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Overview of this Deliverable

For the rule-based, I4 query and reasoning language Xcerpt, we are currently developing a novel im-
plementation based on the principles outlined in deliverables I4-D15a and I4-D15b. This prototype
advances the state-of-the-art considerably over existing Xcerpt prototypes as well as implementations
of other Web query languages:

• It is based on a novel algebra, called CIQCAG, that is expressive enough to provide evaluation
not only for Xcerpt but also for XPath, XQuery, SPARQL, and many other Web query languages.
Translators for (large fragments of all) four named languages are specified.

• Though capable of evaluating arbitrary graph shaped Xcerpt or XQuery queries, the CIQCAG
algebra still provides linear time and space evaluation of tree queries even on many non-tree
graphs (viz. so-called continuous-image graphs). No previous approach scales as well as the
CIQCAG algebra with respect to query and data shape.

We are currently in the process of finalizing and testing that prototype. In this deliverable, we
discuss some preliminary test results. For more up-to-date and extensive tests, see http://amachos.
com/Comparison where we continue to provide updates on the prototype and its implementation.

The rest of this deliverable is divided in two sections. The first section details test results on a
preliminary version of the above prototype published in [2]. The second section illustrates part of the
reduction from SPARQL, its rule-based extensions, and similar RDF query languages to CIQCAG.
It uses the RDFLog framework discussed in previous deliverables (I4-D14) and shows that even a very
naive implementation of RDFLog can compete with existing SPARQL processors and that the reduction
of blank nodes to function symbols is efficient and feasible.
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1 Experimental Evaluation of Memoization in the Xcerpt Pro-
toype

The experimental evaluation is based on both synthetic and on real data. The set of structural relations
is extended by the additional relations ATTRIBUTE and VALUE in order to support attribute queries. The
tests have been executed on an AMD Athlon 2400XP machine with 1GB main memory. The algorithms
are implemented in Java executed on JVM version 1.5. All tests show the processing time without data
parsing. Each measurement is averaged over 500 runs.

Synthetic data is used to confirm the complexity of the presented algorithms. The real data scenarios
stem from the University of Washington XMLData repository1, and demonstrate the competitiveness of
the algorithms.

The first experiment confirms on synthetic data how essential the memoization of intermediary re-
sults is, not only for the complexity but also for the experimental query evaluation time. The Match↓
algorithm without memoization of variable domains (i.e., the helper structure ρ) exhibits an exponential
growth of time consumption in the size of the query (cf. Fig. 1), because several common sub-matrices
are built repeatedly. In contrast, Fig. 2 depicts the effect of increasing arity in a worst-case scenario,
where the query is unrestrictive, i.e., a binding for one answer variable is related to all bindings of
another one.

Fig. 3 shows a comparison between the two approaches for matrix population discussed in this
article. A path query consisting of four variables and CHILD∗ (descendant) relations only, but without
label restrictions, is used. This query exhibits worst case complexity for the top-down algorithm Match↓,
as the match context is never restricted by a previous context. As expected, the plot shows a quadratic
runtime growth in the data size for the top-down algorithm and the bottom-up algorithm with CHILD∗

index. Without this index, the bottom-up approach exhibits a cubic runtime.
At least the top-down algorithm performs quite well even in its basic form discussed here in real

query scenarios. Fig. 4 shows how the runtime of the top-down algorithm scales with the data size
for path, tree and graph shaped queries. These queries are executed over the MONDIAL2 database
of geographical information. The plot shows additionally that already for path queries the bottom-up
algorithm exhibits polynomial runtime; the naive bottom-up approach has an average runtime that is
very close to its worst-case. On the other hand, the Match↓ exhibits a linear runtime in all queries, even
in the graph query experiment.

The final test on increasing fragments of a large XML document, the Nasa dataset from the above
mentioned repository, shows that the runtime of Match↓ scales nicely with the data size and is very
competitive even in the basic form implemented for this experiment.

1http://www.cs.washington.edu/research/xmldatasets/
2http://www.dbis.informatik.uni-goettingen.de/Mondial/
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Figure 1: Effect of Memoization over Query Size (data synthetic, uniform, deeply nested; bindings for query
variables overlap considerably)
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Figure 2: Worst-Case Effect of Query Arity (data and query as before)
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Figure 3: Comparison Top-Down and Bottom-Up (data synthetic, size increased by adding in depth; query
small, containing many descendants)
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Figure 4: Query Classes over Real-life Data (Mondial; queries simple, but with arity > 1)
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Figure 5: Top-Down over Large, Real-life Nasa Data (binary tree query)
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Figure 6: Performance of RDFLog on rules 1, 2 and 3
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Figure 7: Performance comparison of RDFLog, ARQ and Sesame on rule 1 (left hand side) and on rule
2 (right hand side)

2 Experimental Evaluation of the RDFLog Prototype

In this section we experimentally confirm the central theoretical results of [1] (viz. that Skolemisation
and un-Skolemisation is in LOGSPACE) and validate the claim that the resulting implementation of
RDFLog yields a competitive performance by a comparison with two other in-memory processors for
RDF queries, the ARQ (Version 2.1) SPARQL processor of Jena and the SPARQL engine provided by
the Sesame RDF Framework. For Sesame, we choose the main-memory store (“by far the fastest type
of repository that can be used” according to the Sesame Manual, http://www.openrdf.org/doc/sesame2/

users/). With this store, Sesame becomes a main-memory, ad-hoc query engine just like RDFLog and
ARQ. We have implemented RDFLog using a combination of Perl pre- and post-filters for Skolemisation
and un-Skolemisation of RDFLog programs and XSB Prolog to evaluate the Skolemised programs. The
experiments have been carried out on a Intel Pentium Mobile Dual-Core with 1.86 GHz, 1024 KB cache
and 2 GB memory.

In the experiments we query an RDF dump of Wikipedia meta-data and compare three different
kinds of rules:
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• A pure datalog rule of the form ∀ X ∀ Y a(X,Y) → b(X,Y) which does not construct any blank
nodes and is also expressible in SPARQL.

• An RDFLog rule with the existential quantifier within the scope of universal quantifiers of the
form ∀ X ∀ Y ∃ Z a(X,Y) → b(X,Z). This rule is also expressible in the SPARQL query language.

• An RDFLog rule with the existential quantifier outside of the scope of universal quantifiers of the
form ∃ Z ∀ X ∀ Y a(X,Y) → b(X,Z). This rule is not expressible in SPARQL.

The experiments have been performed against RDF graphs consisting in between 250 and 13000
triples. For each setting, the results are averaged over 10–50 runs.

Figure 6 shows the performance of RDFLog for each of the three rule classes discussed above. Note,
that the increasing expressiveness of the blank node construction (from rule type 1 to rule type 2) does
not have any visible effect on the performance. The kind of blank node construction not supported by
SPARQL (rule 3) even performs slightly better than rule 2. This may be attributed to the lower amount
of blank nodes generated as the existential quantifier is outside of the scope of all universal quantifiers.

Figure 7 compares the performance of RDFLog with that of ARQ and Sesame for rule 1 (left hand
side) and rule 2 (right hand side). Despite its light-weight, ad-hoc implementation, RDFLog outperforms
ARQ and Sesame in this setting. The figures show moreover that also for ARQ and Sesame, blank node
construction does not bear any additional computational effort.
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