result type pop-entries is a superset of the actual set of possible results which is (Entries′)
defined as

Entries′ → pop-entries[Entry ′+]
Entry ′ → entry[Artist (Title | Artist)∗ Title (Title | Artist)∗]
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pop-entries[

2 entry[ artist[ "artist1" ], title[ "title1" ] ],

entry[ artist[ "artist2" ], title[ "title1" ], artist[ "artist1" ] ]

4 ]

The abovementioned result is obtained if the query rule is applied to a data term:

bib[

2 cd[

title[ "title1" ],

4 artist[ "artist1" ],

artist[ "artist2" ],

6 "pop"

]

8 ]

4.2 Usecase 2: Bibliography

Consider the following Type Definition:

Bibliography → bib [ (Book | Article | InProceedings)∗ ]
Book → book {Title Authors Editors Publisher? }
Article → article {Title Authors Journal? }
InProceedings → inproc {Title Authors Book }
Title → title [ Text ]
Authors → authors [ Person∗ ]
Editors → editors [ Person∗ ]
Publisher → publisher [ Text ]
Journal → journal {Title Editors }
Person → person [ FirstName LastName ]
FirstName → first [ Text ]
LastName → last [ Text ]

4.2.1 No Result Type Specified

The query rules from this section query a document bibliography.xml of the type Bibliography
defined above.

CONSTRUCT

2 result[

all var AUTHOR,

4 titles[ all var TITLE ]

]

6 FROM

in{ resource[ "file:bibliography.xml" ],

8 Bib{{

Book{{ Author[ var AUTHOR ], Title[ var TITLE ] }}

10 }}

}

12 END

The corresponding printout in Section 4.4 is Bibliography.1. The query rule returns no
results when it is applied to a document of type Bibliography because of the labels’ mismatch.
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The labels occurring in the body of the rule are written with capital letters while labels occurring
in the Type Definition are written with lower case letters. Thus, the query rule does not match
the type of the database and the result type inferred for this query rule is empty. We get an
emptiness error for the rule.

This is another example of a query rule with an emptiness error.

CONSTRUCT

2 results[

all publisher[ var NAME , var URL ]

4 ]

FROM

6 in{ resource[ "file:bibliography.xml" ],

bib{{

8 book{{ publisher[ name[ var NAME ], url[ var URL ] ] }}

}}

10 }

END

The corresponding printout in Section 4.4 is also Bibliography.1. The inferred result type
is empty due to the fact that the query term in the body of the query rule cannot be matched
against data terms of type Bibliography. This is because the query looks for name[...] and
url [...] as direct subterms of publisher [...] while data terms of type Publisher contain only text.

The next query rule does not match the document because of the square brackets used to
match data terms book{...}. According to the type of the document direct subterms of book{...}
are unordered and cannot be matched with a query term being an ordered pattern.

1 CONSTRUCT

result[

3 all var AUTHOR,

titles[ all var TITLE ]

5 ]

FROM

7 in{ resource[ "file:bibliography.xml" ],

bib[[

9 book[[ title[ var TITLE ], author[ var AUTHOR ] ]]

]]

11 }

END

The corresponding printout in Section 4.4 is also Bibliography.1.
An emptiness error is obtained also for the next query rule. This is caused by the wrong

usage of the variable PERSON. Its first occurrence will be bound to data terms of the type
Person while its second occurrence will be bound to direct subterms of a data term person[...]
which can be of the type either FirstName or LastName. As the intersection of type Person
with each of latter types is empty the inferred query result type is also empty.

CONSTRUCT

2 result[

all var PERSON,

4 titles[ all var TITLE ]

]

6 FROM

in{ resource[ "file:bibliography.xml" ],

8 bib{{

book{{

10 editors{{ var PERSON }}
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}},

12 book{{

authors{{

14 person{{ var PERSON }}

}}

16 }}

}}

18 }

END

The corresponding printout in Section 4.4 is Bibliography.1.

4.2.2 Result Type Specified

The next example of a query rule illustrates a transformation of an XML document to a format
similar to HTML. The format is defined by the following Type Definition which specifies the
result type TextBook 4:

TextBook → book [ Cover Body ]
Cover → cover [ Title Author∗ Publisher? ]
Body → body [ Abstract? Chapter∗ ]
Title → title [ Text ]
Author → author [ Text ]
Publisher → publisher [ Text ]
Abstract → abstract [ Text ]

Chapter → chapter [ Title Section∗ ]
InlineContent → inline [ Text | Bf | Em ]
Section → section [ Title? (Paragraph | Table | List)∗ ]
Em → em [ InlineContent ]
Bf → bf [ InlineContent ]
Paragraph → p [ InlineContent∗ ]
Table → table [ TableRow+ ]
List → list [ ListItem ]
TableRow → tr [ TableCell∗ ]
ListItem → item [ InlineContent∗ ]
TableCell → td [InlineContent∗ ]

Consider a query rule which queries a document bibliography.xml :

1 CONSTRUCT

book[

3 cover[ title[ "List_of_Books" ] ],

body[

5 table[

all tr[

7 td[ var TITLE],

td[ all em [ var FIRST, var LAST ] ]

9 ]

]

4 The Type Definition and the two following examples of query rules were devised by Sacha Berger.
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11 ]

]

13 FROM

in{ resource [ "file:bibliography.xml" ],

15 bib{{

book{{

17 title[ var TITLE ],

authors[[

19 person{{

first[ var FIRST ],

21 last[ var LAST ]

}}

23 ]]

}}

25 }}

}

27 END

Let us assume that no type specification for the document bibliography.xml is provided.
In such case the system infers a very rough approximation of the set of results of the rule
(printout Bibliography.2 in Section 4.4) and the inferred result type book is not included in
the specified result type TextBook. Thus a type error is possible. To make sure about that it
is checked whether the intersection of the inferred result type and the specified result type is
empty. Indeed the intersection is empty. A weak type error, which we get, implies that the
rule will not return any results of the type TextBook. Notice that the weak type error has been
obtained without any type specification for the queried data.

The weak type error is due to the structure of the construct term used as a head of the
query rule. The construct term creates a data term body [...] with a data term table[...] as
a direct subterm. According to the type specification body [...] can not contain any table[...]
direct subterms. Note that in this case the inferred types of variables do not matter. Whatever
variable-type mappings we get from the body of the query rule the result type is still wrong
due to the structure of the construct term which does not conform to the specified result type.

Consider another query rule which queries the document bibliography.xml. This time we
assume that both type specifications are given i.e. type specification for the document bib-
liography.xml (the type Bibliography) and a result type specification for the rule (the type
TextBook).

1 CONSTRUCT

book[

3 cover[ title [ "Books" ] ],

body[

5 chapter[

title[ "List_of_Books_and_Authors"],

7 section[

table[

9 all tr[

td[ inline [ var TITLE ] ],

11 td[ inline [ var NAME ] ]

]

13 ]

]

15 ]

]

17 ]

FROM
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19 in{ resource[ "file:bibliography.xml" ],

bib{{

21 book{{

title[ var TITLE ],

23 desc var NAME

}}

25 }}

}

27 END

A type error is possible for the query rule as the inferred result type book is not included
in the type TextBook (printout Bibliography.3 in Section 4.4). We are not sure about type
incorrectness of the rule as the inferred result type is not exact (due to a construct all). This
time there is no weak type error discovered for the rule, which means that the rule may produce
results of the specified result type. Thus the structure of the head of the rule conforms to the
specified result type. The type inclusion check failure is due to the variables which get wrong
values i.e. not of the types required by the result type specification. The variable NAME used
in the body of the query rule can be bound to any data term which is a direct or an indirect
subterm of book [...] (except a data term title[...]). Thus, the variable NAME may be mapped
to the types: Authors, Editors, Publisher, etc. In the construct term the variable NAME is
used to build content of cells of a table and according to the type specification it should be of
a one of the types allowed for subterms of inline[...] which are Text, Bf and Em. A type error
is likely as the union of the inferred types for the variable NAME is not included in the union
of the types Text, Bf and Em.

The next rule is almost the same as the previous one. The difference is in the usage of the
variable NAME in the body of the rule, which now can be bound only to the direct subterm of
an element last [...].

1 CONSTRUCT

book[

3 cover[ title [ "Books" ] ],

body[

5 chapter[

title[ "List_of_Books_and_Authors"],

7 section[

table[

9 all tr[

td[ inline [ var TITLE ] ],

11 td[ inline [ var NAME ] ]

]

13 ]

]

15 ]

]

17 ]

FROM

19 in{ resource[ "file:bibliography.xml" ],

bib{{

21 book{{

title[ var TITLE ],

23 desc last[ var NAME ]

}}

25 }}

}

27 END
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The result of type checking performed by the type system for the rule is positive. Thus the
rule is correct wrt. the specified result type TextBook. The corresponding typechecker printout
is Bibliography.4 in Section 4.4.

4.3 Usecase 3: Bookstore

Here we present an example of an Xcerpt program being one of the use cases for Xcerpt
presented in [11]. As no result type specification is given for the program the type system is
only able to perform type inference and check emptiness of the inferred types. This results in a
specification of the inferred result type for the program. Such a type specification provided by
the inference mechanism can be used for documentation purposes. Additionally, it can be used
by a programmer to check manually if the inferred result type conforms to his/her expectations.

The use case is similar to one from XQuery Use Cases (XMP-Q5 in [4]). The program
queries two online bookstores and provides a summary over the prices for books in both book
stores. The summary is given using two representations: HTML representation and a repre-
sentation suitable for mobile devices, in the WML format (wireless markup language5). The
program uses rule chaining to separate the query part from the presentation part and creates
an intermediate representation for the data (in the example below: for each book, a book-with-
prices[...] data term containing title[...], price-a[...] and price-b[...] subterms for the price in
the first bookstore and the price in the second bookstore). This representation is then queried
by the two rules that create HTML and WML representations.

The schemata defining the structure of databases for the two bookstores are given in [11]
using the Relax NG notation and can be expressed by the following Type Definition.

Bib → bib [ Book∗ ]
Book → book [ Book attr Title (Authors | Editor) Publisher Price ]
Book attr → attr {Book year }
Book year → year [ Text ]
Title → title [ Text ]
Authors → authors [ Author∗ ]
Author → author [ Last First ]
Editor → editor [ Last First Affil ]
Last → last [ Text ]
First → first [ Text ]
Affil → affiliation [ Text ]
Publisher → publisher [ Text ]
Price → price [ Text ]
Reviews → reviews [ Entry∗ ]

Entry → entry [ Title Price Review ]
Review → review [ Text ]

The type of the document bib.xml is Bib and the type of the document reviews.xml is
Reviews. This is the Xcerpt program:

1 GOAL

out{

3 resource[ "file:prices.html" , "html" ],

5http://www.wapforum.org/DTD/wml_1.1.xml
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html[

5 head[ title [ "Price Overview" ] ],

body[

7 table[

tr[ td[ "Title" ],

9 td[ "Price at A" ],

td[ "Price at B" ] ],

11 all tr[ td[ var Title ],

td[ var PriceA ],

13 td[ var PriceB ] ]

]

15 ]

]

17 }

FROM

19 books-with-prices[[

book-with-prices[[

21 title[[ var Title ]],

price-a[[ var PriceA ]],

23 price-b[[ var PriceB ]]

]]

25 ]]

END

27

GOAL

29 out{

resource[ "file:prices.wml" , "xml" ],

31 wml[

all card[

33 "Title: " , var Title ,

"Price A: " , var PriceA,

35 "Price B: " , var PriceB

]

37 ]

}

39 FROM

books-with-prices[[

41 book-with-prices[[

title[[ var Title ]],

43 price-a[[ var PriceA ]],

price-b[[ var PriceB ]]

45 ]]

]]

47 END

49 CONSTRUCT

books-with-prices[

51 all book-with-prices[

title[ var T ],

53 price-a[ var Pa ],

price-b[ var Pb ]

55 ]

]

57 FROM

and{

59 in{ resource [ "file:bib.xml" ],

bib[[

61 book[[

title[ var T ],
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63 price[ var Pa ]

]]

65 ]]

},

67 in{

resource[ "file:reviews.xml" ],

69 reviews[[

entry[[

71 title[ var T ],

price[ var Pb ]

73 ]]

]]

75 }

}

77 END

The type system infers results types of the rules. The inferred result type for the third
query rule is books-with-prices. The inferred result types for the first and the second goal are
respectively html and wml. These types are defined by the following Type Definition:

books-with-prices → books-with-prices [ book-with-prices+ ]
book-with-prices → book-with-prices [ title price-a price-b ]
price-a → price-a [ Text ]
price-b → price-b [ Text ]
title → title [ Text ]

html → html [ head body ]
head → head [ title1 ]
title1 → title [ Text1 ]
Text1 → ”Price Overview”

body → body [ table ]
table → table [ tr tr+

1 ]
tr → tr [ td td1 td2 ]
td → td [ Text2 ]
Text2 → ”Title”
td1 → td [ Text3 ]
Text3 → ”Price at A”
td2 → td [ Text4 ]
Text4 → ”Price at B”
tr1 → tr [ td3 td3 td3 ]
td3 → td [ Text ]

wml → wml [ card+ ]
card → card [ Text5 Text Text6 Text Text7 Text ]
Text5 → ”Title : ”
Text6 → ”PriceA : ”
Text7 → ”PriceB : ”

The corresponding printout in Section 4.4 is Bookstore. Since no result type specification
is given the type system checks only if the inferred result type for each rule is not empty. If a
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result type specification was given, the type system could check whether the data produced by
the program conforms to HTML and WML formats.

4.4 Typechecker Results

This section presents printouts from the typechecker prototype. The printouts are results of
typing the program examples from Section 4. The way how the obtained results should be
interpreted is explained in Section 3.

CDstore.1

==================================================================

Rule 1: pop-entries

------------------------------------------------------------------

TITLE->Artist, ARTIST->Artist

TITLE->Title, ARTIST->Artist

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

pop-entries -> pop-entries[ entry+ ]

entry -> entry[ Artist (Artist|Title)+ ]

Cds -> bib[ Cd* ]

Cd -> cd[ Title Artist+ Category? ]

Title -> title[ Text ]

Artist -> artist[ Text ]

Category -> "pop" | "rock" | "classic"

==================================================================

CDstore.2

==================================================================

Rule 1: pop-entries

Type checking: Unsuccessful (results not of type Entries possible)

------------------------------------------------------------------

TITLE->Artist, ARTIST->Artist

TITLE->Title, ARTIST->Artist

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

pop-entries -> pop-entries[ entry+ ]

entry -> entry[ Artist (Artist|Title)+ ]

Cds -> bib[ Cd* ]

Cd -> cd[ Title Artist+ Category? ]

Title -> title[ Text ]

Artist -> artist[ Text ]

Category -> "pop" | "rock" | "classic"

Entries -> pop-entries[ Entry ]
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Entry -> entry[ Artist Title+ ]

==================================================================

Bibliography.1

==================================================================

Rule 1: 0

------------------------------------------------------------------

0

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

TextBook -> book[ Cover Body ]

Cover -> cover[ Title Author* Publisher? ]

Body -> body[ Abstract? Chapter* ]

Title -> title[ InlineContent ]

Author -> author[ Text ]

Publisher -> publisher[ Text ]

Abstract -> abstract[ Text ]

Chapter -> chapter[ Title Section* ]

InlineContent -> inline[ Text|Bf|Em ]

Section -> section[ Title (Paragraph|Table|List)* ]

Em -> em[ InlineContent ]

Bf -> bf[ InlineContent ]

Paragraph -> p[ InlineContent* ]

Table -> table[ TableRow+ ]

List -> list[ ListItem ]

TableRow -> tr[ TableCell* ]

ListItem -> item[ InlineContent* ]

TableCell -> td[ InlineContent* ]

Bibliography -> bib[ (Book|Article|InProceedings)* ]

Book -> book{ Publisher? Editors Authors Title1 }

Article -> article{ Journal? Authors Title1 }

InProceedings -> inproc{ Book Authors Title1 }

Title1 -> title[ Text ]

Authors -> authors[ Person* ]

Editors -> editors[ Person* ]

Journal -> journal{ Editors Title1 }

Person -> person[ FirstName LastName ]

FirstName -> first[ Text ]

LastName -> last[ Text ]

==================================================================

Bibliography.2

==================================================================

Rule 1: book

Type checking: Failed (no results of type TextBook)
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------------------------------------------------------------------

* -> Top

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

book -> book[ cover body ]

body -> body[ table ]

table -> table[ tr+ ]

tr -> tr[ td td_1 ]

td_1 -> td[ em+ ]

em -> em[ Top Top ]

td -> td[ Top ]

cover -> cover[ title ]

title -> title[ Text_1 ]

Text_1 -> "List_of_Books"

==================================================================

Bibliography.3

==================================================================

Rule 1: book

Type checking: Unsuccessful (results not of type TextBook possible)

------------------------------------------------------------------

TITLE->Text, NAME->Publisher

TITLE->Text, NAME->Text

TITLE->Text, NAME->Editors

TITLE->Text, NAME->Person

TITLE->Text, NAME->FirstName

TITLE->Text, NAME->LastName

TITLE->Text, NAME->Authors

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

book -> book[ cover body ]

body -> body[ chapter ]

chapter -> chapter[ title_1 section ]

section -> section[ table ]

table -> table[ (tr|tr_1|tr_2|tr_3|tr_4|tr_5|tr_6)+ ]

tr_6 -> tr[ td td_13 ]

td_13 -> td[ inline_13 ]

inline_13 -> inline[ Authors ]

tr_5 -> tr[ td td_11 ]

td_11 -> td[ inline_11 ]

inline_11 -> inline[ LastName ]

tr_4 -> tr[ td td_9 ]

td_9 -> td[ inline_9 ]

inline_9 -> inline[ FirstName ]

tr_3 -> tr[ td td_7 ]
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td_7 -> td[ inline_7 ]

inline_7 -> inline[ Person ]

tr_2 -> tr[ td td_5 ]

td_5 -> td[ inline_5 ]

inline_5 -> inline[ Editors ]

tr_1 -> tr[ td td ]

tr -> tr[ td td_1 ]

td_1 -> td[ inline_1 ]

inline_1 -> inline[ Publisher ]

td -> td[ inline ]

inline -> inline[ Text ]

title_1 -> title[ Text_2 ]

Text_2 -> "List_of_Books_and_Authors"

cover -> cover[ title ]

title -> title[ Text_1 ]

Text_1 -> "Books"

TextBook -> book[ Cover Body ]

Body -> body[ Abstract? Chapter* ]

Chapter -> chapter[ Title Section* ]

InlineContent -> inline[ Text|Bf|Em ]

Section -> section[ Title? (Paragraph|Table|List)* ]

Em -> em[ InlineContent ]

Bf -> bf[ InlineContent ]

Paragraph -> p[ InlineContent* ]

Table -> table[ TableRow+ ]

List -> list[ ListItem ]

TableRow -> tr[ TableCell* ]

ListItem -> item[ InlineContent* ]

TableCell -> td[ InlineContent* ]

TextBook_1 -> book[ Cover Body_1 ]

Cover -> cover[ Title Author* Publisher? ]

Body_1 -> body[ Abstract? Chapter_1* ]

Author -> author[ Text ]

Publisher -> publisher[ Text ]

Abstract -> abstract[ Text ]

Chapter_1 -> chapter[ Title Section_1* ]

InlineContent_1 -> inline[ Text|Bf_1|Em_1 ]

Section_1 -> section[ Title? (Paragraph_1|Table_1|List_1)* ]

Em_1 -> em[ InlineContent_1 ]

Bf_1 -> bf[ InlineContent_1 ]

Paragraph_1 -> p[ InlineContent_1* ]

Table_1 -> table[ TableRow_1+ ]

List_1 -> list[ ListItem_1 ]

TableRow_1 -> tr[ TableCell_1* ]

ListItem_1 -> item[ InlineContent_1* ]

TableCell_1 -> td[ InlineContent_1* ]

Bibliography -> bib[ (Book|Article|InProceedings)* ]

Book -> book{ Title Authors Editors Publisher? }

Article -> article{ Title Authors Journal? }

InProceedings -> inproc{ Title Authors Book }

Title -> title[ Text ]
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Authors -> authors[ Person* ]

Editors -> editors[ Person* ]

Journal -> journal{ Title Editors }

Person -> person[ FirstName LastName ]

FirstName -> first[ Text ]

LastName -> last[ Text ]

==================================================================

Bibliography.4

==================================================================

Rule 1: book

Type checking: OK

------------------------------------------------------------------

TITLE->Text, NAME->Text

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

book -> book[ cover body ]

body -> body[ chapter ]

chapter -> chapter[ title_1 section ]

section -> section[ table ]

table -> table[ tr+ ]

tr -> tr[ td td ]

td -> td[ inline ]

inline -> inline[ Text ]

title_1 -> title[ Text_2 ]

Text_2 -> "List_of_Books_and_Authors"

cover -> cover[ title ]

title -> title[ Text_1 ]

Text_1 -> "Books"

TextBook -> book[ Cover Body ]

Body -> body[ Abstract? Chapter* ]

Chapter -> chapter[ Title Section* ]

InlineContent -> inline[ Text|Bf|Em ]

Section -> section[ Title? (Paragraph|Table|List)* ]

Em -> em[ InlineContent ]

Bf -> bf[ InlineContent ]

Paragraph -> p[ InlineContent* ]

Table -> table[ TableRow+ ]

List -> list[ ListItem ]

TableRow -> tr[ TableCell* ]

ListItem -> item[ InlineContent* ]

TableCell -> td[ InlineContent* ]

TextBook_1 -> book[ Cover Body_1 ]

Cover -> cover[ Title Author* Publisher? ]

Body_1 -> body[ Abstract? Chapter_1* ]

Author -> author[ Text ]

Publisher -> publisher[ Text ]
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Abstract -> abstract[ Text ]

Chapter_1 -> chapter[ Title Section_1* ]

InlineContent_1 -> inline[ Text|Bf_1|Em_1 ]

Section_1 -> section[ Title? (Paragraph_1|Table_1|List_1)* ]

Em_1 -> em[ InlineContent_1 ]

Bf_1 -> bf[ InlineContent_1 ]

Paragraph_1 -> p[ InlineContent_1* ]

Table_1 -> table[ TableRow_1+ ]

List_1 -> list[ ListItem_1 ]

TableRow_1 -> tr[ TableCell_1* ]

ListItem_1 -> item[ InlineContent_1* ]

TableCell_1 -> td[ InlineContent_1* ]

Bibliography -> bib[ (Book|Article|InProceedings)* ]

Book -> book{ Title Authors Editors Publisher? }

Article -> article{ Title Authors Journal? }

InProceedings -> inproc{ Title Authors Book }

Title -> title[ Text ]

Authors -> authors[ Person* ]

Editors -> editors[ Person* ]

Journal -> journal{ Title Editors }

Person -> person[ FirstName LastName ]

FirstName -> first[ Text ]

LastName -> last[ Text ]

==================================================================

Bookstore

==================================================================

Rule 1: html

------------------------------------------------------------------

Title->Text, PriceA->Text, PriceB->Text

==================================================================

Rule 2: wml

------------------------------------------------------------------

Title->Text, PriceA->Text, PriceB->Text

==================================================================

Rule 3: books-with-prices

------------------------------------------------------------------

T->Text, Pa->Text, Pb->Text

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

wml -> wml[ card+ ]

card -> card[ Text_5 Text Text_6 Text Text_7 Text ]

Text_7 -> "Price B:"

Text_6 -> "Price A:"
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Text_5 -> "Title:"

html -> html[ head body ]

body -> body[ table ]

table -> table[ tr tr_1+ ]

tr_1 -> tr[ td_3 td_3 td_3 ]

td_3 -> td[ Text ]

tr -> tr[ td td_1 td_2 ]

td_2 -> td[ Text_4 ]

Text_4 -> "Price at B"

td_1 -> td[ Text_3 ]

Text_3 -> "Price at A"

td -> td[ Text_2 ]

Text_2 -> "Title"

head -> head[ title_1 ]

title_1 -> title[ Text_1 ]

Text_1 -> "Price Overview"

books-with-prices -> books-with-prices[ book-with-prices+ ]

book-with-prices -> book-with-prices[ title price-a price-b ]

price-b -> price-b[ Text ]

price-a -> price-a[ Text ]

Bib -> bib[ Book* ]

Book -> book[ Book_attr title (Authors|Editor) Publisher Price ]

Book_attr -> attr{ Book_year }

Book_year -> year[ Text ]

title -> title[ Text ]

Authors -> authors[ Author* ]

Author -> author[ Last First ]

Editor -> editor[ Last First Affil ]

Last -> last[ Text ]

First -> first[ Text ]

Affil -> affiliation[ Text ]

Publisher -> publisher[ Text ]

Price -> price[ Text ]

Reviews -> reviews[ Entry* ]

Entry -> entry[ title Price Review ]

Review -> review[ Text ]

==================================================================
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