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Abstract
Types are a useful mechanism for early error detection and optimization of any programming language.
Semi-structured query evaluation as in Xcerpt needs to be able to cope without schema information
or types, in contrast to the relational case. Nevertheless, if available, type information enables query
optimization well beyond what is possible in its absence. Furthermore, since semi-structured data such
as XML allows diverging types, querying by type becomes a desirable feature of XML query languages,
cf. XQuery’s typed queries.

In this deliverable, we discuss joint work with I3 on typing in the Xcerpt language. The two work-
ing groups have jointly developed two approaches for extending Xcerpt with type information and type
checking: The first is guided by the principle of least interference, providing typing for Xcerpt without
any changes to the language itself. Type annotations for data and programs is provided by external
means. It uses an abstraction of standard XML schema languages such as DTDs and XML schema as
tree schemata. The second integrates closely with Xcerpt programs allowing finer granular type anno-
tations. It is also unique in the support for graph schemata rather than tree schemata, allowing type
checking also for Xcerpt references. To support type checking with graph schemata, a novel schema
language, called R2G2 is introduced that allows for the description of graph schemata.
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Overview of this Deliverable

In this deliverable, we discuss joint work with I3 on typing in the Xcerpt language. The two working
groups have jointly developed two approaches for extending Xcerpt with type information and type
checking: The first is guided by the principle of least interference, providing typing for Xcerpt without
any changes to the language itself. Type annotations for data and programs is provided by external
means. It uses an abstraction of standard XML schema languages such as DTDs and XML schema
as tree schemata. The second integrates closely with Xcerpt programs allowing finer granular type
annotations. It is also unique in the support for graph schemata rather than tree schemata, allowing type
checking also for Xcerpt references. To support type checking with graph schemata, a novel schema
language, called R2G2 is introduced that allows for the description of graph schemata.

Both approaches are built on the principles outlined in I3-D4. The first approach is detailed in a
companion month 48 deliverable by the I3 working group on typing of Xcerpt. Here, we focus on the
second approach which has been developed in particular by Sacha Berger in his thesis [10].

Adding types to Xcerpt is answered in the following in three parts:

1. First, we argue that Xcerpt deserves a schema language tailored to its specific needs, in particular
with the ability to describe the schema of graphs and not only trees (as existing XML schema
languages). This argument and our proposal to address this need, the graph schema language
R2G2, is presented in Part I.

2. Second, we show how to add types to Xcerpt and discuss their effect on syntax and semantics in
Part III, where we also start the discussion of how to type check an Xcerpt program.

3. For that task, we employ a novel kind of automata introduced in Part automata. These automata
allow the type checking of any Xcerpt program against an R2G2 schema.

We conclude the deliverable with a discussion of open issues and applications of typed Xcerpt.
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Chapter 1

Introduction

The work in this deliverables is about types and schemata for Web query and transformation languages,
in particular for the Web query language Xcerpt, that has been developed in the I4 working group of the
REWERSE network of excellence.

1.1 Scope

Currently, many new application fields together with their domain specific processing and modelling
languages are emerging on the Web. Domain specific modelling languages are often defined by stan-
dardisation consortia like W3C, ECMA, Oasis and others. Usually, definitions come along with human
language description as well as formal definitions, using grammar and schema languages like EBNF,
DTD [61], XML Schema [57] [58] [59] , or Relax NG [31].

Domain specific processing languages are often query languages defined by the same standardisation
consortia issuing corresponding modelling languages. An example of such a domain specific language
is e.g. the Semantic Web query language SPARQL [62], used to query knowledge modelled in the
semantic web modelling language RDF.

Along with domain specific processing languages, some general purpose processing languages, like
e.g. XSLT [47], XQuery [63] or Xcerpt [11][43], exist, with the rational to be used for implementation
of arbitrary web applications, applicable to any domain specific data—also for writing inter domain
applications. The processing languages on the web, either general purpose or domain specific, are
usually untyped or dynamically typed.

Modern Programming languages nowadays in general come along with type systems to optimize
evaluation or memory representation, check errors or just support programmers while programming
when using sophisticated IDEs.1 Type declarations in most typed languages are usually based on the
concept of grammars—while a grammar defines a languages which is a set of words, a type declaration
defines a class of objects which is a set of data instances.

Surprisingly, while many formalisms for data on the web are defined using grammars or schemata,
their potential to serve as type declaration for processing languages is hardly exploited. The goal of this
work was to evaluate the use of web schemata in practise for typing of Web query- or transformation
languages.

1Integrated Development Environment—these applications integrate all kind of tools useful for programming in a given
programming language, starting from specialized text editors through re-factoring tools up to compilers.
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The typing of web query languages is defined, such that types in the style of schema information
are exploited to (1) find static errors in programs with help of schema knowledge (i.e. find errors prior
to execution time, e.g. at compile time), (2) hint possible odd behaviours of programs, that could be
desired, but maybe are not (i.e. constant results of a query, independent of input data), and (3) exploit
automatic optimizations by automatically rewriting queries under given schema constraints for input or
output data to more efficient equivalent queries (this is especially applicable under the consideration that
syntactically different queries can be found for the same task).

A first step towards typing of web query languages was to evaluate the quality of current schema lan-
guages on the web for modelling data, from the point of view of a person willing to use a query language
with type support and willing to use the given schema languages as type declarations. Almost all current
schema languages on the web are based on so called regular tree grammars [38], with some extensions
and also some restrictions. Common extensions, as e.g. found in XML Schema, are modelling facilities
from object oriented systems. Restrictions are often very subtle trade offs in favour of simple adaption
of legacy systems like SGML DTDs. During this evaluation it turned out that some restrictions where
undesirable and some further extensions desirable. As the outcome of this step, a new type and schema
language called R2G2 (short for Regular Rooted Graph Grammars) is presented.

The second step was to actually define, what kind of static properties are of interest and are detectable
when the type or schema of the queried data or the type or schema of the desired result is known. In this
part of the evaluation, properties that are related to static program analysis are addressed. Static program
analysis, e.g. static type checking and type inference for programming languages is vital to ensure
secure access of the random access memory representation of data structures. For query languages the
necessity of secure memory access is arguably not a topic—query languages are used to select, project
and construct data of a fixed data meta model. The meta model for the Web query language XQuery
is XML.2 As query languages operate ‘within the bounds’ of their meta model, no memory access
violation is possible. So, what kind of static properties of query languages could be relevant and what
impact could those properties have on the use of query languages? Assuming a query is selecting data
from a document or database and the schema of the document is given, then some structural properties
of the document are known prior to run time. For a query to data on the Web, it could e.g. be known, that
the resources to be queried are HTML [49] documents. Assuming further, that the selection construct
used as structured in such a way, that it may match data found in an SVG [54] document, but under no
condition in an HTML document, then the query can be considered to never select anything for valid
input data—the programmer most likely did a mistake and should be informed about it before run time.

Another static check that could be performed on a query typed with schema information is to check
the validity of results if a schema is given as type for the construction parts of the query. A query
can be considered to be ill typed, if the data that could result from query evaluation could be invalid
with respect to the given schema. While a query never selecting anything may be in the intention of
the author, a query constructing invalid data should be considered as an error. In both cases, these are
sources of valuable messages to the programmer prior to program execution, possible hints for him, how
to improve or correct the query.

The outcome of the second step is a type checking and type inference algorithm for Xcerpt (and
Web query languages in general) with type declarations in R2G2. For pragmatic reasons the notion of
types is defined in such a way, that type checking and inference is still possible in polynomial time.

2while the meta model for the query language SQL is the relational database.

4



The third step was to evaluate and exploit some possibilities of static optimization of typed Xcerpt
programs, under the assumption, that the queried data is always valid with respect to the given types or
schemata. The static optimizations in mind are related to program or query rewriting, not to modifica-
tion of the program run-time environment, program translation or query evaluation engine. For given
data there are usually different queries producing the same result. It is for many query language im-
plementations likely, that queries with higher selectivity at the beginning of query evaluation evaluate
faster as they sieve out irrelevant intermediate results at an earlier state of execution. This means that
less candidate elements have to be tested during evaluation. A prerequisite for this assumption is that the
programming or query language contains constructs for expression of incompleteness. Such constructs
of incompleteness are not only more convenient for the query author, they are in many situations even
indispensable due to incompleteness of the structure and shape of data on the web. Under the assump-
tion of more certitude of the queried data due to given schemata or type definitions, it is often possible
to reduce incompleteness by replacing corresponding constructs of incompleteness by query constructs
selectively restricting the query, such that it focuses early on portions of data containing the desired
results.

Achieving an optimal query by rewriting a given query, under type assumption as well as for untyped
queries, is an undecidable problem, as the optimal shape of the query depends on the actual shape of
the queried data instance. Further on, some query languages may be more efficient under certain forms
of incompleteness, as of reducing the checks in concrete evaluation steps. A pragmatic approach to
optimization is hence to try to achieve queries with usually better behaviour, based on heuristics about
the given query evaluation engine. The outcome of this part of the deliverable is a rewriting rule system,
relating typed Xcerpt queries with incompleteness to equivalent Xcerpt queries without incompleteness.
The work has been presented on the First International Conference on Web Reasoning and Rule Systems
[12]. The task of evaluating possible heuristics has not been addressed, as not sufficient knowledge about
the run-time behaviour of current Xcerpt run-time engines exist.

1.2 Contributions

The main contribution of this deliverable can be summarized as

1. a Web Schema language to model (serialisations of) graph structured data, including a new mod-
elling approach for unordered data or multisets, based on unordered interpretations of regular
expressions, and

2. a typing approach for web query languages based on unrestricted regular tree grammars with
former extension.

The first contribution, the type and schema language R2G2 has been implemented for integration,
e.g. in Web query or transformation languages, but also for stand alone use as schema language for XML
or Xcerpt data terms. The modelling approach for unordered data based on unordered interpretation of
regular expressions (2) is implemented as a prototype based on constraint solvers in GNU Prolog [25].
Typing of Web query languages (3) has been implemented based on (1) for the Web query language
Xcerpt. Currently two implementations exist, a prototypical one supporting ordered and unordered
query terms, and a second implementation for integration into the prototype of Xcerpt currently under
development. The second version offers no support for unordered data models by now.
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1.3 Outline of the Deliverable

First, the context in which typing is to be applied is introduced. This spans various Web technologies,
namely XML as document and data formalism, currently existing schema languages—they will be used
as starting point for the proposed type and schema language, as well as various Web query languages.

Next, some shortcomings of the current schema languages are pointed out, and R2G2, a new type and
schema formalism is presented. R2G2 has been conceived to overcome the mentioned shortcomings. A
novelty in this languages is the use of regular expressions for the modelling of unordered data. A declar-
ative semantics of R2G2 is presented along the syntax. The schema language presented is conceived with
modularity in mind to be not only applicable to small examples but also to large scale projects. A generic
module system (originally conceived for R2G2 and Xcerpt) is used to modularize R2G2. The part about
R2G2 concludes with a use case section which is based on the popular SML Schema authoring style
guidelines “XML Schema best practices” [23].

As basis for implementations of R2G2 as schema language as well as as type formalism, the oper-
ational semantics are presented. Those are based on regular tree automata, as e.g. introduced in [22]
for ordered content and counting constraints [67] for unordered data. Regular tree grammars are a very
general model, specified for reasoning about ranked tree structures. Common techniques for lifting
unranked trees—common in the context of the Web and XML—to ranked trees exist, as however the
context of R2G2 is the world of unranked trees (more precisely rooted graphs based on spanning trees
with typed references), a new automaton model dedicated to reasoning about unranked data is presented.
Using the new automaton model is arguably easier in the context of Web schema languages, as it ag-
gregates all necessary information used to validate a node in the context of it’s graph in one place, as
well as a direct representation of a type for an XML node—transitions in this model represent node
types. The automaton model is combined with Presburger arithmetic expressions, so called counting
constraints, where unordered content models are needed. These constraints express relationships be-
tween the multiplicities of elements in a multiset—multisets are an appropriate model for unordered
content of an element. Presburger arithmetic counting constraints are decidable. A calculus for deriving
counting constraints for given regular expressions is presented. Last but not least, for the the automaton
model as well as for languages of multisets declared using counting constraints, algorithms for reason-
ing about some set theoretic properties—namely emptiness test, union, intersection and subset test—are
presented. These algorithms are crucial for type checking.

The next part presents a type checking algorithm for Web query languages based on the algorithms
and techniques presented in the part about automata and counting constraints. The type checking is
presented for the Web and Semantic Web query language Xcerpt, however, it should be easy to adapt
the techniques to other Web query languages like e.g. XPath and XQuery, as all Web query languages
share the concepts of data selection, variables, data projection and/or result construction. The presented
algorithm focuses on data selection, construction and variable consistency check. The algorithm is not
only suited to type checking of fully type annotated programs, but also provides type inference for partly
type annotated programs.
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Chapter 2

Preliminaries

2.1 Context of this Research

The World Wide Web (known as "WWW’, "Web" or "W3") is the universe of network-
accessible information, the embodiment of human knowledge.

[W3C, http://www.w3.org/WWW/]
The Web is a kind of network of any information anybody around the world considers worth while

to be published, almost no boundaries for quality, quantity, style, medium and format exists.

2.1.1 Information vs. Knowledge

A common mistake, when talking about information, is to misconceive information as knowledge. In
short, information exists without any context, while knowledge is the result of thinking, understanding
and solving problems. Information is useful to obtain knowledge and knowledge can be turned into
information. Knowledge is information that is accessible at the right time in the right context to solve
the right task.

The tremendous amount of information that forms the current World Wide Web, makes the differ-
ence between knowledge and information especially clear: it is usually easy to find information we are
precisely able to name by using current search engines, but it is difficult to solve tasks with current web
technologies that can not be searched for or of which we do not know the name. The root of the problem
is, that machines are not able to understand – to know – the information stored on the Web.

Making the web accessible and understandable to machines as well as to humans will arguably be
a major task in the future. While the amount of information increases vastly, it becomes intractable
for humans such that some sort of “machine assisted thinking” is needed. Steps in this direction are
taken by initiatives as the Semantic Web, that claims that machine understandable and semantically
motivated annotation of the web is necessary. Generally speaking, end users of the Web will need
general purpose tool support as it is known nowadays to programmers in the form of programming
languages, to command their machines to assist them in digging for the right information on the web.

2.1.2 Documents and Data on The Web

Initially, the web was invented as a network of documents, where documents are written text meant to
be read and understood by humans. Markups for stylistically beef-up of text and for semantic hints of
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text or phrase structure or content type and a reference mechanism to external resources like pictures
made the authoring of mostly any content fairly easy on the web. Further on, the Web provided mostly
a handy support for citations, that made it possible through use of hyperlinks to access other documents
in a seamless way not experienced earlier.

Shortly there after the Web document markup language, namely HTML, was extended to also rep-
resent tables and forms.

Later on, increasing numbers of views to traditional databases were made available on the Web,
mostly as tables accessible by forms – the Data on the Web [3] was introduced interwoven with the
Web of documents. Currently increasing numbers of machine accessible formats and so called Web
Services extend the Web landscape with the data oriented aspect. The main difference between data
and documents can be summarized as the usually more homogeneous structure used for data than for
documents and often the lack of human language phrases – documents are instances of natural languages
while data are instances of artificial languages. Prominent examples of database oriented content on the
Web are on-line shops like Amazon (e.g. see http://www.amazon.com/).

Both aspects of the Web are equally important to human consumers, while arguably automatic con-
sumption is mainly focused on data.

Recently traditional database approaches like querying data have been extended to web data and
documents as an answer to the rising demand of flexible automated access methods to the web for end
users. The interwoven nature of the Web as a Network of (mostly) structured data with (mostly) arbitrary
schemata and (mostly) unstructured documents, motivates the so called Semistructured Data model as
presented in [3] and briefly introduced in section 2.2. Arguably, Semistructured Data are the formal
foundation of current technologies around automated processing of data and information on the Web.

Still, the current Web query languages are far from being end user friendly methods to extract infor-
mation from the Web, even further from being tools to obtain new knowledge from the Web.

2.1.3 Obtaining Knowledge from Information

Former approaches supporting users to gather new knowledge out of information are known under the
term data mining. Data mining is usually tailored towards experts of a topic, often with heavy statistical
background, that dig in a closed and very homogeneous application specific domain database called data
warehouse. The general nature of data mining in data warehouses can be summarized as: (1) the data
warehouse is a (mostly) static materialisation of (mostly) lots of joins between data, (2) a closed world
of data is queried, (3) the structure is well known. Application of traditional data warehouse approaches
to broad scale web user base is arguably not suited for the task of extracting knowledge on the Web,
for various reasons: (1) there is no way in visiting the whole web in a feasible way from an end users
point of view, (2) the amount of data is by far too large to materialize any sort of expansion of the whole
Web and (3) there is no inherent given structure of web data as a whole, as well as there is arguably no
inherent structure of the knowledge of the humanity.

An assumption about the ways to dig for knowledge in the future web is, that classical web search-
ing is to be combined by the end user with automated web crawling, and deductive methods, maybe
inspired from artificial intelligence research, and data querying on the web as proposed for querying of
Semistructured data. Combining all those methods in an end user friendly way is a highly challenging
task that is by far not solved by now.

In the following, some foundations of the current and of the future Web as standardized to date
are presented. A step towards merging two of those areas—querying and schematizing of data—is
motivated as one of many steps in achieving the high goal of the end user friendly access to the future
web. This is the step, that is addressed in this deliverable. The benefits of the integration of schematizing
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and querying are supporting user friendliness of query languages by

1. extended error detection support,

2. potential optimization of queries and hence increased system reactivity, and

3. potential help for authors using specialized query development environments, e.g. by generating
auto-completions or copy-and-paste templates based on schema information.

2.2 Semistructured Data

“Semistructured Data” are self-explanatory (or self-describing) data with or without schema (or data-
model). The denomination “Semistructured” refers to the structure conveyed by tags combined with
(possibly large) unstructured portions of text. The structure in question is a node labelled graph structure
with ordered or unordered sequences of adjacent nodes. The graph structure is serialized using so called
Semistructured expressions defined as follows:

• A Semistructured expression is either a (quoted) textual item, a data term or a reference to a data
term.

• A data term consists of a label l, an optional unique identifier id followed by an @-sign (e.g.
i1@l{}, and a (possibly empty) sequence of sub terms t1, . . . , tn, that are

– either enclosed in square brackets (i.e. [t1, . . . , tn] (denoting an ordered sequence of sub
terms),

– or enclosed in curly braces (i.e. {t1, . . . , tn} (denoting an unordered multiset of sub terms).

• A reference to a data term uses the identifier of the term to reference prefixed by a ‘hat’-sign (e.g.
^id1). Note, that reference and identifier declaration have to occur at arbitrary depth below a
common Semistructured expression.

Considering Semistructured data in databases has been first proposed and investigated in a few
research projects in the mid 90th. The book “Data on the Web” from Abiteboul et al [3] introduces in
this direction of research.

Semistructured data is an interesting abstraction of XML data as presented in section 2.3. The
Web and Semantic Web query and transformation language Xcerpt, as introduced in section 2.5.4, is
syntactically strongly based on Semistructured expressions and it’s data model is graph shaped and
node labelled data with ordered or unordered sequences of adjacent nodes—just as Semistructured data.

2.3 XML—The Extensible Markup Language

XML is a generic markup language. Markup languages are traditionally used to mark up or anno-
tate text, generic markup languages allow markup with arbitrary annotation elements. XML has been
developed as a simplification of SGML, a former markup language developed in the 70th [1]. The sim-
plification was mainly motivated by simplifying the implementation of efficient XML aware software
and in supporting simpler document authoring by reducing the amount of rarely used or obscure fea-
tures. To some extend the streamlining of SGML to what became XML was arguably inspired by the
success of Java—roughly speaking a language near to a streamlined C++ quickly gained success for it’s
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<tree>
<branch>

<fruit/>
<leaf/>

</branch>
<fruit/>
<branch>

<leaf/>
<leaf/>

</branch>
</tree>

Figure 2.1: As an example of a document with elements, consider the apple tree modelled in this exam-
ple. Various nodes of different name and/or type can be arranged in a hierarchical manner. The XML
serialisation of the tree data structure on the right, is shown on the left.

cleanness and simplicity compared to it’s predecessor. XML has been introduced by the W3C and is
positioned as a development towards a more generic markup language than HTML. On of the first XML
applications was a reformulation of HTML as XML application, called XHTML.

XML is a serialisation format for tree or to some extend graph structured data (see figure 2.1 for an
example of a tree structured document and it’s XML serialisation—in figure 2.3 a graph shaped example
is presented, using so called XML attributes which have not been introduced so far). Different kinds of
nodes with different properties form an XML instance. An XML instance is called well formed when
the serialisation is syntactically correct.

XML is a semi structured data model, where semi structured means, that no structure is predefined or
given for instances like e.g. in structured data models as known from structured programming languages
(cf. struct in C or record in Modula). On the other hand, the data is structured by the given structure
of the instances. To a certain extend the data is structured in an abstraction of the data model that
represents tree structures in general.

Another interpretation of semi structured in the context of XML is the possibility to provide a
schema for the data, yet the schema is not enforced to be used or validity upon the schema is not
enforced – instances may be structured according to a schema or they may be schema-less. Schemata
for XML are currently known under the names DTD, XML Schema and Relax-NG.

Elements are XML nodes, that are always the child of exactly one node and may contain arbitrary
many child nodes. See figure 2.1 for an example. The child nodes are organized in an ordered sequence.
Elements also have a textual label. In a well formed XML document elements are serialized as an open-
ing tag and a closing tag surrounding the serialisation of the child nodes. An opening tag is serialized
as the label in pointy braces and the closing tag as the label preceded by a slash in pointy braces. Empty
nodes can be abbreviated as the label followed by a slash in pointy braces. As elements always have a
parent node, a kind of root is needed, usually a document node forms that root. A document node may
only contain one root element.

Attributes are nodes with a textual name and a textual value which are not members of the child
node sequence of an element but of an (unordered) attribute set. Each element has one attribute set
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<tree>
<branch>

<fruit color="orange"
state="immature"/>

<leaf color="green"/>
</branch>
<fruit color="red"

state="mature"/>
<branch state="broken">

<leaf color="yellow"/>
<leaf color="brown"

state="dead" />
</branch>

</tree>

Figure 2.2: This example extends the apple tree example in figure 2.1 such that the elements are anno-
tated using attributes. Elements may contain arbitrarily many attributes, but not two may have the same
name. Note, that attributes have no explicit order in which they occur.

that may also be empty. See figure 2.2 for an example of a document with elements and attributes.
In a well formed XML document instance two attributes with the same name may not occur in one
attribute set. Attribute sets are written within the opening element tag’s pointy braces. A well formed
attribute is written as it’s name followed by an equal-sign and the value quoted either in single or
double quotes, mutually excluding the possibility to use the other quotes in the value text. Commonly
attributes are interpreted as meta information about the element, but there is no formally dictated use for
attributes. When modelling graph shaped structures, commonly attributes are used to declare identifiers
and references to identifiers, as presented in figure 2.3.

Character Data Character data nodes are nodes without child nodes and attributes, they consist only
of textual information. Character data nodes are members of a child node list, i.e. they are members of
the ordered nodes. In a well formed XML document instance character data nodes are serialized just as
the text they represent, without any quotation. Pointy braces1 and the ampersand sign may not occur
in the well formed serialisation, they have to be substituted by so called character entities, which are
themselves general entities. Two character data nodes may not be direct neighbours, as then they would
collapse in the serialisation to one node.

Initially, eg. in the context of SGML documents, the textual content was considered to be of major
importance, while elements were mere annotation of the textual content. The lack of quotation of
character data makes XML especially convenient for document authoring, where the major content is
arguably textual content. In the context of data modelled in XML, textual content and elements are
arguably of equal importance, yet often character data nodes are ignored in research for pragmatic
reason.2 See figure 2.4 for an example of an XML document with character data.

Further Core Features Further features of XML such as
1Indeed, only the opening pointy brace may not occur in character data serialisations.
2Conceptually, there is no big difference between a leaf element and a character data node.
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<cycle>
<node id="n1" idref="n2" />
<node id="n2" idref="n1" />

</cycle>

Figure 2.3: This example presents the ability to model graph structures beyond tree shaped data in
XML—identifiers and references to identifiers are used in this case. Identifiers and references are given
as XML attributes. Actually, the attributes have to be declared being of identifier or reference type, e.g.
using a DTD as introduced later in section 2.4.1.

<pamphlet>
<title>
Document Markup with XML

</title>
This pamphlet illustrates the
use of <acronym>XML</acronym>
character data, also known as
<acronym>CDATA</acronym>,
together with markup.
<footnote>
Note, how <bold>semantical</bold>
markup is used along with
<bold>stylistical</bold> markup.

</footnote>
</pamphlet>

Figure 2.4: This example presents a document centric XML instance. In this case, the serialisation
(left) is a more appropriate view on the content than the tree representation on the right, some words or
phrases are annotated with markup surrounding some parts of the text.
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• Character encoding specifying the used character encoding for the serialisation of character data,
attributes and elements

• Processing instructions are meta information about the document. Processing instructions are
information that is considered by the application processing the serialised data. Like character
data processing instructions may not be further structured.

• Comments are not members of the tree structure neither. Like character data comments may not
be further structured.

• General entities are a macro expansion or substitution mechanism for abbreviation of XML
node sequences or special characters not expressible in the chosen document text encoding—
any Unicode character can be generated this way using a so called numerical character entity
which itself is a general entity

are not mentioned in detail, since they are not needed in this deliverable.

2.4 From Schema-less Structure to Valid Data

Two different interpretations of the term “Semistructured” exist for Semistructured Data, of which XML
is a representative:

• Data may be created without any notion of a schema declaring a structure, so it is unstructured in
the sense of schema-less, while it is structured in the sense of being tree or graph structured data
that has the structure of the instance—being structured with respect to the data meta model.

• A schema for data may exist and data can be an instance of the given schema, but data without
schema is also tractable as so called well formed data.

In both interpretations the notion of a schema is involved. In between the two extrema a schema can
be given and consequently being applied for many sections of a data instance, while exceptions may
exist for other sections, in the form of allowing elements of any type for these sections.

For XML different schema formalisms have been introduced, partly ad-hoc or inspired by the pre-
decessor SGML, partly conceived from a theoretical foundation. The widely accepted theoretical foun-
dation of XML schema languages are so called regular tree grammars[16], [38]. Regular tree grammars
are a sub category of context free languages, that provide a controlled way of modelling the bracket
structure inherent to tree serialisations, yet preserving the desirable properties of regular languages be-
ing closed under union, intersection and difference. A well formed XML document may be valid, if it is
an instance of the language generated by the grammar given in the form of a schema instance. In depth
explanations of regular tree grammars is given in the chapter about R2G2 (see 3).

2.4.1 DTD—Document Type Declarations

DTDs are the oldest schema mechanism for XML, inherited from XML’s predecessor, SGML. While an
SGML document requires a DTD (and validity to that document), an XML document may or may not
have a DTD and may or may not be valid to that DTD. The DTD may be defined in the XML document
instance or at an external resource. Note, that every valid XML document has to be well formed while
not every well formed document has to be valid.
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Element Type A DTD consists of a set of element type declarations, describing the structure of an
element. An element type declaration relates an element name to the valid content model of elements
with that name. For each element name declared in an element declaration, there is no other element
declaration with the same element name, i.e. the element declarations are unambiguous. In a valid
document instance, all elements are valid with respect to an element type declaration.

An element type declaration for an element name l and a content model c is written as

<!ELEMENT l c>

Document Type In a valid document not only all elements are valid, additionally the root element
has to be of the type given by the document type declaration. The document type declaration is always
part of the document instance, while the element type declarations (and also the attribute sets mentioned
later) may also be in an external file. The document type declaration also relates a set of element type
declarations to a document.

One form of document type declarations relate an external set S of element type (and attribute type)
declarations to a document and to its root node with label l written as

<!DOCTYPE l S>

The other form relates the root label l of the document with the element type (and attribute type)
declarations R directly in the document as

<!DOCTYPE l [R] >

In both cases the document type is declared after the document encoding
(cf. <?xml encoding="..."?>) and before the opening tag of the root element label.

Content Models A content model for an element is given as a regular expression of element names.
A valid element with respect to an element type declaration has a sequence of child nodes, that is recog-
nized by the regular expression, i.e. the sequence of element names of the child nodes are recognized by
the regular expression and the child nodes are valid with respect to an element declaration for elements
of their name. Regular expressions are formed by sequencing the element names with comma, optional
parts get a question mark appended to the regular expression part, disjunctions are formed by separating
two disjunctive parts with a pipe sign (vertical bar), and repetitions are modelled by appending a star or
a plus sign (star for zero to many, plus for one to many repetitions) to a regular expression.

The following example motivates the concept of regular expressions in the context of DTD’s. A
valid article element contains first a title element, followed by an arbitrary number of section
or paragraph elements and at last an appendix element, that may also be omitted. Note, that the
repetition of section or paragraph involves a recursive composition of regular expressions, as the
disjunction is also a regular expression on its own.

<!ELEMENT article (title, (section|paragraph)*, appendix?)>

Attribute Sets Another part of the content model of an element are the attributes. Attributes are
modelled in a different way, as they do not occur in any explicit order, and because regular expressions
impose an order on the atom instances occurring in accordance to a regular expression. The attributes of
an element are declared with an attribute set. An attribute set relates an element name to some attribute
definitions. An attribute definition can be optional – in terms of DTD implied – or required. Attribute
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values may be arbitrary character data, a fixed value, an (almost) arbitrary string of character data being
unique in the context of attribute values of that type, forming an unique identifier or a reference (even a
sequence of references) to such unique identifiers.

An attribute set declaration is introduced by the keyword ATTLIST. The first token in the attribute
set declaration is the name of the containing element. The declaration is followed by a sequence of
triples consisting of (1) attribute name token, (2) attribute value type declaration and (3) attribute default
declaration. As an example consider the following attribute set declaration for leaf elements as they
occurred in figure 2.2. The color is a mandatory attribute while the state is optional.

<!ATTLIST leaf color CDATA #REQUIRED state CDATA #IMPLIED>

Types of Character Data The content of an element may also be declared to be character data. In
this case no elements may occur together with the text.

Mixed Content The content of an element may be a mixture of character data and arbitrary elements,
so called mixed content. In this case any declared element or character data may occur in arbitrary
combination.

2.4.1.1 Limitations

The document definition language DTD has some limitations. These led to the development of its
successor, the XML Schema language.

Alternative Content Models For Equally Named Elements There is no way to specify different
content models for an element, according to the context it occurs in. The example 1 of a university
schedule illustrates the problem:
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<university-schedule>
...
<lecture>
<name>Semi Structured Data and Markup Languages</name>
<lecture>
<time>Wednesday, 10:00-13:00</time>
<location>E101</location>

</lecture>
<tutor>
<name>
<first>Benedikt</first>
<last>Linse</last>

</name>
</tutor>
<lecturer>

<name>
<title>Prof.</title>
<first>Francois</first>
<last>Bry</last>

<consultation>
<time>Tuesdays, 9:00-10:00</time>
<location>D1.03</location>

</consultation>
</lecturer>

</lecture>
...

</university-schedule>

Code Example 1 An example of an university schedule modelled using XML. The term name is reused in
different contexts (each time meaningful, but with different meaning), however this can not be modelled in a satisfying
way using DTD.

A lecture is presented. A lecture has a name, may have arbitrary many tutors for exercise courses and
a lecturer, for the lectures. The ambiguous term lecture gives rise to the bizarre fact, that a lecture as an
administrative unit contains the information about the lecture as a time and locational bound entity, the
event of instructing. In this example the same name has been used for the different meanings of the same
term, like it is used in human language. Yet the elements share the same name, they occur in different
parent node contexts and they have a different structure. A second example of label ambiguity is the
name element, which is used once with plain CDATA as content to represent the name of the lecture and
once with structure to model the names of the lecturer and the tutors. Again, the parent node content
is essential for the choice of the proper content model of equally named elements. The hierarchical
context is not generally for all possible XML applications the determining property of the content model
of ambiguous elements, the occurrence in the list of siblings or the attributes of an element may also
be determining the choice of the right content. When modelling data with DTDs the content model is
associated to elements with a certain name not to elements in a certain context. As there is no way
to declare concurrent element declarations and especially to refer to one alternative of the concurrent
declarations, such documents as the presented university schedule can not be modelled properly. As a
‘work around’, usually the alternative content models are provided as a disjunctive content model, yet
allowing the use of the wrong content model in a given context.

Data Types for Atomic Values An often criticised limitation of DTDs, is the lack of integrated data
types other than character data, e.g. integers, enumeration types or similar. For text document centric
modelling, the lack of such data types is not a major topic. The first goal of XML is, as stated by the
W3C itself, that “XML is for structuring data” . For data modelling a rich set of data types is mandatory.
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The successor of DTDs, XML Schema, is equipped with a rich and slightly extensible set of data types
to model many restrictions of strings, lots of number formats, date information and some other data
types.

Namespaces DTDs are not namespace aware, it is not possible to model document types with labels
in a specific name space. More or less difficult workarounds exist, but they always rely on modifying
the DTD by overriding parts, e.g. special entities simulating namespace expansion, in the document
instances.

Deterministic Content Models A less often mentioned limitation of DTDs is the restriction to so
called deterministic content models. As an example of a non deterministic content model, consider the
following element declaration of a chess game with alternating moves of the black and the white figures:

<!ELEMENT chessgame ((white,black)*,white?)>

The content model allows the game to end after each move, yet modelling the alternating colors of
the moves. Intuitively speaking, when a white move instance occurs, the DTD validator may mot be sure
which part of the content model to choose (e.g. is the move valid with respect to the (white,black)*
or the white? sub-expression. It is easy to think of a deterministic automaton representing exactly the
given content model: it consists of two final states interlinked using an “a” transition from one to the
other and a “b” transition from the other to the one state3. The W3C explains the non determinism of
DTD content models in a non normative section of the XML Recommendation (see http://www.w3.
org/TR/REC-xml/#determinism) as follows:

[...] a finite state automaton may be constructed from the content model using the standard
algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman [Aho/Ullman]. In
many such algorithms, a follow set is constructed for each position in the regular expression
(i.e., each leaf node in the syntax tree for the regular expression); if any position has a follow
set in which more than one following position is labeled with the same element type name,
then the content model is in error and may be reported as an error. [...]

Weak Unordered Content Support Two different notions of disorder can be addressed: (1) The order
of elements in a data instance is relevant, but from the point of view of a schema, valid data instances
may occur in arbitrary order. (2) The order of elements in data instances is irrelevant, this applies i.e.
when modelling a set or multi-set.

To be able to express that certain elements may occur in arbitrary order, in XML DTD the author of
the schema is usually forced to give all possible permutations of the order. In addition, the deterministic
content model property mentioned in the previous paragraph must be retained, making the task even
more cumbersome. With the XML predecessor SGML, the DTD formalism had an option to model
a sequence of elements with arbitrary order (an unordered sequence operator was available), but the
feature has been dropped for simplification purpose. When it comes to the necessity of modelling
unordered content of elements of different type, XML DTD authors hence tend to simplify and to state
that arbitrary many elements of a choice of types are allowed in arbitrary order—this can easily be
modelled as a disjunction with a Kleene star, i.e. (A|B|C)* for elements of type A, B and C in arbitrary
order and arbitrary multiplicity.

3Automata are a common way to implement recognition of instances based on regular expressions. See chapter 6 about
automata for more information about that topic.
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For modelling data without order, i.e. sets, XML provides no more than attributes, their order is
irrelevant as their interpretation is usually a set of name/value pairs. No way exist to model multi-sets
in XML, except by shifting the unordered interpretation of a sequence to the application level.

Modelling Attributes Concerning the ways of modelling attributes, two limitations are known: First,
attributes can only be modelled as a list or a set of valid attributes with or without optionality. It is
not possible to model dependant attributes, e.g. subsets that may only occur together, neither choices
of attributes nor subsets of attributes can be modelled. Second, attributes and the content model of an
element are modelled independently – it is not possible to have e.g. the content of an element to be
dependant of an attribute chosen.

Typed References In the context of modelling graph structured data, a new shortcoming appeared:
Using ID and ID-Ref typed attributes is suitable for modelling graph shaped data, an identifiable ele-
ment, annotated with an ID attribute is usually easy to get by de-referencing its ID as found in any ID
Ref attribute using common XML tools or application programming interfaces like DOM. However, it
is not possible to model data in a schema in such a way, that the reference is a reference to an element
of a special type. This virtually renders the reference mechanism a typeless or schema-less reference
mechanism. Using DTDs it is neither possible to set or restrict the amount of references in an ID Ref
attribute.

2.4.2 XML Schema

XML Schema has been introduced as successor of DTDs to overcome (most) of its limitations. XML
Schema is a W3C Recommendation. It is widely accepted, that XML Schema is by far the most compli-
cated recommendation currently available from the W3C. XML Schema is itself an XML application,
i.e. it has an XML syntax.

The Schema A Schema is defined in an XML document with root node label <schema> in the names-
pace http://www.w3.org/2001/XMLSchema. A Schema contains element and type declarations.
There is no way in declaring schema parts directly in the instances, yet there is the possibility to di-
rectly annotate instance nodes with schema or type information using the so called [58]. The schema
validation is sometimes seen as a transformation of the information set4 representing the XML docu-
ment to the so called Post Schema Validation Infoset (see the W3C’s XML Schema recommendation
part 1 [58]), where each information item of the information set is annotated with additional type or
schema information deduced from the schema.

Element and Type Declarations An element declaration declares an element with a given name in a
given namespace with a given content, where the content is also called type in terms of XML Schema.
Two different kinds of types exist in XML Schema: so called (1) simple types that represent solely
character data information, and (2) complex types that may be schemata for element sequences, character
data and attribute sets. Character data as modelled using simple types may be any XML Schema data
type or derived variations. When modelling complex content, different possibilities exist for structuring
the schema: (1) Child content of a node can be modelled as nested element declarations inside of
the corresponding complex type of an element which in turn is nested inside the element declaration.

4The information set is a normative W3C recommendation [56] defining an abstract syntax in the spirit of a parse tree of
XML documents.
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This paradigm is often referred to as Russian doll design – all information is nested. (2) The element
declarations for child content can be referred to using an identifier (possibly different to the element
label) from inside of the content model declaration located inside of the element declaration. This
paradigm is commonly referred to as salami slices design – the element declarations are much thinner,
the reference (thin as a salami slice) points to the “beefier” part. (3) Element declarations occur nested
inside of the content type declarations, content type declarations are declared at top level and are referred
from inside of the element declarations using unique names. This paradigm is referred to as venetian
blinds design. The name is due to an arguably obscure XML Schema feature concerning namespace
exposure that can best be exploited using this design pattern. With a small change to the schema big
amounts of the schema can be exposed or hidden, like venetian blinds open and close with a small
trigger action.

Note, that e.g. the reference mechanism for content model references in elements helps in removing
one of the limitations of DTDs: alternative content models for equally named elements according to the
context they occur in.

Attributes may occur in complex content declarations. Attributes have to be declared after the
element declarations, they may not be declared inter-winded.

Namespaces Arguably, the most prominent advantage, that XML Schema provides over DTD is the
support of name spaces. Elements can be declared to belong to a namespace, as well as it is possible to
import and incorporate declarations of elements of another namespace in a type declaration.

Regular Content Models in XML Schema Content models can be modelled using constructs that are
mostly inspired by regular expressions. The XML Schema elements sequence, choice and all are
used to model content models. They may be nested, roughly representing a structure similar to a parse
tree of a regular expression. With sequence it is possible to give a list of elements or content model
components that have to be matched in a sequence conforming to that content model. With choice
alternatives may be specified. The all construct is a short hand for an unordered sequence of elements
that have to be matched, any sequential combination of elements specified in an all is represented. The
unordered specification is very restricted, just elements may be child nodes of an all construct and the
multiplicity of the elements always has to be exactly one. Repetitions can be modelled quite accurately
using the minOccurs and maxOccurs attributes of the regular constructs or of the element declarations.
To represent unbounded repetition as modelled in DTDs and regular expressions using the Kleene star,
the special multiplicity value unbounded is used.

Attributes Attributes are defined in a similar way as in DTDs – their name and value type is given, and
they may be declared mandatory, optional or as fixed attributes. The value type of attributes, however,
may be specified in a much richer way than possible for DTDs. Here any simple type is possible.

Data Types XML Schema provides a fixed yet versatile set of predefined simple types for modelling
various number formats, Gregorian calendar data and various forms of strings and tokens. User defined
restrictions and extensions of the predefined simple types can be derived. There is also one predefined
polymorphic data type that can be user restricted: a polymorphic list of (non list) simple data types.

Clearly this helps to overcome a limitation of DTD: DTD has no data types except strings.

XML Schema Example The example 2 illustrates the presented concepts of XML Schema. An uni-
versity database is modelled. A university contains a sequence of student elements, at least one and as
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many as needed. Student elements contain a name, a matriculation number, the semester information
of the student and an element with the results of the exams of that student. All those elements must
occur, but they may occur in arbitrary order. A name consists of a first and a last name, each represented
by elements containing plain text strings, the semester information is an element containing an integer
number between 1 and 24. The exam elements contain an integer representing the grade and a string for
the name of the lecture, both information in form of an attribute.

The content of the university element is modelled outside of the nesting focus of the element in the
spirit of the formerly mentioned salami slices paradigm, the student is mostly modelled according to
the Russian doll paradigm, where all elements are declared inside of the nesting scope of the student
element, except the name element, which has its content type declared out of scope. The exam element
as well has the content type defined out of scope in the spirit of the venetian blinds paradigm.
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<xs:element name="university">
<xs:complexType>

<xs:sequence>
<xs:element ref="student" minOccurs="1" maxOccurs="unbound" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="student">
<xs:complexType>

<xs:all>
<xs:element name="name" type="nameType" />
<xs:element name="matriculation-number" type="xs:integer">
</xs:element>
<xs:element name="semester">

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1" />
<xs:maxInclusive value="24" />

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:element>
<xs:element name="exams">

<xs:complexType>
<xs:sequence>

<xs:element ref="exam"
minOccurs="0" maxOccurs="unbound"
type="examType" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:all>

</xs:complexType>
</xs:element>

<xs:complexType name="nameType">
<xs:element name="first-name" type="xs:string" />
<xs:element name="last-name" type="xs:string" />

</xs:complexType>

<xs:complexType name="examType">
<xs:attribute name="grade" type="xs:integer" />
<xs:attribute name="lecture" type="xs:string" />

</xs:complexType>

Code Example 2 A simple XML Schema modelling some aspects of administrative data found in an university.

Extending and Restricting Declarations An XML Schema content modelling feature orthogonal to
the formerly presented is the extension and restriction of types. When modelling simple (data) types,
it is possible to restrict a given simple type using type specific facets. This has already been shown in
the example above for the restriction of integers to integers greater than 1 and smaller than 24. Strings
can be restricted in a very powerful way using regular expressions. For complex types in addition to
restriction also extension of the content model is possible. A typical example of extending a content
model is to add attributes to an already declared complex type. Restriction and extension of complex
types is however a mere integrity constraint on the complex type supplied, i.e. a content type can be

21



denoted to be an extension or restriction of another content type, but the user (the author of the schema)
has to model it according to that constraint, otherwise the schema is invalid.

2.4.2.1 Limitations of XML Schema

As presented, many of DTD’s shortcomings have been overcome in XML Schema (e.g. lack of name
space support, lack of data types and the lack of alternative content model declarations for different
element contexts), yet some remain and some new arise.

The Predefined Set of Data Types While a rich set of data types helps in modelling data types,
the predefined data types lack some flexibility. Only predefined ways of restriction exist. For many
applications different kinds of atomic data types exist, that can not be modelled using XML Schema. As
an example IP-addresses are mentioned: yet difficult to model using e.g. regular expressions (and hence
sub-typing them from plain strings) there is no way in supporting the data type itself without further
application dependant parsing (e.g. as 4 Byte quadruple). Some kind of modularity or external interface
is arguably desirable for simple data types. Another drawback is the fixed constraints on the format of
the predefined data types: the date data types are arguably of restricted usefulness, as there is no way to
allow localization of the date format and as the calendar model is restricted to Gregorian dates (which
is a nuisance e.g. in china).

Deterministic Content Models A limitation of DTDs that has been inherited by the XML Schema
language is the content model restriction to deterministic content models. Hence, the chess game use
case of the DTD limitations can not be modelled in XML Schema.

Attributes Modelling of attributes of an element has conceptually mostly been inherited from DTDs,
thus with the same limitations: attributes are declared independently of each other, it is not possible to
declare them such, that e.g. a set of attributes has to occur together or excludes another set of attributes.
The independence of content model and attributes has also been inherited from DTDs, as attributes most
be declared in the complex content model at the end after all element declarations. Therefore it is not
possible to have an element content that either depends e.g. on the occurrence of an attribute or on a
certain value of an element.

Typed References DTDs lack of typed references is roughly solved by the possibility to syntactically
restrict attribute values yet having them declared as identifiers or references to identifiers. A disadvan-
tage of this approach is, that the typed reference has to be reflected in the way instances of the schema
are authored, the values have to fulfill some syntactical properties (e.g. they need a certain prefix) that
are conceptually irrelevant to the instances.

Root Element A rather surprising limitation is the lack of an explicit root element declaration when
modelling using XML Schema. Each element that is valid to some element declaration of a schema can
also be the root element of a valid document. The following example document

<bar />

is hence perfectly valid with respect to the following schema:
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema";
elementFormDefault="qualified"
xmlns="http://www.example.com";
targetNamespace="http://www.example.com";>

<xs:element name="foo">
<xs:complexType/>

</xs:element>
</xs:schema>

The document is valid, as the element “ f oo” may contain arbitrary content, hence also “bar”. Ar-
guably, the author of the schema intended to state, that the root element has to be a “ f oo” element.

Unordered Content Practical applications have proved the relevance of unordered content modelling
for XML, especially for data modelling. This reflects grouping and encapsulation of attributes5 in an
object oriented modelling paradigm where it is relevant e.g. to assign the right values to the attributes,
yet the order is irrelevant. While SGML DTD has some support for that task, XML DTD lacks that
feature. XML Schema reintroduced the SGML feature and thus provides a limited way of modelling
unordered content using the all construct by specifying a set of elements that has to occur in a valid
content instance. When necessary to model unordered content involving optionality, multiplicity or
dependant multiplicity of attributes, XML Schema’s all unordered content modelling facility can not
be used. Arguably, the same expressiveness as given by regular expressions for sequences, would be
desirable for unordered content modelling.

Syntax and Semantics Thus XML Schema solved some of the shortcomings of DTD, some problems
remain. Further on, XML Schema enjoys the questionable fame of being by far the most complicated
W3C recommendation available. The recommendation is often expressed in a way how the validation
procedure works and how it has to be implemented, rather than explaining in a declarative way how
the language has to be used. This is of advantage for XML Schema implementing parties, yet it is
very inconvenient for XML Schema users. It requires considerable expertise to be able to understand a
W3C XML Schema correctly. Additionally, there is no accepted or official formal description of XML
Schema by now, yet a working draft “XML Schema: Formal Description” (see http://www.w3.org/
TR/xmlschema-formal/) last edited in September 2001 exists.

2.4.3 Relax NG

Relax NG (REgular LAnguage for XML Next Generation) is a schema language for XML, based on
RELAX [30] and TREX [51]. A Relax NG schema specifies a pattern for structure and content of
XML documents. Relax NG has two syntices—an XML syntax and a textual so called compact syntax.
Compared to e.g. XML Schema, Relax NG is arguably simpler with the same expressive power. It is
defined by a committee specification of the OASIS Relax NG technical committee, and also by part two
of the international standard ISO/IEC 19757: Document Schema Definition Languages (DSDL) [2].

Relax NG has been defined based on formal language theory, more precisely based on regular tree
grammars [22], which are considered to be an appropriate formal model for most current XML type and
schema languages [38].

Grammar A schema or type declaration in Relax NG is called a grammar. A grammar consists of
one or many grammar rules, of which one is declared to be the starting rule, the rule defining the type
of the root of valid documents.

5In this context by ‘attributes’, attributes of an object are meant, not forcibly XML attributes.
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Element Declarations A Relax NG grammar rule declares the shape of an element. As an example,
consider the grammar of a name element consisting of a first- and a last name component (see example
3). In contrast to DTDs, there is a separation of non-terminal and terminal symbols, i.e. it is possible
to use a different label for the element instances and for the rule (we see, that an element with label
<first> is modelled, this element is called firstName in the grammar). The separation of label and non-
terminal in the grammar is essential to be able to reuse element labels for various element declarations
with different structure in e.g. different content models.

For the sake of simplicity, just the compact syntax is used in the Relax NG examples—con- ceptually
the XML Syntax and the compact syntax are equivalent.

grammar {
start = element name{ firstName , lastName }
firstName = element first{ text }
lastName = element last{ text }

}
Code Example 3 A Relax NG example modelling a name element composed of a first- and a last name compo-
nent.

Regular Content Models in XML Schema The content models of elements are modelled using reg-
ular expressions as sen for DTDs. In contrast to the DTD regular expressions, there is no restriction on
possible regular expressions to one-unambiguous expressions. It is also possible to model data the “Rus-
sian doll” way as in XML Schema—by embedding the element declarations anonymously in a content
model declaration (see example 6 for nested element declarations and full blown regular expression
content models).

grammar {
start = element addressBook{

element card {
( firstName , lastName ) | ( companyName ) ,
element phone{ text } ? ,
element address{ text } ?

} *
}
firstName = element first{ text }
lastName = element last{ text }
companyName = element company{ text }

}
Code Example 4 This example models a versatile address book. Some elements are defined in a nested way in
the content model declarations of their parent node, while others are declared in the traditional grammar way—using
non terminals and a declaring rule.

Named Patterns What corresponds to a complex type in XML Schema (see section 2.4.2), is called
named pattern in Relax NG. A named pattern is a regular expression, or a part of a regular expression,
which name, i.e. non terminal, can be used when defining content models (see example 5).
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element card {
name ,
element phone{ text } ? ,
element address{ text } ?

} *
name = ( firstName , lastName ) | ( companyName )
firstName = element first{ text }
lastName = element last{ text }
companyName = element company{ text }
}

Code Example 5 The card declaration of example 6, but with the content model part declaring valid use of names
factored out as a named pattern.

To retain regularity of the content model, it is not possible to recursively refer a name in it’s decla-
ration. Recursion is neither allowed using intermediate named patterns.

Interleaving While XML DTD had very poor support for the modelling of unordered data, Relax NG
provides a way of modelling an unordered sequence of elements. In example 6, an address book card
was modelled as a sequence of a name, phone number and address element. While the schema dictates
an order on those elements, there is no conceptual necessity for an order in this case. When modelling
the content as shown in example 7 using the interleaving operator, the elements can be given in arbitrary
order. Surprisingly, the interleaving construct was available in XML DTD’s predecessor—in SGML
DTD’s. The feature has been removed in XML DTD for the sake of simplicity of implementation.
Note, that XML Schema also provide a way of modelling interleaved content.

element card {
( name | companyName ) &
element phone{ text }? &
element address{ text }? &

}
Code Example 6 A variation of the address card for the address book in example 6—this card requires all
elements, but no order is dictated on them.

While interleaving is used to model unordered sequences of elements, some attention has to be paid
to the way it s used in regular expressions, as the interleaving is just applied to sibling expressions
in a regular expression. This is best explained along an example: let’s assume, we have to model an
unordered sequence of A, and B and C elements, or, instead of B and C, a D element. This is nicely
expressed as A & ( (B & C) | D) . Unfortunately, this expression does not fulfill the requirement,
as the sequence B A C is not an instance of the given expression. This is due to the fact, that each
sub expression has to be fulfilled by a part of the word, i.e. there is no part of the word valid with
respect to the sub expression (B & C). In this case, an expression fulfilling the requirement exist:
(A & B & C) | (A & D).

Attributes An arguably special feature of Relax NG (compared to DTD and XML Schema), is the
equal treatment of attributes and elements in content model declarations Attribute occurrence declara-
tions get hence part of the regular expression, as shown in example 7. The advantage of this approach is,
that the occurrence of an attribute can be tightly coupled to the occurrence of an element, which is hardly
possible, when elements and attributes are declared separately. Further, the modelling of attribute sets
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can benefit from the full possibilities of regular expression modelling, like optionality and disjunctive
modelling.

element addressBook {
element card {

(element name { text }
| attribute name { text }),

(element email { text }
| attribute email { text })

}*
}

Code Example 7 Another variant of the address book example—in this case cards have name and email content,
if this is modelled as attribute or element is left to the instance author. The author may even model e.g. the name as
attribute while modelling the email address as element of the card-element.

The advantages are unfortunately also tightly coupled with disadvantages: (1) Content modes can
be modelled enforcing multiple occurrences of the same attribute name, which is invalid in XML (e.g.
using the Kleene star). (2) while a regular expression of elements is modelling an ordered sequence
of elements with the known regular expression semantics, the attributes do not occur at the positions
as modelled in the content models, as they have their fixed position in the XML syntax—inside of the
opening tag of the containing element. Practically, the problems turned out mostly irrelevant, the choice
of mixing element and attribute content declarations turned out to be a pragmatically useful decision.

Data Types Relax NG allows patterns to reference externally-defined data types. Relax NG imple-
mentations may differ in what data types they support. Only those data types supported by the used
Relax NG implementation can be used. The most commonly used data types are those defined by W3C
XML Schema Data types [59]. The data type flexibility is arguably god and bad—maximum freedom, in
this case of data types, is forward looking in an open system as the web is, on the other hand portability
of Relax NG schemata using data types is questionable.

Apart of externally defined data types, enumeration data types are included (see example 8). An
enumeration of valid strings can be defined as a data type.

element card {
attribute name { text },
attribute email { text },
attribute preferredFormat { "html" | "text" }

}
Code Example 8 An extension of an email address card, as defined (among others) in example 7. The email
address card now has an attribute for specifying the preferred formatting of emails for the recipient. This is made
using an enumeration consisting of two options: "text" and "html".

Relax NG Example Relax NG is considered to be a clean, formally well founded, alternative to
XML Schema. The W3C, inventor of XML Schema, itself uses the “competitor” for various normative
standards as modelling language, i.e. XHTML 2.0 [55] (see appendix B and C of [55]). A short Relax
NG grammar is shown in example 9,
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grammar{
university = element university{ student+ }
student = element student{

element name{ nameType } ,
element matriculation-number{ xsd:integer } ,
element semester{ xsd:integer{ minInclusive=1 maxInclusive=24 } } ,
element exams{

element exam{
attribute lecture{ xsd:integer },
attribute grade{ text}

}*
}

}
nameType = (element first-name{ text } , last-name{ text })
}

Code Example 9 For comparability, the XML Schema example presented formerly (see section 2.4.2), is pre-
sented here as Relax NG example. The XML Schema Data types Data types are used in this grammar, which is a
possible and existing way to integrate data types in Relax NG.

Limitations As mentioned, basic data types are not covered in Relax NG itself. To obtain portable
grammars, they can hence not be used.

Another, by now in all schema languages present, limitation, is the lack of typed graph support.
Without external data type library, Relax NG does not even support ID/IDREF based references, is
hence not able to model graph structured data at all.

Unordered content is partly supported by the interlacing paradigm. As shown above in the paragraph
about interlacing, patterns using interlacing are not modelling unordered data in an homogeneous way,
sometimes “chunks” of content may not be interlaced. This happens, when combining the interlacing
operator and the other operators. It is likely, but unproven, that any unordered content model with
variable multiplicity, disjunction and arbitrary symbols, can be modelled using regular expressions with
interleave operator. However, it is highly demanding to the schema author and error prone, possibly
with exponential size complexity in the size of the number of symbols in the worst case.6

2.5 Querying The Web

Note, that Web Querying is to be distinguished from Web Searching: While Web Searching means
the use of search engines like http://www.ask.com or http://www.msn.com and Web directories
like http://dmoz.org/ or http://www.yahoo.com by typing in textual search term or by browsing
search structures, Web Querying means writing programs in Web Query languages very much in the
spirit of writing database queries in SQL.

2.5.1 XPath

With XPath [48] one can localises (sets of) nodes within the tree associated with an XML document, i.e.
elements, attributes, and text. XPath has similarity with path expressions as used in Shell or command
line operating system environment, as e.g. the Bash on Unix derivations or the command.com on Win-
dows, however XPath is also inspired by so-called “regular path expressions” first introduced in the

6The assumption is unproven. It is based on the recognition, that factorization in the problem formulation has to be unfolded,
which means copying the expanded symbol as often as factors occur.
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content of the XML query languages XML-QL [24] and Quilt [20], a predecessor of the current XML
Query language XQuery [63].

XPath [48] uses so-called “axis specifiers” and “node tests”. The axis specifier, e.g. descendant or
child, specify the traversal of the document tree. A node test correspond to a label in a regular path
expression. The axis specifiers give rise to a navigation in all directions (to the leaves, to the root, to
nodes preceding or following in "document order") the context node.

<addressBook>
<card name="Sacha">
<phone>21809339</phone>
<email>sacha.berger@ifi.lmu.de</email>

</card>
<card name="Francois">
<phone>21809310</phone>
<email>bry@ifi.lmu.de</email>

</card>
</addressBook>

Code Example 10 An XML document representing an address book with phone numbers and email addresses.
The example is used in section 2.5.1 to illustrate XPath expression usage.

As an example, consider the xpath expression descendant::email[position()=1] to be applied
to the example document 10. The result is the element

<email>sacha.berger@ifi.lmu.de</email>

in line 4—the descendant axis indicates to search from the start element (in this case the root element)
at arbitrary depth. The elements selected along the descendant axis are restricted to those fulfilling the
name test for email, but from those elements, only those fulfilling the conditions in square brackets are
taken. As the condition restricts the result to the first element in the sequence of intermediate results,
the result is as shown above the first email element.

XPath has been conceived as an embeddable selection language, not as a whole query language. It
lacks features for projection and construction of data, solely selection of data from a given context is
covered. Prominent languages incorporating XPath as selection language are XSLT (see section 2.5.2)
and XQuery (see section 2.5.3).

2.5.2 XSLT

XSLT [47] is a language for transforming XML documents. It has been conceived as a part of XSL
[50], the eXtensibme Stylesheet Language. XSLT is a (sort of) functional language with XML syntax.
An XSLT program consist of a set of rules expressing how to transform elements in an input document
to elements of an output document. XSLT embeds XPath in two contexts: (1) elements from the input
documents are transformed by the rule matching it’s XPath expression given as its match expression,
(2) in rules the transformation of further content is applied recursively on the elements matching the so
called select expression of the application. Consider example 11 for a simple XSLT program:
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<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/addressBook">
<html><body>

<table>
<tr><td>NAME</td> <td>PHONE</td> <td>EMAIL</td></tr>
<xsl:apply-templates select="card" />

</table>
</body></html>

</xsl:template>

<xsl:template match="card">
<tr>

<td><xsl:apply-templates select="@name" /></td>
<td><xsl:apply-templates select="phone" /></td>
<td><xsl:apply-templates select="email" /></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Code Example 11 An XSLT program transforming address book documents, as e.g. seen in example 10, into an
HTML document with an address book table.

The example 11 consists of two rules, called templates in XSLT and represented by template
elements. The first rule matches addressBook elements and constructs an HTML document with a
table with the first row as header row with fixed text columns. Then, the program is applied to all card
elements that can be found in the given context. The selected card elements are transformed using the
second template, as this one matches with card elements. The second template constructs table rows
for the card element it is applied to. For the document in example 10, the resulting HTML document
is shown in example 12.

<html><body>
<table>

<tr><td>NAME</td> <td>PHONE</td> <td>EMAIL</td></tr>
<tr>

<td>Sacha</td> <td>21809339</td> <td>sacha.berger@pms.ifi.lmu.de</td>
</tr>
<tr>

<td>Francois</td> <td>21809310</td> <td>bry@pms.ifi.lmu.de</td>
</tr>

</table>
</body></html>

Code Example 12 The result of transforming the document in example 10 using the style sheet in example 11.

Limitations A rather surprising limitation for users of functional programming languages is, that
templates may never be applied to content that has been constructed, templates are always applied to
selected content from the input document. Common paradigms, like stepwise refinement of results, are
not applicable to XSLT. The computation is hence solely driven by the input document. Nevertheless,
there is evidence, that the computation model of XSLT is Turing-complete [46].
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Further features of XSLT Beside the base concepts—template based content modelling and con-
trolled template application—further features help writing reasonably compact and understandable trans-
formation programs:

Conditionals An if and a choose construct are used to model conditionals similar to if-then-else and
case-switch in traditional imperative programming languages like C or Java. A test, expressed
as XPath expression is performed on the current context node, if the test selects something, it
is considered successful, and the content enclosed by the conditional is processed like regular
template content.

Imperative loops Beside apply-templates, which iterates over the selected content, the for- each
construct can be used to loop over sequences of selected elements. The child content of the
for-each element is then treated like regular template content for each iteration step. The main
difference to apply-templates is, that no template selection takes place, i.e. the selected node
is applied to the child content of the for-each element.

Construction Constructs exist, to construct elements and/or attributes, if e.g. their name has to be
computed at run time

Projection Using the value-of construct, it is possible to project parts of the selected data in the
result document. This partly already happens by default, i.e. if no template catches text nodes
and apply-template is called on them, they are inserted in the result document. value-of may
also be used to calculate using built in functions for string processing and numerical calculations.
Another projection construct is copy, which copies, either deep or flat, a selected node (with or
without it’s attributes).

Variables & Parameters Variables can be used to store and reuse selected content. In the spirit of
functional programming languages, the binding of a variable may not be altered within the invo-
cation context of it’s containing scope. The scope of a variable may be a template, child content of
conditionals or of for-each loops. Parameters are like variables of a template, that can be bound
at application, i.e. in the apply-template construct, very much like function parameters bound
at function application. Note, that it is not possible to bind variables or parameters to the result of
constructing new content, variables can just be bound to selected input document content. This is
related to the fact, that templates may just be applied to content from the input document(s), but
never to the constructed content.

Transformation vs. Query Common definitions for query languages claim, that query languages
consist of selection, construction and projection of data from a given data model to (possibly) another
data model. All those properties are fulfilled by XSLT, rendering it hence by features a query language
as well as a transformation language. Indeed, the difference between transformation language and query
language is vague. XML has been proposed by the W3C as data (meta) model to be followed by styling,
transformation and query language proposals. The transformation language XSLT was proposed before
a query language. The versatility of XSLT lead to a not so surprising reaction of it’s ‘affiliados’: when
the query language XQuery was proposed by the W3C, it’s reference implementation was suggested to
be realized in XSLT, while questioning the necessity of a distinct query language at the same time.

2.5.3 XQuery

The fact that with XQuery [63] and XSLT there are two expressive XML processing languages that
can be used for mainly the same purposes is somewhat surprising. While XSLT was developed by the
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‘document community’, XQuery is an XML Query language originating from the Database community,
which can already be observed by its syntactical similarity to SQL. XQuery, also called XML Query, is
derived from a query language called Quilt [20]. Quilt had been conceived by Jonathan Robie (Software
AG), Daniela Florescu (INRIA) and Don Chamberlain (IBM Almaden Research Center) as a query and
transformation language for XML and Semistructured data integrating most of the ideas of prototype
query and transformation languages designed since the mid 90th – hence the name Quilt.

Like Quilt and XSLT, XQuery uses XPath for locating nodes and/or text in the input data, like
XSLT, XQuery is a sort of a functional programming language. Indeed, a plain XPath expression is
syntactically already a valid XQuery program—returning as result exactly the content selected by the
XPath expression from a context (e.g. document) passed (e.g. as command argument) to the XQuery
implementation or run-time environment.

//card/@name
Code Example 13 An XQuery program in form of an XPath expression to be applied to example 10—the result
is all the text of all the name attributes given to the card elements.

As the result of the example 13 already indicates (plain text is returned), the result of an XQuery
program is not always an XML document. The result may be an XML document, plain text, or a
sequence of XML nodes (i.e. text nodes, attributes, elements, ...). The sequence of XML nodes is an
important concept, used by many language primitives and functions in XQuery.

FLOWR-Expressions The main language construct in XQuery is the so called FLOWR expression
(pronounced “flower” expression). FLOWR is an acronym for For-Let-Orderedby-Where-Return. Ex-
plained on example 14, all parts of the FLOWR expression have been used. However, it is possible to
omit any parts in the expression (i.e. the for, the let etc.)

FOR $p in /addressBook/card/phone
LET $c := $p/..
WHERE not($c/@confidential = "yes")

ORDER BY $p/text() ASCENDING
RETURN <card phone="{$p/text()}">

<name>{$c/name/text()}</name>
</card>

Code Example 14 In this example a FLOWR expression is used to construct an “inverted phone list” for non-
confidential phone numbers, where the card element contains the phone number as attribute (and the cards are ordered
ascending with respect to the phone numbers) and a name element is a child node of the card. Information about
confidentiality is given in the form of an attribute for the card elements.

FLOWR expressions may also be nested, giving rise to more complex construction, especially those,
where one level of iteration is no enough. In example 15, a 2-dimensional structure, i.e. the result of
the XSLT example 11 (namely the document in example 12), is queried—an HTML table is the input
document and as a result a rotated HTML table is constructed, i.e. a table where the columns of the
input are the rows of the output and vice versa. For each dimension (first row, then column), one level
of iteration is needed.
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LET $table := $htmlDocument//table
RETURN <table> {

FOR $x in $table/tr[1]/td/position()
RETURN <tr> {

FOR $tr in $table/tr
RETURN

FOR $td in $tr/td
WHERE $td/position() = $x
RETURN $td

} </tr>
} </table>

Code Example 15 An example rotating an HTML table. Note, that for simplicity it is assumed, that the table has
rectangular shape, what is not enforced in HTML.

Functions XPath queries or parts of it can be organized in functions. Indeed, some functions are
even predefined. In contrast to XSLT, functions can construct new XML content that can be queried or
processed in the same program, e.g. in another function. Example 16 shows how a function is used to
construct data, that is then decomposed by another query. This approach is reasonable e.g. to provide
an interface to versatile data formats, i.e. hiding the complexity of information selection and projection.

DECLARE FUNCTION harvestData( $url ) {
FOR $row IN document($url)//table/tr[position() > 1]
RETURN <data>

<name>{$row/td[1]}</name>
<phone>{$row/td[2]}</phone>
<email>{$row/td[3]}</email>

</data>
}
<addressBook>

FOR $d in harvestData( "http://example.com/addresses.html" )
RETURN <card name={$d/name/text()}>{

IF ( $d/phone/text() )
THEN <phone>{$d/phone/text()}</phone>
ELSE ()

IF ( $d/email/text() )
THEN <email>{$d/phone/text()}</email>
ELSE ()

}</card>
</addressBook>

Code Example 16 The example is based on data as shown in example 11, an HTML table of name-, phone-,
email- triples. A function, called harvestData is used to retrieve the knowledge. The query is then constructing an
addressBook document in the spirit of example 10. Note how, in contrast to common programming languages like
Java, the return-statement is iterated—this results in a sequence of data elements.

Types XQuery is a language with an “optional type system”, which means, that (1) availability of the
type system in implementations of the XQuery specifications are optional, and (2) the use of types are
optional for the user. Optional types for the user is in this context not to be understood as optional type
annotation of generally typed programs due to the availability of type inference as e.g. in Haskell—
untyped program fragments exist alongside with typed ones. Typed fragments of XQuery are type
annotated with XMLSchema type information, which may be type names

XQuery (when typed) comes along with a static or a dynamic type system, when statically typed, it
also needs to be dynamically typed. Types are based on concepts like
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• structured- or textual content of any type—any of the known types, sub elements of a structured
element may be given again

• structured content of unknown type—no assumption at call can be made on the type, this corre-
sponds to a most general type

• structured- or textual content conforming to some XML Schema type declaration.

Functions, variables and XPath selections may be typed in XQuery. If an XQuery implementation
is statically typed, a type ‘error-free’ program must lead to the same result as a the execution of the
program in a dynamically typed implementation, i.e. static type information cannot lead to a different
result than dynamic type information.

Further Features of XQuery Beside FLOWR expressions and functional abstraction, further features
help writing reasonably compact and understandable queries:

Conditionals Based on boolean operations and XPath expression evaluation (to empty or non-empty
selection), if-then-else conditionals can be formed as in common programming languages. Sur-
prisingly, while the language description [63] puts lots of emphasize on FLOWR expressions,
the evaluation of XQuery [64] is based on rewriting programs to an (arguably) minimal subset of
XQuery and XPath mot containing FLOWR expressions anymore, but deeply nested if-then-else
expressions.

Modules Complex XQuery modules can be split up in modules, giving rise for reuse of functions in
various programs. A query is then composed of exactly one main module and arbitrary many
library modules. A main module may contain a FLOWR expression at “root” level, i.e. not in
the context of a function, and any function and variable declarations, a library module may only
contain function and variable declarations.

Limitations The expressiveness of XQuery gives rise to arbitrary computation, i.e. Turing complete-
ness does not leave lots of space for complains about expressiveness.

The downside of the high expressiveness, is the difficulty to provide highly optimized query evalua-
tion. XQuery was initially conceived as an (XML) database query language with potential for optimization—
query optimization is an important field of database development. One source of problems is the so
called nested querying, where e.g. inside an iteration for result construction another sub-query (again
possibly with iteration) occur. Nested queries are unfortunately the way of choice to implement com-
plex grouping in XQuery. While nested querying gives rise to writing highly hand-optimized code to
the program—he gets full control over the evaluation order of the query—automatic optimizations over
the nesting levels is very hard, maybe impossible in general. In many cases, more high level constructs,
e.g. grouping-, ordering-, duplicate elimination constructs, etc., would make the use of nested queries
unnecessary, giving comfortable tools to the programmer and yielding rise to automatic optimization
for XQuery run time engines.

Another limitation of XQuery lies in its specification relating XPath: some parts of XPath (i.e. most
reverse axes) are optional in implementation. This does not restrict the expressiveness, as the missing
axes can all be simulated using other axes and constructs, but on the other hand, the user is encumbered
in the use of XPath when trying to write portable XQuery programs. As it has been shown how to rewrite
XPath expressions involving reverse axes, the rewriting could have been included in the specification as
a must for implementations without native support of the axes in question.
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2.5.4 Xcerpt

Xcerpt is a Web and Semantic Web query and transformation language currently in development at
the Institute for Informatics of the University of Munich [43] [18]. The main claim is, that the use of
arguably declarative programming language paradigms ease writing of programs, as well as efficient
evaluation with less need to consider optimization.

Xcerpt is conceived to query and construct XML data in special, and Semistructured Data in general.
Xcerpt has an own (syntactical and semantical) data model for Semistructured Data called Xcerpt data
terms (see example 17 for an example). Xcerpt Data terms are able to represent tree shaped data with
attributes, textual- or structural nodes, ordered or unordered sequences of child nodes, as well as graph
shaped, directed, node labelled structures with a dedicated root node. Graph shaped documents are
syntactically represented as spanning trees with references to nodes of the tree.

bibliography{
a1@author{ name["Eric","van der Vlist"],

publications{ ^b1, ^b2 } },
a2@author{ name["Jean-Jacques"," Thomason"],

publications{ ^b2 } },
b1@book{ "RELAX NG" ,

authors[ ^a1 ] } ,
b2@book{ "XML SchÃľma (Ãľdition franÃğaise)" ,

authors[ ^a1, ^a2 ] }
}

Code Example 17 An example of an Xcerpt data term, representing a bibliographic database. Nested elements
are represented in term syntax, where the use of square brackets indicate, that the sibling order of the nested elements
is relevant, while curly braces indicate, that the sequence of child elements can be considered to be irrelevant. Some
elements are referable using an identifier, prefixed to them with a trailing ‘at’-sign. Referable objects may be refer-
enced using their identifier, prefixed by an ‘hat’-sign. Textual content is quoted text and can occur along with other
elements.

The general structure of an Xcerpt program can be compared to a program in logic programing
languages or to a database query in Datalog. The main syntactic concepts along with their informal
explanation of Xcerpt are as follows:

• A program consists of one to many rules that may use each others result in the construction of
new results.

• A rule consists of a query part clearly separated syntactically from a construct part.

– The query part is able to query external data on the web or internal data, constructed by
other rules.

– The construct part is able to construct result data to be used as output of a program or as
input for other rules to query

– Query and construct parts of a rule are connected using logical variables, variables are (ex-
clusively) bound in the query parts and multiple variable bindings are possible,like in the
spirit of variables in Prolog or Datalog.

• Query parts consist of so called query patterns, which are syntactically an extension of the queried
data model (i.e. XML or Xcerpt data terms). The extensions are (1) incompleteness constructs to
leave space for incertitude about shape, size and multiplicity of the queried data structures and (2)
variables to select data fragments from the input data.
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Figure 2.5: The left graph structure is simulated by the right one—for each node of the graph on the left
hand side graph, there is a corresponding node on the right hand side graph, such that (1) the labelling
is equal and (2) the nodes following the node in question on the left hand side graph are simulated by
nodes following node in question in the graph on the right hand side. Textual nodes on the left hand
side are simulated by textual nodes on the right hand side. It is possible that one node on the left hand
side is simulated by many nodes on the right hand side (i.e. when the left hand side node has multiple
incoming edges).

• Construct parts of rules are so called construct patterns, a syntactic extension of XML or Xcerpt
data terms. The extensions are (2) variables, that are replaces by their bindings at program eval-
uation time to construct data, (1) aggregation and grouping constructs to aggregate and group
multiple variable bindings.

The evaluation of an Xcerpt rule consists of two phases: (1) the evaluation of the query, resulting in
a so called substitution set for the variables, (2) the evaluation of the construction, resulting in data terms
due to evaluation of aggregation and grouping constructs and substitution of the variables according to
the substitution set gathered in the query part evaluation.

Xcerpt Rule Query Evaluation is done using the so called simulation unification, a non standard
unification algorithm based on the simulation preorder of graphs. First, simulation preorder and it’s
properties are briefly presented, then the focus will pan back to simulation unification, which yields a
set of substitutions, the result of Xcerpt query evaluation.

Speaking informally, a graph simulates another graph, if each state in the second graph is simulated
by a state in the first graph. A state in the first graph simulates a state in the second one, if each adjacent
state of the state in question in the second graph is simulated by an adjacent state to the state in question
of the first graph. For labelled or attributed edges or nodes or plain textual nodes, equal labelling,
attributing or text equality can be requested on simulating states or on the traversed edges (see figure 2.5
for an example of the simulation relation between two graphs with node label and textual nodes).

If simulation preorder holds in both directions for two graphs in question, it is called Bi-simulation.
Bi-simulation is a kind of intuitive equality between two graphs, when the graphs are considered e.g. to
be automata—both automata “behave” the same way, if behaviour of automata is seen as a kind of graph
traversal. However, Bi-simulation is a weaker equality relation than graph isomorphism for an example
of the difference, consider figure 3.1 in section 3.3.2.
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X Y
c[] c[]
c[] c["tabunkel"]

Figure 2.6: A demonstration of simulation unification, where the left graph (serializable as the Xcerpt
query term a{{ b{ var X } , var Y }}) (in this case tree shaped) has two variables. Possible
bindings for the variables are indicated by grey lines, when substituting the variables by the correspond-
ing nodes from the right hand side (a data graph represented by the Xcerpt data term a{ b{ ∧c1 } ,
c1@c{} , c{ ‘‘tabunkel’’ } }), the graph from the left hand side is simulated by the one on the
right hand side. The result of simulation unification is a set of unifiers, shown as a table on the right
hand side—each substitution is a row in the table, each column represents a variable.

Focusing back on simulation unification, the second graph in the explanation of simulation preorder
may now contain logical variables as nodes. The second graph is the query pattern, while the first one
can be considered to be a data instance. A simulation unifier is now a mapping of variables to sub-graphs
of the second graph, such that, after substituting the variables in the second graph with the sub-graphs
in question, the first graph simulates the second one. Possibly multiple such unifiers exist, the result
of simulation unification is the set of all such unifiers. Figure 2.6 illustrates simulation unification by
example.

Incompleteness in breadth (i.e. partial adjacent node sequence specification) is already addressed by
the default simulation preorder, as there is just stated, that all states in the second graph have to simulate
in states in the first graph, nothing is stated about all states in the first graph. Hence, completeness (in
breadth) can be considered as a side condition, about the states in the first graph. Incompleteness in
order is addressed by standard simulation preorder, as no conditions about the order of the simulated
states is defined in common graph models, implementing ordered simulation is hence a condition about
the order of the simulated states in addition to default simulation preorder. This requires some extension
like numbered edges in the graph model.

Xcerpt Rule Construct Evaluation is evaluated with a set of substitutions (i.e. the result of an Xcerpt
query part evaluation) is input. In the simplest case of a construct term, a construct term without vari-
ables, nothing more than the construct term interpreted as data term is returned, there are as many results
as there are substitutions in the set, all identical. For a construct term with variables (and without group-
ing constructs) for each substitution the resulting data term is obtained, by substituting the variables in
the construct term with the data terms associated to the corresponding variable in the substitution. Note,
that all variables in the construct term need to be substituted, otherwise the whole rule is considered
ill formed—this can already be assured at compile time, as it simply means, that each variable in the
construct part has also to occur in the query part of the same rule.

For the evaluation of construct terms with grouping (and/or aggregation), the scope of the vari-
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X Y
c[] c[]
c[] c{"tabunkel"}

"bar" c[]
"bar" c{"tabunkel"}

results[
all result[ x[var X] , all var Y ] ]

————————————————————————————–

results[
result[ x[c{}] , c{ "tabunkel" } , c{} ] ,
result[ x["bar"] , c{ "tabunkel" } , c{} ] ]

Figure 2.7: The application of a set of substitutions (in form of a table) to an Xcerpt construct term
(shown above the line) is demonstrated here. The result is the Xcerpt data term as shown below the line.

ables with respect to the grouping constructs is relevant: all construct terms in the scope of a grouping
construct are sequentially constructed by substituting their variables, called the variables bound by the
grouping construct in question. Not all substitutions are used at once in the constructed of the terms in
the scope of the grouping construct: the grouping is performed for each subset of the substitution set
with equal free variable substitution, the free variable substitutions in this subset then are used in just
one construction. For each such subset, the grouping is evaluated, resulting in the end in as many in-
stantiations of the inner most grouped variables, as there are substitution—just that those instantiations
get grouped in different contexts. Consider example 2.7 as a demonstration of how a substitution set is
applied to a construct term.

Xcerpt Rule Evaluation. After introducing Construct- and Query evaluation, not a lot is left to say
about the evaluation of an Xcerpt rule—evaluation the rule consists of evaluating the query part, also
called body of the rule, and feeding the resulting substitution set to the construct part, also called the
head of the rule, to obtain a set of data terms as result. A query part in a rule may be adorned by an
in-construct, stating that the query is to be evaluated against an external resource, given as argument of
the in-construct. Otherwise the rule is to be evaluated against the set of data terms constructable by all
the rules in the program. Consider figure 2.8 as an example for rule evaluation.

A special rule is the so called goal. A goal does not contribute to the set of data terms constructable
by the program, it’s result s considered to be the result of evaluating the whole program. As the result
has to be a data term or an XML document, just one data term may be instantiated by the goal, it is
hence likely, that the head of the goal uses grouping in sch a way, that there are no free variables.7

Xcerpt Program Evaluation The evaluation of an Xcerpt program is the chaining of the evaluation
of the rules. The goal rule gives the result, the rules attached using the in-construct to external resources
get input data (which is not forcibly necessary, data can also be defined internally). All the other rules
query the internal program store and feed results in this store. The operational semantics of chaining
can be define in two ways, there is no commitment about it by now, possibly both ways will be available

7The head of a goal may have free variables, it s not defined which resulting element is returned by a program constructing
multiple outputs due to more than one substitution being applied during program evaluation to the goal’s head.
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CONSTRUCT
html[head[title[ "Hyperlinks on www.google.com" ] ],

body[
all (a(href=var HREF)[ all var CONTENT ] , br[] )

]
]

FROM
in resource("http://www.google.de")(

html[[ body[[ a(href=var HREF)[[ var CONTENT]] ]] ]]
)

END

————————————————————————————–

<html>
<head><title> Hyperlinks on www.google.de </title></head>
<body>

<a href="/url?sa=p&amp;pref=ig...">In Englisch</a>
<br />
<a href="https://www.google.com/accounts/Login..."> Bei Google Anmelden</a>
<br />
...

</body>
</html>

Figure 2.8: Above the line an Xcerpt rule is given. It is conceived to retrieve all the hyperlinks from the
start page of Google and to present them in a plain HTML document. The result of evaluating the rule
is shown below the line—this time not in Xcerpt data term syntax, but in XML (and hence XHTML)
syntax.
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as choice for the programmer. In example 18 an Xcerpt program is presented.

GOAL
TheResultOfTheCalculationThreePlusTwoIs[ var Result ]

FROM
plus[ three[] , two[] , var Result ]

END

CONSTRUCT
var NAT

FROM
in resource "http://example.com/naturalNumbers.xml" (
naturalNumbers{{ var NAT }} )

END

CONSTRUCT
plus[ var X , zero[] , var X ]

FROM
succ[[ var X ]]

END

CONSTRUCT
plus[ X , Y , RESULT ]

FROM
and(
plus[ X , PRE_Y , PRE_RESULT ] ,
succ[ PRE_Y , Y ] ,
succ[ PRE_RESULT , RESULT ]

)
END

Code Example 18 This example illustrates an Xcerpt program for the addition of natural numbers very much
in the spirit of it’s mathematical definition. First, natural numbers are defined as a set of elements and a binary
successor relationship. The natural numbers are considered to be in an external document (theoretically of infinite
size, but for the sake of concreteness, an upper bound can be assumed). The document hence looks somehow like
this: “naturalNumbers{ succ[zero[] ,one[] ], succ[ one[] , two[] ] , ... }”. The Program
consists of a goal returning the sum of three and two. The addition is defined as a ternary relation between the first
and second operand and the result. The definition is recursive and based on the successor relationship and the base
case x+0 = x.

The first kind of chaining, called forward chaining, is driven by the input data. The rules attached
to the input data are evaluated first and initially feed the internal store. The other rules are then applied
until saturation is reached, i.e. no further rule application to the internal store produces content, that
is not already in the store (the store can be seen as a set of data terms). Then, the goal is evaluated
against the store and the result is returned. This type of chaining s very much in the spirit of Datalog.
The advantage is, that, even without focusing on a goal, all knowledge is pre-processed and rapidly
accessible for various possible goals.8

The second chaining approach is called backward, or goal driven, chaining. When Xcerpt is imple-
mented using goal driven chaining, the query term f the goal is evaluated against the heads of all rules,
using a slightly extended version of simulation unification, able to unify a query term with a construct
term. The rules, of which the simulation unification with the head provided non empty substitution sets,
are then recursively evaluated the same way as the goal (i.e. by simulation unification with other rule

8Note, that an Xcerpt program always contains only one goal, so the pre-processing can be compared to a system setting,
where programs are seen as queries to a database system with materialized views.
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heads). In substitution sets produced by this kind of simulation unification, variables may not only be
mapped to data terms, but may also be mapped to construct terms containing variables. When a branch
in the recursive process reaches an end, the substitution sets are then applied along the branch to the
goal in a similar way to applying them to a single construct term.

In comparison to forward chaining, backward chaining may calculate less ‘useless’ facts, as just
facts that could contribute to the result are evaluated. The approach is especially useful, when the set of
facts to reason about or the data to query is very big, possibly infinite, but the query is very selective.
On the other hand, the backward driven approach has no mean to store intermediate results, called
materialized vies previously in the context of forward chaining. Further on, some recursive programs on
finite data can trap the evaluation in an endless loop, as there is no inherent recognition of construction
of duplicates, as in the set concept of the store in forward chaining.

Further Constructs of Xcerpt are presented now. They are considered “further”, because they are
not essential for understanding Xcerpt’s paradigm. Some of them can be replaced using the base con-
structs, they are useful to ease programming or to ease efficient evaluation due to optimization of higher
level constructs.

Xcerpt Queries may contain

Descendant Sometimes it is desirable to state, that a certain sub-term may occur as the child term of it’s
parent, but that it may also be a grand-child, grand-grand-child or any descendant. As a practical
example, consider the case of searching for hyperlinks (like previously when introducing Xcerpt
rules, consider example 2.8) in a Web-page: actually hyperlinks may occur at any nesting level
(e.g. nested in style conditions, tables, etc.). To capture really all hyperlinks, the descendant-
construct is useful (see example 19. A term can be adorned by the leading desc keyword, to
indicate, that the desired sub-term may occur at any depth in the document starting from subterms
position.

html[[ desc a(href=var HREF)[[]] ]]
Code Example 19 This query term can be considered as a replacement of the query term in the rule example
2.8. Using this query pattern, not only hyperlinks that are direct children of the body-element will be found, but also
those nested at deeper level in the document structure.

As The as-construct is useful, to specify a query-(sub)-term and a variable at the same location. This is
useful, to get a variable binding restricted to terms simulated by the query term associated to the
variable. As an example (see example 20) consider the case, that in an extension of the Xcerpt
rule example (see example 2.8), the list of hyperlinks found in Google should not only retrieve the
URLs, but the whole hyperlink (hence the <a>-element with all attributes and the anchor text).

html[[ desc var HYPERLINK -> a[[]] ]]
Code Example 20 This query term is an extension of the term in example 19. It is used to harvest hyperlinks
in HTML documents. They are easily found using the a[[]] sub-query. Using the as-construct, those elements are
bound to a variable called HYPERLINK.

Optional A sub-term of a query can be marked as optional pattern. An optional pattern simulates
if possible—if the queried data contains appropriate sub-terms, they will be simulated by the
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optional term, providing corresponding variable bindings for variables occurring in the optional
part, if no simulation is possible for the optional (sub)term, but for the non-optional parts, the
query term simulates as well. Assuming, that variables are in the scope of an optional term not
simulating data, the variables will be bound to a default value, that can be given in the program.
Example 21 presents a query term with optional parts.

university{{
student(name=var NAME){{

optional grade{ var GRADE with-default "No Grades by now" }
}}

}}
Code Example 21 To query a university database for all the students with the grades they received, the following
query is useful. Assuming, that not all students achieved grades, the variable GRADE is only to be bound to data, if
grades are available. In the other case, a default binding is given for the variable, the text ‘‘No Grades by now’’.

as-construct. It is hence also called variable restriction.

Negation A (sub)-query term may be adorned by not or without, indicating that the query term con-
taining the negated sub-term only matches, if there is no match for the negated sub-term.

Position Sometimes it is necessary to either specify the position at which a term matched by a query
term has to be in it’s sequence of sibling nodes. The corresponding query term is attributed with
the position-construct which gets a number as argument. It is also possible to use a variable as
argument, in this case position is not restricting the position of the matched sub-term, it binds the
variable to the position of the sub-term.

Regular Expression Regular expressions are useful to restrict simulation of textual content, i.e. text
nodes. It is also possible, to use regular expressions for element labels, giving rise to patterns
matching various, differently named, elements.

Logical Connectors In a query is is possible to specify many query terms, connected with the logical
connectors “and” and “or”. Multiple occurrences of the same variable in a conjunction of query
terms may only unify, if they have the same bindings in the simulations of both query terms.

Where Clause The where-construct is used to specify restrictions to variables, that are not of structural
nature or not related to the query term. This can be e.g. restricting the match of a variable to
a certain value or fulfilling conditions involving function, like arithmetical functions, for certain
variables, or simply expressing relations between many variables.
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R2G2
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Chapter 3

R2G2—Regular Rooted Graph
Grammars

For the typing of web query languages, a type declaration formalism is needed. From the point of
view of a person willing to use a query language with type support and willing to use the given schema
languages as type declarations, the shortcomings presented in section 2.4.1 and 2.4.2 are annoying.

The new type and schema language R2G2 is a schema language for tree and graph shaped Semistruc-
tured data like XML documents (or Xcerpt data terms). R2G2 is formally based on extensions of regular
rooted tree grammars and is hence similar to existing schema languages as DTD, XML Schema, Relax
NG or the type system of XDuce. New contributions are:

• Handling of graph shaped data based on the simulation preorder of graphs and rational trees.

• Unordered interpretation of regular expressions for unordered content specifications.

• Typed references for XML.

• Modelling of tree and reference based serializations of graph shaped data.

3.1 Regular Tree Grammars

Regular tree grammars describe sets of trees by their shape. They are precisely introduced in [22]. They
are syntactically a subset of context free grammars (as shown e.g. in [26]).

As a prerequisite, let there be the definition of Trees over an alphabet Σ.

Definition 3.1
Let Σ be a set of tree node labels and Σp ⊆ Σ all labels of nodes that have p direct child nodes. The set
T (Σ) denotes the set of all trees that can be constructed using the symbols in Σ applying the following
rules:

• Σ0 ⊆ T (Σ), those nodes will be called leaf nodes.

• for p≥ 1, if l ∈ Σp and t1, . . . , tp ∈ T (Σ), then l(t1, . . . , tp) ∈ T (Σ)

45



Definition 3.2
A regular tree grammar G = (S,N,Σ,R) contains a so called axiom S, a set of non terminal symbols
N, a set of terminal symbols or tree labels Σ and a set of production rules of shape α → β with α ∈ N
and β ∈ T (Σ∪N). Note, that T (Σ∪N) denotes trees where the symbols of N all have arity 0 and the
symbols of Σ arbitrary, but fixed arity.

A (tree) grammar is sometimes called a generator for a language (of trees). A grammar G =
((S,N,Σ,R) generates the language L(G) consisting of all tree instances that can be derived starting
from the start axiom S of G using the rules R of G. A grammar generates trees, that can be derived, by
replacing non terminal symbols—symbols of N—in trees of T (Σ∪N) by a right hand side of a grammar
rule of R, if the left hand side of the rule corresponds to the given non terminal symbol. The starting
non terminal symbol is always the axiom S. A non terminal replacement step is called a derivation
step. A valid data tree is generated by a sequence of derivation steps that replace all non terminals in
the intermediate tree of T (Σ∪N), i.e. a successful sequence of derivations always yields an instance of
T (Σ).

Example 3.1

A language of (head/tail encoded) lists of (unary encoded) natural
numbers can be modelled as regular tree grammar as follows:
G = (List,{List,Nat},{0,nil,s/1,cons/2},R)
where R =
{ List→ nil
, List→ cons(Nat,List)
, Nat→ 0
, Nat→ s(Nat) }
An instance of the language L(G) is e.g.
cons(s(s(0)),cons(0,nil))—this corresponds to the (unary en-
coded) sequence of (decimal encoded) natural numbers [2,0].

Regular Tree Grammars for Unranked Trees The presented tree grammar formalism is able to
generate ranked tree languages, i.e. tree languages with symbols of fixed arities—in the example 3.1 s
is of arity 1, nil of arity 0 and cons of arity 2. Semistructured data, XML and Xcerpt data terms are
data models with trees of variable arity, also called unranked trees—a tree of a given type or label may
have arbitrary many child trees. All properties of languages of regular ranked trees can be extended to
unranked trees, if a special transcription of unranked trees to ranked trees is applied—unranked trees are
decomposed in such a way, that the child trees of a tree get sequenced in a list as presented in example
3.1.

To directly model unranked regular trees using a tree grammar formalism two extensions can be
sought of:

1. Allow additional grammar rules in the shape A→ B, t with A,B ∈ N (where N is the set of
non terminals) and t ∈ T (N ∪Σ). Further, the symbols in Σ have to be unranked, i.e. allowing
sequences of arbitrary many child terms. The additional grammar rules correspond to production
rules of Chomsky type III grammars and can model sequences of trees.
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2. Allow regular expressions of non terminals at the position of the child non terminals in the right
hand side of production rules, e.g. A→ l[ re ] where A ∈ N and re is a regular expression over N.1

The approach with Chomsky type III production rules is arguably syntactically simpler, yet more
demanding for the author of a grammar, as it is easy to write non type III rules violating the regularity
constraint on the language. Further the sequence sought of is less obvious, as split up in rules and mixed
with tree structure rules—the order of element sequences is not automatically reflected by the order
of the grammar rules. The regular expression approach will be followed in this deliverable due to the
shortcoming of the first approach, yet it is a bigger syntactical extension of regular tree grammars than
the Chomsky Hierarchy Type III production rule extension. The regular expression approach is also
more established than the pure tree grammar approach.

Definition 3.3
A regular unranked tree grammar G = (S,N,Σ,R) contains a so called axiom S, a set of non terminal
symbols N, a set of terminal symbols or tree labels Σ and a set of production rules R of shape α → β

with α ∈ N and β of shape l[ re ] where l ∈ Σ and re is defined as follows:
re ::= ε

re ::= a a ∈ N
re ::= ( re )
re ::= re,re
re ::= re|re
re ::= re+

re ::= re∗

re ::= re?

By ε an empty regular expression is denoted, it accepts the empty word. In concrete syntax of
regular expression, the ε is omitted.

Example 3.2
A regular tree grammar for apple trees with branches containing arbitrary leafs and apples or other
branches (at least two) is presented as an example.

G = (Tree,{Tree,Branch,Lea f ,Apple},{tree,branch, lea f ,apple},R)
where R =
{ Tree→ tree[Branch]
, Branch→ branch[(Branch,Branch+)|(Lea f |Apple)∗]
, Lea f → lea f []
, Apple→ apple[] }

3.2 Regular Tree Grammars for Unordered Unranked Trees

In many applications of data modelling, the order of instances in some context is of minor importance.
Typical examples are object oriented databases or programming languages, where the order in which
the attributes of a class are defined is irrelevant e.g. for their access—the name is the only property for
accessing attributes. With XML in contrast, the document centric paradigm always imposes an order of
elements in a sequence of child nodes. However, attributes are considered to be unordered information of

1The square braces “[]” have been chosen to better distinguish unranked tree grammar rules from ranked ones for which
parenthesis “()” are used.
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an element, so XML provides a limited2 concept of mixed ordered and unordered content. An example
of XML documents where the order of the elements is of high importance is e.g. an HTML document—
headings and paragraphs occur in an order absolutely relevant for the document and ignoring the order
of those elements could arguably render the document meaningless.

Many applications of XML are data centric and not document centric, e.g. more in the spirit of
Semistructured databases. For many of such applications, the order imposed by the document is irrele-
vant. As an example, consider a bibliographic database: the order of the books in the database may be
completely arbitrary, e.g. if maybe the order in which the librarian grabbed the books out of the shelves
to index them. The relevant information for access of the books is e.g. title, author or any information
about the book suitable for indexing. For such an application, arguably the following two databases can
be considered to be equivalent yet the XML semantics considers them to be different.

<bib>
<book>
<title>Data on the Web</title>
<authors>
S.Abiteboul,
and P.Buneman,
and D.Suciu

</authors>
</book>
<book>
<title>
Automata, Languages,
and Programming

</title>
<authors>
S.Abiteboul,
and E.Shamir

</authors>
</book>

</bib>
Code Example 22 First variation of a bibliog-
raphy with arguably irrelevant order of the book el-
ements

<bib>
<book>
<title>
Automata, Languages,
and Programming

</title>
<authors>
S.Abiteboul,
and E.Shamir

</authors>
</book>
<book>
<authors>
S.Abiteboul,
and P.Buneman,
and D.Suciu

</authors>
<title>Data on the Web</title>

</book>
</bib>

Code Example 23 Other variation of bibliogra-
phy as seen in code example 22

Xcerpt distinguishes ordered child sequences from unordered child multisets, to be able to realize
data for both application paradigms—data centric and document centric—in an appropriate manner. Us-
ing unordered Xcerpt content specifications, the former two databases are modelled to be semantically
equivalent.

To be able to model unordered content appropriately in a grammar, a dedicated modelling formalism
is necessary. With the type checking goal in mind, a formalism needs to be decidable concerning
membership test, emptiness check, subset test and it needs to be closed under intersection, as it is
motivated in 8.

3.2.0.1 Current Modelling Formalisms for languages of Multisets

Various formalisms for modelling languages of multisets have been proposed of which some will be
briefly presented here:

2limited, because attributes are arguably less expressive than elements, as they may not contain structured information but
only atomic values.
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Multiplicity Lists The multiplicity lists [17] are a metalanguage for specifying decidable sets of data
terms, which are be used in later work of the authors [66] [14] as types in processing of tree-structured
data. The idea is motivated by DTDs and by XML Schema. A multiplicity list is a regular type expres-
sion of the form s1(n1 : m1) · · ·sk(nk : mk) where k≥ 0 and s1, . . . ,sk are distinct type names. Informally,
the meaning is, that a multiset of symbols is valid with respect to the given multiplicity list, if the symbol
si occurs at least ni times but not more than mi times. Other symbols than the mentioned s1 through sk
may not occur.

Multiplicity lists are closed under intersection but not under union and complement. Multiplicity
lists have been applied successfully in static type checking of Xcerpt programs as presented in [Descrip-
tive Typing Rules for Xcerpt and their Soundness] and [A Prototype of a Descriptive Type System for
Xcerpt.].

L-Formulae Frank Neven and Thomas Schwentick presented the L-Formulae [39] as a decidable
formalism for unordered content models on the Web. L-Formulae are defined as ϕ ::= true | f alse | a =
i | a ≥ i | ¬ϕ | ϕ ∨ϕ with a ∈ Σ and i ∈ N. Roughly speaking a = i means, that the symbol a occurs
exactly i times in a valid multiset, a≥ i that it occurs at least i times and so on.

L-Formulae are closed under intersection, complement and union. When typing or type checking
semi structured data queries in general and Xcerpt programs in special, an interesting property emerges
when querying ordered data without caring of the order, i.e. querying the ordered data using order
agnostic query constructs. As an order agnostic query construct has unordered type semantics, the com-
patibility of an unordered type under ordered and typed data has to be checked. Ordered regular expres-
sions give rise to modelling arity dependencies of some symbols, e.g. the regular expression “(aab)+”
states, that there are twice as many a symbols than b symbols in valid data. Using Schwentwick for-
mulae, it is not possible to express such dependant occurrence constraints on data, as the multiplicities
are always formulated absolutely. Using linear equation systems restricted to natural number solutions
gives rise to expression such constraints. Interestingly, it is almost enough to use Presburger arithmetic
[42], of which formulae are much easier to solve under the given natural number solution constraint.
This approach is used as starting point of an unordered type specification language later on.

Presburger Arithmetics Expressions A formalism not only conceived for unordered content mod-
els, yet formally elegant, are Presburger arithmetic formulae [42]. The approach has been applied to
unordered content models in XML by Denis Lugiez and Silvano Dal Zilio to formalize XML Schema
[67] and by Seidl, Schwentick, Muscholl, and Habermehl [45] as formal model for unordered content
models. Presburger arithmetic is the first order theory of natural numbers with addition but without
multiplication. For any given statement in Presburger arithmetic it is decidable, if this statement is true
or not and, if partially variable, with which variable bindings the expression is true.

The relationship between languages of multisets and Presburger arithmetic is the commutativity and
associativity of the addition (in Presburger arithmetic) and of the sequence operator (in the serialisation
of multisets). The commutativity and associativity of sequence operators in serialisations of bags, mul-
tisets or sets has been presented e.g. in [19]. A multiset of symbols can fully be characterized by the
multiplicity of the occurring symbols. A Presburger arithmetic expressions with variables could have
many solutions, hence many possible natural number assignments for the variables. Each assignment
can be interpreted as the multiplicity of a given symbol in a multiset which is valid with respect to the
given Presburger arithmetic expression.
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3.2.0.2 Applications, Shortcomings and Extension of current Approaches

Yet multiplicity lists are very restricted and not closed under intersection, arguably they are an elegant
way to model multisets in the context of mixed ordered and unordered contents, as multiplicity lists
are restricted regular expressions wrapped with a clear and simple interpretation of unorder. While
Presburger Arithmetic are more expressive and offer the decidability and closedness properties for type
checking, end users without scientific background arguably can be confused by the very mathematical
formalism and the need to learn two content model specification mechanisms—regular expressions for
ordered content models and Presburger arithmetic formulae for unordered content models. For mod-
elling of unordered content with the grammar formalism proposed later, an extension of multiplicity
lists will be introduced—unrestricted regular expressions with unordered interpretation.

As a not formally introduced consider the regular expression for a data object representing a course
in a dancing school as seen in code example 24:

DancingMaster, ((Boy, Girl)+ | BalletDancer+ )
Code Example 24 A regular content model representing well balanced dancing classes for either ballet dancers
or standard couple dancers. While the regular content model implies an order, the order of the objects are arguably
not of importance for the application.

For every course there must be a dancing master. Courses may be standard dance courses, in which
the same amount of boys and girls have to be registered so everyone always can have a partner. Courses
may be ballet dancing courses, in which case at least one ballet dancer has to be registered. The order of
the objects in a content set corresponding to this regular expression is irrelevant, e.g. the dancing master
may be assigned at the end when the kind of course is clear. Therefore all words with a permutation of
symbols that is matched by the regular expression is member of the unordered language represented by
the regular expression.

An example of a Presburger arithmetic expression representing the same constraints on a valid danc-
ing course is arguably more difficult to understand and to write for authors:

Let d be the multiplicity of DancingMaster objects, m the number of Boys (m for male), f of
Girls ( f for female) and b for BalletDancers. A multiset of objects is in the given language, if the
multiplicities of the symbols fulfills the following formula:

d = 1 ∧ ((m = f ∧ m≥ 1 ∧ f ≥ 1 ∧ b = 0) ∨ (m = 0 ∧ f = 0 ∧ b≥ 1))

As shown in Chapter 7 the unordered interpretation of regular expressions can always be mapped
to Presburger arithmetic constraints and is therefore decidable and closed under the desired properties,
yet no system for translation of Presburger formulas and constraints back to regular expressions will be
presented (as not strictly needed for type checking). An advantage of this approach for type checking
is, that it can also be used for type checking of unordered queries on ordered content models (see e.g.
section 2.5.4), which is valid and useful in Xcerpt as presented in [43]

3.3 Regular Rooted Graph Grammars

In the context of the Web and the Semantic Web often graph shaped data is considered in addition to
tree shaped data. It is usually the case, that a dominant spanning tree in the graph is given and the
‘missing’ links are added by means of some reference mechanism. XML provides an integral reference
mechanism known as ID-/ID-Ref [61] and various linking and reference based standards have been built
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around XML, like XML Fragment Interchange [52] , XML Linking Language (XLink) [53] and many
others. A practical example of such graph structured data is widespread in HTML documents—the use
of internal links. Consider the HTML document in code example 25 with two references modelling a
kind of circular link structure between two paragraphs:

<html>
<body>
<p id="p1">
This paragraphs refers to the <a href="#id">next paragraph</a>
(and is referred by it).

</p>
<p id="p2">
This paragraphs refers to the <a href="#id">previous paragraph</a>
(and is referred by it).

</p>
</body>

</html>
Code Example 25 An HTML document with two references modelling a kind of circular link structure between
two paragraphs.

Another example of typically graph shaped structures modelled in XML are RDF documents.

3.3.1 Reference Types and Typed References

Modelling of graph shaped structures is supported in current XML schema formalisms like DTD, Relax-
NG and XML Schema by modelling elements containing ID and ID-Ref attributes. The ID/ID-Ref
mechanism is global throughout the whole document, meaning that any reference may refer to any
identifier. Unfortunately this does not permit to model typed references, e.g. references to elements of
certain type. Consider the following example for illustration of the ID/ID-Ref mechanism:

Example 3.3
Consider a grammar using similar syntax as in example 3.2 that models books and authors in a kind of
bibliographical database. To prevent redundancy and misspelling of the author names, the authors are
kept in an index of authors and are referred to from the definition of the books in another section of the
document. The grammar uses the special type name “ ̂ ” for references and the type name “ @ ” is
used to denote IDs. An element should only get one identifier, which arguably simplifies understanding
document instances. To emphasise the special role in multiplicity of an identifier (each element may
not contain more than one identifier), it is prefixed to the element name in the type rules. An author
element contains an “ @ ”, denoting that instances of that type have an identifier and the authors list of
a book has an arbitrary amount of references to author elements. Note, that for the sake of conciseness
with the syntax of R2G2 presented later on, the type names “ ̂ ” and “ @ ” have been chosen so that
they harmonize with R2G2. In turn, the syntax of R2G2 has been streamlined with the syntax of Xcerpt.
The mapping to XML attributes named id and ref is given in an opaque way in this example, yet a
concrete schema or type formalism would need a way to specify such mappings. Further on the type
names Name and Title are synonyms for plain text, or CDATA in the sense of XML—again, a concrete
schema or type formalism needs support for atomic data types to be practically useful.

G = (Bibliography,
{ ̂,@,Bibliography,AuthorIndex,Author,BookIndex,Book,Authors},
{bib,authors,author,books,book},
R)
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where R =
{ Bibliography→ bib[AuthorIndex,BookIndex]
, AuthorIndex→ authors[Author+]
, Author→@author[Name]
, BookIndex→ books[Book+]
, Book→ book[Title,Authors]
, Authors→ authors[ ̂+] }

See code example 26 for an XML instance valid to the schema shown above.

<bib>
<authors>
<author id="se">Shamir Eli</author>
<author id="sw">Stevens W.</author>
<author id="as">Abiteboul Serge</author>
<author id="bp">Buneman Peter</author>
<author id="sd">Suciu Dan</author>

</authors>
<books>
<book>

Automata, Languages, and Programming
<authors refs="as se"/>

</book>
<book>

Data on the Web
<authors refs="as bp sd"/>

</book>
<book>

Advanced Programming in the Unix environment
<authors refs="sw"/>

</book>
<book>

TCP_IP Illustrated
<authors refs="sw"/>

</book>
</books>

</bib>
Code Example 26 An XML document instance valid with respect to the schema shown above.

The former document could be graphically interpreted as follows:
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Now, consider the following example for illustration of problems with untyped references:

Example 3.4
In difference to the former example, books are also referable elements here, and author elements contain
references to their books. This is modelled by providing the reference type name “ˆ” and the identifier
type name “ @ ” both in the author and book elements.

G = (Bibliography,
{̂,@,Bibliography,AuthorIndex,Author,BookIndex,Book,Authors},
{bib,authors,author,books,book},R)

where R =
{ Bibliography→ bib[AuthorIndex,BookIndex]

, AuthorIndex→ authors[Author+]
, Author→@author[Name, +̂]
, BookIndex→ books[Book+]
, Book→@book[Title,Authors]
, Authors→ authors[ +̂] }

The following example document illustrates a valid document with respect to the grammar. Unfor-
tunately, it is not possible to distinguish references to authors from references to books, resulting in a
conceptually invalid document, where a book is referred to as an author of another book and an author
contains another author in his list of published books.
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<bib>
<authors>
<author id="se" ref="alap as"> <!--CONCEPTUALLY WRONG-->

Shamir Eli
</author>
<author id="sw" ref="apitue ti">Stevens W.</author>
<author id="as" ref="alap dotw">Abiteboul Serge</author>
<author id="bp" ref="dotw">Buneman Peter</author>
<author id="sd" ref="dotw">Suciu Dan</author>

</authors>
<books>
<book id="alap">

Automata, Languages, and Programming
<authors refs="as se"/>

</book>
<book id="dotw">

Data on the Web
<authors refs="as pb sd alap"/> <!-- CONCEPTUALLY WRONG -->

</book>
<book id="apitue">

Advanced Programming in the Unix environment
<authors refs="sw"/>

</book>
<book id="ti">

TCP_IP Illustrated
<authors refs="sw"/>

</book>
</books>

</bib>
Code Example 27 This document is conceptually wrong with respect to the schema 3.4.

The document in code example 27 could be graphically interpreted as follows (the conceptually
wrong references are denoted by flashes crossing the edges):
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The proposed schema language R2G2 will introduce typed references to regular tree grammars to
model graph shaped data in a more precise way. Syntactically, typed names are type name extensions
of references—a type name intended to be referred to is appended.

Example 3.5
This grammar is an extension of the grammar in example 3.4, such that the references to authors and
books are clearly separated. The conceptually erroneous example document of example 3.4 is invalid
under this grammar:

G = (Bibliography,
{̂,@,Bibliography,AuthorIndex,Author,BookIndex,Book,Authors},
{bib,authors,author,books,book},R)
where R =
{ Bibliography→ bib[AuthorIndex,BookIndex]
, AuthorIndex→ authors[Author+]
, Author→@author[Name, B̂ook+]
, BookIndex→ books[Book+]
, Book→@book[Title,Authors]
, Authors→ authors[ Âuthor+] }

3.3.2 About (Non Tree Structured) Graphs and Tree Grammars

On some graph serialisation formalisms like RDF, the structure of the serialisation is semantically ir-
relevant in the sense, that the underlying graph semantics of different serialisations is considered to be
isomorphic. The underlying graph structure may nevertheless need some sort of schematizing. As long
as the graphs have a special node, called the root node from now on, which is chosen as the starting
point for graph traversals, a tree grammar can also be used to model some structural properties of the
graph. The root is used as starting point for graph traversal. For a given root, the set of all possible
graph traversals is unambiguously determined. A tractable way to realize rooted graph modelling using
tree grammars is based on simulation preorder: a tree grammar is a generator for the language of all
trees that can be obtained by means of rule application and also of all rooted graphs that can be ob-
tained by sharing of nodes that result from the same (possibly infinite) chain of rule applications. An
implication is that, concerning schema validity, there is no distinction of two graphs where one of them
shares one instance of a node in many positions, and the other one has multiple instances with identical
shape or value used instead of sharing. One graph is then indistinguishable from another one, if it is
simulated by the other graph. Graph isomorphism is arguably the most precise notion of equality of
indistinguishable for graphs, simulation is weaker in the sense, that graphs that are not isomorphic may
simulate or even bi-simulate. Consider example 3.1 for two rooted directed graphs that bi-simulate, but
that are not isomorphic—the central difference between (bi)simulation and isomorphism is, that there is
no bijection between the nodes of two bi-simulating graphs such that the related nodes have similar in
and outbound behaviour. In contrast, such a bijection is needed for isomorphic graphs. The disadvan-
tage of identification, distinction or recognition of objects using graph isomorphism is, that decidability
comes with exponential cost, while the simulation preorder of two graphs can be checked in polyno-
mial time. Arguably identification, distinction or recognition of objects based on simulation is useful
on many practical contexts on the web, as many practical use cases with Xcerpt prove [34]. For a brief
introduction of simulation and simulation unification along with some examples, see section 2.5.4.
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Figure 3.1: Two graphs that bi-simulate but that are not isomorphic.

3.4 The Syntax of R2G2

A grammar for R2G2 is given as a set of syntax graphs. The graphs are interleaved with corresponding
explanations.

3.4.1 Core R2G2 Syntax

The core R2G2 syntax consists of all constructs necessary to model rooted graph grammars. Features as
namespace handling, modules, predefined atomic data types and the various global settings of a grammar
are not core syntax features. The separation of core and non core features is roughly motivated by
application of R2G2 definitions for type checking or validation—non core R2G2 definitions can mostly
be translated into core definitions and operations like automata construction are done on the core level.
To get a concise language definition, non terminals for non core features are in the language definition
rules of the core syntax, yet their definitions follow in a later sub section.

Definition 3.4 ( grammar -)

6
-

globalsetting �
6

-

root �
6
- rule

�

-

A grammar contains one to many rules and relates them to root declarations. In the context of Xcerpt
a grammar as type definition will be located either in a separate file (being included using the modu-
larization mechanism presented later) or it may be in a special context inside the Xcerpt program. A
grammar may also contain global switches that affect the behaviour or semantics of the whole grammar.

Definition 3.5 ( root -)�� ��root - typename
-

�� ��;
- -
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A root declaration declares a type name as a possible type for a root element, therefore as a possible
type for a data tree or graph. The type name used has to be declared later on, otherwise the grammar is
invalid. Note that denotes a white space, \n, \r, and \t new line, carriage return and the tabulator
character.

Definition 3.6 ( rule -)
-

�� ��element

-
�� ��type

typename -
�� ��= - typeterm

-
�� ��;
- -

A rule is either introduce by the keyword element or type. The keyword type is optional and
especially useful for compatibility with type definitions as found in Xduce [29], as many Xduce type
definitions are also R2G2 definitions with similar syntax and semantics. A rule relates a type name (also
called non terminal sometimes) and a type term. A type definition rule may or may not be terminated
using a semicolon and arbitrary spaces and new lines. The same type name may be used in many rules
involving different type terms.

Definition 3.7 ( typename -)

NMTOKEN -

Definition 3.8 ( label -)

NMTOKEN -

Type names and labels are alphanumerical strings with letters as first character.
For the purpose of compatibility with XML, this can be extended to NMTOKEN as defined in the

XML recommendation [61]. The label of a type term corresponds to element labels of data trees match-
ing a type term. Note, that NMTOKEN allows the use of the colon sign “:”, which allows namespace
aware schema modelling. Namespaces and namespace prefixes can be declared, as shown in section
3.4.5.

Type names and type term labels may compete, as the context determines the meaning of a corre-
sponding token.

Definition 3.9 ( typeterm -)
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-

-
-

�� ��@
-

- label

-
�� ��/ - posixRegExp -

�� ��/
�

-

- -

-
�� ��(

6
- attributetype

�

-
�� ��)

�

-

-
- ordCntOrdSchema

- ordCntUnordSchema

- unordCnt

-
�� ��ˆ - typename

-

A type term may be a type declaration term, optionally prefixed with an “@”—it is a type declaration
term for referable instances, or it may be a reference type term—a type name with a hat as prefix. A
type declaration term always has a label declaration and a content model, this content model may either
be an unordered content model or an ordered content model. Label declarations may be specified as
regular (string) expression at the position of the label, regular (string) expressions at label position are
enclosed by slashes. Ordered content models can be specified in an unordered way or in an ordered way.
Optionally, a type declaration term may have attribute type declarations in the sense of XML attributes.
They are declared in parenthesis between the label and the content specification.

While usually any data instance may be a reference to some defining instance, even if the corre-
sponding type is not declared as reference type, the global grammar setting strictreferences can be
used to restrict valid data instances such, that references may only be instances of reference types.

A non reference type term can be prefixed by an “@”, denoting that instances of that type must
be referable, e.g. in a XML ID/ID-Ref setting they must have an identifier. While usually any data
instance may be defined using an identifier, even if te corresponding type is not declared as referable,
the global grammar setting strictreferences can be used to restrict valid data instances such, that
only referable types can and must be indexed.

Definition 3.10 ( attributetype -)

label -
�� ��=

- enumerationDeclaration

- basicDataType

- posixRegExp

-

Attribute types are tuples of a label and a base type (base types are explained later at 3.4.2) that may
be braced and question mark annotated for optionality in the spirit of regular expression optionality.
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Definition 3.11 ( ordCnt -)

�� ��[ - regexp -
�� ��] -

The ordered content of a type term is a regular expression (of type terms and type names) surrounded
by square braces.

An ordered type term specifies a type such that all data tree instances of that type have ordered
content and the child trees types match the regular expression of the content model of the type term.
This corresponds roughly to the content definitions expressible using XML Schema, DTD and Relax
NG. To specify types with empty content model, the brackets can be left empty.

Definition 3.12 ( ordCntUnordSchema -)

�� ��[{ - regexp -
�� ��}] -

Some ordered content specification may be specified more comfortably in an unordered way. As an
example consider an element representing a member list of a well balanced dancing class with the same
amount of boys and girls:

<dancing-class>
<girl>Anna</girl>
<boy>Fitzgerald</boy>
<boy>Guillermo</boy>
<girl>Quibee</girl>

</dancing-class>

Code Example 28 An example document representing a well balanced dancing class—there are as many boys
as girls in the class. The order of the members is conceptually irrelevant.

The given constraint on the language is not regular—this can easily be seen, as the language contains
the sub language “n times <boy> followed by n times <girl>” which is well known to be non regular.
However, the language “one <boy> followed by one <girl> and this repeated n times” is regular (
e.g. (boy,girl)∗ ). Ordered content with unordered specification uses a regular expression to model a
language, but also the permutation of all words contained in the language of that regular expression are
member of the unordered specified ordered language. The order of the data instances is considered to be
relevant—e.g. in the former example we have an alphabetically sorted lists of dancing class members—
but the specification does not impose an order.

Definition 3.13 ( unordCnt -)

�� ��{ - regexp -
�� ��} -
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A type term may have unordered content specification, expressing that conforming data trees have an
(unordered) multiset of sub trees instead of an (ordered) sequence of sub trees. By modelling data with
unordered content, a storage or indexing system is given the freedom to ignore the order given while
data instantiation and reorder it e.g. for more efficient querying.

Definition 3.14 ( regexp -)

-

-

- typeterm

typename

contentMacroName

-
�� ��( - regexp -

�� ��)
�

-

-
�� ��+�� ��*

�� ��?

-
�� ��(

- number -
�� ��- - number

number -
�� ��-

-
�� ��- - number

-
�� ��)

�

-

- regexp

-
�� ��| - regexp

-

Regular expressions as defined here have sequences, disjunctions, optionality and various forms of
repetitions. The symbols or atoms of the regular expressions may be type names or type terms. A type
name specifies a sub tree of the tree containing the current content model of that type. A type term as
atom specifies a tree of anonymous type name. Obviously type names may only be used, if declared
elsewhere, either in the grammar or imported by some matter.

In XML Schema and DTD a restriction called deterministic content model is required for the regular
expression content models. In the W3C recommendation of XML it is said:
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[...]
More formally: a finite state automaton may be constructed from the content model us-
ing the standard algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman
[Aho/Ullman]. In many such algorithms, a follow set is constructed for each position in
the regular expression (i.e., each leaf node in the syntax tree for the regular expression); if
any position has a follow set in which more than one following position is labeled with the
same element type name, then the content model is in error and may be reported as an error.
[...]

As there are algorithms constructing non deterministic finite state automata out of arbitrary regular
expression, the mentioned restriction arguably is not necessary. The language class of regular expres-
sions with this restriction is not closed under union, which is not essential for type checking of Xcerpt,
but arguably a nuisance, hence the type of a query disjunction is inconvenient—if not impossible—to
model.

3.4.2 Base Data Types

An important part of an XML document are textual leaf nodes, that a structuring element may contain.
Often this data is the relevant information of a document, in this case the element structure wrapping
it is considered to be mere markup or auxiliary information. Textual leaf data may occur wherever any
structured element is allowed (except the document root—it must be an element) but two textual leaf
nodes may not occur as direct neighbours in a sequence of nodes. The only valid information, that an
attribute may contain is also a textual node.

In XML the textual information is often called CDATA for character data. As for data oriented
applications also numerical or other data is used, such nodes will be referred to as data or data of
base type. Arguably, data can nevertheless be called character data, as in the XML world they have a
textual serialization in the corresponding XML serialisation—the proposition here is, that the schema
formalism models the data on a conceptual level, not on a syntactical level.

The versatile nature of XML and it’s query languages makes the choice of an arbitrary set of fixed
base data types questionable. For R2G2 hence a generic base data type system is proposed, that can
be instantiated with various concrete base data types. A small set of base data types is then given as a
pragmatic yet simple to use and to implement set of basic data types.

The generic base type system has been conceived with the needs of the Web and Semantic Web
query language Xcerpt in mind and hence has features like functions, which are not relevant at the given
point for R2G2 as a schema language. Functions are an important concept for base data types in Web
query languages and are of relevance for the application of R2G2 as a type language for Xcerpt, hence for
Web query languages in general, in the course of this deliverable for Xcerpt and Xcerpt type checking.

3.4.2.1 Definition of the Generic (abstract) Base Data Type System

By T the set of all base types is denoted.
The set F = F∗∪

⋃
i Fi is the set of all functions, where Fi ⊆ T ×T i×Σ×Fi is the set of all functions

of arity i with result type out of T and argument types out of T i. By Σ the set of all function names
is denoted. By Fi the set of functions with arity i at implementation level is denoted. The functions at
implementation level are untyped in the sense of the discussed type system—they may be typed at the
level of the implementation language, if typed dynamic function application is available in the hosting
programming language. By F∗ ⊆ T × T × F∗ aggregation functions are denoted. They operate on a
sequence or set of values of an homogeneous type, returning a value of a (maybe) different type.
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A value in an instance document is always a tuple (v, t) where t ∈ T and v is an opaque object at the
level of the type system—an implementation level representation of a value of type t.

The directed relation S⊆ T ×T between two types t1 and t2 contains the information, that the given
transformation function (t1, t2,ct2) ∈ F between t1 ∈ T and t2 ∈ T never fails. The reflexive transitive
closure of S over all types of T is ~S. The relation S is defined by the user of the general purpose type
system, which is usually the creator of a new base data type. When defining a new base data type
it is hence possible to define conversion functions and to inform the type system about convertibility,
but it would be inconvenient to define convertibility for any base data type on the web—especially for
upcoming base types it is not reasonable. The subtype concept is related to ~S, yet different—generally,
the subtype concept implies, that instances of a sub type have all the properties of instances of their super
types and possibly further. For the proposed base type system for Web query and schema languages,
the relation ~S implies only one property—instances of a type are (for sure) convertible to another type.
The rational behind this is, that data objects are not representations of structures and functions as e.g. in
programming languages, but serialisations of XML documents. As an example for the difference of ~S
and the subtype relation as commonly known, consider the type of the natural numbers and of strings—
each natural number can be transformed into a String, but natural numbers are not a subtype of strings in
many programming languages, as they do not share common semantics—strings have string operations
like concatenation and tokenization and natural numbers have arithmetic operations.

As counter pole to the ~S relation, the undirected relation ~D⊆ T ×T contains the information, which
type is for sure not convertible to which other type. D is the relation of types marked by the user of
the generic base type system. The relation ~D is the reflexive transitive closure over D. Note, that the
set T × T 6= D∪ S, as some types have instances, that can be converted to another type while not all
instances are convertible to that type. These tuples are neither in S nor in D.

3.4.2.2 A pragmatic set of base types and functions

To show that the type and function framework can actually be used to extend Xcerpt reasonably, a
pragmatic set of base types and functions is presented.

Figure 3.2 shows the base type hierarchy. The types are a direct copy of a branch of the hierarchy
presented in the XML Schema data types recommendation [59]. Five of the arguably most important
types of the XML Schema recommendation are rebuilt using the generic type system. Others are possi-
ble, but for pragmatic reasons not treated in this context.

3.4.3 Conversion functions

The following set of conversion functions between instances of the base types are proposed. They cover
safe and unsafe functions. Note, that all functions convert retaining syntactical equivalence. It is i.e.
possible to convert the integer 12 to the rational number 12, but there is no Boolean interpretation of
e.g. the integer 12. Type conversion of syntactical equivalence is important for Web query languages, as
data of various types always gets serialized to XML character data in the end.

string : rational → string safe conversion from rational to string
string : boolean → string safe conversion from boolean to string
string : IRI → string safe conversion from IRI to string
rational : string → rational conversion from string to rational
rational : integer → rational safe conversion from integer to rational
integer : rational → integer conversion from rational to integer
boolean : string → boolean conversion from string to boolean
IRI : string → IRI conversion from string to IRI
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Figure 3.2: Base type system hierarchy

The following set of base functions by no means claims to be exhaustive of what one may want to do
using the proposed base data types. It is however a small collection of arguably most useful functions
and operations for the given types—nothing more than a pragmatic set of functions.

3.4.4 Base functions

3.4.4.1 string functions

concat : string× string → string concatenation of two strings
substr : string× integer → string extracts sub string from string
substr : string× integer× integer → string ...with given length
lowerCase : string → string converts string to lower case
upperCase : string → string converts string to upper case
invCase : string → string inverts case of a string
trim : string → string trims string
f ind : string× string → integer finds search string inside of a string
f ind : string× string× integer → integer ...with given start position
replace : string× string× string → string replaces search string inside of a string
replace : string× string× string× integer → string ...with given start position for search
replaceAll : string× string× string → string ...with all occurrences being replaced
tokenize : string× string× integer → string string tokenization
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3.4.4.2 rational functions

abs : rational → rational calculates the absolute value of a given number
sign : rational → rational calculates the sign of a given number
inv : rational → rational calculates the (additive) inverse of a given number
add : rational× rational → rational addition of two numbers
sub : rational× rational → rational subtraction of two numbers
mul : rational× rational → rational multiplication of two numbers
div : rational× rational → rational (rational) division of two numbers
pow : rational× rational → rational exponentiation of number
sqrt : rational → rational calculates the square root of a number
round : rational → integer rounds a number (explicit, lossy conversion to integer)

3.4.4.3 integer functions

abs : integer → integer calculates the absolute value of a given number
sign : integer → integer calculates the sign of a given number
inv : integer → integer calculates the (additive) inverse of a given number
add : integer× integer → integer addition of two numbers
sub : integer× integer → integer subtraction of two numbers
mul : integer× integer → integer multiplication of two numbers
intDiv : integer× integer → integer integer division of two numbers
mod : integer× integer → integer calculates the remainder of an integer division
pow : integer× integer → integer exponentiation of number
intSqrt : integer → integer calculates the square root of a number

3.4.4.4 boolean functions

and : boolean×boolean → boolean logical conjunction of two Boolean values
or : boolean×boolean → boolean logical disjunction of two Boolean values
not : boolean → boolean logical negation of a Boolean value

3.4.5 The Non-Core R2G2 Constructs

Definition 3.15 ( contentMacro -)

�� ��content - contentmacroname -
�� ��= - regexp

-

-
�� ��;

-

Content macros are substitutions for regular expressions as used in content model specifications.
A content macro is a regular expression of type names, content macro names or type terms that is
associated to the content macro name on the left hand side of the macro declaration rule. Content macro
names, data type names and element type names all share the same set of names, e.g. they may not
conflict. As content macros are expanded statically, content macro declarations may not be circular.
Note, that the non circularity is a sufficient criterion for retaining the regularity property of content
models, as it prevents intuitively the construction of context free like grammar rules with a pumping
circle surrounded of pumped terminal symbols.
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3.4.5.1 Namespaces

From a practical point of view a very important property of XML is namespace handling. The purpose of
name space handling is to distinguish equal names by partitioning the set of labels in sets that are likely
to be named in a globally unique way. Name space handling is realized as an extension of the naming
scheme—label and attribute names are tuples of a so called local name part and a namespace part. URIs
are used as name spaces, as they arguably fulfill the necessity of uniqueness by definition. As URIs tend
to be long strings, cumbersome to repeatedly type, a substitution mechanism called namespace prefixing
is used. The user hence defines a short, yet unique (in it’s scope, e.g. the grammar) namespace prefix
for a namespace and uses this whenever he wants to reference the namespace, the system resolves the
prefix to the expected namespace URI.

Name spaces have to be reflected when modelling schemata—labels of elements or attributes have
to be composed of a local and a namespace part, as instance documents may need name spaces.

Additionally to label and attribute names, R2G2 contains type names, that may also need partitioning
in different “name spaces”3, as name conflicts can occur between type names of different grammars that
may interact when modelling modular grammars or grammar fragments. Name conflicts for type names
are not handled using the XML name space mechanism, but a module system specialized for Web rule
languages and presented later (see chapter 4).

Definition 3.16 ( nsPrefixDeclaration -)

�� ��namespace - prefix -
�� ��= - URI

-

-
�� ��;

-

Definition 3.17 ( prefix -)

�� ��label -

Definition 3.18 ( defaultNs -)

�� ��defaultnamespace - URI
-

-
�� ��;

-

A namespace prefix declaration is done by associating an URI to a prefix. Prefixes are (like type
names) tokens similar to labels. The set of prefix definitions and the set of type definitions are not shared,

3“Name space” is quoted here, as it refers to the concept of name spaces, not to XML name spaces specially.
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e.g. prefixes and type names may be identical.4 A default namespace can be declared, concerning all
definitions—element label or type names—without namespace prefix. The default default namespace is
empty.

3.5 XML Serialisation of R2G2 Valid Data Terms

When modelling graph structured data using R2G2 the typed reference mechanism is able to concep-
tually reflect a graph structure, yet the XML serialisation is not able to directly reflect this conceptual
graph without further help. Modelling of graph references and identifiers leaves unspecified how to
reflect the information e.g. in ID and ID-Ref based node identities in data instances, e.g. how ID or
ID-Ref attributes have to be named and especially how references have to be de-referenced—as ID-Ref
instances are attribute values, they cannot be replaced by the referred elements, as attributes may not
contain structured information. The approach chosen to solve this problem is to specify the structural
relationship between the references, respectively identifiers, and their de-referencing, respectively the
identified constructs. R2G2 provides some special built in constructs that represent serialisations of
identifiers or references of a so called context.

The context of an identifier construct is either the document order or the nesting relation of an
identifiable element type or a reference type, more concrete:

• An identifier serialisation type can occur as descendant of an identifiable element type. No other
identifiable element type may occur on the path in between identifier serialisation location and
identifiable element.

• An identifier serialisation type can occur in document order before or after an identifiable element
type. No other identifiable element type may occur in between identifier serialisation location and
identifiable element in document order. Solely for easier comprehension, the identifier serialisa-
tion location and the identifiable element must occur in the same content model definition, e.g.
they may not be spread through different element definition rules5.

• A reference serialisation type can occur before or after a typed reference location in document
order of an instance of a type. Multiple instances of the same reference type can occur aggregated
using the Kleene Star or Plus operator in a regular expression, if the corresponding reference type
serialisation is also multiplied using the same regular expression operator. This makes it possible
to e.g. model an ID-refs attribute with a list of references all reflecting objects to be linked in the
content of the corresponding element.

The presented approach does not claim to completely solve the problem for all structural possibilities
of a relationship between concept and serialisation of identifiers and references. It is a proposal of a
pragmatic approach to the problem, as for practical usability of R2G2 it is needed, some useful cases
can be modelled using this technique. The serialisation of the conceptual graph structure is considered
to be of minor importance in the context of this deliverable, yet worth while more investigation.

3.5.1 Examples and Explanations of (De-)Reference Serialisation

Consider the following example of how to specify reference and de-reference serialisation types fol-
lowed by explanations.

4ideally the sentence would be “Prefix definitions and type names do not share the same namespace”—the namespace meant
here is not an XML namespace, but the definition space of names in R2G2.

5This should prevent the use of identifier serialisation types out of the scope of an identifiable element by mistake.
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Serialisation of Referable Objects

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
element Book = @book[ Authors , Title , key[ r2g2:ancestor-id ] ] ;
element Authors = .... ;
element Title = .... ;

Code Example 29 Using the ancestor-id type to locate an identifier in an XML serialisation of a referable
book type declaration.

The example 29 models an object that represents a book as it may be found in a bibliographic
database. The book element is intended to be referable, hence indexed. The index identifying the
book is contained as unique identifier text node in an element called key, that is a direct child of
the book element. This is done by using the special type name ancestor-id in the namespace
http://pms.ifi.lmu.de/ns/r2g2/v1.0/ that serves to generate a textual value that is assured to
be a valid identifier to the nearest ancestor node that is tagged as referable (using the @ prefix). Hence
the ancestor-id has to be a descendant of the indexed book element type term.

The following instance document is valid with respect to the schema in example 29, it can hence be
parsed and transformed with an appropriate R2G2 aware graph builder to a conforming conceptual graph,
as well a conceptual graph conforming to former schema can be serialized to that instance document.

... ...
<book> id1@book[
<authors>...</authors> authors[...],
<title>...</title> title[...],
<key>id1</key> key["id1"],

</book> ]
... ...

Code Example 30 An XML instance, given on the left, that is a serialisation of a conceptual graph, given on the
right in Xcerpt data term syntax, both valid with respect to the schema 29

The example 31 models a kind of technical report, where sections are referable. In the serialisations,
the identifiers of a referable section are given as a preceding node, more precisely as named anchor in
the spirit of HTML.

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
element TR = technical-report[ (Title, Section)* ];
element Title = title[ A, r2g2:any-text ];
element Section = @section[ (r2g2:any-text|(Title,SubSection))+ ];
element SubSection = @sub-section[ r2g2:any-text ];
element A = a(name=r2g2:previous-id)[ ];

Code Example 31 Using the previous-id type to locate an identifier in an XML serialisation of a referable
section declaration.

The predefined type previous-id is an identifier serialisation that occurs previous of the referable
object, in the examples case, the section or subsection. If the identifiers is to occur after the referable
object, then the predefined type following-id can be used.

The following instance document, example 32, is valid with respect to the schema in example 31.
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<technical-report> technical-report[
<title> title[
<a name="s1"/>First Section a(name="s1")[],

</title> "First Section" ],
<section> s1@section[
Some content ... "Some content ...",
<title><a name="ss1"/> title[a(name="ss1")[],

A Subsection "A Subsection"
</title> ],
<subsection> ss1@subsection[
Some sub content... "Some sub content..."
</subsection> ]

</section> ],
<title> title[a(name="s2")[],
<a name="s2"/>Second Section "Second Section"

</title> ],
<section> s2@section[
Content in 2nd section. "Content in 2nd section."

</section> ]
</technical-report> ]

Code Example 32 An XML instance, given on the left, that is a serialisation of a conceptual graph, given on the
right in Xcerpt data term syntax, both valid with respect to the schema 32

Serialisation of References The book example (example 29) is extended in example 33 such that the
referable books are referenced in elements representing author information and vice versa.

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
element Book = @book[ Authors , Title , key[ r2g2:ancestor-id ] ] ;
element Author = @author[ Name, Books ] ;
element Authors = authors[ (key[r2g2:following-ref], ^Author)* ];
element Books = books[ (^Book, key[r2g2:previous-ref])* ];
element Title = title[r2g2:any-text] ;
element Name = name[r2g2:any-text] ;

Code Example 33 A schema for books and authors in e.g. a bibliography database that may refer each other and
with the reference serialisation types r2g2:previous-ref and r2g2:following-ref.

While identifier serialisations may be descendant nodes of the identified elements, references are
atomic, i.e. have no structure, and hence may not contain content representing their serialisation. There-
fore references have their serialisations always before or after their occurrence in document order. The
corresponding example schema 33 is providing the reference serialisations of elements of type Author
just before the reference in a key-element containing the identifier, the references of type Book are
followed by similar key elements, describing the serialisation of those Book typed elements.

...
b1@book[

authors[ key["a1"] , ^a1 , key["a2"] , ^a2 ],
title["..."], key["b1"]

]
...

Code Example 34 An example instance of a bibliographic database conforming to 33.
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Some regular expressions involving references and reference serialisations may however introduce
problems: if between the reference and its serialisation a type with non empty intersection to the ref-
erence serialisation occurs, the interpretation of the serialisation may get ambiguous, especially if the
intermediate type is optional or repeated. To prevent such problems, the sequence of types in docu-
ment order between the reference and its serialisation must have empty intersection with the reference
serialisation type.

In DTD’s, XML Schema and Relax NG there exist kinds of serialisations that all correspond the
DTD concept called IDREFS attribute value—an attribute with a sequence of references. As attribute
values may not represent structured values, the need of anchoring a sequence of references in the con-
text of a sequence of it’s serialisations arises. This obviously breaks with the just stated condition for
intermediate types with empty intersection between a reference and it’s serialisation—a sequence of
serialisations brings in ambiguity problems for any except the last element in the sequence of seriali-
sations. An extra condition for this purpose exists: References may occur in uninterrupted sequence,
i.e. in abstract syntax as child of a Kleene star or a plus construct, if reference serialisation types occur
as repetition sequence in the scope of exactly the same regular repetition construct without ambiguity
constraint violation in between. As an example, consider the following modification of a bibliography
database similar to example 33, but with the authors of a book now located in a sequence of reference
values in an appropriate authorrefs-attribute.

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
element Book = @book(

authorrefs=(r2g2:following-ref)*
)
[

^Author* , Title , key[ r2g2:ancestor-id ]
] ;

element Author = @author[ Name, Books ] ;
element Books = books[ (^Book, key[r2g2:previous-ref])* ];
element Title = title[r2g2:any-text] ;
element Name = name[r2g2:any-text] ;

Code Example 35 A schema for books and authors in e.g. a bibliography database that may refer each other and
with the reference serialisation types, while references may occur in sequence as long as their serialisation also occur
in sequence e.g. using the r2g2:following-ref type in a sequence.

...
b1@book(authorrefs="a1 a2")[

^a1, ^a2,
title["..."], key["b1"]

]
...

Code Example 36 An example instance of a bibliographic database conforming to 35.

3.6 Semantics of R2G2

A declarative semantics for R2G2 is presented now mostly in the spirit of the acceptance relation of
sheaves automata as presented in [36]—the acceptance of a data term under a schema is expressed. For
implementation purpose and for later type checking, the declarative semantics is arguably too vague, so
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an operational semantics is also given later on as the semantics on automata, that are considered to be
the implementation base of R2G2. Complexity estimations are also more convenient to be done on the
operational semantics level. The declarative semantics is however arguably easier to comprehend, as
clearer related to data and schema.

The declarative semantics of R2G2 is given as a relation Γ,R ` d : τ meaning that an instance or a
list of instances of data d satisfy a regular expression τ6 under the schema declarations in Γ where Γ

is the set of all element rules. The content macros are already expanded and not part of the schema
anymore at that stage. The root declarations, more precisely the type names of the root declarations,
form the set R. Γ will also be referred to as environment as common in literature about typing, e.g. in
[41] and [36]. As the environment is not altered during the process of checking acceptance of a term,
the usual extension operation on environments as in [36] is omitted here. The empty environment is
denoted as /0, the empty environment is well formed. The type name or variable is uniquely associated
to one type declaration, i.e. elementX1 = d1 and elementX2 = d2 and if X1 = X2 then also d1 = d2 in
a well formed environment or schema.

In constrast to [36] the environment is considered to be fixed, the schema is the environment. In
[36] the name-schema associations are read out of the schema with an extra rule and introduced into the
environment.

The document (root) must be accepted by a root type The possible types for a document, or better,
for a root of a document are declared as root types in the R2G2 grammar and are therefore in the set R.
By 2, the document type, not really a type as modelled in R2G2 is denoted, like document( . ) is not
a construct of the data tree neither. Document and document type are external prerequisites to match
a tree with a root type, to bootstrap the relationship. The notion of element types is recursively define,
the root type gives an entry point for the recursion—this is in accordance with the recursive definition
of XML data as defined by the W3C e.g. in the Infoset [56] or in the Document Object Model (short
DOM) [60].

X ∈ R
Γ,R ` t : X

Γ,R ` document( t ) : 2
(ROOTTYPE)

Types with ordered content model match nodes with ordered content The type of a node has the
same name as its type declaration term, represented by the atomic regular expression consisting of only
that type, and the content can be typed using the declaration terms content regular expression.

Γ,R ` t1, . . . , tn : τ

Γ,R ` l[t1, . . . , tn] : l[τ]
(ORDEREDNODETYPING)

elementX = τ ∈ Γ

Γ,R ` t1, . . . , tn : τ

Γ,R ` l[t1, . . . , tn] : X
(NAMEDTYPES)

A data tree with named type has the type declared by the type term that is associated with the element
declaration rule for the corresponding type name.

6τ is a regular expression of the domain of types
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Optional Content An optional regular expression may be matched by no node or no node set, that
means, if no node (or node set) matches that regular expression, it can be ignored. The rule is comple-
mentary to the second optional rule, that states that an optional regular expression may match.

Γ,R ` �
Γ,R ` ε : l[re]?

(OPTIONAL1)

Γ,R ` t : l[re]
Γ,R ` t : l[re]?

(OPTIONAL2)

Sequence types and node sequences A sequence of nodes or sub sequences can be matched by a se-
quence of regular expressions, if each node or sub sequence is matched by a (positionally) corresponding
regular expression in the regular expression type sequence.

Γ,R ` t1, . . . , tn−1 : τ1 Γ,R ` tn, . . . , tn+m : τ2

Γ,R ` t1, . . . , tn−1, tn, . . . , tn+m : τ1,τ2
(SEQUENCE)

Type disjunctions A node or node sequence can be matched by a disjunctive regular expression, if
any of the regular expression matches the node or sequence.

Γ,R ` t : τ1

Γ,R ` t : τ1|τ2
(DISJUNCTION1)

Γ,R ` t : τ2

Γ,R ` t : τ1|τ2
(DISJUNCTION2)

Kleene star An arbitrary repeatable regular expression—an expression in the scope of a Kleene star—
may match as many nodes or sub sequences in a sequence of nodes, as possible without interruption of
the sequence by any other data.

Γ,R ` t1, . . . , tn : τ Γ,R ` tn+1, . . . , tn+n : τ · · · Γ,R ` tn×m+1, . . . , tn×m+n : τ

Γ,R ` t1, . . . , tn, tn+1, . . . , tn+n, . . . , tn×m+1, . . . , tn×m+n : τ∗

(KLEENESTAR)

Nodes with unordered content are matched by types with unordered content models Unordered
content models are modelled as regular expressions that have to match any permutation of a given con-
tent sequence. Mainly this corresponds to an associative commutative interpretation of the sequencing
operator in regular expressions as well as for the list operator in data instances. The semantics rule uses
the auxiliary function permutations(d) which returns the set of all permutations of a sequence of nodes
d.

t ′1, . . . , t
′
n ∈ permutations(t1, . . . , tn)

Γ,R ` t ′1, . . . , t
′
n : τ

Γ,R ` l{t1, . . . , tn} : l{τ}
(UNORDEREDNODETYPING)
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Matching nodes with ordered content by types with ordered content specified in an unordered
way Ordered node content can be matched by unordered specified ordered content the same way as
unordered node content.

Γ,R ` l{t1, . . . , tn} : l{τ}
Γ,R ` l[t1, . . . , tn] : l[{τ}]

(ORDEREDUNORDEREDSPECNODETYPING)

Matching leaf nodes with basic data types Leaf data is matched by the basic data types, if the super
type matches the data and if the constraints are also fulfilled. The matching of the basic data types, is
defined in applications of the generic basic data type mechanism as introduced in section 3.4.2.2, hence
not further treated here. Note, that some typing may also involve type coercion, e.g. each textual leaf
node is per se a string, but due to numerical typing it may be rescanned and coerced to basic data of
another type. However, coercion is an application dependant topic and not a matter at the level of the
schema declaration language. The following rule just states the subtype condition as used for R2G2
and the delegation of basic type checking to the level where the basic data types and a notion of their
language (denoted as L( . ) are defined.
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Chapter 4

From a Generic Module System to
a Module System for R2G2

When many developers work on large scale grammars or if they want to reuse given languages as e.g.
HTML, all the work can conceptually be merged together in one large grammar. Such large grammars
are difficult to maintain, as the scope of type names is globally scoped over the whole grammar. Name
conflicts are likely to occur and there is no separation of concern. To overcome the mess arising from
large scale monolithic applications, modules for R2G2 are introduced now.

While conceiving the module system for R2G2 it turned out, that the module system in mind was
more general and applicable to many rule languages only with marginal parametrization. As Xcerpt, the
rule based query language to be extended with static typing using R2G2, neither had a module system, a
general purpose module system has been developed and applied in two use cases to (1) Datalog [8] and
also to (2) Xcerpt [7]. In this chapter, the general module system, as presented in [8] and [7], is briefly
introduced and applied to R2G2.

4.1 The Purpose of Modules

From a practical point of view modules are very important for various applications especially when the
data to be managed for those applications gets complex. Typical candidates of applications that need
module support are query- , programming or schema languages as well as large scale CAD programs or
even ontologies. In the following, modules will be only be considered for artificial languages like query
or schema languages, yet the generalization to arbitrary applications with need for modules mostly not
more than a replacement of language specific terms in the following paragraphs.

A module is a unit of language terms like e.g. a part of a query or a part of a schema. A module
has not forcibly to be an usable instance of an application of that language, it is often a building block,
library or skeleton for other applications. A module is itself a named entity, yet prone to (rare, maybe
even intended) name conflicts. The purpose of modules is to

1. provide distinct name spaces for user defined names or symbols in terms of the language,

2. hide certain information or complexity in form of some names or symbols in the application,

3. provide an easy way to integrate different units or building blocks of an application with the goal
of providing potential for reuse of code.
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In the context of the Web mhtml[33] has been proposed as a module system for HTML and XHTML.
The idea of modularization in HTML helps factoring HTML pages into reusable in the spirit of page
templates and snippets. Using mhtml means (1) declaring modules—usually HTML documents or parts
of them— and (2) combining them using the import clause referring to a module in the including
module. To realize non trivial real world scenarios, parametrization is also needed: modules can be
parametrized with named parameters that can be instantiated when importing with other modules, that
are imported into the parametrized module. The approach can be compared with parametrized macro
expansion as e.g. used by the C programming language pre processor. An implementation of mhtml
exists using the TOM1 pattern matching compile developed at INRIA2.

4.2 Modules and XML Name Spaces

Pragmatically, the XML Name Space mechanism, has a lot in common with module systems. The
purpose of name space handling is to distinguish equal names by partitioning the set of labels in sets
that are likely to be named in a globally unique way. Name spaces in XML are realized as an extension
of the naming scheme—label and attribute names are combinations of a so called local name part and
a namespace part. Concluding, name spaces are identified again using names, yet delegating the name
conflict problem to a higher level, but as one name space usually groups many (local) names, the “name
space” name space is arguably less populated and name space identifiers may be chosen in a way less
prone to ambiguity conflict—URIs are chosen as name space identifiers. As name spaces are URIs,
and may therefore be very long strings, a substitution mechanism called namespace prefixes is used.
Conceptually name space and the label name—also called local name—can be merged to one name by
concatenating namespace (after namespace prefix expansion) and local name.

Name spaces have to be reflected when querying, constructing or schematizing data—labels of ele-
ments or attributes have to be composed of a local and a namespace part.

To compare module systems and XML Name Spaces, the three principles of module systems are
recalled here: A module system (1) provides distinct name spaces for user defined names or symbols in
terms of the language, (2) hides complexity, and (3) provides means for integration of components.

The common property of XML Namespaces and modules is the distinction of name spaces, point (1)
in the former enumeration, in the sense of preventing name conflicts. Arguably to some extend point (3),
integration of building blocks, is partly common to modularization and XML Namespaces—XML name
spaces facilitate the combination of various XML languages in one document instance, modules facili-
tate the integration of different instance applications of a language. The module principle (2) though has
no correspondence in XML Namespaces—hiding information in data is arguably not a reasonable prop-
erty on the level of the data structure formalization, which XML is. However, visibility of data portions
may be of interest for applications involving XML technology, like e.g. an XML database management
system, but this is already at an application level from the “point of view” of XML. (XML related)
languages or applications with need of name spaces hence may have two sorts of user definable names
that have to be distinguished—names at the level of (XML) data (like element and attribute names) and
names at the level of the language or application like variable-, method-, function-, predicate-, type-
names and so on.

To a certain extend this distinction of modules and name spaces is weakened by the HTML module
system mhtml mentioned earlier, where there is no distinction between data and program symbols and

1see http://tom.loria.fr/ for the official project page of TOM.
2see http://www.inria.fr/ for the homepage of INRIA.
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no visibility rule—it is not relevant to distinguish symbols in HTML, as there is no potential naming
conflict in HTML data—a module is a component of hypertext which is to be used at a given place.

4.3 Modular R2G2

A module extension to R2G2 is proposed. The purpose of the module system for R2G2 is the proper
partitioning and integration of type names.

4.3.1 Syntax of Modular R2G2

The syntax is given as a set of EBNF grammar rules extending the current grammar rule set as presented
in section 3.4 on page 56 ff.

Note, that the former top level non terminal grammar is now not the top level anymore, module
takes the role of the top level non terminal now.

module← grammar

A module may be used as a grammar used to be, it is then not identified as a module and not importable
in any other module.

module← visibility? ”module” identi f ier parameter∗ use∗ grammar

visibility← “public′′|“private′′

identi f ier←URI

parameter← “parameter” identi f ier

use← “use” identi f ier

use← “use” identi f ier “as” pre f ix

pre f ix← label

A module is usually associated to a module identifier. A URI is used as module identifier. The visibility
given in the module declaration is the default visibility of the types defined in the module, the visibility
may be public or private, private types are not visible outside of the module. An invisible type can
not be used in content models outside of the module defining the invisible type, it can also be called a
local type. An invisible type can later on not be used for annotation in a typed Xcerpt program by the
programmer, yet the system is able to infer it internally for the purpose of type checking.

Modules can be imported with the use-clause, they can also be imported in a qualified manner, in
which case the visible types are imported in a qualified manner. Qualified types can be used in the scope
of the importing module by prefixing them with the qualifier, it is up to the module author to choose a
conflict free prefix (i.e. a prefix not occurring as prefix in other types or non terminals declared in the
current module). Imported types, no matter if qualified or unqualified, are not reexported and are hence
private in the importing module.

Parameters are used to declare prefixes, that are not bound to an imported module at the time of
writing the parametrized module, but when the parametrized module itself is imported. A parametric
module hence exposes an interface of types that the user of a module can inject into the used module by
parametrizing it.
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As an example, consider a container format representing a website consisting of a hierarchy of
document containers containing just documents of a user selectable type.

module "WEBSITE-CONTAINER"
parameter "DOCUMENTDEF-";

element Container = container(name=String)[ ContainerContent ];
element ContainerContent = ((Container|Document)*);
element Document = document(name="String)[ DOCUMENTDEF-DOCUMENT ];

Code Example 37 This is a parametric module modelling a website of homogeneous documents. The container
may contain either (recursively) other containers or documents of the type DOCUMENT, which has to be declared in a
module passed in for the parameter DOCUMENTDEF-.

The website container (see example 37) format is parametric about the type of the documents is
may contain. The type of the payload document will be bound to the module prefix DOCUMENTDEF-.
The interface of the module parameter is given by the types used from DOCUMENTDEF-, in the case of
example 37 this is just DOCUMENT. Note, that the author of a module is advised to properly document
the interface, there is no formal documentation mechanism. A module using the website container (see
example 38) will bind the parameter do a schema declaring a type called DOCUMENT.

module "MY-WEBSITE"
use "WEBSITE-CONTAINER" where "DOCUMENTDEF-"="HTMLDEF";
root MySite;
element MySite = website(baseurl="http://example.com/mySite/")[ Container ];

Code Example 38 This module models a website using the parametric container model of example 37. The
parameter is set to the module HTMLDEF defined in example 39, hence modelling a website consisting of a container
with solely XHTML documents.

module "HTMLDEF"
use "XHTML";
content DOCUMENT = (HTML);

Code Example 39 This module is created for parametrization of the module in example 37. It is used in example
38

rule← visibility? ”element” typename ”∗=∗” typeterm ”∗;?[\n\t]∗”

rule← visibility? ”type” typename ”∗=∗” typeterm ”∗;?[\n\t]∗”

The rule as defined earlier is extended by visibility, that is optionally to be prefixed to a type declaration
rule. If no visibility is prefixed, the default visibility as declared in the module rule is applied.

4.4 Realizing the Module System using the “Divide and Rule”
approach

The generic module approach as presented in [8] is based on reduction semantics for module operators,
i.e. modular rule language programs are translated into non modular programs. A necessary requirement
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of the rule language to be modularized is the notion of some kind of chaining or rule dependency. In
the case of R2G2 this is given by the dependency between right- and left hand side occurrences of non
terminal symbols or type names. The term rule dependency as used in [8] is defined as follows:

Definition 4.1 (Rule dependency)
With a program P, a (necessarily finite) relation ∆ ( N2×N2 can be associated such that (r1,b,r2,h)∈∆

iff the condition expressed by the b-th body part of rule r1 is dependent on results of the h-th head part
of the r2-th rule in P (such as derived data, actions taken, state changes, or triggered events), i.e., it may
be affected by that head part’s evaluation.

When applied to R2G2, there is just one rule part in the read—the type defined by the current rule,
more precisely the type name. On the right hand side, the parts are the occurrences of type names.
Using the rule dependency quadruple, the rule parts are mapped to natural numbers. Applied to R2G2
this could be according to the sequential order of the occurrence of the type name.

In example 40 an R2G2 ‘program’ consisting of three rules is shown. When considering, that the
rules are counted in sequential order, starting with index 1 as well as the body parts, the corresponding
rule dependency quadruple set could be as follows:

∆1 = {(r1,1,r2,1),(r2,1,r3,1),(r2,2,r3,1),(r3,1,r3,1)}

The first rule, denoted as r1 has B as the first (and only) type on it’s right hand side, and B is declared in
the second rule (i.e. r2). As all rules declare exactly one type, hence have one ‘part’ (i.e. non terminal
or type) on the left hand side, the 4th component of the quadruples is always 1 for R2G2 rules. The
rule r2 has two parts on the right hand side (in this case both depending on r3). this is reflected by two
quadruples modelling the dependency of r2. The third rule is a recursive rule, this is reflected by the
fact, that the dependency modelled is a self-dependency.

The dependency presented in the last paragraph was a precise dependency, reflecting exactly which
rule depends on which other rules. This however, requires a precise knowledge of the semantics of the
rule language, which is not forcibly required by the generic module system. Assuming, that 40 is a
module, another possible dependency reflecting the fact, that all rules in a module may depend on each
other would be

∆2 = {(ri, j,rk,1)|(i, j) ∈ {(1,1),(2,1),(2,2),(3,1)∧1≤ k ≤ 3}}

∆2 is the kind of dependency used further on for the module system.

element A = a[ B ];
element B = b[ C,C+ ];
element C = c[ cc[ C ]* ]

Code Example 40 A simple R2G2 grammar.

A module in [8] is defined as follows:

Definition 4.2 (Module)
A module M is a triple (Rpriv,Rpub,∆) ( R×R×N4 where R is the set of all finite sequences over the
set of permissible rules for a given rule language. We call Rpriv the private, Rpub the public rules of M,
and ∆ the dependency relation for M. For the purpose of numbering rules, we consider R = Rpriv �Rpub

3

the sequence of all rules in M.
3� denotes sequence concatenation, i.e., s1 � s2 returns the sequence starting with the elements of s1 followed by the elements

of s2, preserving the order of each sequence.
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The application to R2G2 is straight forward—public rules of an R2G2 module belong to Rpub, private
ones to Rpriv. If a module is declared as a public module, all rules without visibility annotation or with
public visibility annotation are public, only rules with private visibility annotation are private. If a
module is declared as a private module, all rules without visibility annotation or with private visibility
annotation are private, only rules with public visibility annotation are public. The dependency relation
without consideration of used (or imported) modules is complete with respect to the rules of the module,
i.e. each part on the right hand side of a module depends on all rules (more precise, it’s head) in the
module.

The use statements are treated by the so called scoped import, the one and only module composition
operator in [8].
Definition 4.3 (Scope)
Let M = (Rpriv,Rprub,∆) be a module (or program if Rpub is the empty sequence). Then a set of body
parts from M is called a scope in M. More precisely, a scope S in M is a set of pairs from N2 such that
each pair identifies one rule and one body part within that rule.

Definition 4.4 (Scoped import o)
Let M′ = (R′priv,R

′
pub,∆

′) and M′′ = (R′′priv,R
′′
pub,∆

′′) be two modules and S a scope in M′. Then

M′oS M′′ := (Rpriv = R′priv �R′′priv �R′′pub,Rpub = R′pub,∆
′
slided∪∆

′′
slided∪∆inter), where

• ∆′slided = slide(∆′, |R′priv|, |R′pub|, |Rpriv|) is the dependency relation of the importing module M′

with the public rules slided to the very end of the rule sequence of the new module (i.e., after the
rules from M′′),

• ∆′′slided = slide(∆′′,1, |R′′priv|+ |R′′pub|, |R′priv|) is the dependency relation of the imported module
M′ with all its rules slided between the private and the public rules of the importing module (they
have to be “between” because they are part of the private rules of the new module),

• ∆inter = {(r1,b,r2,h) : (r1,b) ∈ S∧∃ a rule in Rpriv with index r2 and head part h : r2 > |R′priv|+
|R′′priv|} the inter-dependencies between rules from the importing and rules from the imported
module. We simply allow each body part in the scope to depend on all the public rules of the im-
ported module. This suffices for our purpose, but we could also choose a more precise dependency
relation (e.g., by testing whether a body part can at all match with a head part).

where slide is an operator used to renumber rules. The ‘sliding’ of the rule numbering is a pure tech-
nical tool used to get again unique numbering and fixing the dependencies, which gets necessary when
concatenating sets of rules. The dependency slide is defined as follows:

Given a dependency relation ∆, slide computes a new dependency relation by sliding all rules in the
slide window W = [s+1,s+ length+1] in such a way that the slide window afterwards starts at snew +1:

slide(∆,s, length,snew) = {(r′1,b,r′2,h) : (r1,b,r2,h) ∈ ∆

∧ r′1 =

{
snew +1+(r1− s) if r1 ∈W
r1 otherwise

∧ r′2 =

{
snew +1+(r2− s) if r2 ∈W
r1 otherwise

}
After unwinding all the formal definition, importing a module is a mere concatenation of the rule

sequences and a union of the rule dependencies, after proper re-indexing of the rules to prevent con-
flicts. Further on, for a scoped import oS, the resulting dependency is extended by new dependencies
derived by the information found in "S", such that the addressed rule parts of the importing rule set get
dependencies to all the public rule heads declared in the imported rule set.
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public module "MAIN-MODULE"
use "SUB-MODULE"
element A = a[ B , C ];
element C = c[ ]

Code Example 41 A simple R2G2 module that uses another module called ‘SUB-MODULE’.

public module "SUB-MODULE"
element B = b[ C ];
private element C = ccc[ ];

Code Example 42 A simple R2G2 module with one private rule and one public (by default) rule.

As an example consider the two modules presented in the examples 41 and 42. Formally, these
modules, without considering the module use statements, can be denoted as

RMAIN = ({},{1,2},{(1,1,1,1),(1,1,2,1),(1,2,1,1),(1,2,2,1)})

RSUB = ({2},{1},{(1,1,1,1),(1,1,2,1)})
The use-statement of example 41 is not a scoped import. However, the scoped import is more general

as the default use-statement and it can be translated to a scoped import—each rule and each part of the
importing module gets scoped. For 41 the use-statement hence results in expressing a scoped import
RMAIN o(1,1),(1,2) RSUB. Application of the scoped import operator in the end results in one use-statement-
free module as follows:

RMAIN o(1,1),(1,2) RSUB =


{4,3},{1,2}, (1,1,1,1),(1,1,2,1),(1,2,1,1),(1,2,2,1),

(3,1,3,1),(3,1,4,1),
(1,1,3,1),(1,2,3,1)




So, the resulting module is a concatenation of all modules with a restricted rule dependency (com-
pared to the plain module concatenation). A promise of the generic module system is, that base don the
reduction semantics, no change in the core module language is forcibly necessary. How can this goal be
achieved, i.e. how can the controlled rule dependency be realized? A simple way in the case of R2G2 is
the realization by rewriting: the type names on the left hand side are rewritten such that they reflect the
separation of modules, e.g. by prefixing a module identifier, those on the right hand side are replaced
by disjunctions for all modules involved in dependencies to the body part in question, e.g. a disjunction
consisting of all involved module identifiers postfixed by the former type name. As an example, the
resulting module of applying the module system reduction to the examples 41 and 42 is presented in
example 43

element MAIN_A = a[ (MAIN_B|SUB_B) , MAIN_C ];
element MAIN_C = c[ ]
element SUB_B = b[ SUB_C ];
element SUB_C = ccc[ ];

Code Example 43 An R2G2 grammar resulting from the application of the generic module system to the exam-
ples 41 and 42. The dependency modification is achieved by type renaming, i.e. by prefixing the (unique) module
identifiers to the type names. To preserve the original type names for the outside, type aliases can easily be used.
Note, that the first rule uses an undefined type name, MAIN-B, for technical reasons. Orphaned right hand side type
names are however easily detected and can always be removed from the grammar.
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Further features of the module system not presented in details, i.e. not demonstrated by example are:

qualified modules Arguably, qualified modules are exactly what the scoped import is necessary for, as
it gives rise to express that the imported rules get visible only for the body parts using the qualifier.
This can be expressed using rewriting by selectively applying the rewriting to the qualified body
parts the same way as presented in example 43 for all body parts.

parametrized module import parametrized module use is similar to qualified module use, except that
the assignment of a module to a qualifier does not occur in the declaring module, but in the using
module. As the module reduction takes place on all modules, globally and at compile time, this
is not a big deal for the generic module system—the assignment of a module to a parameter is
just postponed until bound for a module use. Note however, that for multiple imports (in possibly
different modules) of the same parametrized module, multiple instances of the rules using the
parameter have to be created during reduction, as they possibly have dependencies to different
types. Right hand side occurrences of the type declared by the multiple instances are accordingly
selecting their corresponding rule instance.

parametric modules A parameter of a parametric module is treated exactly the same way as a qualified
module use, after binding of the parameter.
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Chapter 5

Use Cases—Modelling Data and
Documents with R2G2

5.1 Beyond Regular Tree Grammars—The Use of Macros

Arguably in practice, especially for larger real word applications, any possibility of factorization of code
is welcome and used by programmers. When modelling content models, a way of factoring out common
content of different element types is to use content macros.

The normative Schema of XHTML1 is written in Relax-NG employing a large number of grammar
rules, that correspond to the R2G2 macro rules. Macros are used to factor out content elements as well as
common attribute declarations. The XHTML draft defines different modules, represented by different
schema modules that are imported, partly overridden in sub modules and aggregated to the complete
XHTML schema. The separation of modules is useful to provide small units of XHTML that can be
used in other XML schema definitions, e.g. the hyperlink mechanism is defined as a separate module
and can thus be reused e.g. for another document markup language. The extract in example 44 of R2G2
declarations corresponds to the parts of the XHTML 2.0 schema draft [49] used to declare hyperlinks:

module "hypertext-module"
use "text-model-module"
use "common-attributes"

element A = a(A.AttList)[ Text.Model ] ;
alias A.AttList = Common-Attrib ;
alias Text.Class = Text.Class | A ;

Code Example 44 The example is mostly a transcription of the XHTML module for hyperlinks written in Relax
NG. Comprehension is rather easy, as most of the irrelevant (in this context for comprehension) declarations are
located in other modules.

The simplicity of the definition is obviously due to modularization.

1Either 1.0 or 2.0, even the HTML DTD’s share this properties.
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5.2 Design Patterns—R2G2 Best Practices

In the spirit of the well known “XML Schema best practices” [23], some design patterns for R2G2 will
be presented. Many of them are inspired by the XML Schema counterpart.

5.2.0.1 Design Objectives

In the style of the design objectives document of “XML Schema best practices”, three design principles
can be distilled:

• The instance author’s power vs. rigidness of the schema, or to which extend the most general type
is used, such that an instance author may choose which type of data to use in certain contexts.

• Reusability, or to which extend may a user reuse the schema declarations for another schema in
e.g. another namespace.

• Extendability, or to which extend should the schema be extensible by third parties, e.g. using
parametrization.

The first principle is freedom of data and structure choice for the document author. This can
can be divided in two aspects:the freedom of choice concerning atomic data, i.e. arbitrary CDATA in
terms of XML, and the freedom of choice concerning structured data, i.e. arbitrary, maybe untyped or
schema-less XML sections of the document. The first aspect is mostly known since DTD, by providing
PCDATA as content type. In R2G2 this is achieved using either a most general regular expression at
content level or by using the predefined string data type.

element AnyText1 = /.*/ ;
element AnyText2 = r2g2:String ;

To model arbitrary structured content, the R2G2 schema author can use the predefined Any type,
which represents exactly one arbitrary element or text node. Defining the Any type using R2G2 is also
possible and actually not complicated, as shown in the following example:

element Any = /.*/( (/.*/ = /.*/)* )[ Any* ]
element Any = /.*/( AnyAttr* )[ Any* ]

| /.*/( AnyAttr* ){ Any* }
| r2g2:String ;

attribute AnyAttr = /.*/ = r2g2:String ;

The second design principle is reusability. A schema author has to decide to which extend the
schema is exposed to other schema authors, such that they can easily include the schema in their own
schema declarations. In R2G2 the schema author has control over reuse of his schema declarations
by controlling the visibility of type names for users of a module. Only visible type names can be
used in other grammars or applications. A further notion of reusability is to let the namespace of
elements unspecified, thus giving users of the module the ability to fully integrate the declarations in
their own schemata, using e.g. their own namespace. Having homogeneous name spaces in a schema is
desirable from the point of view of the document authors, as it arguably eases reading and authoring of a
document. A disadvantage of a schema not bound to a specific namespace, yet being bound to different
name spaces of hosting schemata is that a query author or a processing application needs to be aware of
all possible hosting name spaces to support such a variable name space document component.
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The third design principle is extendability. Third party schema authors have to provide the
schemata for the components of a given schema that models a container like structure. To achieve
this in R2G2 parametric modules can be used. The feature is roughly comparable to the term dangling
type as used in the ‘XML Schema best practices’ documents—dangling types are types used but not
declared in a schema (they have to be declared by the user of the schema). A using schema instance
hence has to implement the module parameter by providing a module with the type declarations for the
type names in question. As an example, consider the website container format examples 37, 38 and 39
presented in section 4.3.

5.2.1 Global versus Local

In the ‘XML Schema best practices’ documents, this issue is about when and how to declare elements
locally and when to declare them globally. In this context the terms local and global are used to dis-
tinguish named types, i.e. types declared with a rule (called global types) and those declared in-line as
child type terms used in the content model of it’s parent type term (called local types). Using R2G2 the
declaration of local element definitions can be achieved in two ways: indirectly, by declaring element
types using the private visibility modifier for a rule or directly by declaring element types locally
as child elements in an element declaration of another element. For global declarations, the declared
element has to be in a publicly visible rule. The direct modelling of local definitions is similar to the
way of locally defining elements in XML Schema using the Russian doll principle, and the principle is
directly applicable to R2G2. When modelling schemata using the Russian doll paradigm, elements are
declared in a nested way in a type term.

The grammar in example 45 declares an address book in the spirit of the Russian doll paradigm.

root AddressBook;
element AddressBook = addressbook{
card{

name[ /.*/ ],
( phone[ /.*/ ]
| email[ /.*/ ]
| im-contact[ type[ /(icq)|(msm)|(aim)|(irc)|(yabber)/ ] ,

user-id[ /.*/ ] ]
| address[ street[ /.*/ ] ,

detail[ /.*/ ] ,
city[ /.*/ ] ,
zip-code[ /.*/ ] ,
state[ /.*/ ]? ,
country[ /.*/ ]? ,

]
)+

}*
};

Code Example 45 An address book modelled in the spirit of the Russian doll design principle—the child node
types of a node are declared using type terms as child terms of their corresponding parent type.

The advantage of the Russian doll paradigm is, that the schema reflects, almost like an example,
the structure of instance documents—element declarations occur in similar nesting context as their in-
stances. A disadvantage of the Russian doll approach is, that multiple occurrences of the same type
results in multiple declarations of that type. Note, that the Russian doll paradigm, does not allow to
model data with recursive declarations, as a circular structure referring a declaration inside the declara-
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tion (possibly at deeper nesting level) is necessary, but the reference of a type name makes it necessary
to use a rule for the declaration of that type name.

The opposite of the Russian doll paradigm is the so called salami slices paradigm, where each
element type declaration is represented by an own rule, very much the traditional way of formal tree
grammars as found in section 3.1, 3.2 or [22].

Example 46 presents the same document type as for the Russian doll example (see example 45)
modelled using the salami slices paradigm. Each element declaration is associated with an own type
name, hence exporting of all symbols can easily be achieved.

root AddressBook;
element AddressBook = addressbook{ Card* } ;
element Card = card{ Name ,

(Phone|Email|IMContact|Address)* } ;
element Name = name[ /.*/ ] ;
element Phone = phone[ /.*/ ] ;
element Email = email[ /.*/ ] ;
element IMContact = im-contact[ IMType , UMUID ] ;
element IMType = type[ IMTypeToken ] ;
element IMTypeToken = /(icq)|(msm)|(aim)|(irc)|(yabber)/ ;
element AnyText = /.*/ ;
element IMUID = user-id[ AnyText ] ;
element Address = address[ Street , Detail ,

City , ZipCode ,
State? , Country? ] ;

element Street = street[ AnyText ] ;
element Detail = detail[ AnyText ] ;
element City = city[ AnyText ] ;
element ZipCode = zip-code[ AnyText ] ;
element State = state[ AnyText ] ;
element Country = country[ AnyText ] ;

Code Example 46 An address book modelled in the spirit of the salami slices design principle—all types are
declared employing rules at top level of the grammar, the child node types of a node are referenced in its content
model using the type name declared in the corresponding rule.

In the ‘XML Schema best practices’ document, a third paradigm between Russian dolls and salami
slices is presented, the so called venetian blinds. In XML Schema, a type is not bound to an element
declaration but to a content model. An element declaration hence involves a label declaration and a type
declaration. The venetian blinds pattern consists in referencing type declarations in element declara-
tions, that occur themselves nested in type declarations. This contrasts to the salami slices paradigm,
where element declarations are referenced in type declarations. The concept is applicable to R2G2 using
content non terminals.

Example 47 illustrates the same address book as used in the examples 45 and 46 in the spirit of the
venetian blinds paradigm using content macros—the only necessary explicit element declaration is the
root element declaration:
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root AddressBook;
element AddressBook = addressbook{ card{ Card }* } ;
content Card = name[ TXT ] ,

(phone[ Phone ]
|email[ AnyText ]
|im-contact[ IMContact ]
|address[ Address ]
)* ;

content IMContact = type[ IMType ] , iser-id[ AnyText ] ;
content IMType = /(icq)|(msm)|(aim)|(irc)|(jabber)/ ;
content AnyText = /.*/ ;
content Address = street[ AnyText ] ,

detail[ AnyText ] ,
city[ AnyText ] ,
zip-code[ AnyText ] ,
state[ AnyText ]? ,
country[ AnyText ]? ;

Code Example 47

Note, that content is a mere macro pre processing mechanism, therefore the content non terminals
are not type names, that can be accessed e.g. in validated and type annotated data instances. Similar to
the Russian doll example, only one element type is declared in this example, hence all other implicit
element declarations are anonymous and may not be exported for import or explicit type annotation. In
XML Schema the different paradigms are of essential importance for the exposure or hiding of decla-
ration. In R2G2 dedicated constructs for import, export and namespace handling have been introduced,
rendering the exposure and hiding aspect of the modelling style less relevant, yet leaving the freedom
of taste to the schema author. On the other hand, such structural properties of XML Schemata may be
reflected in R2G2 type declarations making transitions of legacy schemata easier.

Some rules of thumb for the applications of the different paradigms are given here, yet they only
reflect the authors preferences:

• Introduce a new type name when the type is reused in different contexts

• When modelling schemata with querying in mind, use more type names, as when modelling for
document validation, as this exposes the possibility of type annotation to the query programmer

• Try to expose specialized textual content types as they are most likely to be queried or transferred
to constructions. Further on, regular text expressions of characters are arguably harder to read for
document or data authors than well chosen type names.

• Hide type names of types that are still in development

• When elements with different labels always share the same content and the elements have sim-
ilar semantics, it is maybe advisable to use a label regular expression in one and the same type
declaration, instead of using one content declarations and many element type declarations.

• Try to factor out common parts of content models in content declarations.

5.2.2 Composition vs. Sub Classing

In XML Schema a powerful object oriented modelling feature that is arguably orthogonal to the grammar
philosophy has been introduces—modelling by sub classing. When modelling by sub classing, a new
type can be derived of an existing type, by restricting the set of elements belonging to the super class
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of the subclass. This feature is powerful in the sense of object oriented modelling or programming, as
it allows the programmer or modeller to specialize the behaviour of a new class of objects based on the
behaviour of a base- or super class. In XML Schema, sub classing or restriction is merely more than a
contract of a type to fulfill the subset property of its base- or super class, i.e. the author of a sub type
has to model a type in such a way, that it fulfills a stated subset, base type or restriction property, an
XML Schema validator has to check the given type for conformance to that property. The advantage for
a program operating on data structures fulfilling the given subclass property are the same as for object
oriented programming—the program can rely on compatibility of operation on subtypes for operations
designed for the super type of the subtype. For the Schema author, no benefit exist over modelling data
without the subtype support. However, for a query author for example it is valuable to know about the
subtype property of given types, as this ensures the applicability of queries written for a super type to
elements of the subtype. Arguably, type checking does not really need to rely on sub typing information
for useful operation, as we will see in the chapter about type checking of Xcerpt—type inference is able
to deduce the super type of it’s subtypes without the information about it. When modelling elements of a
given type, the benefit of automatically being able to use the subtypes of the given type exists. However,
the base type has to be modelled from the beginning in a way to easily be extensible, otherwise it has to
be altered or widened along new sub classes.

Interestingly, even though the object oriented principle of sub classing has been introduced to ease
a separation of concern, a tight integration of complexity and so called tight coupling is the result. Let
us assume as an example a database of a camera vendor modelled following a sub classing paradigm:
starting as a vendor of cameras, there exist a type Camera with all relevant properties. When digital cam-
eras came to the market, some (analogue) camera properties got irrelevant while other digital camera
properties gained relevance. This logically leads to a sub classing of camera, where some of the former
camera features have to be shifted into a subclass of camera, AnalogCamera, while digital camera fea-
tures are aggregated in the DigitalCamera sub class. As the store may also sell tripods as non optical
devices, sound recording devices or projectors as optical device along with cameras, a consequence for
the schema designer is to provide a super class to the Camera class—the OpticalDevice class. When
altering the optical device class, potentially all camera classes may have to be adapted along with valid
instances, which is a consequence of the so called tight coupling.

An alternative approach to sub classing is called compoisition or loose coupling. When modelling
using composition and loose coupling, the main principle is to encapsulate the differences instead of
abstracting away the similarities of objects. In XML and related Schema languages, this is achieved by
extending the content model by adding new elements or element containers to a given type, possibly
optional to retain backward compatibility. In the camera vendor example, the difference between digital
and analogue camera could be modelled either as an alternative between analogue and digital camera
child members, or as a common abstract container for the RecordingMedia. This way altering the data
model will not affect e.g. ‘camera container structures’, as the modification is internal to the camera.

Unquestionably, design by sub classing has an important role to play in XML Schema
design. However, it is being greatly overused. Long, extended type hierarchies lead to
brittle, non-modifiable designs that are virtually impossible to understand.

Design by composition is the preferred approach. It yields simpler, robust, modifiable,
plug-and-play designs.

"Favoring element composition over type inheritance helps you keep each element encap-
sulated and focused on one task. Your type hierarchies will remain small and will be less
likely to grow into unmanageable monsters." [23]2

2In the “XML Schemas: best practices” collection of documents the cited part resides in the document “Composition versus
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As a consequence, the concept of sub typing by restriction is not included in R2G2, yet due to the
regularity of the language it is easy for external applications to ensure the subtype property of R2G2 type
declarations. Sub typing is a mayor concept for type checking of query programs using R2G2 types.

5.2.3 ‘eXtreme eXtensibility’

A design pattern presented in the “XML Schema best practices” document is the ‘eXtreme eXtensibility’
pattern. The concept behind is to couple a schematized, typed or structured world with the aspect of
freedom of semi structured data, such that no restriction on the structure of data is given, except the ones
already available. As a concrete example think of a schema for bibliographical information: as the first
party may provide a schema for data containing just author and title along with the data, another party
may provide extended information containing e.g. the publisher and the number of pages of books. A
third party again, may provide based on the first schema an extension for e.g. a review of books.

Technically, the concept is based on the use of a type disjunction containing the most general type
in a repetition sequence to allow arbitrary elements (represented by the most general type) along with
well defined elements (the other disjunctive parts). It is however advisable to restrict the most general
type to a namespace specially devoted to the purpose of being the namespace of arbitrary extension
elements for the concrete application in mind. Third party document and schema authors hence declare
the elements they need in that name space and thus extend the schema to their need.

The following example models the previously mentioned librarian database with first the base
schema and a document instance, second and third two derived schemata and document instances. Last,
an aggregation of all the schemata and documents is presented, which is a common usage scenario of
documents and schemata applying the ‘eXtreme eXtensibility’ pattern.

default namespace http://book.ext.ext.org/ ;
namespace ex = http://bookext.ext.ext.org/ ;

root BookDB;

element BookDB = literature{ @Book* };
element Book = book{ BookContent* };
content BookContent = (ex:AnyBookContent

|Title
|Author) ;

element Title = title[ r2g2:String ] ;
element Author = author[ r2g2:String ] ;
element ex:AnyBookContent = ex:/.*/{

r2g2:Any
} ;

Code Example 48 The grammar models a bibliographic database following the “eXtreme eXtensibility”
paradigm. It is a container for book-elements where no more is given, than that it contains a title and an author
element and any element, as long as it is in the namespace given by the prefix ex in this example.

Subclassing” at http://www.xfront.com/composition-versus-subclassing.html
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use http://book.ext.ext.org/schema.r2g2 ;
namespace bdb = http://book.ext.ext.org/ ;
defaultnamespace http://bookext.ext.ext.org/ ;

root bdb:BookDB;

element NrOfPages = pages{ r2g2:Integer } ;
element Publisher = publisher{ r2g2:String } ;

Code Example 49 A grammar defining types for the number of pages of a book and for information about a
publisher. The types have been designed to be used in a bibliographic database as shown in example 48. The contract
between the schemata committed to the “eXtreme eXtensibility” paradigm is to use a given namespace.

use http://book.ext.ext.org/schema.r2g2 ;
namespace bdb = http://book.ext.ext.org/ ;
defaultnamespace http://bookext.ext.ext.org/ ;

root bdb:BookDB;

element Review = review[ r2g2:String ] ;

Code Example 50 Another grammar defining a type for the extension of the grammar in example 48.

<literature>
<book id="isbn:0007110472">

<title>Three to See the King.</title>
<author>Magnus Mills</author>

</book>
<book id="isbn:0810117312">

<title>His Master’s Voice</title>
<author>Stanislaw Lem</author>

</book>
</literature>

Code Example 51 An instance document valid with respect to the grammar of example 48.

<literature>
<book id="isbn:0007110472">

<pages>167</pages>
<publisher>HarperPerennial</publisher>

</book>
<book id="isbn:0810117312">

<pages>199</pages>
<publisher>Northwestern University Press</publisher>

</book>
<book id="isbn:0863697313">

<pages>290</pages>
<publisher>Virgin Books</publisher>

</book>
</literature>

Code Example 52 An instance document valid with respect to the grammars of example 48 and 49.
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<literature>
<book id="isbn:0007110472">

<title>Three to See the King.</title>
<review>

Novella-like in form, Magnus Mills’ Three
to See the King is an uneasy read that ...

</review>
</book>
<book id="isbn:0684865114">

<title>The Restraint of Beasts</title>
<review>

Building high-tension fencing with a couple
of rural Scots louts--what could be a more ...

</review>
</book>

</literature>
Code Example 53 An instance valid with respect to the grammars of example 48 and 50 used together.

<literature>
<book id="isbn:0810117312">

<pages>199</pages>
<publisher>Northwestern University Press</publisher>

</book>
<book id="isbn:0863697313">

<title>His Master’s Voice</title>
<author>Stanislaw Lem</author>
<pages>290</pages>
<publisher>Virgin Books</publisher>

</book>
<book id="isbn:0007110472">

<title>Three to See the King.</title>
<pages>167</pages>
<publisher>HarperPerennial</publisher>
<review>

Novella-like in form, Magnus Mills’ Three
to See the King is an uneasy read that ...

</review>
</book>
<book id="isbn:0684865114">

<title>The Restraint of Beasts</title>
<review>

Building high-tension fencing with a couple
of rural Scots louts--what could be a more ...

</review>
</book>

</literature>
Code Example 54 This instance document could have been generated by an aggregation service (e.g. written as
a web query). It is the join of all three document examples 51, 52, and53. As a consequence of the “eXtreme eXten-
sibility” approach, the document is valid with respect to the union of all the involved grammars, i.e. the examples 48,
49, and 50.

A drawback of this approach is, that name conflict may arise in the extension name space. An
advantage of this approach is the high flexibility and the ease of mering different document instances
due to common outer structure.
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Relationship between ‘eXtreme eXtensibility’ and RDF The application scenario presented in the
example and those of for ‘eXtreme eXtensibility’ is interestingly related to RDF: using ‘eXtreme eX-
tensibility’, it is possible to describe different aspects of the same concept in a distributed manner,
providing means of aggregating the knowledge. RDF to some extend has the same goal—describing
properties of subjects (identified using URI’s) using a triple like relation between subject and object
along a predicate. A proposed W3C recommendation—the RDF/XML Syntax Specification—provides a
very loose schema for XML documents and an interpretation in RDF of the data of that document. The
main idea is to have a kind of striping in the depth of subject/predicate/object, such that

• the subject is an element (directly under the root element3 identified, e.g. using an id attribute.

• the child nodes of a subject are predicates

• the child node (just one is allowed) is the object of the subject/predicate/object relationship, it
may be CDATA.

Arguably, RDF/XML is not of high relevance in providing an RDF interpretation of legacy XML
applications, as they are very unlikely to fulfill the RDF/XML syntactic requirement and even less likely
to provide RDF with meaningful semantic. For new applications however, RDF/XML provides a way
to defile an XML application that at the same time yields an RDF application, when well designed.

The presented example application fulfills the RDF/XML requirement. The data may be interpreted
as RDF data. The schema however gives no hint about that. A Schema for data fulfilling the RDF/XML
recommendation must be the schema of a language, that is a subset of the RDF/XML specification. Un-
fortunately, due to the high freedom and flexibility of the label naming conventions, it is neither possible
to give a general schema for RDF/XML using XML Schema, nor DTD, nor Relax NG. Using R2G2 it
is possible. The distinguishing feature is the regular expression based element label specification. As it
is possible to check the subtype (or language subset) relationship between two R2G2 specifications, it is
possible to check an R2G2 schema for RDF/XML conformance. Note, that this does not forcibly lead to
schemata or documents (conforming those schemata) with useful RDF interpretation, it is mere a useful
tool along the step of defining XML languages fulfilling also the RDF/XML specification.

3Subjects may also occur in other, deeper locations in the document, please refer to http://www.w3.org/TR/2003/PR-
rdf-syntax-grammar-20031215/.
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Part II

Automata Models
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Chapter 6

An Automaton Model for Regular
Rooted Graph Languages

An automaton model used for validation and type checking with languages defined using R2G2 is pre-
sented. First, tree-shaped data is considered to be handled by the automaton model, then the approach is
extended to graph shaped data. The presented approach is based on specialized non-deterministic finite
state automata. The specialisation copes with unranked tree shaped data. Graph shaped data will be
treated as, possibly infinite in depth, trees.

The choice of using non-deterministic automata is motivated by complexity issues: as the tree au-
tomata are based on regular expressions, non-deterministic automata are a necessary intermediate step.
Arguably deterministic tree automata are more efficient on validating data, but the derivation of such
automata from non-deterministic ones comes with potentially exponential costs. As all the needed al-
gorithms can be achieved on non-deterministic automata in sub-exponential time and space complexity,
no need to transform to deterministic automata arises.

6.1 Introduction to Regular Tree Automata

Traditionally, regular tree automata are defined as follows (cf. [22]).

Definition 6.1 (Non-deterministic Finite Tree Automata)
A non-deterministic finite tree automaton (NFTA) over Σ is a tuple A = (Q,Σ,QF ,∆), where Q is
a set of (unary) states, QF ⊆ Q is a set of final states, and ∆ is a set of transition rules of type
f (q1(x1), . . . ,qn(xn))→ q( f (x1, . . . ,xn)), where n≥ 0, f ∈ Σn, q,q1, . . . ,qn ∈ Q, x1, . . . ,xn ∈ X .

The set Σ contains the symbols or the alphabet of the tree. Note, that traditionally regular tree
automata operate on ranked trees, therefore the symbols have fixed arity—the number of child nodes in
a corresponding tree is fixed. The set Σp ⊆ Σ is the set of all symbols in Σ with arity p. The set T (Σ)
denotes the set of all tree that can be constructed using the symbols in Σ. Therefore

• Σ0 ⊆ T (Σ)

• for p≥ 1, if f ∈ Σp and t1, . . . , tp ∈ T (Σ), then f (t1, . . . , tp) ∈ T (Σ)
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Example 6.1
A non-deterministic1 finite tree automaton able to recognize a language containing (under many others)
the tree f (g(a,b),c,g(c)) is generated. The figure on the right of the automaton informally illustrates
the relationship between the states,2 transitions and the data tree: a transition is denoted as a kind of
tube. If some sub-trees of the data tree have been recognized the automaton is in corresponding states.
A transition is used, if the automaton is in all the corresponding input states (in the example below the
tube) and the father node of the sub-trees recognized with those states is labeled like the tube. The
automaton is then not any longer in the states below the transition, but in the target state (precisely in all
the target states of all the transitions traversable in that step). The root of the tree has to be accepted in
such a way, that the resulting state is a final state. Note, that the two instances of the c transition and the
state q2 denote the same objects in the automaton, they have been duplicated to illustrate acceptance of
the input data that contains two sub-tree accepted by the same transition.

A = { {q1,q2,q3,q4,q5,q6,q7,q8}
, { f/3,a/0,b/0,c/0,g/2,g/1}
, {q4}
, { f (q1(X),q2(Y ),q3(Z))→ q4( f (X ,Y,Z))

,g(q5(X),q6(Y ))→ q1(g(X ,Y ))
,c→ q2(c)
,a→ q5(a)
,b→ q6(b)
,g(q2(X))→ q3(g(X)) }

}

Acceptance Procedure The acceptance procedure recognizes, if a given tree is member of the tree
language represented by a given automaton. A tree t is in the language L(A), if it is accepted by A. The
acceptance procedure can be defined as non-deterministic algorithm expressed by a set of rules. The
rules relate so called configurations of an automaton to each other. A configuration is a tree on which
some nodes are annotated with a state, more formally c ∈ T (Σ∪Q)—note, that Q is defined as unary
states, e.g. a state can be seen as a (special) node in a tree with exactly one child node.

The rules have the following general shape:

C1
...

Cn
t
t ′

(EXAMPLERULE)

where t and t ′ denote configurations. Ci denotes constraints on the configurations, part of them or their
sub trees. The style of rules presented here is inspired by Gentzen or tableaux calculus rules and is often
used in the context of type system formalization [41]. Whenever t is matched in the current configu-
ration, t can be replaced by t ′. The rules are applied until no rule is applicable anymore resulting in a

1Indeed it is deterministic, but the difference is not relevant at the moment.
2It corresponds loosely to what will later on be introduced as “aggregated acceptance path in the derivation tree”.
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sequence of configurations. If it is possible that more than one rules is applicable on one configuration
(which is usually the case), a tree of possible configurations exists with sequences of configurations as
paths through the tree.

The use of rules to express the acceptance procedure with finite automata is not common, yet useful
to introduce the rule formalism, that will be used throughout this deliverable in different places.

Rules for Acceptance Procedure based on the Finite Tree Automata A given tree t is member of
a language L(A) for an automaton A = (Q,Σ,QF ,∆), if there is a derivation of configurations based on
the following rules with at least one closed branch of the derivation tree.

q ∈ QF
t ∈ T (Σ)

q(t)
(ROOT)

The first rule states, that the given tree t is accepted, when a configuration is derivable such that t
is accepted with a final state q ∈ QF . A branch of configuration derivations is successfully closed. At
least one successfully closed branch is necessary to prove membership of a given tree in the language
represented by the given automaton.

ui ∈ T (Σ)
f ∈ Σn

f (q1(X1), . . . ,qn(Xn))→ q( f (X1, . . . ,Xn)) ∈ ∆

q,q1, . . . ,qn ∈ Q
f (q1(u1), . . . ,qn(un))

q( f (u1, . . . ,un))
(REC)

The Rec rule relates two configurations, if the tree contains a (sub)tree matching the left hand side
of a transition in ∆. The (sub)tree is then replaced by the sub-tree on the right side of the transition rule
with all variables (e.g. Xi) substituted with the bindings of the left hand side. The only difference in the
two configurations is the annotation of nodes with states. This is due to the nature of the transitions—left
and right hand side are identical except of the change of intermediate state labeled branch parts.

Example 6.2
Given the tree f (g(a,b),c,g(c)) and the example automaton A presented above, the following derivation
justifies the recognition of the tree as an instance of the language represented by A:
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Aggregated Acceptance Path of the Derivation Tree Given a path of rule applications that proves the
membership of a tree in the language of the corresponding automaton, the aggregated acceptance path
is the tree resulting, when aggregating all the configurations of the path to one configuration such that
all state annotations interlaced with the path are part of this configuration. This artificial configuration
gives the information, which node was accepted with which transition. The transition can then be seen
as some sort of type annotation for the nodes of the tree. Later on (see chapter 8), for type checking
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Xcerpt, this is used to deduce the types of nodes, as the transitions are shown to be related to grammar
rules and therefore to grammar non terminal symbols which in turn represent types or type names.

ε-rules It is possible to extend the non-deterministic regular tree automata with ε-rules. Those are
rules of the form q→ q′. Yet ε-rules are convenient in some cases (e.g. for construction of an automaton
based on some regular expression like formalism as shown in 6.3), they do not enhance or restrict the
expressiveness of non-deterministic regular tree automata.3

deterministic finite tree automata Another common variant of non-deterministic finite tree automata
are deterministic finite tree automata. A tree automaton A = (Q,Σ,Q f ,∆) is deterministic (DFTA) if
there are no two rules with the same left-hand side (and no ε-rules). Many text book approaches of
standard operations on automata like intersection and union require deterministic automata. It is always
possible to get a deterministic automaton of a non deterministic one, yet the resulting automaton may
be of exponential size with respect to the input.

6.1.1 Handling Ranked Trees

For XML and any ordered Semistructured data model, using regular tree automata for ranked trees is
not possible without modification, as the data models are indeed unranked. A common way to handle
unranked trees with tree automata is to map the unranked trees to ranked counterparts. A way to achieve
this, is to lift tree nodes to a view, where nodes are represented e.g. by a node/3 item with the label as
one child4 of node/3, the first child of the unranked tree as second child of node/3 and the following
sibling—if present—of the current node in the context of its parent node as third child of node/3. As
node/3 is always of arity 3, it is necessary to provide an additional node type denoting the end of a
branch, e.g. the end of a list of siblings or an empty child list—this node will be called eob/0 for end of
branch.

Example 6.3
The unranked tree f [a,b[d],c] is mapped to the ranked counterpart

node( f ,node(a,eob,node(b,node(d,eob,eob),node(c,eob,eob))),eob)

A corresponding automaton has to recognize the ranked transcription of unranked trees the regular
way.

3For an equivalence proof see [22], page 20.
4A label l is mapped to a node l/0 in the ranked mapping.
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Example 6.4
An automaton accepting the former example could for example be:

A = { {q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11}
, {node/3,a/0,b/0,c/0,eob/0}
, {q11}
, { node(q3(X),q6(Y ),q6(Z))→ q7(node(X ,Y,Z))

, a→ q1(a)
, b→ q2(b)
, c→ q3(c)
, d→ q4(d)
, f → q5( f )
, eob→ q6(eob)
, node(q4(X),q6(Y ),q6(Z))→ q8(node(X ,Y,Z))
, node(q2(X),q8(Y ),q7(Z))→ q9(node(X ,Y,Z))
, node(q1(X),q6(Y ),q9(Z))→ q10(node(X ,Y,Z))
, node(q5(X),q10(Y ),q6(Z))→ q11(node(X ,Y,Z)) }

}

6.2 An Automaton Model for Unranked Regular Rooted Graph
Languages

In this section an automaton model for R2G2 is the introduced. As R2G2 models languages of unranked
trees, handling of unranked ordered trees is essential for the automaton model sought of.

As the class of tree grammars in use can be captured solely using automata operating on unranked
tree transcriptions of ranked ones, it is useful to introduce an automaton model solely coping with such
kind of languages. A new hyper graph based formalism is introduced. This formalism has proved
useful for didactic purpose along this deliverable as well as easy to implement. All methods involving
data handling (e.g. validation or typing) with automata are formulated directly on the unranked data
formalism. For this reason, the automata are considered to be automata for unranked tree, opposed to
automata for ranked trees as presented in [22].

6.2.1 Labelled Directed Hyper Graphs as Non-Deterministic Regular Tree
Automata

In the spirit of non deterministic tree automata (for ranked trees) as briefly introduced in section 6.1,
a hyper graph based automaton approach is presented now. The main difference is the treatment of
unranked trees or graphs in the style of XML abstract syntax trees over ranked trees in the style of
classical logical terms with symbols of fixed arity. The main difference in formalisation is the use of
(hyper) graph edges as transitions instead of term transitions as presented in section 6.1 and widely used
in [22].
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Definition 6.2 (Labelled Directed Hyper Graphs as Non-Det. Regular Tree Automata)
A non-deterministic regular tree automaton M is a 5-tuple (Q,∆,F,R,Σ) with label alphabet Σ, states Q,
final states F where F ⊆Q, transitions ∆ where ∆ ⊆ (Q×Σ×Q×Q) ∪ (Q×Q) (regular transitions are
of the domain Q×Σ×Q×Q and ε-transitions are of the domain Q×Q) and a set of root transitions R
with R⊆ ∆.5 A transition (s,e)∈ ∆ will be called an “ε-transition” from now on, where s is called “start
state” of the transition and e is called its “end state”. A transition (s, l,c,e) ∈ ∆ is a non-ε-transition,
where s is called “start state”, e is called “end state”, l is called the “label” of the transition and c is
called the “content start state”. The transition may be traversed partly, or in one dimension, where a
traversal along the component from s to e is called “horizontal transition step” and from s to c “depth
transition step”.

The hyper graph automata introduce ε-edges as commonly used for (string, not tree) finite automata,
as e.g. presented in [44] and [26]. They do not raise the expressiveness of the automaton model, they
are just more convenient for automata construction based on regular expressions. Algorithms for ε-edge
removal exist, as shown in [44] and [26].

Definition 6.3 (Projection of hyper graph components)
For an automaton A = (Q,∆,F,R,Σ) projection of the components is defined as QA = Q, ∆A = ∆, FA = F ,
RA = R and ΣA = Σ. The union of two automata A1 and A2 is defined as the pairwise union of its
components, e.g. A1∪A2 = (QA1∪QA2 ,∆A1∪∆A2 ,FA1∪FA2 ,RA1∪RA2 ,ΣA1∪ΣA2). The difference of two
automata is defined in a similar way, yet consistency of all transitions must be retained, e.g. all states and
symbols involved in transitions are defined in Q, respectively Σ. Useful functions for the construction
of automata are the addition and subtraction of transitions to (or from) an automaton defined as follows:
A1 + τ = A2 such that τ = (s, l,c,e) and A1 ∪ ({s,c,e},{τ},{},{},{l}) = A2 , A1− τ = A2 such that
τ = (s, l,c,e) and A1 \ ({s,c,e},{τ},{},{},{l}) = A2.

For the sake of concreteness an example automaton for the following grammar G is presented:
The language generated by the grammar

element A → a[ (B,B)+ ];
element B → b[ A∗ ];

is accepted by the following automaton

Comparing Hyper Graph Automata and Ranked Tree Automata Applied to Unranked Data Tran-
scription The hyper graph automaton model is a special notation for fixed arity tree automata where
fixed arity nodes of arity 3 are matched—one position represents the label of the matched unranked
node, one for the content list of this node and one for the following sibling node in the content list in
which this node is contained. This is reflected in the hyper edges of arity 4 relating (1) the start state of
the transition, (2) the label, (3) the start state of the child list and (4) the start state of the list of following
siblings. The advantage of this approach is the arguably less bulky notation, as the node abstraction is
not explicit. The disadvantage is the need to redefine many operations already available for ranked tree
automata to hyper graph automata. From a practical point of view the hyper graphs are arguably well
suited as automata models for type checking on Xcerpt.

5Usually we need just one root transition, but for technical reasons it is convenient to have a set of root transitions.
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A = ( { 0,1,2,3,4,5},
{ (0,a,2,1),

(2,b,5,3),
(3,b,5,4),
(4,2),
(5,a,2,5)},

{ 4,5},
(0,a,2,1),

{ a,b})
4
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2
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a

a

b
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Figure 6.1: An example hypergraph automaton in a typical textual representation on the left and with
graphical representation on the right.

Deterministic vs. Non-Deterministic Automata It is possible to restrict tree automata to determin-
istic tree automata—deterministic tree automata have always exactly one matching transition from a
given left hand side to a new state along a given node label, while non-deterministic automata may
have more than one matching transition. The decision procedure for membership test is simpler using
deterministic automata, as all possible derivations (e.g. paths of a decision tree) lead to a successfully
closed branch. If no derivation rule is applicable any more, the data tree is not member of the language
represented by the deterministic automaton. With non-deterministic automata, it is still possible, that
earlier in the derivation tree another decision (e.g. another choice of a transition) leads to a success-
fully closed branch. A deterministic algorithm checking membership using non-deterministic automata
has therefore to retract choices in dead ends of the derivation tree, if further derivations are possible
and membership has not been proved at that moment. The property of not having to retract derivation
choices is called confluence. The decision procedure for membership test on deterministic automata is
a confluent system.

While deterministic automata are favorable for membership testing, their creation from regular ex-
pressions may be of exponential complexity. Generation of non-deterministic finite automata based on
regular expression as language specification can be done in polynomial time.6 As R2G2 uses regular
expressions to specify content models, the translation of R2G2 to deterministic finite automata may be
of exponential complexity.

Fortunately, all necessary operations for type checking, e.g. intersection, emptiness test, subset test,
can be implemented in polynomial complexity directly on non-deterministic automata. This will be
shown along this chapter when introduced.

6.2.2 Membership Test for a Tree using Hyper Graph Automata

An algorithm able to test membership of unranked trees in a language represented by a hyper graph
based automaton is presented. In contrast to the standard approach for ranked tree as shown in [22] and
introduced earlier, this algorithm is able to operate directly on the unranked tree model without prior
transcription of data instances to a ranked tree representation. Calculus rules are used to explain the
algorithm in a non-deterministic way. Rules are of the following shape:

6With respect to the size of the regular expression.
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C1
...

Cn
e1 : a1 en : an

e : a
(EXAMPLE)

Ci denote constraints on e, a, ei, ai and e, ei are trees or content lists of trees, i.e. sequences of trees
that all share the same parent node. By a, ai either states or transitions of an automaton are denoted.
An expression e : a will also be called a configuration of the automaton. The rules relate configurations
of automata. Two different kinds of configuration exist: (1) configurations of shape t : τ where t is a
tree and τ is a transition, (2) or [t1, . . . , tn] : S where [t1, . . . , tn] is a list of trees and S is a state of the
automaton.

τ ∈ RA
(s, l,c,e) = τ

se ∈ FA
t : τ

(ROOT)

The ROOT rule matches the root of the data tree, if there is a transition in the set of root transitions
from which on a whole derivation tree can be found.

c ∈ FA

[ ] : c
(END)

The END rule accepts an empty list, if the configuration involves an empty list and a state of the set
of final states.

τ ∈ ∆A
τ = (s, l,c,e)
[t1, . . . , tn] : c
l[t1, . . . , tn] : τ

(NODE)

n≥ 1
τ ∈ ∆A

τ = (s, l,c,e)
t1 : τ [t2, · · · , tn] : e

[t1, t2, . . . , tn] : s
(LIST)

In a successful derivation, applications of the NODE and the LIST rule are interwoven and all
branches end with an application of the END rule while the root of the derivation tree is an application
of the ROOT rule. A tree without possible derivation is not valid with respect to the given automaton,
multiple derivations may exist.
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Example of a Tree Recognition using a Hyper Graph Automaton Given the tree a[b[],b[a[b[],b[]]]]
and the automaton A as presented in the former example (example 6.1, the following derivation is a
possible recognition:
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Operational Semantics of The Recognition Rules The rules presented above give an abstract de-
scription of a recognition algorithm. Neither the control flow nor decision in case of ambiguity are
captured by the rules. It is possible, that an automaton can recognize a data tree using different deriva-
tions, a concrete algorithm should be designed to either choose one of those derivations, maybe driven
by other parameters.

Exemplary, a simple algorithm choosing one rule is sketched now:
Algorithm 6.2.1: MEMBERSHIPTEST(A = (Q,Σ,∆,S,F),e : a,ρ)

comment: ρ denotes the set of rules

comment: e denotes either a tree or a list of trees

comment: either a ∈ Q or a ∈ ∆

comment: To check a tree t, call MEMBERSHIPTEST(A,t:s,R) with s ∈ S

for

C1
...

Cm
e1 : a1 en : an

eρ :aρ
∈ R

do



if C1∧·· ·∧Cm = true

then


if MEMBERSHIPTEST(A,e1 : a1,ρ) = true
∧·· ·∧
MEMBERSHIPTEST(A,en : an,ρ) = true

then return (true)
return ( f alse)

An Upper Bound Complexity for Membership Test of Tree Shaped Data Various ways of docu-
ment validation with automata have been proposed in “Tree Automata Techniques and Applications”
[22]. Easily adaptable to the presented approach is the non-deterministic bottom-up approach. The up-
per complexity is polynomial in the number of nodes and the number of states. Applied to the former
algorithm this can be explained as follows:

1. On each node, there may be at most all rules to apply, each with all states or edges (depending
on the rule—some apply to states other to edges) to be checked. The number of rules is constant
(there are 4 rules), the number of edges is linear in the size of the grammar, as shown in section
6.3.

2. A naive, top down, approach could easily result in a combinatorial search, yielding exponential
complexity. A bottom-up approach is an easy way to overcome that:

(a) Each child node is reached up in a recursive application in all possible typing. Note, that
reaching up in the recursive application corresponds to reaching

• the typed sequence of nodes to it’s parent node in applications of the NODE typing rule,
• the typed sequence of following siblings to it’s direct preceding sibling in the applica-

tions of the LIST typing rule.
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(b) Only the typed contributions, that can contribute to successful typing in a given recursion are
kept, at the same time, if they occur in different successful typing in the given recursion, they
can be reused without recalculating them—their validity is independent on their context.

3. When checking a node and a type (state or transition), this type may have to be checked against
all types returned by the recursive calls (at most two of them exist—one for the following sibling
and one for the content model). As a typed node may at most have as many types as edges exist,
this step is quadratic in the number of edges.

4. Hence, as consequence of (1), each node at most has ‘number of edges’ types, and as consequence
of (2), it is not necessary to calculate the possible types of a node more than once. As consequence
of (3) each node takes at most quadratic time in the computation—this gives us a polynomial
complexity in the order of O(N ×M2) where N is the size of the tree (or the number of
nodes) and M is the size of the automaton (or the number of edges as an upper bound).

6.2.3 Recognition of a Rooted Graph using Hyper Graph Automata

The recognition of rooted graphs is defined in analogy to the recognition of trees—a rooted graph is
recognized by an automaton, if it is in the language accepted by this automaton. There is a certain
correlation of the acceptance of a word by an automaton with the recognition of equality of two words:
for each word, it is easy to obtain an automaton such that exactly this word is accepted. Therefore, this
automaton provides a way to decide about equality of two words. The most precise way to judge about
equality of two graphs is graph isomorphism. The decision procedure for graph isomorphism has expo-
nential complexity. Assuming, that we base a recognition procedure for graphs on graph isomorphism—
a graph is accepted, if it is isomorphic to a graph in the language accepted by the automaton—then the
while process has to have exponential complexity, as otherwise the graph isomorphism itself would have
sub exponential complexity (e.g. it could be reformulated by means of graph recognition)

A weaker kind of membership relation between graphs will be chosen: the simulation relation—a
graph is accepted by an automaton, if there is an instance in the language accepted by the automaton
that simulates the graph.

A simulation preorder is a relation between [graphs] associating systems which behave
in the same way in the sense that one system simulates the other. Intuitively, a system
simulates another system if it can match all of its moves.7

A first advantage of using the simulation preorder as base of the membership test in the recognition
procedure is, that the decision procedure can be achieved in polynomial time. Second advantage, Xcerpt
is based on a non standard unification called simulation unification, which itself is based on simulation
preorder. In [43] (especially see section 4.4 “Query Evaluation: Ground Query Term Simulation” in
[43]) the simulation preorder on so called ground query terms—of which data trees and graphs are a
subset—is presented including also complexity results. Ground Xcerpt query term simulation has been
shown to be a useful relation between trees or graphs. Arguably simulation preorder reflects well a
notion of “expected result” for many applications of querying Web and Semantic Web data.

(Possibly Infinite) Tree Representations of Graphs As the recognition procedure is defined for trees
so far, it is arguably useful to base the handling of graph shaped data on tree recognition. Note, that trees
are a special kind of graphs, so trivially those graphs are already handled. For directed, acyclic graphs it

7From http://en.wikipedia.org/wiki/Simulation_preorder.

105

http://en.wikipedia.org/wiki/Simulation_preorder


is always possible to find a spanning, finite tree, where nodes accessible from one node chosen as a root
using different paths are duplicated in the tree representation. In general, a graph can be spanned by
different trees, capturing different possible graph traversals. As the root in a rooted graph is fixed, there
is only one possible such spanning tree. Cyclic graphs can conceptually be represented using infinite
trees where infinite always means finite in breadth (a node in a finite graph can only have finite many
successors, so can the corresponding node in the tree) and branches of infinite depth for cycles.

By applying the tree approach for recognition on acyclic graphs, an algorithm is achieved that possi-
bly checks the same nodes multiple times, but that always terminates. It is possible, that the same node
is checked multiple times using different or the same automata transitions. Arguably it is reasonable to
remember acceptance results of nodes with corresponding transitions, as not only the testing of validity
of a certain node in a context can be omitted, but also the testing of all child nodes can be skipped. The
process of remembering earlier calculations in this state is called memoization.

By applying the tree approach to cyclic graphs, the recognition process gets stuck in non termination.
However, the explained extension of memoization guarantees termination. This is due to the fact, that
any data tree node can in worst case only be tested against finite many transitions of the automaton, as
the automata are finite.

An Algorithm for the Recognition of Rooted Graphs The former algorithm for tree recognition
is now extended by memoization to recognize rooted directed graphs. A graph is recognized by an
automaton A, if it is simulated by a graph in the language L(A). The set of rules will not be affected by
this change, but the algorithm for the application of the rules on a given data tree. This emphasizes the
declarative nature of the rules and the fact, that conceptually trees and graphs are handled in a similar
way:

Algorithm 6.2.2: MEMBERSHIPTEST(A = (Q,Σ,∆,S,F),e : a,ρ)

global memo
comment: ρ denotes the set of rules

comment: e denotes either a graph node or an adjacency list of graph nodes

comment: either a ∈ Q or a ∈ ∆

comment: To check a graph t call MEMBERSHIPTEST(A,t:s,R); s ∈ S and memo = {}
if e : a 7→ b ∈ memo

then return (b)

else



memo← memo∪{e : a 7→ true}

for

C1
...

Cm
e1 : a1 en : an

eρ :aρ
∈ ρ



if C1∧·· ·∧Cm = true

then


if MEMBERSHIPTEST(A,e1 : a1,ρ) = true
∧·· ·∧
MEMBERSHIPTEST(A,en : an,ρ) = true

then return (true)
memo← memo\{e : a 7→ true}
memo← memo∪{e : a 7→ f alse}
return ( f alse)
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An Upper Bound Complexity for Membership Test of Graph Shaped Data So, the membership
test for graph shaped data presented here is an extension of the membership test for tree shaped data—
the result of the validation of nodes is memorized and used to end validation of cyclic structures. The
complexity of the membership test of a node in a graph shaped document is hence the same as the
complexity of a node validation for tree shaped data (see the end of section 6.2) plus the costs for mem-
orizing the each nodes validation result. If the data structure used to represent nodes has the ability to
store meta data of the validation process, the overhead is constant, hence complexity of graph validation
based on simulation has the same complexity as validation of tree shaped data. If, as in the pseudo
code example above, a look-up table is used for memorization, the factor for updating and reading the
look-up table has to be added to the cost of the validation of a node. However, a hash table can provide
this with logarithmic (over the number of nodes in the data graph) overhead, hence the cost of graph
validation with look-up table based memorization is the same as the costs for tree shaped data (section
6.2)—polynomial in the size of the data graph.

6.3 A Calculus Relating Automata and R2G2

Yet the presented automaton model is well suited as execution model for recognition of trees and graphs
on regular rooted graph languages, it is not convenient as language definition formalism for the end user
of applications of such problems—e.g. for document schema authors and programmers. XML Schema,
DTD, Relax NG and R2G2 are arguably appropriate formalisms for this task.

The following set of rules describe an algorithm for the generation of an automaton, as formerly
introduced, for a given R2G2 instance. The rules are strictly defined along the structure of the R2G2
syntax, hence an implementation could be a recursive descend function along the abstract syntax tree of
an R2G2 instance. Adapting the algorithm to Relax NG or DTD as input languages is not difficult—the
rules have to be adapted to the abstract syntax components of those languages. Adapting the algorithm
to XML Schema as input language requires some additional processing doe to object oriented modelling
features, but application to the tree grammar based core of XML Schema is comparable to the translation
of R2G2.

The rules have a local aspect, in that they are driven by the abstract syntax tree and there is no
context sensitive property affecting the applicability of the rules. Additionally to the local behaviour of
the rules with respect to the abstract syntax tree, two global environments are altered and queried by
the algorithm: the automaton, constructed while processing the abstract syntax tree, accepting exactly
the language generated by the grammar at the end and a relation relating type names of the grammar to
labels and start states of the automata parts implementing the content model of the given type name. In
implementation of the rules, it is possible to split the context sensitive processing (look up of automaton
components for type name definitions) and the context free processing (i.e. the recursive descend along
the abstract syntax tree of the R2G2 definitions) in different phases.

The rules have the following general structure:

∆A
∆L

t1 7→ (i1,o1) · · · tn 7→ (in,on)
T (t1, . . . , tn) 7→ (i,o)

(EXAMPLE)

By T (t1, . . . , tn) a term of the structure of the R2G2 syntax definition is denoted, ti are its sub-terms.
The rules hence relate the necessary automata construction operations with the automata construction
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operations of its sub-terms. Rule applications are functional, mapping to a tuple of states, denoted by
(i,o),(ii,oi). Some states in the tuples above the line may occur in the tuple below the line, but the tuples
above the lines, i.e. the tuples of the applications of the sub-terms ti are independent from each other.
In the situations, where the states are irrelevant, the tuple ε is used. An implementation may return any
tuple of states or nothing here (i.e. null values).

By ∆A, a condition on the automaton A is denoted. This may imply editing the automaton in an
implementation. The conditions are always of the form A′ ⊆ A—there are always positive expressions
about components of the automaton, never negative ones, hence a concrete implementation of the al-
gorithm in an imperative programming language can implement the condition as an addition of the
components of A′ to the components of A.

By ∆L querying or altering the global environment L is denoted. L⊆ N×Σ×S is a ternary relation
between non terminals as found in the R2G2 instance, symbols or term labels, and automata states.

As type names on the right hand side of an R2G2 rule may be used, even if their declaration (i.e.
the rule with that type name on the left hand side) is still pending, more than one pass over the abstract
syntax tree of the R2G2 instance is necessary in an implementation of the algorithm. The rule based
abstraction of the algorithm neglects the necessity of multiple passes.

({},{},{(s, l,c,e)},{e},{})⊆ A
L(Nr) = (?, lr,cr,?)

ρ j = element N j → l[· · · ]
A | ρ1 7→ (i1,o1) · · · A | ρn 7→ (in,on)

A | ρ1, · · · ,ρn,root =Nr 7→ (?,?)
(GRAMMAR)

The automata construction rule for grammars describe the relationship between the results of au-
tomata construction rule applications for all R2G2 rules in a given grammar. The result state tuple of
application of this rule has no meaning and is hence undefined. An implementation may safely return
e.g. null-values or any dummy tuple here. The result state tuples of the automata construction algorithm
applied to the rules (which neither have use or meaning, as it will be shown in automata construction rule
for R2G2 rules) are not considered for any construction and can hence be ignored. Apart of recursively
applying automata construction to all rules, the root declarations are treated in the grammar case.

({s,e},{l},{(s, l,sre,e)},{},{ere})⊆ A
L(N) = (l,sre)

A | re 7→ (sre,ere)
A | element N→ l[ re ] 7→ (s?,e?)

(RULE)

An application of the automata construction rule to an R2G2 rule results intentionally in a meaning-
less state tuple, which is no problem, as the tuple is not used—recall, that these rule application may
only occur in the context of a grammar rule application ignoring the result state tuple nevertheless. The
look-up table or global environment L relates the given type name on the left hand side of the R2G2 rule
to the label of the type term on the right hand side and to the start state of the automaton part realizing
the content model of the right hand side type term. For an application of the automaton construction
rule to an R2G2 rule the automaton contains an edge (s, l,sre,e), two states not introduced elsewhere, s
and e and the state ere can be declared as final state.

({s,e},{l},{(s, l,sre,e)},{},{ere})⊆ A
A | re 7→ (sre,ere)
A | l[ re ] 7→ (s,e)

(TYPETERM)
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The type term automata construction rule is similar to the previously introduced “Rule” rule, except
that the look-up table is not involved, as a type term by itself is not associated to a non terminal or type
name. Recall, that type terms may occur at the right hand side of a rule, as well as as child terms of type
terms—the first case is caught by applications if the “Rule” rule, the second case by applications of the
“Type term” rule. The result tuple consists of two new states.

({s,e},{},{(s, l,c,e)},{},{})⊆ A
L(N) = (l,c)

A | N 7→ (s,e)
(TYPENAME)

The “Typename” rule is applicable to type names occurring in type terms. For each such type name,
the label and content model start state introduced by the corresponding application of the “Rule” rule is
being used to construct an edge from a new state s to a new state e. The new states form the result tuple
of the rule application.

({},{},{(ere1 ,sre2)},{},{})⊆ A
A | re1 7→ (sre1 ,ere1) A | re2 7→ (sre2 ,ere2)

A | re1,re2 7→ (sre1 ,ere2)
(RESEQ)

The automaton construction for a sequence of two regular expressions (recursively of arbitrary many
expressions) is being handled by a “ReSeq” rule application. The result tuples of the automaton con-
struction rules applications to the two regular expressions to be sequenced are used to (1) return a result
tuple consisting of the first state of the first expression’s tuple and the last state of the second expression’s
tuple, and (2) to tie the two automata parts of the two expressions together using an ε-edge.

All the automata construction rules for regular expressions are similar—the result of automata con-
struction of sub-expressions is being connected in some way using ε-edges, sometimes not involving
new states. The explanation of the rules will be presented in a graphical way from now on—in this
visualisation, the automaton part being constructed is represented as a diamond shaped polygon, sub
automata as well and contained inside of the bounds of the automaton. The first state of the tuple is
being depicted as a black circle, the second as a little black square. ε-edges are depicted by dotted
arrows. The text in the graphics has mere documentary character.

({s,e},{},{(s,sre1),(s,sre2),(ere1 ,e),(ere2 ,e)},{},{})⊆ A
A | re1 7→ (sre1 ,ere1) A | re2 7→ (sre2 ,ere2)

A | re1|re2 7→ (s,e)
(REDISJ)

({},{},{(sre,ere)},{},{})⊆ A
A | re 7→ (sre,ere)
A | re? 7→ (sre,ere)

(REOPT)

({},{},{(ere,sre)},{},{})⊆ A
A | re 7→ (sre,ere)

A | re+ 7→ (sre,ere)
(REPLUS)
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({},{},{(sre,ere),(ere,sre)},{},{})⊆ A
A | re 7→ (sre,ere)
A | re∗ 7→ (sre,ere)

(REKLEENE)

An Upper Bound Complexity for The Non-Deterministic Automaton Generated out of an R2G2Instance
The cost of constructing an automaton out of a grammar is polynomial in the size of the grammar, the
size of the resulting automaton, given in the number of edges, is in the order of O(N) for N as the size
of the grammar (i.e. abstract syntax items of the parsed grammar), the time complexity is O(N) as well.
To reason about the complexity, it is good to evaluate the cost of each automaton generation rule. The
total cost is then the sum of all generation rule applications, as each rule application consumes a part of
the input grammar, no backtracking is needed (as the choice of the applicable rule is unambiguous).

ReDisj A disjunction of two regular expressions adds the cost of four ε-edges to the cost of the transla-
tion of the two regular expressions. It can be assumed, that construction of the edge has constant
complexity.

ReOpt An optional regular expression adds the cost of one ε-edges to the cost of the translation of the
regular expression.

RePlus A plus-adorned regular expression adds the cost of one ε-edges to the cost of the translation of
the regular expression.

ReKleene A Kleene-star-adorned regular expression adds the cost of one ε-edges to the cost of the
translation of the regular expression.

ReSeq Sequencing two regular expressions adds no cost to the cost of the two regular expressions.

Typename Translating a type name to an automaton component costs as much as the construction of
an ε-edge. Looking up the target of the edge in the look-up table can be assumed to be able in
logarithmic time with respect to the number of type names in an appropriate data structure, like
e.g. a hash table.

Typeterm Translating a type term corresponds to the construction of an edge. It can be assumed, that
construction of the edge has constant complexity, which adds up to the translation of the regular
expression for the content model.

Rule A rule constructs no new content, but has to alter the look-up table—again, in an appropriate data
structure, this can be assumed to be able in logarithmic time with respect to the number of type
names, which adds up to the translation of the right hand side type term.

Grammar Translating a grammar into an automaton costs as much as adding up the costs of the trans-
lation of all rules.

6.4 Some Set Theoretic Computations on Hyper Graph Au-
tomata

For the purpose of static type checking, it is necessary to analyse some set properties on languages,
namely (1) emptiness of a language, (2) the subset property between two languages and to (3) calculate
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the intersection of two languages.

6.4.1 The Emptiness Test

The emptiness test finds out, if for an automaton, there may be any data instance accepted by this
automaton, if therefore the language accepted by the automaton is non empty. For an automaton to
accept finite trees, it is obviously necessary to find paths along the hyper edges ending in final states.
For infinite trees or graphs containing loops, this property can be relaxed, as such data instances can
be accepted by loops without final state in the automaton. Automata constructed from R2G2 definitions
arguably always accept non empty languages for three reasons: (1) As they have a root transition by
definition (based on the mandatory root declaration). (2) Along the breadth axis of the automata there
is always either an end state at the end of each path or the path is a loop containing an end state. This
is due to the fact, that the last state constructed by regular expression decomposition is always an end
state, or a looping ε-edge is added to an end state terminated path to express repetition. (3) Along the
depth axis there is either an end state due to empty content, or a transition to a state representing another
grammar rule. This state again is part of a non empty breadth axis and either of a final state terminated
depth axis or of a depth axis recursively fulfilling reason 3. A depth axis loop without final state can
therefore only accept infinite trees or graphs containing an appropriate loop.

Nevertheless, automata representing only empty languages exist in practise: intersection of two
automata can lead to an automaton accepting only empty languages, e.g. by construction of an automa-
ton without start transition or by construction of an automaton with root transitions with all outgoing
edges ending only in branches without loops and final states. Detection of automata representing empty
languages is important for type checking.

An algorithm for detection of emptiness for a given automaton is sketched now:
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Algorithm 6.4.1: ISEMPTY(A = (Q,Σ,∆,S,F))

memoisation←create a lookup table of truth values with index over Q
comment: memoisation is defined in each call of ISEMPTY().

procedure RECURSIVETRANSITIONTEST(δ = (s, l,c,e))
return (DEPTHTEST(c)∧BREADTHTEST(e))

procedure RECURSIVETRANSITIONTEST(δ = (s,e))
return (BREADTHTEST(e))comment: handling of ε-transitions.

procedure BREADTHTEST(v)
if v ∈ memoisation

then return (memoisation[v])
memoisation[v]← true
for (v, l,c,e) ∈ ∆

do


if RECURSIVETRANSITIONTEST((v, l,c,e)) = f alse

then

memoisation[v]← f alse
return ( f alse)
exit

return (true)

procedure DEPTHTEST(v)
if v ∈ memoisation

then return (memoisation[v])
memoisation[v]← f alse
for (v, l,c,e) ∈ ∆

do


if RECURSIVETRANSITIONTEST((v, l,c,e)) = f alse

then

memoisation[v]← f alse
return ( f alse)
exit

memoisation[v]← true
return (true)

main
for δ ∈ S

do

if RECURSIVETRANSITIONTEST(δ ) = f alse

then
{

return ( f alse)
exit

return (true)

An Upper Bound Complexity for the Emptiness Test The complexity of the emptiness test is linear
in the size of the automaton. This is given by the fact, that the graph structure of the automaton is
traversed to check if the paths in depth and breadth are closed. When graph traversal comes to a state
already visited, the memoization stops the recursion at the (apparently cyclic) branch and returns the
value of the last computation at this state. Hence, no edge is traversed twice. The Cost for the look-
up of the memoized states is logarithmic in the size of the automaton, but if the states are extended
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with some mean of annotation of the traversal, the look-up can be replaced by a constant check of the
annotation.

6.4.2 Intersection of Regular Rooted Graph Automata

Calculating the intersection of two regular languages is a common exercise in text books about theoret-
ical computer science and automata theory and it is also of high practical use. Given e.g. two language
definitions for two versions of a data format, the intersection reflects a kind of conservative transitional
data format providing guaranteed backward and forward compatibility. In type checking of the Xcerpt
query language, non empty intersection can play an important role for checking selection constructs:
given a query with multiple occurrences of the same variable, the occurrences may have different types.
If the types have empty intersection, no data exists conforming the type constraint of the variables,
therefore the selection may never select any valid data with respect to the types and is therefore arguably
useless. Note, that different type annotations may either occur due to a query programmers annotation
or due to type inference. Checking consistency of such concurrent type annotations in Xcerpt query
terms can also be handled using an emptiness test for the type intersection.

Intersection of Regular (String) Languages Using DFAs The presented approach is a classical text
book approach as found in [26] and [44]. It serves as introduction to a technique of calculating intersec-
tion and will be modified to non-deterministic and then to regular graph automata.

It is easily possible to construct the intersection of L1 and L2, if union and complement are de-
fined, as generally L1 ∩ L2 = L1∪L2 holds. A direct construction is presented, as neither union, nor
complement is presented by now, and is not strictly necessary for type checking of Xcerpt later on. A
direct construction is achieved by simulating parallel execution of the two deterministic finite automata
representing L1 and L2. This corresponds to the construction of the product automaton:

Let deterministic automata be defined as 5-tuples (Q,Σ,∆,s,F) with Q as the states of the automaton,
Σ as the alphabet of the corresponding language, s the start state and F ⊆ Q as the final states. The
transitions ∆ ( Q×Σ×Q are defined such that for every v ∈ Q and for every l ∈ Σ there is a transition
(v, l,v′) ∈ ∆ and no other transition (v, l,v′′) ∈ ∆ with v′,v′′ ∈ Q and v′ 6= v′′.

For L1 accepted by A1 = (Q1,Σ1,∆1,s1,F1) and L2 accepted by A2 = (Q2,Σ2,∆2,s2,F2), the intersec-
tion L1∩L2 is accepted by A∩=(Q1×Q2 , Σ1∩Σ2 , ∆∩ , (s1,s2) , F1×F2) where ∆∩((p, p′),a,(q,q′))=
(∆1(p,a,q),∆2(p′,a,q′)).

See Figure 6.2 for an example on how to get a product of two automata.
An algorithm for the construction of an automaton A∩ = (Q∩,Σ∩,∆∩,s∩,F∩) from two automata

A1 = (Q1,Σ1,∆1,s1,F1) and A2 = (Q2,Σ2,∆2,s2,F2) is presented now:
Algorithm 6.4.2: INTERSECTIONDFA(A1,A2)

Σ∩← Σ1∩Σ2
s∩← (s1,s2)
Q∩← Q1×Q2
F∩←{(v1,v2) ∈ Q∩ | v1 ∈ F1∧ v2 ∈ F2}
for (v1, l,v′1) ∈ ∆1

do
{

for (v2, l,v′2) ∈ ∆2
do

{
∆∩← ((v1,v2), l,(v′1,v

′
2))
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Figure 6.2: The product automaton on the right accepts the intersection of the language of the two
automata on the left.

Extending the Approach to Non-Deterministic Finite Automata The presented approach has the
drawback to require deterministic automata, that may have exponential size of a corresponding non-
deterministic automaton. The automaton model focused on in this deliverable are usually non-deterministic
ones. Fortunately, the approach can be extended to non-deterministic automata without exponential
blowup in time or space.

The difference between deterministic and non-deterministic automata in a nutshell is (1) non-deterministic
automata may have spontaneous state transitions along so called ε-edges without consumption of an in-
put symbol, and (2) while each symbol in Σ has exactly one outgoing transition from each state in
deterministic automata, any number of such edges may occur in the non-deterministic case.

Let non-deterministic automata be defined as 5-tuples (Q,Σ,∆,s,F) with Q as the states of the
automaton, Σ as the alphabet of the corresponding language, s the start state and F ⊆ Q as the final
states. The transitions are defined as ∆⊆ ((Q×Σ×Q)∪∆ε) with ∆ε ⊆ (Q×Q).

To simulate the parallel execution of two automata in a product automaton with an epsilon transition
(a,e) in one automaton, it is necessary to provide an epsilon edge for any product state (a,v) to the cor-
responding state (e,v). This reflects the possibility of a spontaneous transition every time the automaton
with a ∈ Q is in state a, independent of the state of the other automaton.

To handle the arbitrary amount of edges with one label from a state, no further change is necessary,
as the deterministic algorithm already relates all edges of one automaton with all edges of the other one,
as long as the transition labels match. In the deterministic case, by definition only one edge per state
and label exists, therefore the same algorithm behaves as defined for the deterministic case.

An algorithm for the construction of an automaton A∩=(Q∩,Σ∩,∆∩,s∩,F∩) from two non-deterministic
automata A1 = (Q1,Σ1,∆1,s1,F1) and A2 = (Q2,Σ2,∆2,s2,F2) is presented now:
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Algorithm 6.4.3: INTERSECTIONNFA(A1,A2)

Σ∩← Σ1∩Σ2
s∩← (s1,s2)
Q∩← Q1×Q2
F∩←{(v1,v2) ∈ Q∩ | v1 ∈ F1∧ v2 ∈ F2}
for (v1, l,v′1) ∈ ∆1

do
{

for (v2, l,v′2) ∈ ∆2
do ∆∩← ∆∩{((v1,v2), l,(v′1,v

′
2))}

for (v1,v′1) ∈ ∆1

do
{

for v2 ∈ Q2
do ∆∩← ∆∩∪{((v1,v2),(v′1,v2))}

for (v2,v′2) ∈ ∆1

do
{

for v1 ∈ Q1
do ∆∩← ∆∩∪{((v1,v2),(v1,v2))}

Extending the Approach to Graph Automata The main difference of string- and graph automata is
the shape of the transitions—triples for string automata and quadruples for graph automata. Fortunately,
the calculation of an automaton accepting the language intersection of two automata, is easily derivable
from the string automaton case. Informally, the only difference is the handling of the third state.

Algorithm 6.4.4: INTERSECTIONNDFTA(A1,A2)

Σ∩← Σ1∩Σ2
let (a1, l1,c1,e1) = s1
let (a2, l2,c2,e2) = s2
s∩← ((a1,a2), l,(c1,c2),(e1,e2))
Q∩← Q1×Q2
F∩←{(v1,v2) ∈ Q∩ | v1 ∈ F1∧ v2 ∈ F2}
for (va1 , l,vc1 ,ve1) ∈ ∆1

do
{

for (va2 , l,vc2 ,ve2) ∈ ∆2
do ∆∩← ∆∩{((va1 ,va2), l,(vc1 ,vc2),(ve1 ,ve2))}

for (v1,v′1) ∈ ∆1

do
{

for v2 ∈ Q2
do ∆∩← ∆∩∪{((v1,v2),(v′1,v2))}

for (v2,v′2) ∈ ∆1

do
{

for v1 ∈ Q1
do ∆∩← ∆∩∪{((v1,v2),(v1,v2))}

Figure 6.3 illustrates the cross product of two automata. The automata accept the languages defined
by the grammar (for the upper left automaton)

root A;
element A = a[ A* ];

and the grammar (for the lower left automaton)
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root A;
element A = a[ A|B ];
element B = b[ ];

The resulting automaton accepts the language represented for example by the grammar

root A;
element A = a[ A ];

The resulting intersection automaton contains some unreachable states and transitions, that could
easily be removed using some minimization algorithm or simply by applying a reachability algorithm.
As this is not essential to the tractability of type checking later on, automata minimization will not be
considered.

An Upper Bound Complexity for Intersection of two NDFTA The complexity of calculating the
intersection corresponds to calculating the cross product of the two automata A1 and A2. For M = |A1|
and N = |A2| as the sizes of the automata (e.g. the number of edges), this gives a time and memory
complexity in the order of O(M×N).

6.4.3 Automata Based Subset Test for two Regular Rooted Graph Lan-
guages

Given a regular language, testing if it is a subset of another regular language, is an important task e.g. in
type checking. If e.g. it is possible to infer the type of a variable used in the output or construction part
of a query (maybe the type is implied by a selection), this variable is well typed with respect to a given
type, if the inferred type is a subtype of the type given by the programmer.

Another very practical use case is schema checking for special document schemata: if one wants to
make a schema for HTML documents of a certain shape, e.g. a web page supporting the corporates look
and feel by using certain navigation elements, testing that this schema represents a subset of HTML is
desirable.

The approach for subset testing presented here is based on the simulation preorder between two
automata. A simulation preorder is a relation between state transition systems associating systems
which behave in the same way in the sense that one system simulates the other. Formally, given a state
transition system with states S, a simulation preorder is a binary relation R⊆ S×S such that if (p,q)∈R,
then for each transition p a→ p′ there is a transition q a→ q′ such that (p′,q′) ∈ R.

For string language automata (DFA’s or NFA’s) A1 and A2, simulation preorder is specialised in such
a way, that A1 and A2 are in simulation preorder—written A1 � A2 later on— if each initial state of
A1 simulates in an initial state of A2 and for each final state of A1 there is a final state in A2 in which it
simulates. For automata defined as A = (S,T,F,s0,Σ) where S is the set of states, T ⊆ S×Σ×S is the set
of transitions, s0 ∈ S is the start state and F ⊆ S is the set of final states, the definition of the simulation
preorder over label equality can be written as:

A1 � A2 iff ∀(s, l,e) ∈ TA1∃(s′, l′,e′) ∈ TA2 .(s, l,e)� (s′, l′,e′)
(s, l,e)� (s′, l′,e′) iff l = l′ ∧

∀(e, l,e) ∈ TA1∃(e′, l
′
,e′) ∈ TA2 .(e, l,e)� (e′, l′,e′)

Extending the definition of automata simulation to graph automata simulation is strait forward: the
recursive � condition is tested along both dimensions of the hyper edges as used in the tree automata:
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Figure 6.3: The product automaton on the right accepts the intersection of the graph language of the two
automata on the left.
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A1 � A2 ⇒ ∀(s, l,c,e) ∈ TA1∃(s′, l′,c′,e′) ∈ TA2 .(s, l,c,e)� (s′, l′,c′,e′)
(s, l,c,e)� (s′, l′,c′,e′) ⇒ l = l′ ∧

∀(e, l,c,e) ∈ TA1∃(e′, l
′
,c′,e′) ∈ TA2 .(c, l,c,e)� (c′, l′,c′,e′) ∧

∀(e,
→
l ,
→
c ,
→
e ) ∈ TA1∃(e′,

→
l
′
,
→
c
′
,
→
e
′
) ∈ TA2 .(e,

→
l ,
→
c ,
→
e )� (e′,

→
l
′
,
→
c
′
,
→
e
′
)

6.4.3.1 An Algorithm for Subset Graph on Tree Automata

As a sketch for implementation and for complexity analysis of the presented simulation relation on tree
automata, the following algorithm is proposed. The algorithm is applied to two automata A1 and A2:

• a two dimensional matrix of truth values of size |TA1 |× |TA1 | is initialized in such a way, that for
each transition pair (τ1,τ2) ∈ TA1 ×TA1 the corresponding field in the matrix is true, if the labels
of τ1 and τ2 are identical and f alse otherwise.

• set each matrix field with value true to f alse, if ((s1, l,c1,e1),(s2, l,c2,e2)) is the corresponding
transition pair and either s1, c1 or e1 is a final state but not the corresponding s2, c2 or e2.

• modify the matrix until a fix point is reached by

– set each matrix field with value true in the matrix with corresponding transition pair ((s1, l,c1,e1),(s2, l,c2,e2))

to f alse, if for any transition τ1 = (e1,
→
l ,
→
c1,
→
e1) in A1 there is no corresponding transition

τ2 = (e2,
→
l ,
→
c2,
→
e2) in A2 such that the field (τ1,τ2) in the matrix is true.

– set each true field in the matrix with corresponding transition pair
((s1, l,c1,e1),(s2, l,c2,e2)) to f alse, if for any transition τ1 = (c1, l,c1,e1) in A1 there is no
corresponding transition τ2 = (c2, l,c2,e2) in A2 such that the field (τ1,τ2) in the matrix is
true.

• If for any transition τ1 ∈ A1 there is no corresponding transition τ2 ∈ A2 such that (τ1,τ2) in the
matrix is true, then the language accepted by A1 is not a subset of the language accepted by A2.

Example 6.5
The condition A1 ⊆ A2 is to be tested using the presented algorithm.

A run of the algorithm is visualized with a table representing the matrix. The edges of A1 are used
as column labels and the edges of A2 as row labels. Final states are emphasized using a bold font. The
cells contain a series of ones (1) and zeros (0) representing the truth values true and f alse a field has
in various stages of the computation. Note, that if a 0 occurs in the cell, the 0 is the ultimate value of
this cell, as the algorithm only changes true values, in case of conflicts, to f alse values. 4 states of
computations are represented, so either a cell contains 1,1,1,1 and is thereby true, or it contains less
entries where the last state is 0, e.g. 1,1,0. The stages represented are:

1. after performing the label check,

2. after checking, that final states in transitions of A1 fall on final states of corresponding transitions
of A2

3. first iteration of checking following transitions in both dimensions (two cells changed truth value)

118



A2 = ( { 1,2,3,4,5,6,7,8,9},
{ (1,a,3,2),

(3,a,3,4),
(4,a,3,6),
(6,b,6,7),
(7,c,8,9),
(6,b,5,6),
(5,a,3,6),
(3,a,3,6)},

{ 2,6,8,9},
(1,a,3,2),

{ a,b,c})

A1 = ( { 10,11,12,13,14,15},
{ (10,a,12,11),

(12,a,12,14),
(14,b,15,14),
(15,a,12,13)},

{ 11,13,14},
(10,a,12,11),

{ a,b})

Figure 6.4: Two automata used to demonstrate the sub-language test.

Figure 6.5: Visual representation of the two automata in example 6.4
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4. second (and last) iteration of checking following transitions in both dimensions (no cells changed
truth value)

↓ A2 A1→ (10,a,12,11) (12,a,12,14) (14,b,15,14) (15,a,12,13)
(1,a,3,2) 1,1,1,1 1,1,0 0 1,1,1,1
(3,a,3,4) 1,0 1,0 0 1,0
(4,a,3,6) 1,1,1,1 1,1,1,1 0 1,1,1,1
(6,b,7,6) 0 0 1,1,0 0
(7,c,8,9) 0 0 0 0
(6,b,5,6) 0 0 1,1,1,1 0
(5,a,3,6) 1,1,1,1 1,1,1,1 0 1,1,1,1
(3,a,3,6) 1,1,1,1 1,1,1,1 0 1,1,1,1

After the last iteration, the columns are checked for consistency, i.e. each column should contain
at least one true cell, so a table cell with 1,1,1,1. As this is the case, A1 is an automaton accepting a
sub-language of the language represented by A2.

An Upper Bound Complexity for Subset Test The presented algorithm shows, that the subset test has
an upper bound of polynomial time and space complexity. The space complexity is determined by the
matrix that is of the size of the product of the number of transitions of both automata, i.e. O(|∆1|×|∆2|).
The time complexity is the sum of initializing the matrix (including label test and final state condition)
and the iterative refinement of the matrix. The refinement process must terminate, as either no change
is made to the matrix and then the refinement is over, or at least one cell changes truth value from true
to f alse. Truth values are never altered from f alse to true again. Assuming the worst case, that on each
iteration process just one cell is altered, we need |∆1|×|∆2| iterations, each iteration has a complexity of
O(|∆1|× |∆2|). The final step is the consistency check of the columns, which also takes O(|∆1|× |∆2|)
time. The total costs therefore are O( (k+(|∆1|×|∆2|))×(|∆1|×|∆2|) ) with k as factor for initialisation
cost and consistency check of one cell.
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Chapter 7

A Model for Regular Languages of
Multisets

The analysis of sets of multisets in the framework of language theory as introduced by Chomsky has
first been considered in [40]. In this work Rohit J. Parink analyses properties of context free languages
when order of the symbols of words is ignored. He concludes that, under irrelevance of symbol order,
regular and context free languages are of same expressiveness, i.e. for each context free language, there
is a regular language representing the same language modulo order.

The analysis of multisets, or unordered sequences, is an important topic in the context of this deliv-
erable, as R2G2 has been conceived to model graph shaped data with ordered sequences and unordered
multisets of sibling nodes, usually as children of a parent node. The languages without symbol order
analyzed by Rohit J. Parikh are exactly the class of languages used by R2G2 for modelling multisets
of nodes. Moreover, the language class in question is general enough to capture existing models of
unordered node sequences, as e.g. modelled in XML Schema.

7.1 Introduction to Multisets and Multiset Languages

7.1.1 Multisets

A multiset is a set, container or bag in which multiple occurrences of the same value may occur. This
differs from the usual set in the possibility of multiplicity of the same values.

Definition 7.1 (Syntax of Multisets)
In the following, a multiset M will be denoted in the usual set notation, as M = {v1, . . . ,vn} with vi ∈ Σ

where Σ is the set of defined values for M, and vi and v j with i 6= j can be the same element in Σ. Σ has
(by now) to be a finite set of symbols.

• {} is a multiset

• if { content } is a multiset and v is a valid defined value, then { v,content } is a multiset.

Hence, M ∈
⋃

i∈N Σi.
Note, that M¬ ⊆ Σ, as M is not a set, the subset relation is not even well typed here. This is due to

the fact, that there may be i 6= j such that vi = v j for vi,v j ∈M.
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As multisets do not impose an order on their elements, two multisets with different notation accord-
ing to the syntax may be considered equivalent. As an example, the multiset {v1,v2,v1} is the same as
the multiset {v2,v1,v1}. This can be defined by interpreting the multiset member separator (in this case
the comma) as an associative commutative function.

Definition 7.2 (Semantics of Multisets)
• { v,content } = { content,v }

• { v1,(v2,content) } = { (v1,v2),content }

An important property is the multiplicity of the symbols of Σ in a given multiset. The Parikh Map-
ping, see section 7.2, defines this multiplicity.

7.1.2 Multiset Languages

A multiset language is a set of multisets, hence the multiset language L over Σ is L ∈
⋃

i∈N Σi. What was
called “set of defined values” in the definition of multisets is often called vocabulary in linguistics or
symbols in language theory.

A language of multisets may be finite or infinite, hence a finite notation for languages of multisets
is necessary to formalize them.

7.1.2.1 Existing Approaches to Formalize Multiset Languages

Different approaches have been proposed to formalize sets of multisets, among them so called multi-
plicity lists [17], L-formulae [39] and so called counting constraints [67].

Definition 7.3 (Multiplicity Lists)
A multiplicity list is a regular type expression of the form s1(n1 : m1) · · ·sk(nk : mk) where k ≥ 0 and
s1, . . . ,sk are distinct symbols. By ni the minimum and by mi the maximum number of occurrences is
expressed.

A problem of the interval notation is, that it is not possible to express gaps in the multiplicity of the
occurrence of a symbol. It is e.g. not possible to express, that the multiplicity of a symbol should be
at least n and at most m but not p with n < p < m. Further, it is e.g. not possible to express, that the
multiplicity of the symbols should be an odd or an even number or a multiple of a given factor.

Definition 7.4 (L≥-Formulae)
A L≥-Formulae is an expression ϕ of the shape

ϕ ::= true| f alse|a = i|a≥ i|¬ϕ|ϕ ∨ϕ a ∈ Σ, i ∈ N

and the language of varphi is L(ϕ)) = {w|w |= ϕ} with w |= a = i iff the multiplicity of w is i,
w |= a≥ i iff the multiplicity of w is greater or equal i, w |= ¬ϕ iff not w |= ϕ , w |= ϕ1∨ϕ1 iff w |= ϕ1
or w |= ϕ2, never w |= f alse and always w |= true.

L≥-Formulae are closed under union, intersection and complement.
Compared to multiplicity lists, L≥-Formulae are more expressive, as they allow the expression of

gaps in symbol multiplicity intervals. However, gaps have to be expressed, there is no abstraction over
the concept of the gap. If e.g. odd multiplicity has to be expressed, it is needed to declare a gap of one
after each valid symbol. Such multiplicities are commonly expressed e.g. using regular expressions, in
the case of odd multiplicity for the symbol s, the regular expression s,(s,s)∗ can be used to express it.
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Definition 7.5 (Counting Constraints (a.k.a. Presburger Constraints))
A counting constraint is a formula ϕ of the shape:

ϕ,ψ ::= (Exp1 = Exp2)|¬ϕ|ϕ ∨ψ|∃N.ϕExpi ::= n|N|Exp1 +Exp2

where n is a natural number, N is natural number variable. Later on, ϕ(N1, . . . ,Nm) will denote the
counting constraint with the free variables N1, . . . ,Nm. Counting constraints are decidable, i.e. for every
ϕ(N1, . . . ,Nm) it is decidable, if there exists ni for all free variable such that ϕ(n1, . . . ,nm) is true.

In contrast to L≥-Formulae, counting constraints are able to express repeating interval/gap multi-
plicities by the use of variables and sums for multiplicities. As an insight, consider the odd multiplicity
of a symbol—let the multiplicity of that symbol be S, then S = 1+N +N∧N ≥ 0 for N and S as natural
numbers expresses the fact, that S is an odd number.

Yet counting constraints are decidable, the deciding complexity in general is high [27]. In practice
it turned out, that many efficient approaches based on heuristics exist [28], making type checking using
counting constraints feasible.

7.1.2.2 Motivating a new Approach

Type and schema declarations for XML based languages are usually based on regular expressions, con-
tent models are ordered sequences of elements. For unordered content usually, as introduced earlier in
this section, different formalisms are used. The new approach suggested in this deliverable is to use
regular expressions with unordered semantics as multiset language formalism. This releases the user
from the burden to learn different formalisms for ordered and unordered content. Further, it gives rise
to a simple treatment of ordered types under unordered queries as presented now:

Often, when querying, and sometimes when modelling, the order is irrelevant. When querying
XML using XPath it is generally possible to query data based on the sequential order (using the so
called following, preceding, following-sibling and preceding-sibling axis), but in many
applications the order of the elements is ignored, especially when querying database like documents.
In Xcerpt, explicitly ordered or unordered query patterns are used to query documents. An unordered
query can be considered to have a type with unordered content specification, which itself is a language
of multisets. This is motivated by the fact, that it is arguably reasonable to interpret the type of a query
as the type representing all data instances that can be queried by the query term under the assumption of
a given type or schema for the queried data. If no type or schema is given for the queried data, the most
general type may safely be assumed. The type of a query is a subset of the type of the queried data.
When a query has multiple occurrences of the same variable, it gets necessary to calculate the variable
intersection to infer the type of a query, as shown in section 8.3.2. When constructing unordered content,
e.g. in Xcerpt, out of queries to ordered typed data, it is easy construct content that is of a type that is
the unordered interpretation of an ordered content model. As an example consider the following Xcerpt
rule:

CONSTRUCT
unorderedData{ all var C }

FROM
orderedData[[ var C ]]

END

To infer the type of the result of of that rule, it is necessary to give an unordered interpretation of
the type of the content queried by the query pattern orderedData[[ var C ]]. Unfortunately, such
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a type may not be represented precisely using multiplicity lists or L≥-Formulae. As an example, think
of a regular content of the shape (C,C)∗ which models a content with an even number of elements of
type C. An unordered interpretation of such a type should arguably reflect the even multiplicity of it’s
C-typed members. Neither L≥-Formulae nor multiplicity lists allow this. With counting constraints or
Presburger arithmetic, the desired set of multisets can be expressed.

R2G2 uses regular expressions with unordered interpretation to model unordered content models.
For the operational semantics, counting constraints or Presburger arithmetic formulae, very much in
the spirit of Scheaves automata [67], are used. The main difference to Scheaves automata and Scheaves
logic lies on the surface—unordered content models in R2G2 are not specified using a special formalism,
but with regular expressions.

7.2 Counting Constraints

Languages of Multisets A language of multisets over (finite) alphabet Σ is defined as a (possibly
infinite) set of finite multisets over alphabet Σ.

Parikh Mapping For a word w of a finite alphabet Σ with m symbols (i.e. |Σ| = m), the Parikh
Mapping #(w) = (n1, . . . ,nm) is a vector, where ni denotes the number of occurrences of the i‘s symbol
of Σ (as Σ is finite, it is enumerable, it is hence sensible to talk of a symbol at position i) in the word w.
For example, for Σ = {a,b,c,d} and w = “cabba”, the Parikh mapping #(w) = (2,2,1,0). A language
of multisets can also be defined as a set of vectors as returned by the Parikh mapping.

Counting Constraint A counting constraint is a formula ϕ of the shape:

ϕ,ψ ::= (Exp1 = Exp2)|¬ϕ|ϕ ∨ψ|∃N.ϕ

Expi ::= n|N|Exp1 +Exp2

where n is a natural number, N is natural number variable. ϕ(N1, . . . ,Nm) denotes the count-
ing constraint with the free variables N1, . . . ,Nm. Counting constraints are decidable, i.e. for every
ϕ(N1, . . . ,Nm) it is decidable, if there exists ni for all free variable such that ϕ(n1, . . . ,nm) is true.

For a language L of multisets over Σ, a counting constraint ϕ with free variables for every symbol
in Σ can be used to test membership of a word (or multiset) using the Parikh mapping: w ∈ L, when

#(w) = (n1, . . . ,n|Σ|)∧ϕ(n1, . . . ,n|Σ|)

The expression can be understood as follows: #(w) yields a Parikh mapping, which is the multiplicity
of each symbol of the language in the given word w. The given multiplicity is related to variables
(n1, . . . ,n|Σ|), one for each symbol of the set of symbols of the language. The word w is in the language
modelled by ϕ , if instantiating the variables (i.e. ϕ(n1, . . . ,n|Σ|) ) according to the Parikh mapping
holds.

Defining Languages of Multisets with Regular Expressions Given a regular expression r, L({r})
is defined as the language of multisets for r such that, for a word w there exists a permutation w′ ∈ P(w)
such that w′ ∈ L(r) (w′ is in the regular (string) language L(r)).
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7.3 A Calculus for Translation of Regular Expressions to Count-
ing Constraints

For a given regular expression, it is possible to derive a counting constraint, such that the counting
constraint accepts exactly the language of multisets defined by (the permutation of) all words accepted
by the regular expression.

As an example, consider the regular expression (A,B)*,C : The language of multisets defined by
this regular expression is the set of all multisets with the same amount of As and Bs and exactly one C
for e.g. an alphabet Σ = {A,B,C}. A counting constraint for this language could be

∃A∃B∃C . A = B∧C = 1

The following set of rules describes non deterministically a simple algorithm for the translation of
regular expressions interpreted as definitions of languages of multisets to counting constraints. The reg-
ular expression is given in curly braces (i.e. {re}) in accordance to the notation in R2G2 and for technical
reasons to distinguish the root of the abstract syntax tree of (recursively defined) regular expressions.
The domain of the rules is Γ,N / re 7→C where N is a natural number variable or a natural number to be
used in the counting constraint, re is the regular expression, C is the, maybe partially specified, counting
constraint, and Γ is a mapping of symbols as used in the regular expression to sets of natural number
variables. To ease the formal handling in the rules, the mapping Γ is used as a set of equations, where
the equations have the symbol on the left hand side and the set of natural number variables as the sum
on the right hand side. The role of N is a bit unconventional, as it is not a variable for a natural number,
it is a meta-variable for either a natural number (indeed, only the number 1 occurs) or for a natural
number variable. It is hence sometimes needed to construct a natural number variable—fortunately only
new variables are needed, they are constructed using the symbol Nnew. The rules relate one expression
of the domain above the line with many expressions of the domain below the line, where usually the
expressions below the line are decompositions of the expression above the line.

For a regular expression with the atoms (or symbols) a1, . . . ,am, the general scheme of the resulting
counting constraint is

ϕ(Xa1 , . . . ,Xam)
::=

∃Y11 , . . . ,Y1p , . . . ,Ym1 , . . . ,Ymq .
Xa1 = Y11 + · · ·+Y1p ∧ . . .∧Xam = Ym1 + · · ·+Ymp

∧ϕ(. . . ,Yi j , . . .)

The variables Xai are then bound to all the variables in the mapping Γ for the symbol ai. This is
formalized in the root rule (the last in the following set of rules), applied to the regular expression, the
resulting counting constraint represents the language of multisets defined by the regular expression.

Atoms (or symbols) in regular expressions are at the leaf level of the rule based constraint construc-
tion. Indeed, the rule based construction spans a tree structure equally shaped to the abstract syntax
tree of the regular expression, as there is exactly one rule for the decomposition of one abstract syntax
tree node. So, when an atom occurs, the multiplicity of this symbol, represented by the natural number
meta-variable N, has to be propagated to the mapping Γ, which is to be used in the end at root level.

(a,{. . . ,N, . . .}) ∈ Γ

Γ,N / a 7→ /0
(ATOM)
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For a sequence of two regular expressions, the multiplicity of the current context is passed to the two
components, the partial constraints of the two parts are connected using a conjunction, the resulting
mappings of the two regular part-expressions are also merged. This reflects the fact, that the multiplicity
of the regular expression rs implies that the expression parts r and s have to occur also in the same
multiplicity in a valid multiset.

Γr ∪Γs,N / rs 7→Cr ∧Cs

Γr,N / r 7→Cr Γs,N / s 7→Cs
(SEQ)

For a disjunctive regular expression it’s multiplicity has to be divided between the two options. This
is reflected by the sum N = M + P, where N is the multiplicity of the disjunction, and M and P are the
multiplicity of the two components of the disjunction. The sum is a new part of the counting constraint.
Note, that M and P are both new variables constructed using the Nnew constructor.

Γr ∪Γs,N / r|s 7→Cr ∧Cs∧N = M +P
Γr,M = Nnew / r 7→Cr Γs,P = Nnew / s 7→Cs

(DISJ)

For an optional regular expression occurring N times, the optional sub-expression can at most also
occur N times. This is expressed using a new multiplicity variable M for the sub expression and the
inequality M ≤ N.

Γ,N / r? 7→C∧M ≤ N
Γ,M = Nnew / r 7→C

(OPT)

The Kleene star is a bit tricky: the sub regular expression r could be repeated arbitrary often. It’s
multiplicity is independent of the multiplicity of r∗, the sub expression hence gets a new multiplicity
variable. On the other hand, if r∗ does not occur at all in the valid word, then the sub expression r cannot
occur neither. This is reflected by the new constraint part ¬(N = 0∧M 6= N)—if N is 0 then M is also
0, otherwise anything for M and N is OK.

Γ,N / r∗ 7→C∧¬(N = 0∧M 6= N)
Γ,M = Nnew / r 7→C

(KLEENE)

The regular expression plus construct has, like the Kleene star, also to consider the two cases, that
either the whole expression r+ does not occur at all in the valid word, or that it occurs. If it does not
occur, then the part expression neither occurs, otherwise the sub expression at least occurs as often as
the expression.

Γ,N / r+ 7→C∧ ((N > 0∧M ≥ N)∨ (N = 0∧M = 0))
Γ,M = Nnew / r 7→C

(PLUS)

The root of a regular expression—more precisely of it’s abstract syntax tree—is used to finalize the
constraint by adding the information of the symbol mapping.

The multiplicity meta-variable is set to one, as a valid word with respect to the regular expression
fully fits exactly once in the regular expression.
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The mapping Γ is used in the previous rules to capture from all the variable expressions the mul-
tiplicities relating them to the corresponding symbol itself. The mapping set gets new members in the
Atom rule and possibly alters the members in the sequence and disjunction rule (whenever two occur-
rences of the same symbol are represented in two mappings to be merged, the member becomes the sum
of the two occurrences).

In the root rule the members of the mapping are now interpreted as sums (as which they syntacti-
cally occur), and are all added as conjunction to the constraint. All (free) right hand side variables are
existentially bound, the symbols from the mapping (on the left hand side of the mapping equations) are
now interpreted as variables for the multiplicity of their corresponding symbol, they are the only free
variables of the constraint. Every binding of the free variables which yields a solution of the constraint,
gives the Parikh mapping of multisets in the language modelled by the constraint.

{},1 / {r} 7→ ∃ . . . ,Ni j , . . . .C∧a1 = N11 + · · ·+N1p ∧·· ·∧am = Nm1 + · · ·+Nmq

{a1 = N11 + · · ·+N1p , . . . ,am = Nm1 + · · ·+Nmq},1 / r 7→C
(REGEXPROOT)

7.3.1 Example of a Regular Expression Translated to a Counting Constraint

The calculus for translation of regular expressions to counting constraints will be applied to the follow-
ing example expression:

((a,b)∗,c)|(d,e?)

In words, this regular expression models a language of multisets with the following properties:

• the set either contains a c or a d.

• If there is no c in the set, then there is neither a b.

• Further, If there is no c (and hence there is a d) in the set, then there is at most one a contained in
the set.

• if there is no d (and hence there is a c), there are as many bs as as in the set.

Let’s see, what kind of counting constraint the calculus produces of the regular expression:

{},1/ ((a,b)∗,c)|(d,a?) 7→ ∃O∃P∃M∃N . a = O+P∧b = P∧ c = M∧d = N∧¬(M = 0∧M 6= P)∧0≤ N∧1 = M +N

{a = O+P,b = P,c = M,d = N},1/ ((a,b)∗,c)|(d,a?) 7→ ¬(M = 0∧M 6= P)∧0≤ N∧1 = M +N
{a = P,b = P,c = M},M/ ((a,b)∗,c) 7→ ¬(M = 0∧M 6= P)

{a = P,b = P},M/ (a,b)∗ 7→ ¬(M = 0∧M 6= P)
{a = P,b = P},P/ a,b 7→ /0

{a = P},P/ a 7→ /0 {b = P},P/ b 7→ /0 {c = M},M/ c 7→ /0

{a = O,d = N},N/ (d,a?) 7→ 0≤ N

{d = N},N/ d 7→ /0
{a = O},N/ a? 7→ 0≤ N
{a = O},O/ a 7→ /0

The counting constraint is the consequence above the top line

∃O∃P∃M∃N . a = O+P∧b = P∧ c = M∧d = N∧¬(M = 0∧M 6= P)∧0≤ N∧1 = M +N

and arguably fulfills our verbal requirement.
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7.4 Some Set Theoretic Computations on Counting Constraints

As for hyper graph automata, for the purpose of static type checking, it is necessary to analyse the same
set properties on languages modelled using counting constraints: (1) emptiness test, (2) computation of
language intersection, and (3) subset test.

Testing Emptiness of a Multiset Language defined by Counting Constraints Using Counting
Constraints it is possible to define empty languages due to unfulfillable constraints. The declaration
∃ : Aa&Bb : A = B∧A ≤ 1∧B ≥ 2) has unsatisfiable constraints and declares therefore an empty lan-
guage. Hence, the emptiness test for a language can be reduced to the satisfiability test of the counting
constraints. In the context of R2G2, the counting constraints generated as a regular expression never
models an empty language. nevertheless, in the context of type checking, empty languages may result
as intermediate step of the type checking process, i.e. the intersection1 of two languages defined using
Counting Constraints, hence the emptiness check is of practical relevance.

As solutions have to be in N (because the variables are defined variables in N—variables represent
multiplicities of symbols in the end, and non integer multiplicities of symbols make no sense), a lower
bound is always available for the variables (e.g 0 or given by a constraint n ≤ X). There is not neces-
sarily an upper bound for the solutions (note, that languages can be infinite sets of multisets), but as all
multisets are finite, there are always smallest ones (e.g. with the least amount of symbols). It is always
possible to predict an upper bound for the smallest word, such that if no solution is found within the
lower and the upper bound for all variables, the language must be empty. As a reason for this, consider,
that Presburger arithmetic formulas are decidable.

Given upper and lower bounds in N for all variables, finding a solution is a finite domain problem,
that always terminates. Unfortunately, the upper bound therefore is (u− l)|Vars| with |Vars| for the
number of variables, u as upper bound and l as lower bound. For all linear equation parts and for some
non linear ones, fortunately there exist solvers with polynomial complexity. Combining them with
search over the non tractable sub part of the problem possibly yields reasonable average case behaviour.

An evidence for a non empty set is given by the multiset that results when applying the solution to
the counting constraints of the tested language.

Membership Test with Counting Constraints The membership test finds out, if a multiset w is
contained in the set of multisets defined by the counting constraints C (the set of multisets may also be
called the language L(C)). The test can be achieved by instantiating the free variables of C with the
corresponding number of occurrences of the corresponding symbols in w.

The test can easily be expressed as a specialisation of the emptiness test: if a multiset w is in L(C),
there must be a solution, such that w = T under C. For w = am1

1 ⊕·· ·⊕amn
n and T = aM1

1 ⊕·· ·⊕aMn
n ,

therefore w = T is w = am1
1 ⊕ ·· · ⊕ amn

n = T = aM1
1 ⊕ ·· · ⊕ aMn

n which is to be interpreted as m1 =
M1∧ ·· ·∧mn = Mn. Solving w = T ∧C with the solver used for emptyness test, yields that w is a valid
multiset in L(M), if there is a solution.

Intersection of Languages declared using Counting Constraints The intersection of two Lan-
guages L(M1) and L(M2) is an extension of the membership test: The intersection of M1 = (T1,C1)
and M2 = (T2,C2) is the language, where T1 = T2 under C1 ∧C2. The problem can be reformulated as
C1∧C2∧M11 = M21 ∧·· ·∧M1n = M2n where Ti = Mi1 ⊕·· ·⊕Min .

1Intersection of two languages defined using Counting Constraints is introduced later
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Part III

Type Checking
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Chapter 8

Type Checking using Regular
Rooted Graphs as Data Paradigm

This chapter can be considered the core of this deliverable. After a brief introduction about types, pro-
gramming and query languages, a typing approach for Xcerpt based on the automaton model presented
of Chapter 6 (and hence based on R2G2) is presented.

8.1 Types and Query- and Programming Languages

In Programming and Query languages types are used to give an approximation of the values certain
components and constructs of the language can obtain. Usually this approximation is a super set of the
concrete values to which the constructs are evaluated during run time. One use of the approximations is
to provide specialized and appropriate memory representations for data instances. A dual use of those
approximations is to explain, find or prevent errors due to possibility or necessity of invalid values at
run time. Different approaches to the recognition of such errors exist:

1. The errors can be detected at run time by validating the data instances against the types.

2. The errors are detected before run time, e.g. at compile time by analysing the compatibility of the
types.

8.1.1 Dynamic Typing and Type Checking in Programming Languages

In dynamically typed languages the values have an associated type and the type correctness is checked at
run time. The type check is usually explicitly programmed in the core libraries and, if needed or wished,
implemented by the users of the given programming language in their own programs. The concept of
dynamic typing and dynamic type checking is mostly inspired by practise—the explicit type check is
easy to include in the run time system of a programming language and no static type system has to be
conceived for the programming language. Most common scripting languages like Perl, Python, Ruby,
etc. are conceived with the so called dynamic typing facilities. Hence, as well as static type checking,
dynamic typing can prevent type related system corruption in the sense, that operations boiling down
to predefined functions interacting with the system are checked for type correct application at run time.
This distinguishes dynamically typed languages from untyped languages.
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In contrast to statically typed languages, that prevent even execution of wrongly typed programs, the
error may occur relatively late, hence arguably along the execution line, prior or parent functions may
be considered to have been applied violating types without warning.

The use of static type systems usually hinder the application of some programming techniques,
that may be semantically well founded and intended by the programmer, but not well typed within the
framework of the type system. By example, most type systems have a notion of well typed lists or
arrays, if they contain just elements of one type. Nevertheless, it may be convenient to have mixed type
lists for some applications. With dynamic typing the restrictions of what can be programmed are usually
lower than with common wide spread statically typed programming languages, yet type errors can still
be discovered easier than with untyped languages.

8.1.2 Static Typing and Type Checking in Programming Languages

In statically typed languages the program fragments, e.g. the variables or the data constructors or the
function invocations, have an associated type and the type correctness can be checked prior to run time,
usually at compile time. Examples of statically typed programming languages are SML, Haskell and
many others.

A common approach in many programming languages is to deny the compilation of ill typed pro-
grams, where ill typed programs are such programs, where multiple occurrences of the same variable
have different types. The term different types is often, e.g. in object oriented languages, relaxed to
different types that are not in a subtype, i.e. subset, relationship.

If a program is not ill typed, it can be assured, that all function invocations are well typed, hence there
often no need for dynamic type checking at run time. The type information can hence be discarded at
run time, the run time system may be completely untyped yet program evaluation will not yield any type
errors. Hence a veteran of static type checking, Robin Milner states “Well-typed programs do not go
wrong” [37], many run time errors are still possible, e.g. hanging a program in an infinite loop, division
by zero and many more. A more appropriate exclamation (yet arguably not of practical relevance) about
typing has been stated by S. Kahrs: “Well-going programs can be typed” [32].

8.1.3 Combined Static and Dynamic Typing

Some programming languages provide reflection frameworks or meta programming, enabling a program
to reason about types, values and methods at run time. In Java e.g. the reflection API provides the ability
to invoke methods, read object attributes and the type name of an object by invoking reflection methods.
This makes it necessary to keep the type information of the objects at run time.Arguably, for late binding
[5], a common feature of most object oriented languages, the objects need to be annotated with their
type, as it is necessary to dispatch method invocations at run time according to the proper subtype an
object may have.

Combined statically and dynamically typed languages as Java, C++ and C-Sharp have in common
with statically typed programming languages, that ill typed programs are detected at compile time. With
dynamically typed languages they have in common, that at rum time the types of the values is checked
when late binding is necessary. The kind of check performed hence may never fail, it is a mere decision
process which concrete implementation of a method has to be called in the given context.

The advantage of late binding is higher extensibility of the code applying late binding, as further
object types unknown at implementation time of the code in question will be usable as long as they
fulfill the necessary interfaces. This advantage has not to be paid by sacrificing static type safeness, as
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the dynamic check may never fail at run time. The disadvantage of late binding is the higher overhead
at run time.

Further dynamic features as e.g. reflection mostly share the same advantages and disadvantages
as late binding—they are defined in a statically typed context, using statically typed abstractions of the
language features. In the context of the reflection, the invocation may fail, as any dynamic programming
may fail due to type errors at run time, but in the context of the hosting language, the failure is handled
in a type safe way—e.g. in Java with appropriate exceptions.

8.1.4 From Typed Programming languages to typed Query Languages

In database theory querying is often formalized in an abstract manner as algebra of selection, join, and
projection. [4] Less formally, querying—and hence a query language—is a composition of selecting
some instances of a set of given data, further combining or filtering of potential instances by joining
selections, and projecting intended parts of the selected data instances to result instances (maybe con-
structing new content for the result instances).

Types, as approximations of values, can be of potential use for error detection and prevention in
query languages as well as it is of use for programming languages. The use of types in this context can
also be decomposed as the principles of queries:

Selecting of some data instances of which a common type will be assumed has to be done in a way
compatible with the data’s type. A selection can hence be given a type. A common approach here
[63][29] is to consider the type of the selection construct to be a type representing all data instances that
the selection may select from the set of all possible data instances in the data formalism. A reasonable
information about a selection under the condition of a given data type for the queried data could hence
be “may this selection yield any result?”

Joining of different selections is often involved with sharing multiple occurrences of the same vari-
able, hence comparing somehow the values of selected instances of multiple selections. This may be
done e.g. using equivalence relations (for example “are there equivalent values in the selected instances
of two selections?”) or using any relation and operation on values (for example “is the sum of some
values greater than a given bound?”). The idea of typing variables, functions and operations in general
purpose programming languages for error detection or prevention is applicable in the same way here.

Projecting parts of the selected and ‘joined’ instances and construction of results yield new data
instances that form a set—the answer set—and hence a type. A typed query program could be annotated
with an intended result type, an ill typed query would hence be a query that may produce invalid results
with respect to the given result type.

A query language with the presented typing philosophy is of practical relevance. Assume e.g. a
query program in the context of a data warehouse: such queries tend to be long running processes due
to the sheer amount of data, yet the data warehouse schema is often fairly simple (compared to the data
complexity). If the query has an ill typed selection, it can quickly be rejected reducing development
costs. The type tests of joins may hint potential run tie problems, e.g. due to type incompatible function
application, it may further reduce queries that never yield results. As an example for the usefulness of
type checking of projections and constructions, assume e.g. a query producing an HTML document as
result: the intended result type could be given as HTML, a query that may produce invalid HTML would
hence be ill typed.
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8.2 Type Systems for Xcerpt

The query language Xcerpt exists as an untyped query language for the Web and the Semantic Web, yet
different approaches for extending Xcerpt with types have been proposed.

8.2.1 XcerptT—Descriptive Typing for Xcerpt

XcerptT [14] [65] is a type system for a substantial fragment of Xcerpt. The type system is called a
descriptive type system, i.e. a typing approximates the semantics of a program (in an untyped program-
ming language). This means finding an approximation of the semantics of the given program. The
“counterpart” of descriptive typing in typing terminology is prescriptive typing. In prescriptive typing
the types are usually defined aligned to the semantics of the language, type checking is then not related
to the language’s semantic anymore. In our case, for a given Xcerpt program and a type of data (i.e. the
set of data objects to which the program may be applied) the type system provides a type of the program
results (i.e. a super-set of the set of the program results). This is type inference; if a type of expected
results is given then type checking can be performed by checking if the obtained type of results is a
subset of the the given one.

The given types for results and for the data queried (and in the end also the internal representation
of types) is a regular tree language. It is also possible to use DTDs as type definitions.

Two different algorithms are presented in the in the context of XcerptT. The first one has polynomial
complexity and is based on a slight restriction of regular tree grammars called ‘Proper Type Definitions’.
Proper type definitions are regular tree grammars where there are not two distinct types in the regular
expression content models, that model elements with identical label. The second algorithm handles
arbitrary type definitions, but has exponential worst case complexity.

In contrast to the approach presented in this deliverable, the XcerptT approach always calculates the
types as precisely as possible with respect to the expressiveness of the given type declaration formalism
(i.e. proper type definitions or arbitrary regular tree grammars). The approach in this deliverable is to
use unrestricted type declaration formalisms and to retain acceptable complexity—atleast for ordered
queries and ordered type declarations1—by relaxing the type checking and inferences precision. An-
other difference of the type checking in XcerptT and this deliverable is the use of unordered content
models: the modelling approach for unordered content models in XcerptT is the co called multiplicity
list, as also presented in section 7.1.2.1. Multiplicity lists have been shown to be closed under inter-
section, which is arguably enough expressiveness for type checking in most situations, but they are
not closed under union, which is arguably desirable for schema languages, e.g. for the creation of new
schemata by uniting two given schemata.

8.2.2 Prescriptive typing: from CLP to Xcerpt

In the work of Francois Fages and Emmanuel Coquery [21], the adaption of a prescriptive type system
for Constraint Logic Programming (i.e. CLP) to Xcerpt is presented. The type system for CLP is based
on types with a sub-typing relation forming a lattice over the types with a most general type at the
top and an empty type at the bottom. As CLP is based on a normal term concept, where terms and
function symbols with a given label have fixed arity, the adaption to Xcerpt comprises an extension
for the treatment of semi structured data. So, opposed to typing of CLP programs, where language
constructs may be typed with one type along a path in the sub type relation lattice, language constructs

1For unordered type declarations the approach of type checking using R2G2 in this deliverable has exponential complexity.
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in Xcerpt may be typed with various types at the same time. This is the consequence of having repetition
constructs, optionality and disjunctions in type declarations based on regular tree grammars.

In contrast to the XcerptT of section 8.2.1 approach, this approach is able to treat whole programs
with rules and chaining of them, as this property has already been inherited from the CLP typing. The
specification of type checking in the adaption of CLP type checking to Xcerpt type checking is directly
based on decomposition of regular expressions. This distinguishes the work from the approach chosen
in this deliverable, where type checking is made based in an automaton model for ordered data and
queries. Unordered type declarations are not considered in the CLP to Xcerpt typing adaption, however
the problem itself is approached, as unordered query patterns can be type checked against )ordered) type
declarations, which is comparable. The solution of type checking of unordered queries is expressed in
the spirit of a declarative semantics of unordered types, where typing is valid, if there is an instance of
the type of which an arbitrary permutation can be matched by the query pattern.

8.2.3 Typing with R2G2—Differences to the Former Approaches

The R2G2–based typing approach for Xcerpt2 as presented in the remainder of this section, has similar-
ities as well as differences to the formerly presented two approaches.

A common feature of all approaches is relying on regular tree languages for ordered type dec-
larations. The typing algorithms however are expressed differently: while XcerpT and the prescriptive
typing of E. Coquery directly rely on the use of regular expressions and regular grammars, the approach
presented here is based on regular tree automata. Using directly grammars and regular expressions
in the formalization of type checking has the advantage of being simple and ‘inexpensive in formal
definitions’—no intermediate formalism that is not visible to the user is necessary. However, when it
comes to implementation, the automaton approach is arguably an advantage, as breadth and depth
are treated in similar ways—both are conceptually just traversal of transitions: The use of automata for
processing of the word problem is a standard method known to virtually any computer scientist and
many programmers, extending finite automata techniques to tree automata is a well known technique
and the use of the hyper graph based automata as presented in chapter 6 arguably makes the ‘knowledge
transition’ from words to trees rather smooth. When it comes to type checking, the approach presented
here is considered as an extension of the word problem, i.e. query language expressions are consid-
ered as words that are extended by constructs of incertitude, variables and incompleteness—hence type
checking is boiled down to a beefed-up word problem test with automata.

The treatment of unordered data models, as presented in chapter 7, is different in all three ap-
proaches: while XcerptT follows the simple and pragmatic approach of using multiplicity lists, the
prescriptive typing approach based on the adaption of CLP typing has no modelling support for un-
ordered data models and the approach presented here relies on unordered interpretations of regular
expressions. The use of multiplicity lists is computationally desirable, as membership test and relevant
set operations (i.e. subset test, intersection, emptiness test) can be obtained in polynomial time. The
downside, is the restricted expressiveness of the approach, some constraints on languages expressible
with regular expressions are not expressible using multiplicity lists, possibly forcing the user in practice
in using ordered data models where unordered models would be more appropriate. The use of unordered
interpretations of regular expressions pragmatically overcomes the modelling restrictions of multiplicity

2Note, that the typing approach for Xcerpt can easily be adapted to other Web query languages as e.g. XQuery—Web query
languages in general follow an approach of having selection, projection and construction. These features can also be found in
Xcerpt. Adaption to other query languages to the typing process could e.g. in the simplest form be achieved by seeing Xcerpt as
an intermediate language to which other query languages may be translated (Consider the work in [35] as an example of such a
translation.) and on which type checking is performed.

135



lists, however at a super-polynomial cost. In experiments the use of constraint solving techniques has
shown good results and always fast solutions of the relevant set operations, it has not been possible to
find regular expressions modelling problems to fall in the so called thick tail, the class of problems that
are indeed hard to solve with the given constraint solver.3

The approach presented in this deliverable extends the former approaches further on by a modelling
technique for graph shaped data and for serialisations of graph shaped data by means of spanning trees
and typed references. This feature leads indeed to almost no change in to the operational semantics of
validation or type checking—no more than cycle detection and type compatibility in the cyclic case is
needed. However it is considered to be a relevant extension of current schema languages, motivated by
the availability of typed references in general purpose programming languages.

8.2.4 The Syntax of R2G2 typed Xcerpt

A typed Xcerpt program is an Xcerpt program, where every language term may be typed. The “may”
implies, that any Xcerpt program of the current untyped syntax is also a valid program in typed Xcerpt
syntax. Programs hence to not have to be completely type annotated to benefit of many type based
services. The rational behind this is, that the programmer should not be forced into annotating all of
the program with type information, when he does not like to, types can be inferred out of partial type
annotation. A programmer may hence be willing to annotate the type of an input resource or of the
output resource, as he wants to ensure valid input or output.

8.2.4.1 Typed Data Terms

Apart of Xcerpt programs, data terms may be type annotated, hence they can be validated using the type
checking algorithm. Data terms are structurally the base of query and construct terms, hence of Xcerpt.

data-term := ( oid "@" )? ns-label list ( type-annotation )?
type-annotation := "ˆ ˆ" ( typename | type-disjunction )
type-disjunction := "(" ( typename | typeterm ) ( "|" ( typename | typeterm) )* ")"

ns-label := (ns-prefix ":")? label
ns-prefix := label | ’"’ iri ’"’

list := ordered-list | unordered-list
ordered-list := "[" data-subterms? "]"

unordered-list := "{" data-subterms? "}"
data-subterms := data-subterm ( "," data-subterm )*
data-subterm := data-term | ’"’ string ’"’ | number | "̂" oid

Consider example 8.1 for type declaration in R2G2 syntax along with the (totally) type annotated
data term:

In example 8.1 only type names are used for annotation. If e.g. the element of type City would
have been annotated with a type term, it would be as follows:
city[ "Munich"^^String ]^^(city[ String])

3A finite domain constraint solver from GNU Prolog has been used. Even if the problem is not a finite domain problem, there
is always either a solution within a finite bound or no solution, this is implied by the fact, that Presburger arithmetic formulae are
decidable. It is however an open question how to statically obtain the upper bound for the solution space. No further investigation
in this direction has been made along this deliverable, as solvers for Presburger arithmetic constraints exist, it may however be
research of interest for the finite domain solving community.
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type AddressBook=addresses{Address*};
type Address=addr{Name, Street,

Nr, ZIP?, City? };
type Name=name[String];
type Street=street[String ];
type City=city[String];
type Nr=nr[Integer];
type ZIP=zip-code[Integer];

addresses{
addr{
name[
"Sacha Berger"^^String

]^^Name,
street[
"Oettingen"^^String

]^^Street,
city[
"Munich"^^String

]^^City,
nr[ 68^^Integer ]^^Nr,
zip[ 80639^^Integer ]^^ZIP

}^^Address
}^^AddressBook

Figure 8.1: An example presenting a valid Xcerpt term with type annotation along with the correspond-
ing type annotation.

8.2.4.2 Typed Xcerpt Construct Terms

Xcerpt construct terms extend data terms by (1) variables, (2) grouping constructs (e.g. all) and (3)
default settings for optional parts.

Variables are type annotated as if they would be data terms. For variables occurring in the group-by
clause of the grouping constructs, the given type may be a primitive data type implementing order,
hence being informative to the ordering algorithm of the grouping of constructed results.

Grouping constructs like all or some are not type annotated, as they represent sequences of ele-
ments, and the type annotation is inherently conceived for elements. However, the contained term can
be annotated, as well as the variables occurring in the (optional) group-by clause.

Optional parts in Xcerpt construct terms denote parts, that are only to be constructed, if there are vari-
able bindings for the scoped optional variable. As optional may span sequences of terms, the optional
part is not type annotated, neither the (optional) with-default clause.

addresses[ all ( addr{ var N^^Name
, var C^^City
, optional (var Z^^ZIP)

with-default ( zip[0^^Integer]^^ZIP )
, var NR^^Nr
, var S^^Street }^^Address

) ordered-by (var N^^String)
]^^AddressBook

8.2.4.3 Typed Xcerpt Query Terms

Query terms arguably are extensions of Construct terms, in the sense that they have constructs for (1)
incertitude and (2) negation, they are restrictions of them, in the sense that they have no (1) grouping
constructs and no (2) with-default clause for variables tagged as optional variables.
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Incertitude in order or breadth s given in Xcerpt by different brace or bracket styles in terms, they
have no influence on type annotation of terms.

Incertitude in depth—the desc construct—is type annotated as a term. As it contains itself a term
and hence the type annotation lexically looks like a type annotation of a type annotation, the descendant
tagged term has to be set in parenthesis, if the descendant construct is to be typed. The query term
desc a[[]] e.g. may be used to query hyperlinks at arbitrary depth in an HTML document. For it’s
typed variant desc( a[[]]^^A)^^A the type A is considered to be the type of hyperlinks.

Negation in Xcerpt is expressed using the not or without constructs. Their type annotation paradigm
is the same as for the descendant construct.

Optional query parts may also span sequences and are hence not type annotated.

8.2.4.4 Typed Xcerpt Queries

Queries are query conjunctions or disjunctions of queries or query terms. Tey are term structured them-
selves, they can be type annotated the same way as other terms.

and( html[[]]^^HTML ,
or( var X^^HTML,

var Y^^HTML )^^HTML
)^^HTML

8.2.4.5 Typed Xcerpt Rules

A Rule is typed (implicitly, i.e. without special syntactic construct) by the type of the query and the type
of the construct term. A rule is hence not type annotated.

8.2.4.6 Typed Xcerpt Programs

An Xcerpt program per se has no type. Each rule of a program is typed, this also holds for goal rules.
The type of a program can be seen as the disjunction of the types of all goals in the program. A program
is hence not type annotated.

8.3 Type checking and Type Inference for R2G2 Typed Xcerpt
Programs

Typing Rules for Query Terms The following rules describe the algorithm used to infer total type
annotation for a (possibly partly type annotated) query term. The algorithm is a function which returns
the possible types out of a given set of types for a query term under a given automaton A. The automaton
itself is constructed out of R2G2 declarations as presented in section 6.3.

As a function, the algorithm’s signature is denoted as Γ,A|t,τ 7→ τ ′, where t is an Xcerpt program
term, i.e. a program, a rule or a part of a rule. A is the automaton representing the types declared to be
used in the program and is constant in the whole context of the typing algorithm application. By Γ a
global variable environment used to represent types of variables is denoted. It consists of tuples (v,T )
where v is the variable (or it’s name) and T the type of v.
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Depending on the part of the Xcerpt program to be typed, τ , resp. τ ′ is of different kind. In general,
for Xcerpt query or construct terms, τ is a set of transitions as defined in A, more precisely in A∆. As
the type of a rule is given by the type of it’s query part and it’s construct part, the types for rules have
also to be of two-folded nature—the type of a rule is a tuple of sets of transitions representing the types
for the input and for the output.4 For the type inference for sequences of query or construct terms, τ is a
set of states as found in A, more precisely in AS, and for sequences of construct terms in the context of
a grouping construct (i.e. the all construct), τ is a set of tuples of states as found in A, more precisely
in AS.

Note, that the functions for typing terms and those for typing sequences (ordered and unordered)
will rely recursively and interlaced on each other.

8.3.1 Paying Attention to Type Annotation in Queries

The typing algorithm as presented does not forcibly need type annotated programs, yet in can consider,
even incomplete, type annotation. When type annotation is available, it is propagated to the set of
assumptions about a program segment. In the case of a query term this means, that only types inferred
for that term that have non empty intersection with the type annotation are considered to be possible
types. The rational behind this is, that two types with non empty intersection have common members,
only such members are arguably candidates for a valid query evaluation.

By T the user provided type annotation, i.e. the transitions realizing the type annotation in the
automaton A, is denoted. The types of T and T get filtered to the types of T that have non empty
intersection with a member of T , the resulting set T ′′ is then used for the actual typing t. The result of
this typing is them also the result of the typing of the type annotated term t : T . The set T ′′ relies on
checking the non empty intersection of two languages represented by two types, L(τ)∩L(τ) 6= /0. This
can be calculated with the algorithms for intersection and emptiness check on automata as presented in
sections 6.4.1 and 6.4.2 applied on two variations of A, varying in the starting transitions—set to τ , resp.
τ .

T ′′ = { τ|τ ∈ T ∧ τ ∈ T ∧L(τ)∩L(τ) 6= /0 }
Γ,A | t,T ′′ 7→ T ′′′

Γ,A | t : T ,T 7→ T ′′′
(QUERYTYPEANNOTATION)

8.3.2 Typing Ordered Queries

The typing of ordered and unordered sequences of terms is inherently different—ordered data is typed
based on the use of automata as presented in chapter 6, while unordered data is typed on the basis of
counting constraints as presented in chapter 7.

8.3.2.1 Ordered Total Query Patterns

When the typing function is applied to a query term l[ cnt ] with ordered, total sequence of sub terms
and the type disjunction T consisting of a set of transitions from A, the following rule applies:

4Note, that a finer type variation would use a set of transition or type tuples to relate more precisely each input type to an
output type. pros and cons of such a rule type has not been analysed along this deliverable.
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T ′ = { (s, l,c,e)|(s, l,c,e) ∈ T ∧ c ∈ S′ }
S = { c|(_, l,c,_) ∈ T }

Γ,A | [ cnt ],S 7→ S′

Γ,A | l[ cnt ],T 7→ T ′
(TOTORDQUERYTERM)

The result of the application of this rule is the set of transitions T ′⊆ T . T ′ consists only of transitions
with label l—as found on the query term to type, and with a content start state against which the sequence
of sub terms can be typed. This is achieved by passing the content start states S of the transitions with
matching label l to the typing of ordered total sequences with the content sequence cnt of the query
term, and using the result S′ in the restriction of T to T ′.

When the typing function for ordered sequences is applied to an ordered, total empty sequence with
a set of states as input, the following rule applies:

S′ = { s|s ∈ S∧∃s′ ∈ {s}∪ ε-reachable-states(s,A) . s′ ∈ FA }
Γ,A | [ ],S 7→ S′

(TOTORDEMPTYLIST)

The set S′ ⊆ S is generated by checking the input states if S for their membership in FA, the set of
final states of A. Note, that it is common to all the rules, except the desc rule, that they restrict the set
of types used as input of the check. As the automata may contain ε-transitions, it is also necessary to
traverse all possible ε-transitions from the states in S that are not final, as they may lead to final states.
The ε-reachable-states(s,A) function returns a subset of AΣ, such that each state of the subset can be
reached from s ∈ AΣ when following paths starting at s made up only of ε-transitions. The rule has no
rule application above the line, is hence not further recursively applying typing.

Type checking non-empty sequences is achieved in a recursive divide-and-conquer way, where the
first element of the sequence is checked as well as the rest of the sequence. The typing of the sequence
[ n1,n2, . . . ,nm) ] receives the set of states S as input and returns S′ ⊆ S. The transitions T for checking
the head n1 of the sequence are those that have a state of S as start state, or that have a start state that
can be reached along ε-transitions from a state found in S. Further on the transitions in T need to have
an (horizontal) end state in ~S′, the set of states that an application of the typing function to the tail of the
sequence returns. This application receives ~S, the set of (horizontal) end states of T ′, the result of typing
the first element of the sequence.

S′ = { s|s ∈ S∧∃t ∈ T . t ∈ ε-reachable-transitions(s,A) }
~S = { e|(_,_,_,e) ∈ T ′ }

T = { (s′, l,c,e)|(s′, l,c,e) ∈ ε-reachable-transitions(s,A)∧ s ∈ S∧ e ∈~S′ }
Γ,A | n1,T 7→ T ′ A | [ n2, . . . ,nm ],~S 7→ ~S′

Γ,A | [ n1,n2, . . . ,nm) ],S 7→ S′
(TOTORDLIST)

At a first glance, operationally, this looks like a hopelessly recursive dependency with need for fix-
point approximation. Unfortunately, the types of elements of a sequence are not independent, this is due
to the type of the sequence. Hence, checking the type of the first element influences the type of the rest
of the sequence and the type of the rest of the sequence influences the type of the head. Fortunately it
turns out, that from an operational point of not more than one refinement of the head is needed: The key
here is, that the typing algorithm refines a given type disjunction (in form of a set of types) by reducing
the set to possible types. After performing this reduction on the head element of the sequence, the tail
of the sequence is typed with the outcome of the head typing. The tail then may reduce the input set of
possible (type) states. The typing of the head can now be refined to just use the types represented by
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transitions with (horizontal) end states that are contained in the result of the typing of the tail. Retyping
the tail is now not necessary, as it will yield exactly the same set of states. Arguably, the second typing
application to the head is not necessary, as it is already confirmed, that the input types used will succeed,
a kind of type propagation would be enough, but for the sake of briefness, the typing itself is used for
the type propagation.

8.3.2.2 Ordered Partial Query Patterns

Typing of an ordered partial query pattern l[[ cnt ]] is very similar to the typing of an ordered total query
pattern, where the only distinction is the application of the typing rule for ordered partial sequences for
the sequence of sub terms.

T ′ = { (s, l,c,e)|(s, l,c,e) ∈ T ∧ c ∈ S′ }
S = { c|(_, l,c,_) ∈ T }
Γ,A | [[ cnt ]],S 7→ S′

Γ,A | l[[ cnt ]],T 7→ T ′
(PARTORDQUERYTERM)

Typing of partial ordered empty sequences is similar to typing of total ordered empty sequences:

S′ = { s|s ∈ S∧∃s′ ∈ {s}∪ reachable− states(s,A) . s′ ∈ AF }
Γ,A | [[ ]],S 7→ S′

(PARTORDEMPTYLIST)

The only difference is the extension of non final states—instead of just following paths made up
of ε-transitions, now paths made up of ε-transitions and steps along horizontal transition steps of non-
epsilon-transitions can be used to reach final states. This is given by the reachable− states(s,A) func-
tion.

Unsurprisingly, the typing of (non-empty) ordered partial sequences is similar to the total case. The
only difference is to not just consider transitions with start states found in S (possibly connected using
ε-transitions) for the typing of the first sequence element, but any transition reachable by horizontal
traversal starting at the states of S. The rational behind this is, that an incomplete pattern matches data
terms where in between the matched (i.e. bound to query terms) sub terms arbitrary many other sub
terms may occur. These sub terms, if valid with respect to the given type, would hence be accepted by
corresponding automata transitions.

S′ = { s|s ∈ S∧∃t ∈ T . t ∈ reachable− transitions(s,A) }
~S = { e|(_,_,_,e) ∈ T ′ }

T = { (s′, l,c,e)|(s′, l,c,e) ∈ reachable− transitions(s,A)∧ s ∈ S∧ e ∈~S′ }
Γ,A | n1,T 7→ T ′ Γ,A | [[ n2, . . . ,nm ]],~S 7→ ~S′

Γ,A | [[ n1,n2, . . . ,nm ]],S 7→ S′
(PARTORDLIST)

8.3.2.3 Descendants

A descendant query term consists of a term n adorned with the desc keyword. The query semantics is,
that it either matches a data term at the level of the term sequence that is to be simulated by the query
term sequence containing the descendant query term, or any term containing at arbitrary nesting depth
a term simulated by n. A typing strategy for this semantics is, that the descendant term is a placeholder
for any term of not only types valid for typing n, but also of the types t that contain at arbitrary depth
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types against which n may be typed. This is restricted by the fact, that the type t must also be valid with
respect to the given position of the descendant term, must hence be in the set of the types used as input
of a typing rule application on the descendant term. Note, that the descendant construct itself may not
be type annotated by the user, yet the typing process may associate type information to it, valuable for
query optimization.

The typing of a descendant term receives the set of transitions T as input and returns a restriction
T ′ ⊆ T such that each transition t ∈ T ′ either is a valid transition for n, or a valid transition for n can be
reached from the content model start state of t in breadth or depth. For the typing of n all transitions of
T are used plus all transitions reachable in breadth or depth from the content model start states of the
transitions in T .

~T = T ∪{ t|t ∈ breadthAndDepthReachableTransitions(c,A)∧ (_,_,c,_) ∈ T }
T ′ = { t|t ∈ T ∧ ( t ∈ ~T ′∨∃~t ′ ∈ ~T ′.(_,_,c,_) = t ∧~t ′ ∈ breadthAndDepthReachableTransitions(c,A) }

Γ,A | n,~T 7→ ~T ′

Γ,A | desc n,T 7→ T ′

(DESCENDANT)

8.3.2.4 Variables

The semantics of an unrestricted variable is to match any data term as long as this is consistent with the
positional mapping of data terms to query terms in the simulation unification. From the typing view,
positional information is considered at the level of sequences, resulting in a set of (positionally) appro-
priate types in T . As a consequence of no further restricting the matching, the result of the application
of the variable typing function rule with a given set of transitions T is the unaltered set T .

(X ,TX ) ∈ Γ∧∀τX ∈ TX .∃τ ∈ T.(τX )∩ (τ) 6= /0
Γ,A | var X ,T 7→ TX

(QUERYVARIABLE)

In addition to the structural properties of queries, variables only match data terms in a query in such
a way, that multiple occurrences of the same variable match identical data terms (where ‘identity’ in this
context is given, if terms bi-simulate using ground query term simulation). The same property holds for
multiple instances of the same variable in a conjunction of query terms. A typing view to this property
is, that the terms matched by different occurrences of the same variable are forcibly of the same type.
Nevertheless, the variable occurrences may have different type annotations, as long as they have non
empty intersection. The global environment Γ is used for this purpose. It ensures, that all types assigned
to a variable have non empty intersection with at least one type of any other occurrence of the same
variable. In implementations of the rule, this usually means, that independently of applying structural
typing to the whole rule, the environment needs to be checked, possibly resulting in the necessity to
repeat the typing phase, as the altered type of the variable may affect sibling element types or types of
elements on the same path as the variable (and hence possibly the types in the whole structure). This
process can again influence the variable types, requiring a fixpoint based iteration approach. As in worst
case, each variable (not each occurrence) is typed with all possible types and in each iteration not more
than one type in one variable gets eliminated until one variable reaches an empty (and hence invalid)
state, the repetitions is in the order of the size of the automaton times the number of variables (which is in
the order of the size of the query). As however such a strong relationship between the types of different
occurrences of the same variable and of the structure are usually quite unlikely, it can be assumed, that
not more than one iteration (or a fixed small number of iterations) is needed. A non-reached fixpoint
after an iteration is e.g. worth a warning, that the query is structurally valid, however the satisfiability
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of the different occurrences of a variable (the one necessary for not reaching the fixpoint) cannot be
ensured, which means, that it is possible, that the query never matches any valid data.

Variables with variable restrictions are evaluated while querying by only binding data terms to the
variable, that match a given query term n. They are hence evaluated like regular query terms, but in
addition the matching data is bound to the given variable. As a consequence, for typing, the type of the
variable is propagated from the typing of the restricting query term.

Γ,A | t,T 7→ T ′ Γ,A | var X ,T ′ 7→ T ′′

Γ,A | var X → t,T 7→ T ′′
(QUERYVARIABLERESTRICTED)

8.3.3 Typing Unordered Queries

When typing unordered query terms, counting constraints are used to check the consistency of the
language represented by the given types and the language of terms that the unordered (total or partial)
sequence of query terms may match. This is achieved by checking the intersection of the two languages
for emptiness.

The intersection of languages represented by counting constraints is constructed by building a con-
junction of the counting constraints representing the two languages and adding additional constraints
restricting different variables from the two languages representing multiplicities of equal symbols to be
equal.

Note, that in the following set of rules, the grammar G, on which the automaton A is based, is also
assumed to be globally available. It however has not been integrated in the rule signature, to reduce
formal buzz in the cases of ordered content.

8.3.3.1 Unordered Total Query Terms

When the typing function is applied to a query term l{ cnt } with unordered, total sequence of sub terms
and the type disjunction T , the following rule applies:

T ′ = { (s, l,c,e)|(s, l,c,e) ∈ T ∧ c ∈ S′ }
S = { c|(_, l,c,_) ∈ T }

T = { (c,re)|τ ∈ T ∧ τtrans = (_, l,c,_)∧ “elementτname=l〈re〉′′ ∈ G }
Γ,A | { cnt },T 7→ S′

Γ,A | l{ cnt },T 7→ T ′
(TOTUNORDQUERYTERM)

The term is typed with T ′ ⊆ T , which is obtained very much in the way of typing total ordered query
terms. The only addition is, that typing unordered sequences is done with a set of types represented
as tuples of a state and a regular expression, where the state is the start state of the automaton part
implementing the regular expression—the unordered sequence typing rule’s signature is the rational for
that. The regular expressions of the type declarations of the types in T have hence to be accessible. This
is not difficult, as the type name of a term is available in that context as well as the grammar, it is hence
just a look-up of the typing rule with the given type name and extraction of the regular expression from
the right hand side type term.5

5The look up of the grammar rule is formalized as a pattern matching with “elementτname=l〈re〉′′ where 〈 and 〉 depict
arbitrary braces, because it is irrelevant if the grammar rule models an ordered or an unordered data model.
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Typing an unordered sequence of query terms relies on the use of counting constraint based type
annotations, as mentioned at the beginning of the section. As the counting constraint language represen-
tation, as introduced in chapter 7, are generated out of regular expressions, the signature of the typing
rule for unordered sequences needs a set of regular expressions as given type formalism. The regular
expressions are passed in along with the automaton state implementing the start state of the expression,
as the typing of terms—the typing rule from which sequence typing is applied—expects those states as
result of the recursive typing process. The starting state of the automata implementation of the regular
expression is hence just needed to relate the regular expression to the type occurrence it originates from.

τi j ∈ T ′i ∧ re = (τ11name
| · · · |τ1 jname

| · · ·), · · · ,(τm1name
| · · · |τmkname

| · · ·)
S′ = { s|(s,re) ∈ T∧ countingConstraints(re)∩ countingConstraints(re) 6= /0 }

T = { τ|τtrans ∈ ε−reachable− ransitions(s)∧ (s,_) ∈ T }
Γ,A | n1,T 7→ T ′1 · · · nm,T 7→ T ′m

Γ,A | { n1, . . . ,nm },T 7→ S′
(TOTUNORDSEQ)

The rule is applied to a sequence n1, . . . ,nm of query terms and a set of automaton state / type name
tuples T. The automata states in T denote starting states of the automata components implementing the
corresponding regular expressions. From those states, all reachable transitions are gathered using the
ε−reachableTransitions function, the resulting set T of transitions is use for typing the nodes ni. The
nodes are checked against all types, as they may be at any position in the query term, hence matching to
any of the types in T . The results of the node typing T ′i are then used to construct a regular expression,
by using the type names τi jname

of the types T ′i , building a group of options (. . . |τi jname
| . . .) for each type

T ′i and sequencing the option groups. The rational behind this regular expression is, that it represents a
reasonable type approximation of sequences matched by the given query term sequence. For this regular
expression (called re), a counting constraint is then generated and checked against non-emptiness of the
intersection with the regular expressions re found in tuples in T, the set of input types. For non-empty
intersections, the state corresponding to the regular expression re is then finally included in the result
set S′.

8.3.3.2 Unordered Partial Query Term

The typing of partial unordered query terms is almost identical to the typing of total unordered query
terms, the mere difference is the application of the typing rule for partial unordered sequences instead
of the rule for total unordered sequences:

T ′ = { (s, l,c,e)|(s, l,c,e) ∈ T ∧ c ∈ S′ }
S = { c|(_, l,c,_) ∈ T }

T = { (c,re)|τ ∈ T ∧ τtrans = (_, l,c,_)∧ “element τname = l〈re〉′′ ∈ G }
Γ,A | {{ cnt }},T 7→ S′

Γ,A | l{{ cnt }},T 7→ T ′

(PARTUNORDQUERYTERM)

The typing of partial unordered sequences is very similar to typing of of total unordered sequences:
Instead of calculating the intersection of the two languages, another operator is used—it is called ex-
tended intersection and defined now:

While normal language intersection of counting constraint languages are constructed by conjunc-
tion of the two constraint sets and adding equality constraints for the variables representing the same
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symbol’s multiplicities in both languages, the equality is exchanged by less-equal (≤), such that the
symbol’s multiplicities on the side of the partial query term’s counting constraint language definition
may be smaller, than on the side of the given type. Symbol multiplicities of one language not matched
by variables on the other side get zero multiplicity on the other side, like for the intersection case, but
again not with a less-equal relation. The ‘inequality’ relation reflects the fact, that more symbols in valid
data instances may occur than in a query pattern they match in, but not the other way round.

τi j ∈ T ′i ∧ re = (τ11name
| · · · |τ1 jname

| · · ·), · · · ,(τm1name
| · · · |τm jname

| · · ·)
S′ = { s|(s,re) ∈ T∧ countingConstraints(re)∩≤ cc(re) 6= /0 }

T = { τ|τtrans ∈ ε−reachableTransitions(s)∧ (s,_) ∈ T }
Γ,A | n1,T 7→ T ′1 · · · Γ,A | nm,T 7→ T ′m

Γ,A | {{ n1, . . . ,nm }},T 7→ S′
(PARTUNORDLIST)

8.3.4 Typing of Construct Terms

Typing of Xcerpt construct terms in special and data in general is comparable to typing of queries.
Similarities are, that

• structural properties of the construction is checked for validity based on the automaton model
used for internal type representation.

• the typing is based on the semantics of the construct terms, which manifests itself in a set of data
terms valid with respect to the given type.

Differences in the typing of construct terms to the typing of query terms are, that

• construct terms have no incompleteness.

• construct terms have grouping or repetition components.

• no typing for variables is deduced, the typing deduced in query parts is used.

• while query terms semantically represent sets of data terms6 and a well typed data term is one,
with non empty intersection of this set and the set of data terms represented by the type, a well
typed construct term in contrast represents a set of data terms7 that must be a subset of the given
type, as otherwise the construct term may yield invalid results.

Typing of construct terms is presented mostly with the same formalism as typing for queries. A
small formal extension is used on the rules for typing the sequence of nodes in the scope of a grouping
construct like all—the signature of such rules is A | lst,S 7→ SE, where the only difference to the
signature of former rules is, that the result of typing is a set of tuples of states SE ⊆ S×S where A is an
automaton and S the set of states occurring in A as presented formerly for query terms.

6A query term can be seen as a representation of a set of data terms—of the data terms that can be matched by the query term.
7A construct term can be seen as a representation of a set of data terms—of the data terms that can be constructed by the

construct term for arbitrary well typed substitution sets as input. A well typed substitution set is one, where variables are always
substituted by data terms valid with respect to the type of the variable.
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8.3.4.1 Ordered Total Construct Terms

Typing a construct term with label l, formalized in the rule ORDCONSTRUCTTERM, requires l to be
the label of at least one transition in the set of transitions/types T . Further on, the content model
cnt of the term has to be valid with respect to the content model of one of the possible types. The
result of application of the typing rule is the set T ′ ⊆ T , consisting of all types for which the construct
term validation passes. Note, that the rule is identical to the typing rule for a totally ordered query
term. Indeed, such a query term (without any incompleteness like descendants or incomplete sub-
terms at arbitrary depth and without variables, semantically represent the same set of data terms as
such a construct term—the represent a set consisting of exactly one data term syntactically equivalent
to those query and construct terms! This property is called referential transparency[11]. Referential
transparency means, that the same term within a given context has the same meaning (or represents the
same data).

T ′ = { (s, l,c,e)|(s, l,c,e) ∈ T ∧ c ∈ S′ }
S = { c|(_, l,c,_) ∈ T }

Γ,A | [ cnt ],S 7→ S′

Γ,A | l[ cnt ],T 7→ T ′
(ORDCONSTRUCTTERM)

The ordered sequence of construct terms of a construct term are typed in a similar way as the ordered
sequence of query terms—starting with the empty sequence, it can successfully be typed by a final state.
The set of states used as input S is restricted to S′, the final states of the automaton A (fond in FA)

S′ = { s|s ∈ S∧∃s′ ∈ {s}∪ ε-reachable-states(s,A) . s′ ∈ FA }
Γ,A | [ ],S 7→ S′

(ORDCONSTRUCTEMPTYLIST)

Type checking non-empty sequences of construct terms is similar to type checking of non-empty
total sequences of query terms. It is achieved in a recursive divide-and-conquer way, where the first
element of the sequence is checked as well as the rest of the sequence. The typing of the sequence
[ n1,n2, . . . ,nm ] receives the set of states S as input and returns S′ ⊆ S. The transitions T for checking
the head n1 of the sequence are those that have a state of S as start state, or that have a start state that
can be reached along ε-transitions from a state found in S. Further on the transitions in T need to have
an (horizontal) end state in ~S′, the set of states that an application of the typing function to the tail of the
sequence returns. This application receives ~S, the set of (horizontal) end states of T ′, the result of typing
the first element of the sequence.

S′ = { s|s ∈ S∧∃t ∈ T . t ∈ ε-reachable-transitions(s,A) }
~S = { e|(_,_,_,e) ∈ T ′ }

T = { (s′, l,c,e)|(s′, l,c,e) ∈ ε-reachable-transitions(s,A)∧ s ∈ S∧ e ∈~S′ }
Γ,A | n1,T 7→ T ′ Γ,A | [ n2, . . . ,nm ],~S 7→ ~S′

Γ,A | [ n1,n2, . . . ,nm ],S 7→ S′
(ORDCONSTRUCTLIST)

Variables are not restricted in construct terms in the sense, that multiple occurrences of the same
variable in a construct term have no influence on each other, as they receive their bindings or typing from
the query part of a rule—all occurrences of the same variable are typed equally in the query. However,
it is important to ensure, that the type of the variable in the global environment does not exceed the
type propagated to the typing procedure. A variable type in Γ violating this requirement indicates, that
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substitutions for this variable may exist, that would result in invalid instances of the construct term. This
requirement is considered by checking that each type associated to the given variable is contained in the
set of types propagated to the construct variable rule application—hence the type for the variable X in Γ

has to be a subset (or equal) to T . However, it is possible to restrict the type of the variable based in the
global environment’s type—if it is a real subset of T , it can be returned as the consequence of the rule
application to the variable.

(X ,TX ) ∈ Γ∧∀τX ∈ TX .∃τ ∈ T.(τX )⊆ (τ)
Γ,A | var X ,T 7→ TX

(ORDCONSTRUCTVARIABLE)

The Xcerpt grouping construct all8 is rather complex, as it involves three typing rules and s special
case in the typing rule signature—the case, where application of the typing function returns a set of
tuple of states. A grouping construct can be considered as a sequence of nodes in another sequence
(hence the grouping construct is a sub-sequence of a sequence of nodes). The node sequence of the
grouping construct is to be repeated arbitrary often, at least once. Hence, the content model of the con-
struct term containing a grouping construct among it’s child node sequence needs to support repetition
appropriate to capture the repeatability property of the grouping construct. As typing in this deliverable
is operationally based on automata, some means of repetition in automata has to be found for paths in
automata appropriate for typing grouping constructs. Repetition is modelled by loops in automata. A
grouping construct is hence valid with respect to a type or a state (remember, that sequences are typed
using automata states instead of transitions), when there is a path from this state such that the whole
grouping sequence can be validated along this path, and when the last state of this path is either as well
the first state, or the first state is reachable via ε-edges from this last state. For this reason the typing of
grouping sequences returns a set of tuples of states, consisting of the (start)state with which the grouping
sequence is typed, as well as the end state. The end state is (1) used to check the cycle to the start state,
and (2) used as start state for the validation of the following sibling nodes of the grouping construct.
The start state is one, that has been reached while validating the sequence of sibling nodes to the left of
the grouping construct.

The typing rule is not applied strictly to the grouping construct, but to the sequence consisting of the
grouping construct as first element and the following siblings. Note, that the pattern this rule applies to,
hooks in in the typing of construct term sequences in general.

The grouping construct all (n11 , . . . ,n1p),n2, . . . ,nm) is hence typed with the states S such that the
sequence of nodes ( n11 , . . . ,n1p )all, which are the nodes in the context of the grouping construct, can
be typed using S. The result is the set of state tuples SE. The nodes following the grouping construct
are typed with the set of nodes ~S where each e ∈ ~S comes from a tuple (s,e) ∈ SE, if s is ε-reachable
from e.

~S = {~e|(s,e) ∈ SE ∧~e ∈ {e}∩ ε-reachable-states(e,A) }
S′ = { s|(s,e) ∈ SE ∧ ({e}∪ ε-reachable-states(e,A))∪~S′ }

Γ,A | ( n11 , . . . ,n1p )all,S 7→ SE Γ,A | [ n2. . . . ,nm ],~S 7→ ~S′

Γ,A | [ all (n11 , . . . ,n1p),n2, . . . ,nm) ],S 7→ S′
(ORDCONSTRUCTGROUPING)

When a grouping construct sequence is empty, the state its validation starts with is per definition also
the state it ends with. Note, that an empty grouping construct sequence never occurs in real programs,

8Other grouping constructs like some have been kept out for the sake of brevity, their typing is not substantially different to
the typing of all.
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it is however a valid pattern in the recursive decomposition of a program when typing it—the empty
grouping construct sequences the recursions base case.

SE = { (s,s)|s ∈ S}
Γ,A | ( )all,S 7→ SE

(ORDCONSTRUCTGROUPINGLIST)

The typing of a non empty grouping construct sequence is similar to the typing of construct term
sequences. The difference lies in the return type (the set of state tuples) and how it is constructed. The
set of tuples consists of tuples, such that the tuples (s,e) consist of a state s with which the sequence
is validated (this is identical to the typing of general sequences), and of the state e that is propagated
from the validation of the tail and which is the end state of the validation of the sequence. In contrast to
general construct term sequence validation, the end state of the validation does not have to be member
of the set of final states of the automaton A, as possibly the grouping sequence is followed by sibling
nodes in it’s containing sequence of nodes.

SE = { (s,e)|s ∈ S∧ (s′,e) ∈~SE ∧∃(s′, l,c,e) ∈ T ′ . (s′, l,c,e) ∈ ε-reachable-transitions(s,A) }
~S = { e|(_,_,_,e) ∈ T ′ }

T = { (s′, l,c,e)|(s′, l,c,e) ∈ ε-reachable-transitions(s,A)∧ s ∈ S∧ (~s,e) ∈~SE }
Γ,A | n1,T 7→ T ′ Γ,A | ( n2, . . . ,nm ],~S 7→ ~SE

Γ,A | ( n1,n2, . . . ,nm )all,S 7→ SE
(ORDCONSTRUCTGROUPINGLIST)

8.3.4.2 Unordered Construct Terms

Briefly, typing of unordered construct terms is similar to typing of unordered total query terms, with two
differences: (1) an unordered construct term may contain grouping constructs that have to be treated,
and (2) the calculated type when type checking of a construct term has to be a subset of the type used
for annotation (in contrast to non-empty intersection between calculated and annotated type in the case
of the query). The treatment of grouping constructs (exemplary shown on the Xcerpt grouping construct
all) unfortunately introduces another modification of the rule signature: the rule for the abstract syntax
component all receives a set of types as input and returns one regular expression.

T ′ = { (s, l,c,e)|(s, l,c,e) ∈ T ∧ c ∈ S′ }
S = { c|(_, l,c,_) ∈ T }

T = { (c,re)|τ ∈ T ∧ τtrans = (_, l,c,_)∧ “elementτname=l〈re〉′′ ∈ G }
Γ,A | { cnt },T 7→ S′

Γ,A | l{ cnt },T 7→ T ′
(UNORDCONSTRUCTTERM)

At the abstract syntax level of the unordered construct term (not at the level of it’s sequence of child
terms), typing is identical to the typing of the unordered query term. It is however not so surprising
when looking at what exactly happens: The term is typed with T ′ ⊆ T . Types of T with equal label l as
the construct term in question are further considered for typing of the sequence of child terms. Recall,
that my τname the type name, as used in the grammar, of a type or transition is meant. Respectively,
τtrans represents a transition for a type name.
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re = re-component(n1,T ′1), · · · , re-component(nm,T ′m)
S′ = { s|(s,re) ∈ T∧ countingConstraints(re)⊆ countingConstraints(re) }

T = { τ|τtrans ∈ ε-reachable-transitions(s)∧ (s,_) ∈ T }
Γ,A | n1,T 7→ T ′1 · · · nm,T 7→ T ′m

Γ,A | { n1, . . . ,nm },T 7→ S′

(UNORDCONSTRUCTLIST)

Typing an unordered sequence of child nodes of a construct term is done by first typing all child
nodes, then checking that the regular expression re, which gets constructed of the results of typing the
child terms, models an unordered language that is a subset (or equal) to the language modelled by regular
expressions provided in the set of tuples T. States from the set of tuples T are returned as valid sequence
types, only if they were associated to a regular expression modelling an unordered super-set language
to re. The regular expression re is constructed by concatenating the results of applying the auxiliary
function re-component to the consequences of typing all child nodes ni. re-component is defined as
follows:

re-component(l[· · · ],{τ1, . . . ,τm}) = (τ1name | · · · |τmname)
re-component(l{· · ·},{τ1, . . . ,τm}) = (τ1name | · · · |τmname)

re-component(all(· · ·),re) = re

re-component returns the regular expression associated to the typing of an all construct or the
disjunction of all types (more precisely all type names) returned as consequence of typing any other
construct term.

re = (re-component(n1,T ′′1 ), . . . , re-component(nm,T ′′m ))+

Γ,A | n1~T 7→ ~T ′′1 Γ,A | nm~T 7→ ~T ′′m
Γ,A | all (n1, . . . ,nm),T 7→ re

(UNORDCONSTRUCTGROUPING)

Typing a sequence of terms enclosed by the grouping construct all is done by checking all those
sub-terms and returning a regular expression constructed similar to the one used in the typing rule for
typing sequences—the only difference is the appended “plus” to indicate, that a grouping construct
produces arbitrary many (but at least one) instances of the type of the enclosed enclosed sequence of
construct terms.

(X ,TX ) ∈ Γ∧∀τX ∈ TX .∃τ ∈ T.(τX )⊆ (τ)
Γ,A | var X ,T 7→ TX

(UNORDCONSTRUCTVARIABLE)

Typing of variables in unordered construct terms is identical to the typing in ordered construct terms.

8.3.5 Typing Rules

The typing of a rule is done by connecting the typing of the query and the construct part. Connecting
the types is mere propagation of the global environment Γ as obtained by the typing of the query to
the typing of the construct part. Depending of the case, where typing of programs and rule chaining is
considered, the type of the rule itself is relevant or not—a rule is seen like a transformation of data from
the type of the query part to the type of the construct part.

Γ,A | c,Tc 7→ T ′c Γ,A | q,Tq 7→ T ′q
Γ,A | c← q,Tc← Tq 7→ T ′c ← T ′q

(RULE)
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8.3.6 Typing Programs

For rule based languages like Xcerpt, typing of a program arguably means first typing of all rules.
However, rules interact by so called rule chaining, which means, that the query parts of a rule is evaluated
against the consequences of all rules, i.e. against the data constructed by the other rules. Typing Xcerpt
programs considering rule chaining has been conceived first in work by W. Drabent and A.Wilk [65].
Different aspects of rule typing have been considered in this work, due to the fact, that in some cases
termination of the typing can not be ensured—if the consequence of the rules restricts the type of the
queries, the restricted queries can again restrict the consequences of the construction and hence the query
type may be further restricted. Approximations may be defined in such a way, that termination can be
guaranteed, e.g. by recognizing cyclic type restriction and aborting after a fixed number of cycles.

8.3.7 Coverage of Current Xcerpt Constructs

The presented typing rules do not cover all of Xcerpt’s current features. As Xcerpt is in active develop-
ment, features currently come and go. The features typed in the preceding sections are either generally
useful when typing query languages for the Web or are principally new to the way typing is done in e.g.
programming languages. Features of Xcerpt currently available or under development, that have not
been covered here are:

1. conjunctive and disjunctive queries

2. resource specifiers

3. conditions (a.k.a. where-clauses)

4. optional variable binding modifiers

5. query negation modifiers

6. function applications

7. rule chaining

Handling of conjunction and disjunction in queries (1) can be seen mostly as separate typing of the
different components but sharing a common environment for the variables, where variables occurring
in different conjuncts have to have non empty intersection and variables in different components of a
disjunction get typed with the union of the types in both disjunctive components. Resource specifications
(2) occur at the root level of a query. They by this do not have a logical impact on the contained query
or construct terms. However they provide a prominent place to indicate information about the type of
the data intended to be queries, e.g. a resource on where to find a schema or type declaration. From
a prescriptive view, modifiers—optional (4) and negation (5)—can be treated as regular terms, as their
occurrence makes no sense, if they are not applicable at their given occurrence. At the same time they
should be treated as optional content in the given data model, as it makes no sense to negate or treat as
optional obligatory content. In the ordered automaton model, optionality can be achieved by optionally
skipping a (non ε) horizontal transition step, for unordered content models a corresponding optionality
has to be introduced in the expression constructed from the Xcerpt term sequence. Conditions (3) do
not use the Xcerpt term syntax, they are more in the spirit of (un)equations of variables and function
applications. As such they can be handled by traditional typing (e.g. in the spirit of typing for functional
programming languages) adapted to R2G2 type declarations. The necessary adaption is to use type
intersection instead of type equality when checking variable type conformance in the environment. Rule
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chaining (7) has not been considered in this deliverable. It is, among the current Web query languages,
a very special feature applicable to Xcerpt but not to most of the common Web query languages. An
important property to consider about a type system treating chaining in Xcerpt is subject reduction:
is a language with chaining well typed, or maybe even type-able, at every stage of evaluation of the
chaining. In functional and imperative programming languages, this means usually after application of
β -reduction. For logic languages or deductive rule languages like Xcerpt, this means the application of
substitutions.
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Part IV

Outlook & Conclusion
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Chapter 9

Outlook

Many promising continuations of the practical work in this deliverable have shown up. Some of them
are summarized now.

9.1 Type Based Querying—an Extension to Simulation Unifi-
cation

The traditional use of types in programming- and query languages is to enhance security, performance,
documentation or verbosity of errors. For many languages it holds, that for a well typed program the
program is equivalent to what the program would be after removing all type information and running
it in a sibling language without type support. In traditional settings, types arguably do not alter the
semantics of (well typed) programs, they may just help finding ill typed programs, the can considered
to be passive at run time.

For Web querying in general, for Xcerpt in special, types on the side of selection constructs can
be used to ensure, that the query is reasonable for data of given type to query, where an unreasonable
query is one, that never matches any data of the given type. Types hence represent a set that may
not have empty intersection with the set of the data the given selection construct matches with. As an
example, the rather vague Xcerpt query term in figure 55 is expected to query HTML Table element
in its given context. As the query may query arbitrary data, it is obviously well types. However, as
nothing restricts the variable TABLE from matching with arbitrary content, the query will most likely not
fulfill the author’s desire. The type information is very restrictive (and it can be assumed that it is not
reasonable for the given query under traditional passive type semantic) about what the query actually
queries. It is possible, that in the given situation, the programmer really expected to query HTML tables
and was inspired, that the given query would more or less fulfill his requirement.

CONSTRUCT
result{ all var TABLE }

FROM
in document("http://example.com") desc var TABLE^^Table

END
Code Example 55 An Xcerpt query querying arbitrary data in an HTML document—however the type annotation
indicates, that the author had something else in mind...
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A proposed extension to the query semantic in general, and to simulation unification in the case of
Xcerpt, is to use type information of well typed queries to restrict the query, to be an active member
of the querying process. As type information is usually given and mostly designed in an unambiguous
way, sometimes involving complex rules with many details, they can be a powerful tool for the query
author to exactly specify the elements he is interested in. In the example in figure 55, the type would
hence restrict the rather generic query pattern to match only with HTML tables, even if the untyped
query would match other elements additionally (in the given case very likely, e.g. the content of the
HTML table).

9.1.1 Extending Ground Query Term Simulation With Active Type Query-
ing

To use active types to express queries in Xcerpt, the query evaluation has to be altered. The query
evaluation in Xcerpt is based on a non standard unification, called Simulation Unification. Simulation
unification is the method binding sub-terms of queried data to variables in a query pattern, for a query
pattern matching the data. A preliminary concept of Simulation unification is the so called ground query
term simulation.

Ground query term simulation is well defined in [43]. A query term is called ground, if it does not
contain (sub-term, label, namespace, or positional) variables. Tg ( Tq denotes the set of all ground
query terms, where Tq is the set of all query terms, and Td ( Tg denotes the set of all data terms. In
essence, a ground query term simulates a data term, if (1) the labels match, and (2) there is a mapping
of the child terms of the query term to the child terms of the data term, such that the query sub-terms
simulate data sub-terms. The properties of the mapping are defined according to partiality or order
specification of the query term, e.g. the mapping for a total unordered query term to an unordered data
term has to be bijective.

Ground query term simulation is extended, such that (3) for a query term with active type annotation
(which is a disjunction of types) to simulate a data term, the data term has to be valid with respect to at
least one of the given data types.

Operationally, this can be achieved by applying the type checking algorithm with the given type of
the top level query term to the incoming data term at evaluation time and then, if the data term is valid
with respect to the given type, applying the query algorithm. Type checking a data term is reasonable, as
data terms are syntactically a subset of query terms and their query term semantics is to match exactly
the data term they are. As in a query term various type annotations may be given for the sub-terms
(e.g. in form of a complete type annotation as a consequence of type checking the query term), the type
annotations of the child query terms have to be checked against the type annotations of the data terms.
For this purpose, the intersection of the disjunction of types of query and data (sub)term are checked for
non emptiness.

9.1.2 Extending Simulation Unification with Active Type Querying

Based on ground query term simulation and standard unification, simulation unification is defined in
[43] as the building block of Xcerpt, responsible for the evaluation of the query parts of Xcerpt rules.
Simulation Unification is an algorithm that, given two terms t1 and t2, determines variable substitutions
such that the ground instances of t1 and t2 simulate. The outcome of Simulation Unification is a set
of substitutions called simulation unifier. Informally, a simulation unifier for a query term tq and a
construct term tc is a set of substitutions Σ, such that each ground instance tq′ of tq in Σ simulates into a
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ground instance tc′ of tc in Σ. Each substitution is a mapping of the free variables in tq and tc to a ground
term.

To extend simulation unification with active type support, ground query term simulation has to be
replaced with ground query term simulation extended with active types as introduced in section 9.1.1.
Further on, the set of substitutions Σ has to be restricted to consist only of substitutions, where each
mapping of variable to ground term fulfills the requirement, that the type of the variable has non empty
intersection with the type of the ground term.

9.2 Optimizing Xcerpt Query Evaluation Based on Type In-
formation

This work has been published [12] and presented at The First International Conference on Web Reason-
ing and Rule Systems.

With the vast data size on the Web and Semantic Web, reducing costs of data transfer and query
evaluation for Web queries is crucial. To reduce costs, it is necessary to narrow the data candidates to
query, simplify complex queries and reduce intermediate results. This can indeed be achieved using
type information in queries and/or in the queried data. A static approach to optimization of web queries
has been has been proposed [12] based on the typing proposed in this deliverable. By static optimization
the rewriting of queries, such that, under the assumption of querying valid data (with respect to the type
of the schema) the rewritten query returns the same results as the original query. A set of rules which
achieves the desired optimization by schema and type based query rewriting is proposed. The approach
consists in using schema information for removing incompleteness (as expressed by ‘descendant’ con-
structs and disjunctions) from queries. The approach is presented on the query language Xcerpt, though
applicable to other query languages like XQuery.

Incomplete query constructs have proved to be both essential tools for expressing Web queries and
a great convenience for query authors able to focus better on the parts of the query he or she is most
interested in. Though some evaluation approaches, e.g., [15] (usually limited to tree-shaped data) can
handle certain incomplete queries (viz., those involving descendant or following) efficiently, most
approaches suffer from lower performance for evaluating incomplete queries than for evaluating queries
without incompleteness. The latter is particularly true for query processors with limited or no index
support (a typical case in a Web context where query processors are often used in scenarios where data
is transient rather than persistent).

In Web queries, incompleteness occurs in three forms: breadth, depth, and order. In [12] mostly
breadth and depth have been addressed though also order incompleteness is briefly considered.

1. Incompleteness in depth allows a query to express restrictions of the form “there is a path between
the paper and the author” without specifying the path’s exact shape. The most common construct
for expressing depth incompleteness is XPath’s descendant or Xcerpt’s desc, an unqualified,
arbitrary-length path between two nodes.

2. Incompleteness in breadth allows a query to express restrictions on some children of a node with-
out restricting others (“there is an author child of the paper but there may be other unspecified
children”). Breadth incompleteness is an essential ability of all query languages. Indeed, in many
languages breadth completeness is much harder to express than incompleteness—a reason why
many query authors prefer to write queries with breadth incompleteness where queries with com-
pleteness would be more efficient.
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Figure 9.1: An example session of the visXcerpt Web and Semantic Web query editor. Queries (i.e.
their patterns or terms) are visualized as nested boxes, possibly folded in the spirit of tabs. The editing
window consists of three panels—on the left the current program being edited or used for querying, on
the right at the top a set of templates to use for copy and pasting in the editor panel and on the bottom
a parameter window for the query execution. The query results are shown in a pop up window using a
very similar term visualisation as the visXcerpt queries use.

3. Incompleteness in order allows a query to express that the children order of a node is irrelevant
(“there is an author child of the paper and a title child of the same paper but don’t care about their
order”).

The approach presented in [12] however does not provide a fully applicable optimization approach.
First of all, the problem of finding an equivalent optimal query under schema constraint is undecidable.
However, heuristic approaches to rewriting queries such that the resulting query should be more efficient
in many cases for a given query engine exist. The work in [12] presents rewriting rules that can be used
to add or remove incompleteness under schema constraints such that the resulting query is equivalent.
The current choice of rule to apply depends of a heuristic which is not presented in the work, as highly
dependant on the requirements of the query execution system.

9.3 Integrating Types Into visXcerpt—an Interactive Visual
Development Environment for Xcerpt

visXcerpt is a visual dialect of Xcerpt integrated with a development environment. It has first been
presented in [9] and [13]. When programming in visXcerpt, the programmer uses templates to drag,
drop, copy and paste queries, here and there editing various labels. This way a steep learning curve is
expected to be flattened, as the user may derive his work from existing work, i.e. learning by example.
Consider example 9.1 for a typical visXcerpt session

However, when constructing queries from existing example queries or documents, there is always a
restricted variety of templates available and nothing prevents combination of invalid components. Using
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types in such a visual environment could be greatly beneficial. Types can be used for two purposes:

1. Based on the current editing context and it’s type, applicable templates can be constructed and
provided for query construction.

2. Based on types invalid editing operations can be deactivated in certain contexts. As an example
pasting an invalid (or at least invalid in a given context) element into a container can be prevented.
On the other hand required attributes or content can be enforced or alternatively incompleteness
can be provided.

The use of types in programming environments is known, e.g. from well known integrated devel-
opment environments like Microsoft Visual Studio or Eclipse. Construction of valid XML and SGML
documents based on DTD information has also been applied in practice for some while, e.g. in the
Emacs text editor. However, schema driven query construction is a new field hot applied in practice by
now.
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Chapter 10

Conclusion

The contributions of this deliverable can be summarized as

1. a Web Schema language to model (serialisations of) graph structured data, including a new mod-
elling approach for unordered data or multisets, based on unordered interpretations of regular
expressions, and

2. a typing approach for web query languages based on unrestricted regular tree grammars with
former extension.

The first contribution, the type and schema language R2G2 has been implemented for integration,
e.g. in Web query or transformation languages, but also for stand alone use as schema language for XML
or Xcerpt data terms. The modelling approach for unordered data based on unordered interpretation of
regular expressions (1) is implemented as a prototype based on constraint solvers in GNU Prolog [25].
Typing of Web query languages (2) has been implemented based on (1) for the Web query language
Xcerpt. Currently two implementations exist, a prototypical one supporting ordered and unordered
query terms, and a second implementation for integration into the prototype of Xcerpt currently under
development. The second version offers no support for unordered data models by now.

The need and usefulness of an extension of current type and schema languages for the Web arises
from

• the lack of modelling support for graph shaped documents and their serialisations, and

• the lack of modelling techniques for unordered content models with the expressiveness of regular
expressions for ordered data.

The relevance of the need of graph shaped data on the Web is paid tribute to by prominent move-
ments like the Semantic Web with e.g. RDF at it’s base, a formalism arguably modelling graph shaped
data. However, many standard Web applications can benefit of modelling possibilities for valid graph
shaped data. Modelling of graph shaped data and their serialisations has been achieved by adding typed
references in the grammar language and cycle detection in the automata execution.

Unordered content models are either not available in Web Schema languages (i.e. DTD) or of less
expressiveness than the modelling techniques for ordered data (i.e. XML Schema, Relax NG). Regular
expressions provide (beside the ability to model the order of elements) a powerful mechanism to express
the inter-dependency of elements and/or their optionality in content models. As shown in small use cases
in chapter 3 this is of practical relevance. As a consequence, many schemata of data formats on the Web
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dictate order, where indeed order is not relevant. It is however difficult to give clear numbers or hard
facts about the misuse of order, as the lack of such modelling techniques leads to an “as it is” resignation
of the schema developers, where the current technical possibilities are used as they are.

As first shown in [16] unrestricted regular tree grammars are computationally expensive in some
situations for type checking. Various work [6] has shown arguably “pessimistic” results about cost or
decidability of typing of Web query languages under general regular tree language constraints, however
the approach has been followed in this deliverable. It is not at all the goal to contradict to the excel-
lent theoretical results of the above mentioned work—the approach followed in this deliverable relies
heavily on sacrificing precision of the typing to achieve acceptable performance and complexity (at least
in the ordered data model case). The premise was not to restrict the expressiveness of the modelling
languages, as they are then usually easier to understand—the restrictions are often not based on syn-
tactical properties of the grammar formalism, but on properties of derivable automata or on features of
underlying algorithms. Another advantage of using unrestricted grammars for the user is the value as
a documentation of such grammars have—an easy to read and expressive grammar is valuable docu-
mentation about the data format. If the grammar of a data format has to be widened, generalized or
expressed in a verbose way due to restrictions of the schema formalism used to model them, the value
as a documentation of the schema is reduced.

While the typing approach presented here has been tailored for the Web and Semantic Web query
language Xcerpt, it can easily be adapted to other Web or Semantic Web query languages like e.g.
Xquery. The main requirement is the usefulness of R2G2 for the given query language as a type decla-
ration language. A possible approach to achieve typing is the translation of the given query language to
Xcerpt for the purpose of typing (investigation in the translation of Xcerpt to Xquery and vice versa has
been done in [35]), but the rules may also easily be adapted to other query languages—as long as the
concept of construction, projection and selection is applicable (which arguably is a central conceptuali-
sation of all query languages).

So, what are the benefits of a (statically) typed Web query language over a non typed one? The
most obvious one is help for the developer of queries, in providing prior to run time (e.g. compile time)
information about errors. One could assume, that errors can easily be found by test running a program,
however, this may only find errors along the execution paths used while test running—often errors may
stay hidden for long time until triggered. When type checking, only a certain class of errors may be
found (i.e. errors related to type conflict), but they are all found, as the type checking analyses the whole
program. Further on types often serve as valuable documentation about the code.

Another arguably important benefit of typed queries is potential optimization of the evaluation based
on type information. This can happen at run time or at compile time. As a rule of thumb, this kind of
optimization is profitable whenever the schema is quite complex and the type information is rather se-
lective about the data fragments, while queries are rather brief or less selective. Run time optimization
could e.g. rely on checking the types of validated data against the expected results without deeply check-
ing structures or data values in the case of type mismatch. An approach in which brief investigation has
been done along this deliverable is static optimization of queries based on type annotations (see sec-
tion 9.2, as well as [12]). The idea here is to rewrite queries based on their type annotation such that
their selectivity is increased or their evaluation cost is reduced. A set of rewriting rules for queries un-
der schema constraints yielding semantically equivalent queries (under the assumption, that the queried
data is valid with respect to the given schema) have been proposed in this work. However, the choice
of which rules to apply to achieve optimized queries can only be based on heuristics specialized for the
evaluation engine of the query language in question. No such heuristics have been given by now.

Design of type systems is a difficult task and while this deliverable gives a rather concrete guide
to building a type system for Xcerpt, many tasks can still be performed around the research for typing
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Xcerpt and Web query languages.
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