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Overview of this Deliverable

This deliverable is comprised of two chapters: the first presents a survey (derived from [9]) over existing
techniques for efficient chaining of logic programs. This includes the magic set transformation (for
implementing a backward chaining, goal-driven evaluation in a system with a fixpoint operator), the
rete algorithm employed extensively in production rule systems, several advanced forms of resolution
(SLD, OLDT) and a discussion how these techniques apply to rule sets with negation.

The second chapter focuses on Xcerpt and the challenges when applying these techniques in this
context. Though Xcerpt shares many characteristics with basic logic programming languages where
chaining is concerned, its novel form of incomplete terms pose a previously not considered challenge
for subsumption and memoization of intermediary results that lies at the heart of all the techniques
discussed above.

The efficient chaining in Xcerpt is a topic of ongoing research under the lead of Benedikt Linse. The
current prototype contains mostly naive (fixpoint) operators for rule chaining. We plan to extent it with
the techniques developed in the further course of this study.
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Chapter 1

Efficient Chaining in Logic
Programming: A Survey

1.1 Positive Rule Sets

1.1.1 Semi-naive Evaluation of Datalog Programs

The fixpoint semantics of a positive logic program P directly yields an operational semantics based
on canonical forward chaining of the immediate consequence operator TP introduced in Section ??
(Definition ??) until the least fixpoint is reached.

Let us quickly recapitulate the definition of the fixpoint of a datalog program P given the example
program in Listing 1.1_1.

1 feeds_milk(betty).
lays_eggs(betty).

3 has_spines(betty).

5 monotreme(X) ← lays_eggs(X), feeds_milk(X).
echidna(X) ← monotreme(X), has_spines(X).

Listing 1.1_1: An example program for fixpoint calculation

The intensional predicate symbols of a datalog program P are all those predicate symbols that ap-
pear within the head of a rule, as opposed to the extensional predicate symbols which appear only in
the bodies of rules of a program. With this definition feeds_milk, lays_eggs and has_spines are ex-
tensional predicate symbols, whereas monotreme and echidna are intensional predicate symbols. The
set of all extensional and intensional predicate symbols of a datalog program P (denoted ext(P) and
int(P) respectively) is called the schema of P. An instance over a schema of a logic program is a set of
sets of tuples s1, . . . ,sk, where each set of tuples si,1≤ i≤ k is associated with a predicate symbol p in
the schema and si is the extension of p. The set of base facts of the program 1.1_1 corresponds to an
instance over the extensional predicate symbols, where the set {betty} is the set associated with each of
the symbols feeds_milk, lays_eggs and has_spines.

Based on these definitions the semantics of a logic program P is defined as a mapping from exten-
sions over ext(P) to extensions over int(P). There are several possibilities to define this function. The
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fixpoint semantics uses the immediate consequence operator TP for this aim.
Given a datalog program P and an instance I over its schema sch(P), an atom A is an immediate

consequence of P and I if it is either already contained in I or if there is a rule A← cond1, . . . ,condn in
P where condi ∈ I ∀1 ≤ i ≤ n. The immediate consequence operator TP(I) maps an instance over the
schema sch(P) to the set of immediate consequences of P and I.

A fixpoint over the operator TP is defined as an instance I such that TP(I) = I. It turns out that any
fixpoint for a datalog program is a model of the (conjunction of clauses of the) program. Furthermore,
the model-theoretic semantics P(I) of a logic program P on an input instance I, which is defined as the
minimum model of P that also contains I, is the minimum fixpoint of TP.

As mentioned above, this fixpoint semantics for datalog programs, which may be extended to non-
datalog rules[26], gives directly rise to a constructive algorithm to compute the minimum model of a
program.

Consider again Listing 1.1_1. The set of immediate consequences of this program with the initial in-
stance1 I0 = {{} f _m,{}l_e,{}h_s,{}mon,{}ech} is I1 := TP(I0)= {{betty} f _m,{betty}l_e,{betty}h_s,{}mon,{}ech}.
The second application of the fixpoint operator yields I2 := T2

P(I0) = {{betty} f _m,{betty}l_e, {betty}h_s,
{betty}mon, {}ech}.

I3 is defined analogously and the extension of echidna is set to {betty}. Finally the application of
TP to I3 does not yield any additional facts such that the condition I3 = I4 is fulfilled, and the fixpoint is
reached.

The above procedure can be implemented with the pseudo-algorithm in Listing 1.1_2, which is
called naive evaluation of datalog programs, because for the computation of Ii all elements of Ii−1 are
recomputed. As suggested by its name, the function ground_facts returns all the ground facts of the
program which is to be evaluated. The function instantiations takes as a first argument a rule R,
which may contain variables, and as a second argument the set of facts Ii−1 which have been derived in
the previous iteration. It finds all instantiations of the rule R which can be satisfied with the elements of
Ii−1.

I0 := /0
2 I1 := ground_facts(P)

i := 1
4 while Ii 6= Ii−1 do

i := i + 1
6 Ii := Ii−1

while (R = Rules.next())
8 Insts := instantiations(R, Ii−1)

while (inst = Insts.next())
10 Ii := Ii∪head(inst)

return Ii

Listing 1.1_2: Naive evaluation of a datalog program P

The central idea underlying the so-called semi-naive evaluation of datalog programs is that all facts
that can be newly derived in iteration i must use one of the facts that were newly derived in iteration
i−1 – otherwise they have already been derived earlier. To be more precise, the rule instantiations that
justify the derivation of a new fact in iteration i must have a literal in their rule body which was derived
in iteration i− 1. In order to realize this idea one must keep track of the set of newly derived facts

1the predicate symbols in subscript position indicate that the first set is the extension of feeds_milk, the second one the one
of lays_eggs, and so on.
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in each iteration. This method is also called incremental forward chaining and is specified by Listing
1.1_3. In line 2 the increment Ink is initialized with all facts of the datalog program. In line 4 the set
Insts of instantiations of rules that make use of at least one atom of the increment Ink is computed at
the aid of the function instantiations. The function instantiations does not yield ground rules that
are justified by the set KnownFacts only, such that the call instantiations({ p(a), q(a)}, { }) for a
program consisting of the rule r(x)← p(X), q(X) would not yield the instantiation i1 := r(a)← p(a),
q(a). In contrast, i1 would be returned by the call instantiations({ p(a)}, { q(a)}) with respect

to the same program.
Once these fresh rule instantiations have been determined, the distinction between facts in the incre-

ment and older facts is no longer necessary, and the two sets are unified (line 5). The new increment of
each iteration is given by the heads of the rule instantiations in Insts.

KnownFacts := /0
2 Ink := { Fact | (Fact ← true) ∈ P }

while (Ink 6= /0)
4 Insts := instantiations(KnownFacts, Ink)

KnownFacts := KnownFacts ∪ Ink
6 Ink := heads(Insts)

return KnownFacts

Listing 1.1_3: Semi-naive evaluation of a datalog program P

Although the semi-naive evaluation of datalog programs avoids a lot of redundant computations that
the naive evaluation performs, there are still several ways of optimizing it.

• In the case that besides a program P also a query q is given, it becomes apparent that a lot of
computations, which are completely unrelated to q, are carried out. This is a general problem
of forward chaining algorithms when compared to backward chaining. However, it is possible to
write logic programs that, also when executed in a forward-chaining manner, are in a certain sense
goal-directed. In fact it is possible to transform any datalog program P and query q into a logic
program P′ such that the forward chaining evaluation of P′ only performs computations that are
necessary for the evaluation of q. In Section 1.1.2 these so-called magic templates transformations
are presented.

• A second source of inefficiency is that in each iteration i, it is tested from scratch whether the body
of a rule is satisfied. It is often the case that a rule body completely satisfied in iteration i was
almost completely satisfied in iteration i−1, but the information about which facts contributed to
the satisfaction of rule premises in iteration i−1 must be recomputed in iteration i. It is therefore
helpful to store complete and partial instantiations of rules during the entire evaluation of the
program.

• Storing partial instantiations of rule bodies gives rise to another optimization if the rules of the
program share some of their premises. In this case, the partial rule instantiations are shared among
the rules. Both this and the previous optimization are realized by the Rete algorithm, which is
introduced in Section 1.1.3.

1.1.2 The Magic Templates Transformation Algorithm

The magic templates algorithm [21] is a method of introducing a goal directed search into a forward
chaining program, thereby benefiting both from the termination of forward chaining programs and from
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the efficiency of goal directed search. It is important to emphasize that the evaluation of the transformed
program is performed in the ordinary forward chaining way or can be combined with the semi-naive
algorithm as described above.

The magic templates rewriting transforms a program P and a query q in two steps: a transformation
of the program into an adorned version, and a rewriting of the adorned program into a set of rules that
can be efficiently evaluated with a bottom up strategy.

1.1.2.1 Adornment of Datalog Programs.

In the first step, the program is rewritten into an adorned version according to a sideways information
passing strategy, often abbreviated sip.

A sideways information passing strategy determines how variable bindings gained from the unifica-
tion of a rule head with a goal or sub-goal are passed to the body of the rule, and how they are passed
from a set of literals in the body to another literal. The ordinary evaluation of a Prolog program im-
plements a special sideways information passing strategy, in which variable bindings are passed from
the rule head and all previously occurring literals in the body to the body literal in question. There
are, however, many other sips which may be more convenient in the evaluation of a datalog or Prolog
program. In this survey, only the standard Prolog sip is considered, and the interested reader is referred
to [5] for a more elaborate discussion of sideways information passing strategies.

The construction of an adorned program is exemplified by the transformation of the transitive closure
program in Listing 1.1_4 together with the query t(a,Answer) into its adorned version in Listing 1.1_5.
In order to better distinguish the different occurrences of the predicate t in the second rule, they are
labeled t-1, t-2 and t-3, but they still denote the same predicate.

t(X,Y) ← r(X, Y).
2 t-3(X,Z) ← t-1(X, Y), t-2(Y, Z).

4 r(a, b).
r(b, c).

6 r(c, d).

Listing 1.1_4: Transitive closure computation

When evaluated in a backward chaining manner, the query Q :=t(a,Answer) is first unified with the
head of the first rule, generating the binding X=a which is passed to the rule body. This sideways infor-
mation passing can be briefly expressed by t ↪→X r. The queryQ is also unified with the head of the
second rule, generating once more the binding X=a, which would be used to evaluate the literal t-1(X,Y)
by a Prolog interpreter. In the remaining evaluation of the second rule, the binding for Y computed by
the evaluation of t-1(X,Y) is passed over to the predicate t-2. This can be briefly expressed by the sips
t-3 ↪→X t-1 and t-1 ↪→Y t-2.

From this information passing strategy an adorned version of Listing 1.1_4 can be derived. Note
that all occurrences of the predicate t (and its numbered versions) are evaluated with the first argument
bound and the second argument free when Q is to be answered. In the magic templates transformation
it is important to differentiate between different call-patterns for a predicate. This is where adornments
for predicates come into play. An adornment a for a predicate p of arity n is a word consisting of n
characters which are either ‘b’ (for bound) or ‘f’ (for free). Since the first argument of t is always
bound in the program and the second argument is always free, the only adornment for t is b f . Since
the evaluation of literals of extensional predicates amounts to simply looking up the appropriate values,
adornments are only introduced for intensional predicate symbols.
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It is interesting to note that the choice of the information passing strategy strongly influences the
resulting adorned program. In the case that one chooses to evaluate the literal t-2 before t-1, both
arguments of t-2 would be unbound yielding the sub-query t-2 f f , and thus an additional adorned
version of the second rule would have to be introduced for this sub-query. This additional adorned rule
would read t-3 f f (X,Z) ← t-1 f b(X, Y), t-2 f f (Y, Z).. For the sake of simplicity, the following
discussion refers to the shorter version depicted in Listing 1.1_5 only.

tb f (X,Y) ← r(X, Y).
2 t-3b f (X,Z) ← t-1b f (X, Y), t-2b f (Y, Z).

4 r(a, b).
r(b, c).

6 r(c, d).

Listing 1.1_5: The adorned version of the program in Listing 1.1_4

1.1.2.2 Goal-Directed Rewriting of the Adorned Program.

Given an adorned datalog program Pad and a query q, the general idea of the magic templates rewriting
is to transform Pad into a program Pad

m in a way such that all sub-goals relevant for answering q can
be computed from additional rules in Pad

m . Slightly alternated versions of the original rules in Pad are
included in Pad

m , the bodies of which ensure that the rule is only fulfilled if the head of the rule belongs
to the set of relevant sub-goals.

Hence the magic template transformation generates two kinds of rules: The first set of rules controls
the evaluation of the program by computing all relevant sub-goals from the query, and the second set of
rules is an adapted version of the original program with additional premises in the bodies of the rules,
which ensure that the rules are only evaluated if the result of the evaluation contributes to the answer of
q.

The functioning of the magic templates transformation and the evaluation of the transformed pro-
gram is again exemplified by the transitive closure computation in Listings 1.1_4 and 1.1_5.

1. In a first step, a predicate magic_pa of arity nb(pa) is created for each adorned predicate pa

that occurs in the adorned program, where nb(pa) denotes the number of bound arguments in
pa – in other words the number of ‘b’s in the adornment a. Thus for the running example, the
predicate magic_tb f with arity one is introduced. The intuition behind magic predicates is that
their extensions during bottom-up evaluation of the program, often referred to as magic sets,
contain all those sub-goals that need to be computed for pa. In the transitive closure example,
the only initial instance of magic_tb f is magic_tb f (a), which is directly derived from the query
t(a,Answer). This initial magic term is added as a seed2 to the transformed program in Listing
1.1_6.

2. In a second step, rules for computing sub-goals are introduced reflecting the sideways information
passing within the rules. Let r be a rule of the adorned program Pad , let ha be the head of r, and
l1 . . . lk the literals in the body of r. If there is a query that unifies with the head of the rule, if
queries for l1 . . . li (i < k) have been issued and if they have been successful, the next step in a
backward chaining evaluation of Pad would be to pursue the sub-goal li+1. Thus a control rule

2it is called the seed, because all other magic terms are directly or indirectly derived from it.
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li+1 ← magic_ha, l1 . . . li is included in Pad
m . For the running example the rule magic_tb f (Y)

← magic_tb f (X), t(X,Y) is added.

3. In a third step, the original rules of Pad are adapted by adding some extra conditions to their
bodies in order to evaluate them only if appropriate sub-goals have already been generated by the
set of control rules. Let r be a rule in Pad with head ha and with literals l1, . . . , ln. r shall only be
evaluated if there is a sub-goal magic_ha for the head, and if there are sub-goals for each of the
derived predicates of the body. For the adorned version of the transitive closure program (Listing
1.1_5) both the first and the second rule must be rewritten. Since there is no derived predicate
in the first rule, the only literal which must be added to the rule body is magic_tb f (X), yielding
the transformed rule tb f (X,Y) ← magic_tb f (X), r(X,Y). With the second rule having two
derived predicates in the rule body, one might expect that three additional magic literals would
have to be introduced in the rule body. But since t-1 and t-3 have the same adornment and the
same variables for their bound arguments, they share the same magic predicate.

The evaluation of the magic transitive closure program is presented in Listing 1.1_7 for the goal
t(a,Answer). Note that in contrast to the naive and semi-naive bottom-up algorithms, only those facts
are derived, which are potentially useful for answering the query. In particular, the facts r(1, 2), r(2,
3), and r(3, 1) are never used. Moreover the sub-goal r(d,X) corresponding to the magic predicate

magic_tb f (d) is never considered.

magic_tb f (Y) ← magic_tb f (X), t(X,Y).
2 tb f (X,Y) ← magic_tb f (X), r(X,Y).

t-3b f (X,Z) ← magic_tb f (X), t-1b f (X,Y), magic_tb f (Y ), t-2b f (Y,Z).
4 magic_tb f (a). // the seed

6 r(a, b). r(b, c). r(c, d).
r(1, 2). r(2, 3). r(3, 1).

Listing 1.1_6: The magic templates transformation of the program in Listing 1.1_5 for the query t(a,X)

t(a,b) // derived by the seed and rule 2
2 magic_tb f (b) // derived by the seed, t(a,b) and rule 1

t(b,c) // derived by magic_tb f (b), and rule 2
4 magic_tb f (c) // derived by magic_tb f (b), t(b,c) and rule 1

t(c,d) // derived by magic_tb f (c) and rule 2
6 t(a,c) // derived by rule 3

t(a,d) // derived by rule 3
8 t(b,d) // derived by rule 3

Listing 1.1_7: Evaluation of program 1.1_6

1.1.3 The Rete Algorithm

The Rete algorithm [27, 23] was originally conceived by Charles L. Forgy in 1974 as an optimized
algorithm for inference engines of rule based expert systems. Since then several optimizations of Rete
have been proposed, and it has been implemented in various popular expert systems such as Drools,
Soar, Clips, JRules and OPS5.
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The Rete algorithm is used to process rules with a conjunction of conditions in the body and one
or more actions in the head, that are to be carried out when the rule fires. These rules are stored in
a so-called production memory. The other type of memory that is used by the Rete algorithm is the
working memory, which holds all the facts that make up the current configuration the rule system is in.
A possible action induced by a rule may be the addition of a new fact to the working memory, which
may itself be an instance of a condition of a rule, therefore triggering further actions to be carried out in
the system.

Avoiding redundant derivations of facts and instances of rule precedents, the Rete algorithm pro-
cesses production rules in a so-called Rete network consisting of alpha-nodes, beta-nodes, join-nodes
and production-nodes.

Figure 1.1 illustrates the way a Rete network is built and operates. It serves as an animal classifica-
tion system relying on characteristics such as has wings, has spikes, is poisonous, etc. The example
rules exhibit overlapping rule bodies (several atomic conditions such as X lays eggs are shared among
the rules).

For each atomic condition in the body of a rule, the Rete network features one alpha-node containing
all the elements of the working memory that make this atomic condition true. Alpha-nodes are distin-
guished by shaded rectangles with round corners in Figure 1.1. Although the same atomic condition
may occur multiple times distributed over different production rules, only one single alpha node is cre-
ated in the Rete network to represent it. Therefore the condition X lays eggs, which is present in the
conditions of all rules except for p2, is represented by a single alpha-node in Figure 1.1.

While alpha-nodes represent single atomic conditions of rule bodies, beta-nodes stand for conjunc-
tions of such conditions, and hold sets of tuples of working memory elements that satisfy them. Beta-
nodes are depicted as ovals with white background in Figure 1.1.

In contrast to alpha and beta nodes, join nodes do not hold tuples of or single working memory
elements, but serve computation purposes only. For each rule in the rule system, there is one production
node (depicted as rectangles with grey background in Figure 1.1) holding all the tuples of working
memory elements that satisfy all the atomic conditions in its body.

Alpha- and beta-nodes are a distinguishing feature of Rete in that they remember the state of the rule
system in a fine grained manner. With beta-nodes storing instantiations of (partial) rule bodies, there is
no need of reevaluating the bodies of all rules within the network in the case that the working memory
is changed.

Besides storing derived facts and instantiations of (partial) rule premises, the Rete network also
allows information sharing to a large extent. There are two ways that information is shared among rules
in the network. The first way concerns the alpha-nodes and has already been mentioned above. If an
atomic condition (such as X feeds milk) appears within more than one rule, this alpha node is shared
among both rules. Needless to say, this is also the case if both conditions are variants (equivalent modulo
variable renaming) of each other. The second way that information is shared within the Rete network
is by sharing partial rule instantiations between different rules. In Figure 1.1, the conjunction of atomic
conditions (X lays eggs), (X feeds milk) is common to the rules p3, p4 and p5. In a Rete network,
instantiations of these partial rule bodies are computed only once and saved within a beta node which is
connected (possibly via other beta nodes) to the production nodes of the affected rules.

1.1.4 Basic Backward Chaining: SLD-Resolution

Resolution proofs are refutation proofs, i.e. they show the unsatisfiability of a set of formulas. As it
holds that the set of formulas P∪{¬ϕ} is unsatisfiable iff P |= ϕ , resolution may be used to determine
entailment (compare Theorem ??). Observe that a goal← a1, . . . ,an is a syntactical variant of the first
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order sentence ∀x1 . . .xm(⊥ ← a1 ∧ . . .∧ an) where x1, . . . ,xm are all variables occurring in a1, . . .an.
This is equivalent to ¬∃x1 . . .xm(a1∧ . . .∧an). If we use SLD-resolution3 to show that a logic program
P and a goal← a1, . . . ,an are unsatisfiable we can conclude that P |= ∃x1 . . .xm(a1∧ . . .∧an).

Definition 1 (SLD Resolvent) Let C be the clause b← b1, . . . ,bk, G a goal of the form← a1, . . . ,am, . . . ,an,
and let θ be the mgu of am and b. We assume that G and C have no variables in common (otherwise
we rename the variables of C). Then G′ is an SLD resolvent of G and C using θ if G′ is the goal
← (a1, . . .am−1,b1, . . .bk,am+1, . . .an)θ .

Definition 2 (SLD Derivation) A SLD derivation of P∪{G} consists of a sequence G0,G1, . . . of goals
where G = G0, a sequence C1,C2, . . . of variants of program clauses of P and a sequence θ1,θ2, . . . of
mgu’s such that Gi+1 is a resolvent from Gi and Ci+1 using θi+1. An SLD-refutation is a finite SLD-
derivation which has the empty goal as its last goal.

Definition 3 (SLD Tree) An SLD tree T w.r.t. a program P and a goal G is a labeled tree where every
node of T is a goal and the root of T is G and if G is a node in T then G has a child G′ connected to G
by an edge labeled (C,θ) iff G′ is an SLD-resolvent of G and C using θ .

Let P be a definite program and G a definite goal. A computed answer θ for P∪{G} is the substitu-
tion obtained by restricting the composition of θ1, . . .θn to the variables occurring in G, where θ1, . . .θn
is the sequence of mgu’s used in an SLD-refutation of P∪{G}.

Observe that in each resolution step the selected literal am and the clause C are chosen non-deterministically.
We call a function that maps to each goal one of its atoms a computation rule. The following proposition
shows that the result of the refutation is independent of the literal selected in each step of the refutation.

Proposition 1 (Independence of the Computation Rule) [35] Let P be a definite Program and G be
a definite goal. Suppose there is an SLD-refutation of P∪{G} with computed answer θ . Then, for any
computation rule R, there exists an SLD-refutation of P∪{G} using the atom selected by R as selected
atom in each step with computed answer θ ′ such that Gθ is a variant of Gθ ′.

The independence of the computation rule allows us to restrict the search space: As a refutation
corresponds to a branch of in an SLD-tree, to find all computed answers we need to search all branches
of the SLD-tree. The independence of the computation rule allows us to restrict our search to branches
constructed using some (arbitrary) computation rule.

Lemma 1 Consider the logic program 1.1_8 with query q =← t(1,2):

t(x,y) ← e(x,y).
2 t(x,y) ← t(x,z), e(z,y).

e(1,2) ← .
4 e(2,1) ← .

e(2,3) ← .
6 ← t(1,2) .

Listing 1.1_8: Transitive Closure

An SLD-tree for program 1.1_8 and q is shown in the following figure. We label the edges of an
SLD tree with the number of a rule instead of a rule. We denote by (n’) the rule number n where each
variable x occurring in rule n is replaced by x′.

3SLD is an acronym for Selected Literal Definite Clause
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If we want to compare the operational semantics of a program P to its declarative semantics we need
a declarative notion of an answer of program P. A correct answer for a program P and goal G is a
substitution θ such that P |= Gθ . Using this notion we can define the soundness and completeness of
logic programming.

Proposition 2 (Soundness and Completeness of Logic Programming) [35] Let P be a program and
let Q be a query. Then it holds that

• every computed answer of P and G is a correct answer and

• for every correct answer σ of P and G there exists a computed answer θ such that θ is more
general that σ .

Observe that to find a computed answers of a program P and goal G operationally one has to visit
the leaf of a finite branch in the SLD-tree w.r.t. P and G. The order in which we visit these nodes is
not determined by the definition of an SLD-refutation. We call such an order a search strategy. An
SLD-procedure is a deterministic algorithm which is an SLD-resolution constrained by a computation
rule and a search strategy.

As SLD-trees are infinite in general, the completeness of an SLD-procedure depends on the search
strategy. To be complete, an SLD-procedure must visit every leaf of a finite branch of an SLD-tree
within a finite number of steps. A search strategy with this property is called fair. Obviously not every
search strategy is fair. For example the depth first search strategy used by Prolog is not fair. An example
of a fair search strategy is breath first search.

1.1.5 Backward Chaining with Memorization: OLDT-Resolution

As stated in the previous section not every search strategy is complete. This is due to the fact that an
SLD-tree is infinite in general. As we only consider finite programs, an SLD-tree may only be infinite
if it has an infinite branch. As a branch in an SLD-tree corresponds to an SLD-derivation we denote a
branch as [G1,G2, . . .] where G1,G2 . . . are the goals of the corresponding derivation.

A branch B = [G1,G2, . . .] in an SLD-tree may be infinite if there is a sub-sequence [Gi1 ,Gi2 , . . .]
(i j < ik if j < k) of B such that

• for all j,k ∈ N Gi j and Gik contain an equal (up to renaming of variables) atom or

• for all j ∈ N Gi j contains an atom which is a real instance of an atom in Gi j+1 .

Non-termination due to the first condition is addressed by a evaluation technique called tabling or
memorization. The idea of tabling is the idea of dynamic programming: store intermediate results to be
able to look these results up instead of having to recompute them. In addition to the better termination
properties, performance is improved with this approach.

The OLDT algorithm [48] is an extension of the SLD-resolution with a left to right computation
rule. Like SLD-resolution, it is defined as a non-deterministic algorithm.

A subset of the predicate symbols occurring in a program are classified as table predicates. A goal is
called a table goal if its leftmost atom has a table predicate. Solutions to table goals are the intermediate
results that are stored. Table goals are classified as either solution goals or look-up goals. The intuition
is that a solution goal ‘produces’ solutions while a look-up goal looks up the solutions produced by an
appropriate solution goal.

An OLDT-structure (T,TS,TL) consists of an SLD-tree T and two tables, the solution table TS and
the look-up table TL. The solution table TS is a set of pairs (a,TS(a)) where a is an atom and TS(a) is a
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list of instances of a called the solutions of a. The look-up table TL is a set of pairs (a,TL(a)) where a is
an atom and p is a pointer pointing to an element of TS(a′) where a is an instance of a′. TL contains one
pair (a,TL(a)) for an atom a occurring as a leftmost atom of a goal in T .

The extension of an OLDT structure (T,TS,TL) consists of three steps:

1. a resolution step,

2. a classification step, and

3. a table update step.

In the resolution step a new goal is added to the OLDT-tree, in the classification step this new goal
is classified as either non-tabled goal or solution goal or look-up goal and in the table update step the
solution table and the update table are updated. While step one is equal for non-tabled and solution
goals, step two and three are equal for tabled nodes while there is nothing to do in these steps for
non-tabled nodes.

Let (T,TS,TL) be an OLDT structure and G =← a1, . . . ,an a goal in T . If G is a non-tabled goal or
a solution goal then in the resolution step a new goal G′ is added to T which is connected to G with an
edge labeled (C,θ) where G′ is the SLD-resolvent of G and C using θ . If G is a look-up node then in
the resolution step the new node G′ is added to T with an edge labeled (a←,θ) where a is the atom in
the solution table that the pointer TL(a1) points to and the substitution θ is the mgu of a and a1. Finally
the pointer TL(a1) is set to point to the next element of the list it points to.

In the classification step the new goal G′ is classified as a non-table goal if its leftmost atom is not a
table predicate and a table goal otherwise. If G′ is a table goal then G′ is classified as a look-up node if
there is a pair (a,TS(a)) in the solution table and a is more general than the leftmost atom a′ of G′. In
this case a new pair (a′, p) is added to the look-up table and p points to the first element of TS(a). If G′

is not classified as a look-up node then it is classified as a solution node and a new pair (a′, []) is added
to the solution table.

In the table update step new solutions are added to the solution table. Recall that the problem we
want to tackle here is the recurrent evaluation of equal (up to renaming of variables) atoms in goals.
Therefore the ‘solutions’ we want to store in the solution table are answers to an atom in a goal.

In SLD-resolution the term answer is defined only for goals. This notion can be extended to atoms
in goals in the following way. OLDT-resolution uses a left to right computation rule. If the derivation
of a goal G =← a1, . . . ,an is finite, then there is a finite number n of resolution steps such that the nth
resolvent Gn on G is← a2, . . . ,an. We call the sequence [G1, . . . ,Gn] a unit sub-refutation of a1 and the
restriction of θ1 . . .θn to the variables occurring in a1 is called an answer for a1.

Now if the goal G produced in the resolution step is the last goal of a unit sub-refutation of a with
answer θ then the update step consists in adding θ to the list TS(a).

Lemma 2 Reconsider the program from Example 1

t(x,y) ← e(x,y) .
2 t(x,y) ← t(x,z), e(z,y) .

e(1,2) ← .
4 e(2,1) ← .

e(2,3) ← .
6 ← t(1,2) .

Listing 1.1_9: Transitive Closure
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After a sequence of OLDT-resolutions of solution goals or non-tabled goals the OLDT-tree in Figure
1.3 is constructed. To indicate which nodes are solution nodes and which are look-up nodes we prefix
solution nodes with ‘S:’ and look-up nodes with ‘L:’.

As the left branch is a unit sub-refutation of t(1,a) with solution {a/2} the entry t(1,2) is added to
the solution table. As t(1,a) is more general than the leftmost atom of the goal t(1,z′),e(z′,a) this goal
is classified as a look-up node. Instead of using resolution to compute answers for the first atom of this
goal we use the solutions stored in the solution table. The final OLDT-tree is depicted in 1.4:

Observe that the program of example 2 does not terminate with SLD-resolution while it does ter-
minate with OLDT-resolution. The following example shows that OLDT-resolution is not complete in
general.

Lemma 3 Consider the program 1.1_10 and query q =← p(x)

p(x) ← q(x), r .
2 q(s(x)) ← q(x) .

q(a) ← .
4 r ← .
← p(x) .

Listing 1.1_10: Program for which OLDT resolution is incomplete

After a sequence of OLDT-resolution steps the OLDT-tree in Figure 1.5 is constructed
In the next step the solution q(a) can be used to generate the solution q(s(a)) (see Figure 1.6).
It is easy to see that if reduction steps are only applied to the node L:← q(x′),r then no solutions for

p(x) will be produced in finite time. Therefore OLDT is not complete in general.

This problem was addressed by the authors of OLDT. They specified a search strategy called mul-
tistage depth-first strategy for which they showed that OLDT becomes complete if this search strategy
is used. The idea of this search strategy is to order the nodes in the OLDT-tree and to apply OLDT-
resolution-steps to the nodes in this order. If the node that is the biggest node with respect to that
ordering is reduced then a stage is complete and a new stage starts where reduction is applied to the
smallest node again. Therefore it is not possible to apply OLDT-steps twice in a row if there are other
nodes in the tree which are resolvable.

In the above example it would therefore not be possible to repeatedly apply reductions to the node
L:← q(x′),r without reducing the node← r which yields a solution for p(x).

1.1.6 The Backward Fixpoint Procedure

The last sections have shown bottom up and top down methods for answering queries on Horn logic
programs. While the naive and semi-naive bottom up methods suffer from an undirected search for
answering queries, the top down methods such as SLD resolution (Section 1.1.4) may often not terminate
although the answer can be computed in finite time by a bottom up procedure. Non-termination of
top down procedures is addressed by tabling (storing the encountered sub-queries and their solutions)
in OLDT resolution (Section 1.1.5) and other advanced top down methods such as QSQ or SLDAL-
Resolution[52], the ET ∗ and ETinterp[22, 25] algorithms and the RQA/FQI[37] strategy. The problem
of undirected search in forward chaining methods is solved by rewriting the rules such that special
atoms representing encountered sub-goals are represented by custom-built atoms and by requiring an
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appropriate sub-goal to be generated before a rule of the original program is fired. Two representatives
of this second approach are the Alexander[33] and the Magic Set methods (Section 1.1.2).

In [8] a sound and complete query answering method for recursive databases based on meta-interpretation
called Backward Fixpoint Procedure, is presented, and it is shown that the Alexander and Magic Set
methods can be interpreted as specializations of the Backward Fixpoint Procedure (BFP) and that also
the efficient top down methods based on SLD resolution implement the BFP. Studying the BFP reveals
the commonalities and differences between top down and bottom up processing of recursive Horn logic
programs and is thus used to top of this chapter.

The backward fixpoint procedure is specified by the meta interpreter in Listing 1.1_11, which is
intended to be evaluated by a bottom up rule engine. Facts are only generated in a bottom up evaluation
of the interpreter if a query has been issued for that fact or if an appropriate sub-query has been generated
by the meta-interpreter itself (Line 1). Sub-queries for rule bodies are generated if a sub-query for the
corresponding rule head already exists (Line 2). Sub-queries for conjuncts are generated from sub-
queries of conjunctions they appear in (Line 3 and 4). The predicate evaluate consults the already
generated facts, and may take a single atom or a conjunction as its argument, returning true if all of the
conjuncts have already been generated. It must be emphasized that using a bottom up rule engine for
evaluating the BFP meta-interpreter for an object rule program is equivalent to evaluating this object
program top down, thereby not generating any facts which are irrelevant for answering the query. For
the correctness of the meta-interpreter approach for fixpoint computation and for an example for the
evaluation of an object program with the BFP meta-interpreter see [8].

fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate(B)
2 queryb(B) ← queryb(Q) ∧ rule(Q ← B)

queryb(Q1) ← queryb(Q1∧Q2)
4 queryb(Q2) ← queryb(Q1∧Q2) ∧ evaluate(Q1)

Listing 1.1_11: The backward fixpoint procedure meta interpreter

A direct implementation of the meta-interpreter may lead to redundant computations of facts. To
see this consider the application of the meta-interpreter to the object program p ← q, r and the query
p. The relevant instantiated rules of the meta-interpreter contain the ground queries evaluate(q,r)
and evaluate(q), thereby accessing the fact q twice. Getting rid of these redundant computations is
elegantly achieved by specifying a bottom up evaluation of a binary version of the predicate evaluate as
shown in Listing 1.1_12. The first argument of evaluate contains the conjuncts which have already been
proved, while the second argument contains the rest of the conjunction. Therefore a fact evaluate( /0,Q)
represents a conjunction which has not yet been evaluated at all, while evaluate(Q, /0) represents a
completely evaluated conjunction. With this new definition of evaluate the atoms evaluate(B) and
evaluate(Q1) in Listing 1.1_11 must be replaced by evaluate(B, /0) and evaluate(Q1, /0), respectively.
With this extension, the BFP meta-interpreter of Listing 1.1_11 becomes redundant. A non-redundant
version is obtained by only considering rules (1, 5 to 11) of Listings 1.1_11, 1.1_12 and 1.1_13. For the
proofs for the redundancy of the rules (1 to 9) on the one hand and for the equivalence of the interpreters
made up of rules (1 to 4) and (1, 5 to 11) on the other hand see [8].

evaluate( /0,B) ← queryb(Q) ∧ rule(Q ← B)
6 evaluate(B1,B2) ← evaluate( /0,B1∧B2) ∧ fact(B1)

evaluate(B1∧B2,B3) ← evaluate(B1,B2∧B3) ∧ B1 6= /0 ∧ fact(B2)
8 evaluate(B, /0) ← fact(B)

evaluate(B1∧B2, /0) ← evaluate(B1,B2) ∧ B1 6= /0, fact(B2)
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Listing 1.1_12: Implementation of the predicate evaluate

10 queryb(B2) ← evaluate(B1,B2) ∧ B2 6= (C1∧C2)
queryb(B2) ← evaluate(B1,B2∧B3)

Listing 1.1_13: Replacement rules for the rules 2 to 4 in Listing 1.1_11

The implementation of the backward fixpoint procedure gives rise to two challenges exemplified
by the sub-goal queryb(r(x,a)), which may be generated during the evaluation of a program by
the BFP meta-interpreter. The sub-goal is both nested and non-ground. The main problem with non-
ground terms generated by the application of the BFP meta-interpreter to an object program is that for
deciding whether a newly derived fact is a logical duplicate of an already derived fact it is not sufficient
to perform string matching, but full unification is needed. With specialization[28], a common partial
evaluation technique used in logic programming, one can get rid of these problems.

Specialization is applied to the BFP meta-interpreter with respect to the rules of the object pro-
gram. For each rule of the meta-interpreter that includes a premise referring to a rule of the object
program, one specialized version is created for each rule of the object program. The first rule of the BFP
meta-interpreter (Listing 1.1_11) specialized with respect to the rule p(x)← q(x)∧ r(x) results in the
following partially evaluated rule:

fact(p(x)) ← queryb(p(x)) ∧ evaluate(q(x) ∧ r(x))

Similarly, the specialization of the second rule of the meta-interpreter with respect to the same object
rule yields the partially evaluated rule queryb(q(x) ∧ r(x))← queryb(p(x)).

Another specialization which can be applied to the BFP meta-interpreter is the specialization of the
queryb predicate with respect to the predicates of the object program, transforming a fact queryb(p(a))
into the fact queryb-p(a) and eliminating some of the nested terms generated during the evaluation.
With this transformation the first rule of the BFP is further simplified to:

fact(p(x)) ← queryb-p(x) ∧ evaluate(q(x) ∧ r(x))

Getting rid of non-ground terms can also be achieved by specialization resulting in an adorned
version of the program. Adornment of logic programs is described in the context of the magic set
transformation in Section 1.1.2. [8] also discusses the faithfulness of representations of sub-queries as
facts. Adornments of sub-queries are not completely faithful in the sense that the adornment of the
distinct queries p(X,Y) and p(X,X) results in the same adorned predicate p f f . As described in Section
1.1.2, multiple adorned versions for one rule of the original program may be generated.

In [8] it is shown that the above specializations of the meta-interpreter made up of the rules (1,
5 to 11) with respect to an object program P and the omittance of the meta-predicates evaluate and
fact yields exactly the supplementary magic set transformation and the Alexander method applied to
P. Therefore both of these methods implement the BFP.

Not only can bottom up processing methods be specialized from the BFP, but it can also be used
to specify top down procedures such as ET ∗, ETinterp, QSQ, etc. The difference between SLD reso-
lution and the BFP is explained in [8] in terms of the employed data structures. SLD resolution uses
a hierarchical data structure which relates sub-queries and proved facts to the queries they belong to.
On the other hand, the BFP employs relations – i.e. a flat data structure – for memorizing answers to
queries, and therefore allows to share computed answers between queries that are logically equivalent.
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SLD resolution and the hierarchical resolution tree can be simulated by the BFP by introducing identi-
fiers for queries, thus allowing to relate facts and sub-queries with queries to the answers of which they
contribute. See [8] for details. This simulation prevents sharing of answers between queries and thus
makes the evaluation less efficient. One conclusion that can be drawn from the BFP is that it does not
make sense to hierarchically structure queries according to their generation. In contrast it makes sense
to rely on a static rewriting such as the Alexander or Magic Set rewriting and process the resulting rules
with a semi-naive bottom-up rule engine.

16



Figure 1.1 A Rete Network for Animal Classification

Production memory:
p1: X lays eggs, X has wings ==> X is_a bird
p2: X feeds milk ==> X is_a mammal
p3: X feeds milk, X lays eggs ==> X is_a monotreme
p4: X feeds milk, X lays eggs, X has_spines ==> X is_a echidna
p5: X feeds milk, X lays eggs, X married_to Y, Y is poisonous
      ==> X is_a platypus,  Y is_a platypus

X lays eggs

X feeds milk

w2, w6, w9

w1, w5

w1^w2, w5^w6

(w1^w2), (w5^w6)

X has spines

w7

X has_husband Y

w3

X has wings

w8

Y is poisonous

w4

w8^w9

(X lays eggs), 
(X feeds milk),

(X married_to Y)
(Y is poisonous)

(X lays eggs), 
(X feeds milk),

(X married_to Y)

(X lays eggs), 
(X feeds milk),
(X has spines)

X is_a monotreme

X is_a platypus,
Y is_a platypus

(X lays eggs), 
(X feeds milk),

X is_a echidna

(X lays eggs), 

(X lays eggs),
(X has wings)

X is_a bird

X is_a mammal

dummy  top
node

w2, w6, w9

w5^w6^w7

w1^w2^w3

w1^w2^w3^w4

join on X

join on X

join on X join on X

join on Y

w5^w6^w7

w8^w9

w1, w5

w1^w2^w3^w4

Working memory:
w1: anna feeds milk
w2: anna lays eggs
w3: anna married_to pierre
w4: pierre is poisonous
w5: betty feeds milk
w6: betty lays eggs
w7: betty has spines
w8: tux has wings
w9: tux lays eggs
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Figure 1.2 An SLD tree for program 1.1_8

← t(1,a)

← e(1,a′)

�

((3),{a′/2})

((1′),{x′/1,y′/a})

← t(1,z′),e(z′,a)

← e(1,z′),e(z′,a)

← e(2,a)

�

((4),{a/1})

�

((5),{a/3})

((3),{z′/2})

((1′′),{x′′/1,y′′/z′})

← t(1,z′′),e(z′′,z′),e(z′,y′)

. . .

(. . .)

. . .

(. . .)

((2′′),{x′′/1,y′′/z′})

((2′),{x′/1,y′/a})

Figure 1.3 An intermediary OLDT tree for program 1.1_9

S:← t(1,a)

← e(1,a)

�

((3),{a/2})

((1′),{x′/1,y′/a})

L:← t(1,z′),e(z′,a)

((2′),{x′/1,y′/a})

TS(t(1,a)) = [t(1,2)]

TL(t(1,z′)) =
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Figure 1.4 The final OLDT tree for program 1.1_9

S:← t(1,a)

← e(1,a′)

�

((3),{a′/2})

((1′),{x′/1,y′/a})

L:← t(1,z′),e(z′,a)

← e(2,a)

�

((4),{a/1})

�

((5),{a/3})

(t(1,2)←,{z′/2})

((2′),{x′/1,y′/a})

TS(t(1,a)) = [t(1,2), t(1,1), t(1,3), []]

TL(t(1,z′)) =

Figure 1.5 An intermediary OLDT tree for program 1.1_10

S:← p(x)

S:← q(x),r

L:← q(x′),r

((2′),{x/s(x′)})

← r

�

((4),{})

((3),{x/a})

((1′),{x′/x})

TS(p(x)) = []

TS(q(x)) = [q(a)]

TL(q(x′)) =
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Figure 1.6 An intermediary OLDT tree for program 1.1_10

S:← p(x)

S:← q(x),r

L:← q(x′),r

← r

((2′′),{x′/s(x′′)})

((2′),{x/s(x′)})

← r

�

((4),{})

((3),{x/a})

((1′),{x′/x})

TS(p(x)) = []

TS(q(x)) = [q(a),q(s(a))]

TL(q(x′)) =
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1.2 Rule Sets with Non-monotonic Negation

In the previous chapter evaluation methods for logic programs without negation are examined. This
chapter considers a more general form of logic programs, namely ones that use negation. The rules
considered in this chapter are all of the form

A← L1, . . . ,Ln

where the Li,1≤, i≤ n are literals, and A is an atom. Thus negative literals are allowed in the bodies
of rules, but not in their heads. It is important to note that augmenting logic programming with negation
increases expressivity and is necessary for deriving certain information from a database.

In Section ?? two important semantics for logic programming with negation have been described:
The stable model semantics (See Section ??) and the well-founded model semantics (Section ??). How-
ever, this declarative semantics does not provide an easy to implement algorithm neither for computing
the entailments of a logic program with negation nor for answering queries with respect to such pro-
grams. In fact the greatest unfounded sets in the definition of the well-founded semantics and the stable
models in the stable models theory must be guessed.

In this section constructive algorithms for computing the so-called iterative fixpoint semantics, the
stable model semantics and the well-founded model semantics are described and applied to example
programs to better illustrate their functioning.

The kind of negation which is generally used in logic programming is called negation as failure
and can be described as follows: A negated literal ¬A is true, if its positive counterpart A cannot be
derived from the program. A possible application of negation as failure is given in Listing 1.2_14.
Since male(eduard) is given and married(eduard) cannot be derived, bachelor(eduard) is logical
consequence of the program, while bachelor(john) is not. Negation as failure is also known under the
term non-monotonic negation, because the addition of new facts to a program may cause some of its
entailments to be no longer true: The addition of married(eduard) to the program in Listing 1.2_14
invalidates the conclusion bachelor(eduard).

married(john).
2 male(john).

male(eduard).
4 bachelor(X) ← male(X), not married(X)

Listing 1.2_14: An Illustration for the Use of Negation as Failure

The adoption of negation as failure brings about several interesting, not to say intricate questions.
Consider the program in Listing 1.2_15. If the literal q is assumed to be false, then the literal p must be
true according to the second rule. This, however, causes the literal q to be true. On the other hand there
is no possibility of deriving the literal q. Hence the semantics of Program 1.2_15 is not clear. Therefore
syntactical restrictions on logic programs have been proposed, to ensure that all programs satisfying
these restrictions have an intuitive declarative semantics.

q ← p.
2 p ← not q.

Listing 1.2_15: A program with Recursion through negation

21



1.2.1 Computation of the Iterative Fixpoint Semantics for Stratified Logic
Programs with Negation as Failure

One possibility of limiting the use of negation is by stratification (see Definition ?? in Subsection ??).
It is easy to see that for some programs no stratification can be found. Since in Program 1.2_15 q

depends on p by the first rule and p depends on q by the second rule, they would have to be defined in
the same stratum. Since q depends negatively on p, this case is precluded by the third premise above.
A program for which no stratification can be found is called non-stratifiable, programs for which a
stratification exists are called stratifiable. The iterative fixpoint semantics does not provide a semantics
for non-stratifiable programs.

[1] defines the semantics for stratified logic programs as an iterated fixpoint semantics based on the
immediate consequence operator TP (Definition ??) as follows. Let S1, . . . ,Sn be a stratification for the
program P. Recall that Ti

P(I) denotes the i-fold application of the immediate consequence operator to
the database instance I. Then the semantics of the program P is the set Mn where M0 is defined as the
initial instance over the extensional predicate symbols of P, and the Mi are defined as follows:

M1 := Tω
S1

(M0), M2 := Tω
S2

(M1), . . . , Mn := Tω
Sn

(Mn−1)

This procedure shall be illustrated at the example program in Listing 1.2_16. The intensional
predicate symbols has_hobbies, has_child, married, and bachelor can be separated into the strata
S1 := {has_hobbies}, S2 := {has_child, married}, S3 := {bachelor}. The initial instance M0 =
{{ john}human, { john}plays_the_piano, { john}male} is directly derived from the facts of the program.
Since has_hobbies is the only element of S1, only the first rule is relevant for the computation of
M1 := M0 ∪{{ john}has_hobbies}. The second and the third rule are relevant for the computation of M2,
which is the same instance as M1. Finally, the fourth rule allows to add the fact bachelor(john) yielding
the final instance M3 := M2∪{{ john}bachelor}.

human(john).
2 male(john).

plays_the_piano(john).
4

has_hobbies(X) ← plays_the_piano(X).
6 has_child(X) ← human(X), not has_hobbies(X).

married(X) ← human(X), has_child(X).
8 bachelor(X) ← male(X), not married(X).

Listing 1.2_16: A stratifiable program with negation as failure

1.2.2 Magic Set Transformation for Stratified Logic Programs

While the computation of the iterative fixpoint of a stratified logic program allows to answer an arbitrary
query on the program, it is inefficient in the sense that no goal-directed search is performed. One method
for introducing goal-directedness into logical query answering, that is also relatively easy to implement,
is the magic set rewriting as introduced in Section 1.1.2. The task of transferring the magic set approach
to logic programs with negation has therefore received considerable attention [16], [34], [4], [42], [3].

The main problem emerging when applying the magic set method to programs with negative literals
in rule bodies is that the resulting program may not be stratified. There are two approaches to dealing
with this situation. The first one is to use a preprocessing stage for the original program in order to
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obtain a stratified program under the magic set transformation and is pursued by [16]. The second one is
to accept the unstratified outcome of the magic set transformation and to compute some other semantics
which deals with unstratified programs. This second approach is employed by [6], which proposes to
compute the well-founded model by Kerisit’s weak consequence operator at the aid of a new concept
called soft stratification.

Because of its simplicity and straightforwardness, only the first approach is presented in this article.
In [16] three causes for the unstratification of a magic-set transformed program are identified:

• both an atom a and its negation not a occur within the body of the same rule of the program to
be transformed.

• a negative literal occurs multiple times within the body of a rule of the original program

• a negative literal occurs within a recursive rule

With b occurring both positively and negatively in the body of the first rule, Listing 1.2_17 is an ex-
ample for the first cause of unstratification. The predicate symbol c is an extensional one, and therefore
no magic rules are created for it, a and b are intensional ones. When the magic set transformation from
the last chapter is naively applied to the program and the query a(1), which means that negated literals
are transformed in the very same way as positive ones, the magic set transformed program in Listing
1.2_18 is not stratified, because it contains a negative dependency cycle among its predicates: magic_bb

negatively depends on bb, which again depends on magic_bb.

a(x) ← not b(x), c(x,y), b(y).
2 b(x) ← c(x,y), b(y).

Listing 1.2_17: A program leading to unstratification under the naive magic set transformation

magic_ab(1).
2 magic_bb(x) ← magic_ab(x).

magic_bb(y) ← magic_ab(x), not bb(x), c(x,y).
4 a(x) ← magic_ab(x), not bb(x), c(x,y), bb(y).

magic_bb(y) ← magic_bb(x), c(x,y).
6 b(x) ← magic_bb(x), c(x,y), b(y).

Listing 1.2_18: The unstratified outcome of the magic set transformation applied to Program 1.2_17

[16] proposes to differentiate the contexts in which a negative literal is evaluated by numbering the
occurrences of the literal in the rule body before the magic set transformation is applied. The numbered
version of Listing 1.2_17 is displayed in Listing 1.2_19 where the two occurrences of b have been
numbered. Additionally, for each newly introduced numbered predicate symbol pi its defining rules are
copies from the definition of the unnumbered symbol p, with all occurrences of p replaced by pi. In
this way, the semantics of the program remains unchanged, but the program becomes stratified under
the magic set transformation, as can be verified in Listing 1.2_20.

a(x) ← not b_1(x), c(x,y), b_2(y).
2 b_1(x) ← c(x,y), b_1(y).

b_2(x) ← c(x,y), b_2(y).

Listing 1.2_19: Program 1.2_17 with differentiated contexts for the literal b
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1 magic_ab(1).
magic_b_1b(x) ← magic_ab(x).

3 magic_b_2b(y) ← magic_ab(x), not b_1b(x), c(x,y).
ab(x) ← magic_ab(x), not b_1b(x), c(x,y), b_2b(y).

5 magic_b_1b(y) ← magic_b_1b(x), c(x,y).
b_1(x) ← magic_b_1b(x), c(x,y), b_1(y).

7 magic_b_2b(y) ← magic_b_2b(x), c(x,y).
b_2(x) ← magic_b_2b(x), c(x,y), b_2(y).

Listing 1.2_20: The stratified outcome of the magic set transformation applied to program 1.2_19

Also for the second and third source of unstratification, elimination procedures can be specified that
operate on the adorned rule set, but are carried out prior to the magic set transformation. For more
details and a proof, that the resulting programs are indeed stratified see [16].

1.2.3 Computation of the Stable Model Semantics

While the iterative fixpoint semantics provides an intuitive and canonical semantics for a subset of logic
programs with negation as failure, several attempts have been made to assign a semantics to programs
which are not stratifiable. One of these attempts is the stable model semantics (see Section ??).

An example for a program which is not stratifiable but is valid under the stable model semantics is
given in Listing 1.2_21.

married(john, mary).
2 male(X) ← married(X,Y), not male(Y).

Listing 1.2_21: A non-stratifiable program with a stable model semantics

The stable model semantics for a program P is computed as follows: In a first step all rules con-
taining variables are replaced by their ground instances. In a second step the program is transformed
with respect to a given model M into a program GLM(P) by deleting all those rules which contain a
negative literal not(L) in their body where L is contained in M, and by deleting all those negative lit-
erals not(L) from the rules for which L is not contained in M. Clearly, the semantics of the program P
remains unchanged by both of these transformations with respect to the particular model M. Since this
transformation has first been proposed by Gelfond and Lifschitz in [29], it is also known under the name
Gelfond-Lifschitz-Transformation (See also Definition ??).

An Herbrand interpretation M is a stable set of P if and only if it is the unique minimal Herbrand
model of the resulting negation-free program GLM(P). See Definition ?? and Lemma ??. The stable
model semantics for a program P (written SΠ(P)) is defined as the stable set of P, and remains undefined
if there is none or more than one of them.

The Gelfond-Lifschitz-Transformation of Listing 1.2_21 with respect to the set M := {married(john,
mary), male(John)} results in the Program in Listing 1.2_22. Rule instances and negative literals of

rule instances have been crossed out according to the rules mentioned above. Since the unique minimal
Herbrand model of the resulting Program is also M = {married(john, mary), male(John)}, M is a
stable set of the original program in 1.2_21. Since there are no other stable sets of the program, M is its
stable model.

married(john, mary).
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2 male(john) ← married(john, mary), not male(mary).
male(mary) ← married(mary, john), not male(john).

4 male(mary) ← married(mary, mary), not male(mary).
male(john) ← married(john, john), not male(john).

Listing 1.2_22: Listing 1.2_21 transformed with respect to the set {married(john, mary),
male(John)}

An efficient implementation of the stable model semantics (and also the well-founded model se-
mantics) for range-restricted and function-free normal logic programs is investigated in [38] and its
performance is compared to that of SLG resolution in [15].

1.2.4 A More Efficient Implementation of the Stable Model Semantics

The approach of [38] recursively constructs all possible stable models by adding one after another
positive and negative literals from the set of negative antecedents (Definition 4) to an intermediate
candidate full set B (see Definition 6). The algorithm (see Listing 1.2_23) makes use of backtracking to
retract elements from B and to find all stable models of a program. In addition to the program P itself
and the intermediate candidate set B, the algorithm takes a third argument which is a formula φ that
is tested for validity whenever a stable model is found. The algorithm returns true if there is a stable
model of φ and false otherwise. Moreover it can be adapted to find all stable models of a program or to
determine whether a given formula is satisfied in all stable models.

Definition 4 (Negative Antecedents) Given a logic program P, the set of its negative antecedents
NAnt(P) is defined as all those atoms a such that not(a) appears within the body of a rule of P.

Definition 5 (Deductive closure) The deductive closure Dcl(P,L) of a program P with respect to a set
of literals L is the smallest set of atoms containing the negative literals L− of L, which is closed under
the following set of rules:

R(P,L) := { c← a1, . . . ,an | c← a1, . . . ,an,not(b1), . . . ,not(bm) ∈ P, (1.1)
{not(b1), . . . ,not(bm)⊆ L−}}

Definition 6 (Full Sets (from [38])) A set Λ of not-atoms (negated atoms) is called P-full iff for all
φ ∈ NAnt(P), not(φ) ∈ Λ iff φ /∈ Dcl(P,Λ).

Lemma 4 Consider the logic program P := {q← not(r).q← not(p).r← q.} The negative antecedents
of the program are NAnt(P) = {r, p}. Λ1 := {not(r),not(p)} is not a full set with respect to P because
not(r) is in Λ1, but r is in the deductive closure Dcl(P,Λ1). The only full set with respect to P is
Λ2 := {not(p)}: not(p) ∈ Λ2 and p /∈ Dcl(P,Λ2) holds for p and not(r) /∈ Λ2 and r ∈ Dcl(P,Λ2) holds
for the other element r of NAnt(P).

Theorem 1 (Relationship between full sets and stable models ([38])) Let P be a ground program and
Λ a set of not-atoms (negated atoms).
(i) If Λ is a full set with respect to P then Dcl(P,Λ) is a stable model of P.
(ii) If ∆ is a stable model of P then Λ = not(NAnt(P)−∆) is a full set with respect to P such that
Dcl(P,Λ) = ∆.
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According to theorem 1 it is sufficient to search for full sets instead of for stable models, because
stable models can be constructed from these full sets. This approach is pursued by the algorithm in
Listing 1.2_23.

Definition 7 (L covers A) Given a set of ground literals L and a set of ground atoms A, L is said to
cover A, iff for every atom a in A either a ∈ L or not(a) ∈ L holds.

1 function stable_model(P,B,φ)
let B’ = expand(P,B) in

3 if conflict(P,B′) then false
else

5 if (B′ covers NAnt(P)) then test(Dcl(P,B′),φ)
else

7 take some χ ∈ NAnt(P) not covered by B′

if stable_model(P, B′∪{not(χ)},φ) then true
9 else stable_model(P, B′∪{χ},φ)

Listing 1.2_23: Efficient computation of the stable model semantics for a logic program

The algorithm is not fully specified, but relies on the two functions expand and conflict, which
undergo further optimization. The idea behind the function expand is to derive as much further informa-
tion as possible about the common part B of the stable models that are to be constructed without losing
any model. One could also employ the identity function as an implementation for expand, but by bur-
dening the entire construction of the full sets on the backtracking search of the function stable_model,
this approach would be rather inefficient. A good choice for the expand function is to return the least
fixpoint of the Fitting operator FP(B):

Definition 8 (Fitting operator FP) Let B be a set of ground literals, and P a ground logic program.
The set FP(B) is defined as the smallest set including B that fulfills the following two conditions:
(i) for a rule h← a1, . . . ,an,not(b1), . . . ,not(bm) with ai ∈ B,1≤ i≤ n and not(b j),∈ B,1≤ j ≤m, h is
in FP(B).
(ii) if for an atom a such that for all of its defining rules, a positive premise p is in its body and not(p)
is in B, or a negative literal not(p) is in its body with p in B, then a is in FP(B).

The function conflict returns true whenever (i) B covers NAnt(P), and (ii) if there is an atom a in the
set B such that a /∈Dcl(P,B) or a literal not(a)∈ B such that a∈Dcl(P,B). In this way, conflict prunes
the search for full sets (and therefore the search for stable models) by detecting states in which no stable
model can be constructed as early as possible. For further optimizations regarding the computation of
the stable model semantics with the function stable_model the reader is referred to [38].

1.2.5 Computation of the Well-Founded Model Semantics

Another approach to defining a semantics for logic programs that are neither stratifiable nor locally
stratifiable is the well-founded model approach [49] (see Section ??).

Recall that in this context the term interpretation refers to a set of positive or negative literals
{p1, . . . , pk,not(n1), . . . ,not(ni)} and that the notation S, with S = {s1, . . . ,sn} being a set of atoms,
refers to the set {¬s1, . . . ,¬sn} in which each of the atoms is negated.

An unfounded set (see Section ??) of a logic program P with respect to an interpretation I is a set
of (positive) atoms U , such that for each instantiated rule in P which has head h ∈U , at least one of the
following two conditions applies.
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• the body of the rule is not fulfilled, because it contains either a negative literal not(a) with a∈ I
or a positive literal a with not(a)∈ I.

• the body of the rule contains another (positive) atom a ∈U of the unfounded set.

The greatest unfounded set turns out to be the union of all unfounded sets of a program. Note that the
definition above does not immediately provide an algorithm for finding the greatest unfounded set. In
this subsection, however, a straight-forward algorithm is derived from the definition and in the following
subsection, a more involved algorithm for computing the well-founded semantics is introduced.

The computation of the well founded semantics is an iterative process mapping interpretations to
interpretations and involving the computation of immediate consequences and greatest unfounded sets.
The initial interpretation is the empty set, which reflects the intuition that at the beginning of the program
examination, nothing is known about the entailments of the program. The iteration uses the following
three kinds of mappings:

• the immediate consequence mapping TP(I) of the program with respect to an interpretation I

• the greatest unfounded set mapping UP(I), which finds the greatest unfounded set of a program
with respect to an interpretation I

• WP(I) := TP(I)∪UP(I) which maps an interpretation to the union of all of its immediate conse-
quences and the set of negated atoms of the greatest unfounded set.

The well-founded semantics (see Section ??) of a logic program is then defined as the least fixpoint
of the operator WP(I). The computation of well founded sets and of the well founded semantics is best
illustrated by an example (see Listing 1.2_24). The set of immediate consequences TP( /0) of the empty
interpretation of the program 1.2_24 is obviously the set {c(2)}. The greatest unfounded set UP( /0) of
the program with respect to the empty interpretation is the set {d(1), f (2),e(2), f (1)}. f (1) is in UP( /0),
because there are no rules with head f (1), and therefore the conditions above are trivially fulfilled.

Note that the fact a(1) is not an unfounded fact with respect to the interpretation /0, although one is
tempted to think so when reading the program as a logic program with negation as failure semantics.

The three atoms {d(1), f (2),e(2)} form an unfounded set, because the derivation of any of them
would require one of the others to be already derived. There is no possibility to derive any of them first.
Hence, according to the well-founded semantics, they are considered false, leading to I1 := WP( /0) =
TP( /0)∪UP( /0) = {c(2)}∪{d(1), f (2),e(2), f (1)}= {c(2),¬d(1),¬ f (2),¬e(2),¬ f (1)}.

In the second iteration a(1) is an immediate consequence of the program, but still neither one of the
atoms a(2) and b(2) can be added to the interpretation (also their negated literals cannot be added). Af-
ter this second iteration the fixpoint {c(2),¬d(1),¬ f (2),¬e(2),¬ f (1),a(1)} is reached without having
assigned a truth value to the atoms a(2) and b(2).

b(2) ← ¬ a(2).
2 a(2) ← ¬ b(2).

4 d(1) ← f(2), ¬ f(1).
e(2) ← d(1).

6 f(2) ← e(2).

8 a(1) ← c(2), ¬ d(1).
c(2).

Listing 1.2_24: Example program for the well-founded semantics
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The computation of this partial well-founded model involves guessing the unfounded sets of a pro-
gram P. If P is finite, all subsets of the atoms occurring in P can be tried as candidates for the unfounded
sets. In practice those atoms that have already been shown to be true or false do not need to be recon-
sidered, and due to the fact that the union of two unfounded sets is an unfounded set itself, the greatest
unfounded set can be computed in a bottom up manner, which decreases the average case complexity of
the problem. Still, in the worst case O(2a) sets have to be tried for each application of the operator UP,
with a being the number of atoms in the program. In [50] a deterministic algorithm for computing the
well-founded semantics of a program is described.

1.2.6 Computing the Well-Founded Semantics by the Alternating Fixpoint
Procedure

The central idea of the alternating fixpoint procedure[50] is to iteratively build up a set of negative
conclusions Ã of a logic program, from which the positive conclusions can be derived at the end of
the process in a straightforward way. Each iteration is a two-phase process transforming an underesti-
mate of the negative conclusions Ĩ into a temporary overestimate S̃P(Ĩ) and back to an underestimate
AP(Ĩ) := S̃P(S̃P(Ĩ)). Once this two-phase process does not yield further negative conclusions, a fix-
point is reached. The set of negative conclusions of the program is then defined as the least fixpoint
Ã := Aω

P ( /0) of the monotonic transformation AP.
In each of the two phases of each iteration the fixpoint SP(Ĩ) := Tω

P′( /0) of an adapted version of the
immediate consequence operator corresponding to the ground instantiation of the program PH plus the
set Ĩ of facts that are already known to be false, is computed.

In the first phase the complement S̃P(Ĩ) := (H−SP(Ĩ)) of this set of derivable facts constitutes an
overestimate of the set of negative derivable facts, and in the second phase the complement S̃P(S̃P(Ĩ))
is an underestimate.

Let’s now turn to the adapted immediate consequence operator. As in the previous sections, the
algorithm does not operate on the program P itself, but on its Herbrand instantiation PH . Based on the
Herbrand instantiation PH and a set of negative literals Ĩ a derived program P′ := PH ∪ Ĩ and a slightly
altered version of the immediate consequence operator TP′ of P′ are defined.

A fact f is in the set TP′(I) of immediate consequences of the program P′ if all literals li in the
body of a rule with head f are fulfilled. The difference to the previous definition of the immediate
consequence operator is that the bodies of the rules are not required to be positive formulas, but may
contain negative literals as well. A negative literal in the rule body is only fulfilled, if it is explicitly
contained in the program P′ (stemming from the set Ĩ which is one component of P′). A positive literal
in the body of P′ is fulfilled if it is in the interpretation I.

For the proof of the equivalence of the partial models computed by the well-founded model seman-
tics and the alternating fixpoint algorithm the reader is referred to [50].

The computation of the well-founded semantics of the program in Listing 1.2_24 with the alternating
fixpoint procedure is achieved without guessing well-founded sets by the following steps.

• SP( /0) = {c(2)}. The fact a(1) cannot be derived because negation is not treated as negation as
failure, but only if the negated literal is in Ĩ. Similarly, neither one of the facts b(2) and a(2) are
in SP( /0).

• S̃P( /0)= (H−SP( /0))= {a(2),b(2), f (2), f (1),d(1),e(2), f (2),c(2),a(1)}-{c(2)}= {¬a(2),¬b(2),¬ f (2),¬ f (1),¬d(1),¬e(2),¬ f (2),¬a(1)}
is the first overestimate of the derivable negative facts.
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• SP(S̃P( /0))= {c(2),a(1),b(2),a(2)} and thus AP( /0)= S̃P(S̃P( /0))= {¬ f (2),¬ f (1),¬d(1),¬e(2)}
is the second underestimate of the derivable negative literals (the first one was the emptyset).

• S̃P(ÃP( /0)) = {¬a(2),¬b(2),¬ f (2),¬ f (1),¬d(1),¬e(2)}

• AP(AP( /0)) = {¬ f (2),¬ f (1),¬d(1),¬e(2)} = AP( /0) means that the fixpoint has been reached
and Ã = AP( /0) is the set of of negative literals derivable from the program.

• The well founded partial model of the program is given by Ã∪SP(Ã)= {¬ f (2),¬ f (1),¬d(1),¬e(2),c(2),a(1)},
which is the same result as in the previous section.

For finite Herbrand universes the partial well-founded model is computable in O(h) with h being the
size of the Herbrand Universe [50].

1.2.7 Other Methods for Query Answering for Logic Programs with Nega-
tion

While this chapter gives a first idea on methods for answering queries on stratified and general logic
programs with negation, many approaches have not been mentioned. The previous sections have shown
different ways of implementing the stable model semantics and the well-founded model semantics for
general logic programs mainly in a forward chaining manner (except for the magic set transformation,
which is a method of introducing goal-directed search into forward chaining).

The best known backward chaining method for evaluating logic programs with negation is an exten-
sion of SLD resolution with negation as failure, and is called SLDNF [14][2][45][24]. SLDNF is sound
with respect to the completion semantics [18] of a logic program and complete for Horn logic programs
[32].

Przymusinski introduced SLS resolution[41] as a backward chaining operational semantics for gen-
eral logic programs under the perfect model semantics [40]. SLS resolution was extended by Ross to
global SLS-resolution[43], which is a procedural implementation of the well-founded model semantics.

29



30



Chapter 2

Chaining and Memoization in
Xcerpt: An Outlook

2.1 Outline

The second part of this deliverable briefly outlines some of the issues involved in applying the techniques
for efficient rule chaining discussed in the previous chapter to the Web query language Xcerpt developed
in the I4 working group. In the following, we assume a rough working knowledge of Xcerpt.

To illustrate the novel issues we start with a use case around ad-hoc search or crawling where neither
query nor the extent of the relevant data is known a priori. Thus it is not available for preprocessing
such as indexing but must be retrieved and processed during query processing. Furthermore, Xcerpt
reasoning abilities can be employed to analyze not only the syntactical but also the semantical relations
of the queried data as expressed, e.g., in RDF. After introducing said use case we discuss efficient
evaluation of (locally stratified) reasoning programs using a novel form of subsumption that is capable
to treat not only complete (as conventional subsumption in logic programming) but also incomplete
Xcerpt terms. In this way, it addresses the major obstacle to adopting the efficient chaining techniques
surveyed in the previous chapter to Xcerpt.

This work will continue after the end of REWERSE and will, eventually, be integrated into the I4
Xcerpt prototype that currently implements chaining in a naive or semi-naive way.

Despite of the dominance of web search giants such as Google or Yahoo, today’s search engines
exhibit three major shortcomings: (a) web pages of the so-called invisible web remain unindexed and
thus useless to search engine users, (b) the expressivity of search queries is very limited when compared
to sophisticated query languages such as XQuery, SPARQL , or Xcerpt, and (c) the semantics of web
data is generally ignored. As of today, the first shortcoming is being tackled by the employment of
focused crawlers, whereas the second problem remains unsolved due to the complexity of expressive
query evaluation, and the third shortcoming is only acknowledged in the domain of query answering by
providing RDF query languages such as SPARQL or RQL. We propose a new concept called ad-hoc
search to face all three challenges and combine focused crawling with sophisticated query answering on
semi-structured data using the versatile query language Xcerpt.

Ad-hoc search is the realm of complex queries and semantic query answering. General purpose
search, in contrast, is of today the realm of distributed data processing, huge index structures, and simple
queries. Indeed, complex queries or semantic query processing cannot, as of today, be performed on the

31



huge data quantities that general purpose search engines must process.
Applications of ad-hoc search could be (a) the scheduling of a soccer match in a small town by

crawling the hcalender sites of people interested in sports, or (b) solving the single source shortest
path problem for a person who published a FOAF document about himself, or (c) finding open-source
projects for a given developer described by DOAP files. We demonstrate the suitability of the declar-
ative rule-based language XcerptRDF for ad-hoc search tasks, demonstrate the need for declarative and
recursive languages with negation as failure for writing crawlers, and show how subsumption tests can
improve efficiency in evaluating ad-hoc search programs and semantic search queries in general.

2.2 Introduction

With the growth of semi-structured data on the Web still following an exponential curve, and with the
Web itself becoming the preferred way of deploying data-intensive applications in sciences such as
biology, physics, genetics, computer science, etc, finding relevant information and search becomes ever
more important.

The rise of the Web as a medium for information interchange, the emergence of the Semantic Web as
a means to allow automatic transformation, reasoning and processing of Web content, and the usage of
microformats and ontologies to represent knowledge in a coherent manner have spurred a rich diversity
of formats that are present on the Web, such as XML, RDF, FOAF, DOAP, Dublin Core, SKOS, etc.
Documents in these formats are generally interlinked with each other and related information is often
dispersed over multiple documents, such that information relevant to a search query must be collected
following inter-document links.

Since the beginning of the HTML era, search engines use crawlers for gathering huge amounts of
documents to be indexed. Several crawling strategies have been developed and compared [19, 46, 36, 39]
with respect to their ability of finding the most relevant documents. Once these documents are saved
to disk, indexing techniques such as inverted list indexing[7, 12] are applied to allow the instantaneous
answering of occurrence queries for words inside of these documents.

While the deployment of web search engines continues to be a huge success, and has both a large
impact on our society and economy, the challenges to efficient, reliable and accurate search have rather
increased than been solved. More importantly, with the advent of semantic information on the web, the
economic potential of semantic search is much greater than that of ordinary search. In this section we
give a short overview over the challenges that have to be met, and argue that they can be overcome by
ad-hoc search, which is on-the-fly focused crawling, reasoning and complex querying within the same
program.

• In order to optimally exploit information supplied in the diverse formats enumerated above, a
whole lot of different indexing techniques must be applied to data on the web. While it is sufficient
to generate inverse list indexes for words in pure HTML documents, the type of index which fits
best RDF documents such as FOAF or DOAP, or HTML documents annotated with microformats
is not so clear, and may vary with each usage scenario of the data.

• While static web pages make up only a small portion of the entire information available on the
web, dynamic web pages generated from databases, also known as the invisible, often remain
unindexed by search engines, and are thus invisible for the majority of users of the Web. In [?]
Sherman and Price distinguish four types of invisibility of Web Content:

– The opaque web consists of web pages that search engines simply do not crawl, since they
are considered not important enough for the average user. Sometimes the depth of the crawl
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on each site is limited, assuming that just a sample of the pages of each site is sufficient for
the search engines’ users. In other cases web pages are not crawled frequently enough or
disconnected from the rest of a web site.

– The private web consists of pages that have been deliberately excluded from being in-
dexed by search engine crawlers. This may either be due to password protection or due
to robots.txt files or the “noindex” option in the head of html files.

– [?] defines the proprietary web as those web sites which require a registration or agreement
to terms of use of the content of a web site by the user. A search engine crawler can neither
register nor give such an agreement to the web site provider, leaving pages on these pages
unindexed.

– The truly invisible web is defined as all those pages which remain unindexed, since they are
in a file format that is harder to read for search engines such as compressed files or flash.
Moreover it contains dynamically generated web pages, or information from databases that
must be extracted by providing a query string.

The opaque web is certainly a valid application area for ad-hoc search, provided the user has an
idea about where to find relevant pages. Also the private web could be a suitable application in
the case that the ad-hoc search program’s author has access to pages that are not accessible, or
should not be accessed by ordinary search engine crawlers. Registration is a technical hindrance
to crawling of web-sites, which can be overcome unpunished, if the result of a private search
remains unpublished, as it is the case for ad-hoc search. Finally, dynamically generated pages of
the truly invisible web are a target for ad-hoc search, if the author of the search program has an
intuition about admissible query strings to be used for web page generation.

• Moreover, index generation only pays off if the number of queries issued on a collection of docu-
ments is relatively large. In the case that crawling is performed in order to just answer a particular
query, index generation would be breaking a butterfly on the wheel. For use-cases in which the
desired information can be restricted to a small subset of all web-pages, it is thus more efficient
and may also be indispensable to use ad-hoc search instead of ordinary search engines.

In this deliverable we present several examples for ad-hoc searches ??, give an overview about re-
lated work both for writing crawlers and for expressive query languages 2.4, establish language features
which are required for an easy-to-use and declarative authoring of ad-hoc search programs, and elabo-
rate on a use-case for solving the single-source shortest path problem at the aid of a crawler authored in
the declarative language XcerptRDF ??.

2.3 Ad-hoc-search Use Cases

Solving the Single Source Shortest Path Problem for FOAF documents For the last years, social
network services such as MySpace, Facebook and Orkut have gained widespread attention of the online
community. Probably the most open way of building a social network is the publication of Friend-
Of-A-Friend (FOAF) documents. A service provided by most social networks is the presentation of
a shortest path p1, p2, . . . pn between two given persons p1 and pn such that for all 1 ≤ i ≤ n− 1 the
person pi knows the person pi+1. A slight simplification of this problem is to only display the degree of
knowledge, i.e. the length of such a shortest path. In this deliverable, we refer to the simplified version
as the Single Source Shortest Path Problem (SSSPP ) for Foaf Documents.
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The SSSPP for FOAF documents is a very well suited application for ad-hoc search, since the
amount of pages needed to answer a query is limited. Consider for example the issue of finding all
friends of degree 3 for some given person p. Usually, foaf documents only contain friendship relation-
ships emanating from the publisher of the document, thus for answering the above query it suffices to
perform a crawl of depth 3 starting out from the foaf document of p. A solution to this use-case is
presented in more detail in Section 2.5.

Scheduling a Soccer Match within a Small Town Based on ICalender Data iCalendar is a stan-
dardized format for saving calendar data of personal calendars adopted by the IETF1 in RFC 2445. It
is very widely adopted by both proprietary applications such as Google Calendar, Microsoft Exchange
Server, Lotus Notes, Novell Groupwise, FaceBook, and open source applications such as Mozilla Calen-
dar, Plone, Korganizer and Open-XChange. iCalendar data can be easily transformed to RDF format by
publicly available scripts such as the one provided by Elias Torres2 or Dan Connlly and Libby Miller3.

Provided that a reasonable amount of calendar data is publicly availabe, an ad-hoc search program
could be written to crawl FOAF profiles of people within a certain geographical area and query the
associated calendar data in order to find a suitable date and participants for some kind of reunion such
as a soccer match, or a village fair. Also for this use-case the crawling strategy is easily determined,
since only profiles and calendars pertaining to the region in question are to be crawled.

Finding Descriptions of a Project for a given Open Source Developer

2.4 Related work

Ad-hoc search involves both crawling of (Semantic) Web documents as well as sophisticated reason-
ing based on an expressive query language. Therefore related work can be separated into crawling
algorithms employed by search engines, and query languages for Web and Semantic Web content.

• The fish search algorithm [19] is one of the oldest algorithms employed by focused crawlers.
Starting out from a seed URL, it builds a priority list of URLs to be explored using a search query
and a scoring function which estimates the relevancy of documents relative to the search query.
At each step, the first element from the priority list is processed, and the links are extracted from
the document. If the document is relevant to the search query, the depth of the links is set to some
predefined positive integer. If not, the depth of the links is set to one less than that of the parent.
Links with depth zero are not processed. Two parameters α and width are used to determine the
location where links are inserted in the priority list.

• The shark search algorithm [31] extends the fish search algorithm in several ways. While the
scoring function of the fish search algorithm is binary (return values 0 or 1 only), the shark search
algorithm employs a fuzzy similarity measure between 0 and 1. Additionally, the shark search
algorithm uses meta-information contained in the links to documents and in their close textual
context in order to assess the relevancy of the linked documents. Both the fish search and the
shark search algorithm are crawling algorithms for the conventional web. With the embarkment
of semantic web data, focused crawlers need not rely on scoring functions or similarity measures,

1Internet Engineering Task Force
2available at torrez.us/ics2rdf/
3available at www.w3.org/2002/12/cal/ical2rdf.pl
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but may simply chose to only follow those links between documents which are identified by some
chosen RDF predicate, which is the approach taken by ad-hoc searches in this deliverable. A
combination of both techniques may prove to be beneficial.

• In [39] Gautam and Srinivasan point out the necessity for finding a good traid-of between explo-
ration and exploitation of Web content. A web crawler may either chose to visit only those pages
that have the highest relevancy score, thus being very exploitative of the information about the rel-
evancy. Or it may be explorative in the sense that it prefers a page with a lower score, and thereby
avoid being trapped in a local optimum of the search graph. Using a variant of Best-First crawl-
ing called Best-N-First crawling, where the parameter N controls the explorativity/exploitativity
(the higher N is, the more explorative) of the crawler. The findings of [39] are among others that
(a) explorative crawlers have an advantage over exploitative crawlers in finding the most relevant
pages in the long run, but initially perform worse, and (b) blind exploration yields poor results
when starting from neighbors of relevant pages, but performs alright when starting from relevant
pages themselves.

In the case of ad-hoc search on the Semantic Web, the issue of exploration versus exploitation
can, however, be in many cases satisfactory resolved in favor of either of the two strategies. When
compared to ordinary web data, Semantic Web Data is more precise in the sense that links between
pieces of information or between resources are typed, and in that these types can be uniquely
determined by their URI. As a consequence, crawlers of the Semantic Web often need not employ
a scoring component, but can decide to consider only a specific fragment of all links between
documents, in which case exploration is no longer possible. In a very similar way, exploitation
can become the method of choice, if the depth of the crawl is bounded by a search parameter (e.g.
find all friends of degree no greater than 3).

2.5 Answering the SSSPP for Foaf Profiles with XcerptRDF

Traditionally, an ad-hoc search would be processed using a scripting language such as Perl, Python or
Ruby or at the aid of a general purpose programming language. While these languages often supply
libraries for the access to Web formats – most prominently XML and RDF –, none of these languages
has been explicitly designed for native support of XML and RDF. XcerptRDF in contrast, has been
conceptualized to support these formats by providing the following equipment:

• structured query and construct terms for both XML and RDF

• incompleteness constructs for both XML and RDF data

• support for Web-Crawling by rule chaining

• syntactic sugar for RDF specificities such as blank nodes, RDF containers and collections, reifi-
cation and concise bounded descriptions

• negation as failure

• built-in understanding of some RDFS and OWL vocabulary such as rdfs:subClassOf, rdfs:subPropertyOf,
owl:equivalentClass, owl:equivalentProperty, owl:inverseFunctionalProperty. These
properties are implemented by a translation to simple XcerptRDF rules.
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2.5.1 Crawling FOAF Documents to Answer SSSPP Problems

Listings 2.5_1 and 2.5_2 show how the single source shortest path problem for foaf:knows relation-
ships distributed over multiple a priori unknown documents on the Web is implemented in XcerptRDF

.
In lines 1 to 3, namespace prefixes are declared to allow concise authoring of XcerptRDF query,

construct and data terms.
Line 5 serves to declare the predicate foaf:mbox-sha1sum, which relates an instance of the class

foaf:Person to the sha14 hash value of its email address, as an inverse functional property. The OWL
Language Reference [20] states that if an RDF property is defined to be inverse functional, the object
of a statement uniquely determines its subject. Hence, if the XcerptRDF program discovers two RDF
statements with the property foaf:mbox-sha1sum, and the same sha1 hash value as objects, it can
deduce that the subjects of the statements denote the same real-world entity – in this case the same
person. Having realized this, XcerptRDF replaces all occurrences of one subject by the other.

In line 7 goals having the outermost label Acquaintance are declared to be tabled terms, i.e. an-
swers to these query terms are memoized in a hierarchical data structure, and when a new subgoal with
predicate Acquaintance is encountered, this data structure is searched for already subsuming goals.
Tabling in Xcerpt is realized in a similar way as in [47], but due to the expressivity of Xcerpt query
terms, the algorithm for deciding subsumption between query terms is more complex – it is a gener-
alized version of simulation unification[11] –, and a special hierarchical data structure is needed for
recording results of the subsumption tests. The algorithm for deciding subsumption is presented in
section ??, and the data structure is introduced in section ??.

In lines 9 to 11 the seed for the crawler is given as an Xcerpt data term, also called a fact in logic
programming terminology. The url http://eg.org/persons/anna is used as the starting point for
transitively finding other relevant foaf documents until a maximum depth of four has been reached.

The actual crawling is realized by the two rules in Listing 2.5_1, the first one discovering new
relevant documents by following the rdfs:seeAlso links, the second one asserting the RDF graphs
found in these documents to the in memory database. It is important to note that the evaluation of these
two rules – no matter if a backward chaining or a forward chaining strategy is applied – is intertwined.
In a forward chaining evaluation, the first rule is applied to import the RDF graph from the seed url to
local memory. Then the second rule is used to find additional documents from the initial RDF graph
following rdfs:seeAlso predicates. Afterwards the RDF graphs found at these new locations are
imported to local memory by the first rule, and so on.

RDF/XML documents being both in XML format, but supplying RDF data can be queried syntac-
tically and semantically in XcerptRDF – in other words, such documents can be seen as XML trees or
as RDF graphs. The programmer simply specifies the desired view by giving the keyword “RDF” or
“XML” in the resource specification of a query term (see line 19).

RDF and XML are both graph structured, which means that similar query constructs, such as in-
completeness in depth, incompleteness in breadth, term variables, optional subterms are beneficial for
its treatment[10]. There are, however, inherent differences between RDF and XML, most prominently
that RDF is treated as knowledge, whereas XML is treated as data. One philosophy behind RDF is that
“any person can state anything about any resource”, demanding that the labels in an RDF graph are
global identifiers, such that statements in distinct RDF documents referencing the same URI are con-
sidered to provide information about the same real world entity. On the other hand, the same qualified
name may appear in different XML documents that have nothing to do with each other. This is why

4http://en.wikipedia.org/wiki/SHA1
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the local memory of an Xcerpt processor may include many independent XML data terms, but only one
default RDF graph.

The crawler program in Listing 2.5_1 successively binds the entire RDF graphs from the encountered
RDF documents to the term variable Graph (line 20) and subsequently merges these graphs with the
default graph in memory (line 14). Merging of RDF graphs means computing the union of the sets of
RDF triples in the graphs to be merged, thereby removing duplicate triples and standardizing apart blank
node identifiers. (See [30] for a detailed discussion about union semantics versus merge semantics of
RDF graphs). Support for named graphs[13] in XcerptRDF is being considered.

1 declare ns-prefix foaf="http://xmlns.com/foaf/0.1/";
declare ns-prefix rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#";

3 declare ns-prefix rdfs="http://www.w3.org/2000/01/rdf−schema#";

5 declare inverseFunctionalProperty foaf:mbox-sha1sum;

7 table Acquaintance;

9 CONSTRUCT
SeeAlso [ "http://eg.org/persons/anna/foaf.xrdf", 0 ]

11 END

13 CONSTRUCT
var Graph

15 FROM
and (

17 SeeAlso[[ var SeeAlso ]],
in {

19 resource { var SeeAlso, rdf },
var Graph as /.*/{{ }}

21 }
)

23 END

25 CONSTRUCT
SeeAlso[ var SeeAlso, var N + 1 ]

27 FROM
and (

29 /.*/{{
rdf:type--> foaf:Person,

31 rdfs:seeAlso--> var SeeAlso
}},

33 SeeAlso[ var SeeAlso1, var N <= 3 ]
)

35 END

Listing 2.5_1: Finding relevant information for answering an ad-hoc search query with an XcerptRDF

crawler
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2.5.2 Formulation of SSSPP as an Unstratified Logic Program

Finding the relevant information is only half a solution to answer an ad-hoc search query. The second
part is to derive new knowledge from the gathered Semantic Web information by applying deductive
rules, and to find all ground instances of the query which are implied by the given data and rules. In
many cases this second step requires the query language of choice to provide recursion, negation as
failure and rich query terms.

The second part of our ad-hoc search program implements the single source shortest path problem[53]
for the subgraph of the RDF graph constructed in Listing 2.5_1 consisting only of its foaf:knows re-
lationships and the nodes they connect. It turns out that implementing SSSPP in a logic programming
language such as Xcerpt requires negation as failure, since one must ensure, that only the shortest paths
– i.e. not any path that is longer – are considered.

In lines 36 to 38 the seed URI representing Anna is encoded as an Xcerpt fact, and it is asserted that
Anna knows herself over zero other persons. In order to keep track of the length of a path from the seed
URI to other URIs representing acquaintances, all terms with the outermost label Acquaintance are
binary, the first subterm being the URI, and the second one an integer value representing its distance to
the seed.

The rule in lines 40 to 48 derives acquaintances of degree n+1 from acquaintances of degree n. In
the body of the rule a conjunction is used to query both the RDF graph collected before and ordinary
Xcerpt data terms, which can be considered as XML data. The third conjunct of the query (line 46) is
a negated literal and serves to filter out all those bindings for the variable Aq, for which a shorter path
can be found. This third conjunct uses the syntax < N + 1 to specify that this goal shall only unify
with dataterms whose second subterm can be interpreted as an integer value smaller than N + 1. This
extension of simulation unfication can be integrated into the framework of [44] by the addition of the
following decomposition rule:

(< N)�M
N < M

Alternatively, the same effect could be achieved by rewriting the subterm not(Acquaintance[var
Aq, < N + 1]) by the subgoal not(closer[var Aq, N + 1]) and by the inclusion of the following rule
defining the terms closer.

CONSTRUCT
2 closer[ var Aq, var N ]

FROM
4 Acquaintance[ var Aq, var Distance ]

WHERE
6 var Distance < var N

END

36 CONSTRUCT
Acquaintance[ http://eg.org/persons/anna, 0 ]

38 END

40 CONSTRUCT
Acquaintance[ var Aq, var N + 1 > 0 ]

42 FROM
and (

44 var Person{{ foaf:knows--> var Aq }},
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Acquaintance[ var Person, N ],
46 not ( Acquaintance[ var Aq, < N + 1 ] )

)
48 END

Listing 2.5_2: Answering an ad-hoc search query by rule chaining and negation as failure

In many cases not only the degree of friendship is of interest, but also the shortest path from one
person to another following foaf:knows relationships. As Prolog programmers know, it is easy to
adapt the above program to also return this information.

Due the recursive rule in Listing 2.5_2, the semantics and evaluation of our program is non-trivial,
since it is unstratifiable both according to the definition in [44] and according to the following definition,
which is very close to the ordinary definition of stratification of logic programs:

Definition 9 (Stratification of an Xcerpt Program) A Stratification of an Xcerpt program P consist-
ing of a set of rules R = r1, . . . ,rn is a partitioning of R into layers L1, . . . ,Lk such that the following
conditions are fulfilled:

• Rules deriving facts that share the same outermost label are in the same layer.

• If a rule ri positively depends on a rule r j, and r j is in layer Lm, then ri is in a layer Lo with o≥m.
ri positively depends on r j, iff there is a positive subgoal in the body of ri that simulation unifies
with the head of r j.

• If a rule ri negatively depends on a rule r j, and r j is in layer Lm, then ri is in a layer Lo with
o > m. ri negatively depends on r j, iff there is a negative subgoal in the body of ri that simulation
unifies with the head of r j.

Definition 10 (Stratifiable) An Xcerpt program P is stratifiable, iff there exists a valid stratification for
it.

Definitions 9 and 10 are in line with the definitions of stratification and stratifiability for ordinary
logic and datalog programs. See [9] for an overview over various semantics and evaluation possibilities
for unstratifiable logic programs.

While the semantics for stratified logic programs is given by an iterative fixpoint semantics, and
is always two-valued, unstratified programs may not always have a unique two-valued model. The
well-founded semantics is a three valued semantics in which ground atoms may either be true, false
or of unknown truth value. Well-founded models can be computed for arbitrary logic programs with
negation, and the models of stratified programs are always total in the sense that the truth values of all
ground atoms are either true or false, never unknown. Many unstratified programs have a two-valued
well-founded model, and it turns out that there is also a unique two valued model for the program
in Listing 2.5_1 and 2.5_2 under the well-founded semantics. To see this, a new concept, called local
stratification (see Definition 14) is introduced, and a local stratification for our program is given. Gelder,
Ross and Schlipf have shown in [51] that all locally stratified programs have a two valued well-founded
model.

Algorithms for computing the well-founded semantics have been investigated, and one of the most
popular ones is SLG-resolution [15].

Definition 11 (Well-founded Relation ([54])) A binary relation R is well-founded on a class X, if and
only if every non-empty subset of X has a minimal element with respect to R.
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Definition 12 (Dependency Graph ([42])) Let P be a ground program consisting of a set of rules
{r1, . . . ,rn}. The set of vertices V of the dependency graph GP = (V,E,L) of P is the set of ground
atoms that appear either positively or negatively in at least one of the rules of P. E ⊆ (V ×V ) is the set
of edges of the dependency graph and L : E→{1,−1} is a labeling function on the set of edges, giving
each edge either a positive or a negative value. For a rule ri : h← l1, . . . lk with head h and body literals
l j,1 ≤ j ≤ k, k edges are constructed in the dependency graph GP. If lp is a positive body literal in ri,
then (lp,h) ∈ E with L((lp,h)) = 1. If ln := not(l′n) is a negative literal in the body of ri then (l′n,h) ∈ E
with L((l′n,h)) =−1.

Definition 13 (Negative Dependency Relation) Let P be a general logic program, ground(P) its Her-
brand instantiation, Gground(P) = (V,E,L) the dependency graph of ground(P) and A,B ∈V .

A depends negatively on B, iff there is a path from B to A in Gground(P) involving at least one negative
edge.

Definition 14 (Local Stratification ([17])) A logic program P is locally stratified if and only if the neg-
ative dependeny relation of P is well-founded.

An equivalent definition of local stratification is given in [51]:

Definition 15 (Local Stratification[51]) A logic program P is locally stratified, if one can assign an
ordinal rank to each atom in the Herbrand base of P such that no atom depends upon an atom of
greater rank or depends negatively in one of equal or greater rank in any instantiated rule.

Theorem 2 (Well-founded models of Locally Stratified Programs [51]) If a program P is locally strat-
ified, then it has a well-founded model, which is identical to its perfect model.

Definition 16 transfers the concept of local stratification to Xcerpt programs. It differs from the
definition of local stratification for ordinary logic programs only in the first two conditions, which are
due to the differentiation between ground query terms and ground data terms in Xcerpt. While a ground
subgoal in logic programming only unifies with the term which is syntactically equivalent, there may
be multiple Xcerpt data terms that a ground Xcerpt query term simulation unifies with – for example
the ground query term Acquaintance[ eg:bob, < 3 ] simulation unifies with the ground facts
Acquaintance[ eg:bob, 0 ], Acquaintance[ eg:bob, 1 ], and Acquaintance[ eg:bob, 2
]. To ensure that a the goal g := Acquaintance[ eg:bob, < 3 ] to these atoms, they must be defined
in a layer that is equal to or lower than the layer of g.

Definition 16 (Local Stratification of an Xcerpt Program) A local stratification of an Xcerpt program
P is a partitioning of the ground terms occurring in rule instantiations into a set of layers {L1, . . .Lk},
such that the following holds:

• if a positive ground query term q simulates into a data term d, then q is in a higher, or the same
level as d.

• a negative ground query term q = notq′ with q′ simulating into a data term d is in a strictly higher
level thand d.

• if a ground query term q from layer Li appears positively within the body of an instantiated rule
r j, then the instantiated head of the rule is in Li or in a higher level.

• if a ground query term q from layer Li appears negatively within the body of an instantiated rule
r j, then the instantiated head of the rule is in a higher lever than Li.
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A local stratification for Program 2.5_2 would thus be the stratification S := {L1,L2, . . .} with

• L1 := {Ac[anna,< 0],Ac[bob,< 0],Ac[chuck,< 0],Ac[anna,0],Ac[bob,0],
Ac[chuck,0]}

• L2 := {Ac[anna,< 1],Ac[bob,< 1],Ac[chuck,< 1],Ac[anna,1],Ac[bob,1],
Ac[chuck,1]}

• L3 := {Ac[anna,< 2],Ac[bob,< 2],Ac[chuck,< 2],Ac[anna,2],Ac[bob,2],
Ac[chuck,2]}

• . . .

2.5.3 Efficient Evaluation of XcerptRDF Multi-Rule Programs

The program in Listings 2.5_1 and 2.5_2 can be queried in many different ways, e.g:

• Find all acquaintances of Anna and their degrees of friendship:
Acquaintance{ var Person, var Degree }

• Find all acquaintances of Anna with a friendship degree of four:
Acquaintance{ var Person, 4 }

• Over how many other people does Anna know Bob?
Acquaintance{ http://eg.org/bob, var Degree }

• Does Anna know Bob over three other people?
Acquaintance{ http://eg.org/bob, 3 }

• Is there a path from Anna to Bob following foaf:knows relationships?
Acquaintance{{ http://eg.org/persons/bob }}

All of the above queries could be evaluated in a forward or a backward chaining manner. The
advantages of both methods have been discussed in detail, the most prominent advantage of backward
chaining being its goal-directedness and the most prominent advantage of forward-chaining being its
closeness to the fixpoint operator for logic programs, and in some cases better termination properties.
Many efforts have been undertaken to combine the best of both worlds [15, 5, 22, 48]. The results of
these methods being either extensions of backward chaining algorithms with memoization or forward
chaining algorithms enhanced with goal directedness through rule-rewriting, have come astonishingly
close to each other and are in many cases even equivalent[8].

In this section we describe a backward chaining algorithm with subsumption checking and memo-
ization similar to SLG resolution for evaluating the program in Listing 2.5_2, starting out with the query
Ac[eg:chuck, var Distance]5 assuming that the RDF graph in Listing 2.5_3 has been collected by the
crawler from Listing 2.5_1. We then argue that the algorithm works for any locally stratified XcerptRDF

program.

5Ac is an abbreviation for the predicate Acquaintance and the namespace prefix eg is assumed to be bound to
http://eg.org/persons/
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@prefix eg: <http://eg.org/persons/> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<eg:anna> <foaf:knows> <eg:bob>.
4 <eg:anna> <foaf:knows> <eg:chuck>.

<eg:bob> <foaf:knows> <eg:chuck>.
6 <eg:chuck> <foaf:knows> <eg:anna>.

Listing 2.5_3: RDF Data Collected by the Crawler in Listing 2.5_1

Figure 2.1 depicts the resolution steps necessary to derive that anna knows chuck directly – i.e. over
only one foaf:knows relationship. In the first step, the initial query Ac[eg:chuck, var Distance]
is issued and labeled with the ordinal 1. In the second step, the initial query is resolved against the
recursive rule from Listing 2.5_2, and the 3 subqueries labeled 2, 3, and 4 are generated just as with
ordinary resolution. In the third step, subquery 2 is resolved against the data, yielding the binding
eg:bob for the variable Person. Subsequently (step 4) the recursive rule is applied again in order to
resolve subgoal 3, and the binding eg:anna is found for the variable Person1 (step 5). Step 6 and 7 are
analogous to step 4 and 5. In Step 8, we find that subgoal 9 is just a variant subgoal of subgoal 1, and
that continuing the resolution of subgoal 9 would result in an infinite branch of the resolution tree. Thus,
subgoal 9 is labeled as a consuming subgoal attached to the generating subgoal 1. Since 1 has not found
any solutions yet, the evaluation continues with subgoal 10. Subgoals 10, 7 and 4 are negated literals
whose positive counterparts are variants of the goals 6, 3, and 1, respectively, neither of which has found
a solution yet. Therefore the subgoals 10, 7, and 4 are suspended until their variants find solutions, or
are completed. Backtracking to subgoal 8, we find that it cannot be instantiated in any other way and
therefore label it as completed (step 12). Backtracking to subgoal 6, we find that it can be instantiated
by the fact Ac[eg:anna, 0] yielding the binding 2 for variable Distance (step 13), and the solution
Ac[eg:anna, 0] for subgoal 6.

Subgoals 7 and 4 are found to be variants of subgoals 3 and 1, respectively, and are thus subspended
until these subgoals are completed or find a solution – in which case the subgoals 7 and 4 fail. Back-
tracking further, we find that goal 5 cannot be instantiated in any other way and is thus completed (step
16), and the same holds for subgoal 3 (step 17).

2.6 Decidability of Xcerpt Query Term Subsumption

Theorem 3 (Subsumption is monotone) Let q
be a query term. The following transformations
can be applied to q such that the transformed ver-
sion t(q) of q is subsumed by q.

• if q has incomplete subterm specification, it
may be transformed to the analogous query
term with complete subterm specification.

a{{q1, . . . ,qn}}
a{q1, . . . ,qn}

(2.1)

a[[q1, . . . ,qn]]
a[q1, . . . ,qn]

(2.2)

• if q has unordered subterm specification, it
may be transformed to the analogous query
term with ordered subterm specification.

a{{q1, . . . ,qn}}
a[[q1, . . . ,qn]]

(2.3)

a{q1, . . . ,qn}
a[q1, . . . ,qn]

(2.4)

• if q is of the form desc q′ then the descendant
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construct may be eliminated.

desc q
q

(2.5)

• if q is of the form ‘desc q′’, then it may be
wrapped inside an arbitrary label l.

desc q
l{{desc q}}

(2.6)

• if q has incomplete-unordered subterm spec-
ification, then a fresh variable X may be ap-
pended to the end of the subterm list, pro-
vided that X does not appear in q.

X /∈Vars({q1, . . . ,qn})⇒
a{{q1, . . . ,qn}},

a{{q1, . . . ,qn,varX}}
(2.7)

• if q has incomplete-ordered subterm specifi-
cation then a fresh variable may be inserted
anywhere in the subterm list, provided that
X does not occur in q.

X /∈Vars(q1, . . . ,qn)⇒
a[[q1, . . . ,qn]],

a[[q1, . . . ,qi,varX ,qi+1, . . . ,qn]]
(2.8)

• if q has unordered subterm specification,
then the subterms of q may be arbitrar-
ily permuted. The rule for incomplete-
unordered subterm specification is given be-
low, the one for complete-unordered sub-
term specification is analogous, but omitted
for the sake of brevity.

π ∈ Perms({1, . . . ,n})⇒
a{{q1, . . . , qn}}

a{{qπ(1), . . . , qπ(n)}}
(2.9)

• if q contains a variable var X, which oc-
curs in q at least once in a positive context
(i.e. not within the scope of a without) then
all occurrences of var X may be substituted
by another Xcerpt query term.

X ∈ PV (q), t ∈ QTerms⇒ q
q{X 7→ t}

(2.10)

Notice that if a variable appears within q
only in a negative context (i.e. within the
scope of a without), the variable cannot be
substituted by an arbitrary term to yield a
transformed term that is subsumed by q. The
query terms a{{ without var X }} and
a{{ without b{ } }} together with the
data term a{ c } illustrate this characteris-
tic of the subsumption relationship. For fur-
ther discussion of substitution of variables
in a negative context see Example 5.

• if q has an optional subterm qi = optional q′,
then this subterm may be omitted from q,
which is formalized by the following rule: 6

qi is optional⇒
a{{q1, . . . ,qi, . . . ,qn}}

a{{q1, . . . ,qi−1,qi+1, . . .qn}}
(2.11)

• if q has a subterm qi, then qi may be trans-
formed by any of the transformations in this
list except for Equation 2.10 to the term
t(qi), and this transformed version may be
substituted at the place of qi in q, as the fol-
lowing rule shows: 7 8

qi

t(qi)
⇒

a{{q1, . . . ,qn}}
a{{q1, . . . ,qi−1, t(qi),qi+1, . . .qn}}

(2.12)

6The respective rule for incomplete-ordered subterm specification is omitted for the sake of brevity. Negated or optional
subterms within terms with complete subterm specification are not allowed.

7The respective rules for complete-unordered subterm specification, incomplete-ordered subterm specification and complete-
ordered subterm specification are omitted for the sake of brevity.

8The exclusion of Equation 2.10 ensures that variable substitutions are only applied to entire query terms and not to subterms.
Otherwise the same variable might be substituted by different terms in different subterms.

43



• if the label of q is a regular expression e,
this regular expression may be replaced by
any label that matches with e, or any other
regular expression e′ which is subsumed by
e (see Definition ??).7

e,e′ ∈ RE,e subsumes e’⇒
e{{q1, . . . ,qn}}
e′{{q1, . . . ,qn}}

(2.13)

• if q contains a negative subterm qi =

without r and r′ is a query term such that
t(r′) = r (i.e. r′ subsumes r) for some trans-
formation step t, then qi can be replaced by
q′i := without r′.

(qi = without r)∧ r′

r
∧

(q′i = without r′)⇒
a{{q1, . . . ,qi, . . . ,qn}}

a{{q1, . . . ,qi−1,q′i,qi+1, . . .qn}}
(2.14)

The proof of the above theorem is straight-forward since each of the transformation steps can be
shown independently of the others. For all of the transformations, inverse transformation steps t−1 can
be defined, and obviously for any query term q it holds that t−1(q) subsumes q.

As shown above, the substitution of a variable X in a negative context of a query term q by a query
term t, which is not a variable, results in a query term q′ := q[X 7→ t] which is in fact more general than
q. In other words q[X 7→ t] subsumes q for any query term q if X only appears within a negative context
in q. On the other hand, if X only appears in a positive context within q, then q′ is less general – i.e. q
subsumes q′. But what about the case of X appearing both in a positive and a negative context within q?
Consider the following example:

Lemma 5 Let q := a{{ var X, without b{{ var X }} }}. One is tempted to think that substituting
X by c[] makes the first subterm of q less general, but the second subterm of q more general. In fact, a
subterm b[ c ] within a data term would cause the subterm without b{{ var X }} }} of q to fail,
but the respective subterm of q′ to succeed, suggesting that there is a data term that simulation unifies
with q′, but not with q, meaning that q does not subsume q′. However, there is no such data term, which
is due to the fact that the second occurrence of X within q is only a consuming occurrence. When this
part of the query term is evaluated, the variable X is already bound.

Definition 17 (Incompatible Variable Restrictions) Let q1 := var X -> t1 and q2 := var X -> t2 be
two query terms. We say that the variable restrictions for X in q1 and q2 are incompatible iff

• the labels of t1 and t2 are both qualified names and distinct.

• the labels of t1 and t2 are both regular expressions and the Intersection of the languages they
define is empty.

• one of t1 and t2 is a qualified name n and the other is a regular expression e, and n is not in the
language defined by e.

Theorem 4 (Subsumption of Query Terms with Incompatible Variable Restrictions) Let q be a query
term that contains two subterms with incompatible variable restrictions for a variable X. Then there is
no data term t such that t simulates with q. Hence q is subsumed by any other query term.

Theorem 5 (Subsumption by transformation) Let q1 and q2 be two query terms such that q1 sub-
sumes q2 and q2 does not have any incompatible variable restrictions. Then q1 can be transformed into
q2 by a sequence of subsumption monotone query term transformations listed in Theorem 3.
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Proof 1 We must distinguish two cases:

• q1 and q2 are subsumption equivalent (i.e. they subsume each other)

• q1 strictly subsumes q2

The first case is the easier one. If q1 and q2 are subsumption equivalent, then there is no data term
t, such that t simulates with one, but not the other. Hence q1 and q2 are merely syntactical variants of
each other. Then q1 can be transformed into q2 by consistent renaming of variables (Equation 2.12), by
omitting optional subterms (Equation 2.11), and by reordering sibling terms within subterms of q that
have unordered subterm specification (Equation 2.9).

The second case is somewhat trickier. Let’s assume that q1 subsumes q2, but not the other way
around. Then there is a data term d, such that q1 simulates into d, but q2 does not. In the following
list, we give all possible reasons for d simulating into q1 but not into q2. For each of these cases,
we give a sequence of subsumption monotone transformations t1, . . . tn from theorem 3, such that q′1 :=
tn(tn−1(. . . t1(q1))) does not simulate into d. By theorem 3, and by the transitivity of the subsumption
relationship, q′1 still subsumes q2. Hence by considering d and by applying the transformations, we
have brought q1 “closer” to q2. If q′1 is still more general than q2, then one can find another dataterm
d′ that simulates with q′1, but not with q2, and another sequence of transformations to be applied can be
deduced from this theorem. This process can be repreated until q1 has been transformed to a simulation
equivalent version of q2.

• The label ld of d matches with the label l1 of q1, but not with the label l2 of q2. In this case
substitute l2 for l1 in q1. Note that since q1 subsumes q2 and q2 does not have incompatible
variable restrictions, l1 must subsume l2, and therefore the substitution of l2 for l1 in q1 is a
subsumption monotone query term transformation.

Lemma 6 Let q1 := /.∗/{{a,c}}, q2 := html{{a,c,d}} and d := xml{a,b,c,d}. Then transform
q1 to q′1 := html{{a,c}}.

• The subterm specification of d is unordered, the one of q1 is unordered, but the one of q2 is
ordered. Each of q1, q2 and d has more than one subterm. In this case change the subterm
specification of q1 to ordered.

Lemma 7 Let q1 := a{{b,c}}, q2 := a[[b,c,d]], d := a{b,c,d}. Transform q1 to q′1 := a[[b,c]].

• The number of direct subterms of d is greater than the number of direct subterms of q2, and q2
has breadth-complete subterm specification. q1 is breadth-incomplete. Then add fresh variables
to the subterms of q1 until q1 has the same number of subterms as q2 and change the subterm
specification of q1 to complete.

Lemma 8 Let q1 := a{{b,c}}, q2 := a{b,c,d}, d := a{b,c,d,e}. Transform q1 to q′1 := a{b,c,varX}.

• q2 has a direct subterm q2s for which there is no direct subterm ds within d such that q2s simulates
into ds. Since q1 subsumes q2, either q1 has incomplete subterm specification or there is a subterm
q1s that subsumes q2s . If there is such a subterm q2s , replace it by q1s (this can be achieved by
multiple application of Equation 2.12), otherwise insert a fresh variable into q1 (Equation 2.7 or
2.8) and replace this fresh variable by q1s (Equation 2.10).
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• In fact, the preceding case is a special version of a more general case, that is comprised within
the following case:

There is no injective mapping from the children of q2 to the children of d such that q2i is simulates
into π(q2i).

Since q1 subsumes q2 there is an injective mapping from the subterms of q1 to the subterms of q2,
such that q1i � π(q1i) for all subterms q1i of q1.9.

According to Theorem 3 it is allowed to replace q1i in q1 by π(q1i) (Equation 2.12). Moreover,
if there is a subterm q2i in q2 which is not in the range of π , this subterm may be added to the
subtermlist of q1 (Equations 2.7 and 2.10).

• q2 has incomplete subterm specification and a negative subterm q2n = without q′2 that simulates
with some subterm ds of d. Additionally, there is an injective mapping π10 from the positive
subterms of q2 to the subterms of d, such that ds is not in the range of π , and such that q2i

simulates into π(q2i) for all subterms q2i of q2. Moreover there is a mapping µ from the positive
subterms of q1 to the positive subterms of q2 such that for all subterms q1i of q1 it holds that q1i

subsumes µ(q1i). However, there is no negative subterm q1n of q1 that simulates with ds.

We distinguish two cases:

– there is a negative subterm q1n = without q′1 in q1 such that q′2 subsumes q′1. Then replace
q′1 by q′2 in q1.

– there is no such subterm in q1. Then insert a fresh variable X into the subtermlist of q1 by
Equation 2.7 or 2.8 and replace X by q2n (Equation 2.12).

Infinite chains of subsumption decreasing query terms can be constructed starting out from any
query term that is a variable, incomplete in breadth, incomplete in depth, or a subterm which is a
variable, incomplete in breadth or in depth as the following example shows.

Lemma 9 (Infinite Sequences of Subsumption Decreasing Query Terms) • a{{ }},a{{b}},a{{b,b}}, . . .

• a{varX},a{b{{ }},a{b{{c}},a{b{{c,c}}, . . .

• desc a{ }, b{desc a{ }},b{b{desc a{ }}}, . . .

For any query term q that contains a negative subterm with a breadth-incomplete subterm specifi-
cation, with a depth-incomplete subterm, or with a variable, one can find an infinite sequence of query
terms q1,q2, . . . such that qi is strictly subsumed by qi+1 for all i ∈ N and q1 = q.

Lemma 10 (Infinite Sequences of Subsumption Increasing Query Terms) • Let q := a{{without b{{}}}}
be a query term with a and b being arbitrary labels or regular expressions.

– q1 := q = a{{ without b{{ }} }}
– q2 := a{{ without b{{ a{{ }} }} }}
– q3 := a{{ without b{{ a{{ a{{ }} }} }} }}
– . . .

9If there was no such mapping, it would be easy to find a data term e such that q2 would simulate into e, but q1 would not
10which must be also index monotone in the case of ordered subterm specification of q2
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The data term l1[ l2[ ] ] does not simulate with q1, but simulates with q2, the data term l1[
l2[ a[ ] ] ] does not simulate with q2, but simulates with q3, etc. Note that the sequence above
can be constructed irrespectively of the subterm specification of q itself, and of potential other
subterms of q.

• Let q :=b {{ without desc c{ } }} be a query term with b and c being arbitrary labels or
regular expressions. Then the following infinite sequence of query terms fulfills that qi is strictly
subsumed by qi+1 for all i ∈ N:

– q1 := q = b{{ without desc c{ } }}
– q2 := b{{ without a{ desc c{ }} }}
– q3 := b{{ without a{ a{ desc c{ } }} }}
– . . .

• Let q be a query term with a negative subterm that contains a variable. Then this variable can be
substituted by a breadth incomplete query term such as a{{ }}, yielding a query term q1, which
is more general than q. Now the same reasoning applies as for the breadth incomplete case of
this proof.

Note that also for query terms with regular expressions containing at least one + or ∗ sign appearing
in a negative context, one can find such an infinite chain of strictly subsumption increasing query terms.

Theorem 6 (Decidability of Xcerpt query term subsumption) Let q1 and q2 be two Xcerpt query
terms. Determining whether q1 subsumes q2 is decidable.

Theorems 3 and 5 together imply that for any two query terms q1 and q2 there is a sequence of
subumption monotone query term transformations (t1, . . . , tn) with tn(tn−1(. . . t1(q1) . . .)) = q2) if and
only if q1 subsumes q2.

However, this does not prove that finding this transformation is feasible. Starting out from q1 one
can build up a search tree by application of all possible transformations from theorem 3. Unfortunately,
this search tree is infinite, since it may contain infinite branches as Examples 9 and 10 show. Theorem
?? shows, however, that we can prune the search tree to a finite size without losing the completeness of
the search algorithm.

2.7 Conclusion

The lessons learnt in this deliverable are summarized as follows:

• With the advent of meaningful Semantic Web data, the time has come for a new class of search
applying to smaller quantities of information, and answering more expressive, precise queries.

• With semantic search targeting the structure and relatedness of pieces of information, an expres-
sive language must be supplied to authors of search queries, that is easy to understand and use.

• A language for authoring search queries must be data versatile and applicable to all kinds of
graph-structured or semi-structured data.

• A pattern based approach eases the adaption of search queries to varying search needs, and allows
the reuse of memoized results in case of subsuming queries.
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• Negation as failure is a must for rule based query languages on the Semantic Web.

• Crawling is a query language issue.

• Rich query patterns significantly ease the authoring of ad-hoc search programs.

Finally we illustrate the inalienability of subsumption tests both for the termination of rule based
programs on the Web and for its efficient evaluation and show that subsumption tests are also of rele-
vance for efficient semantic search engines in general.
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Figure 2.1 SLG Resolution for the goal Ac{eg:chuck, var Distance}
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