
I4-DX2

RDF Querying in Xcerpt

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-DX2/D/PU/a1
Responsible editors: Benedikt Linse
Reviewers: Tim Furche and François Bry
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: —
Actual submission date: 10 April 2008

Abstract
A versatile query language provides capabilities of querying ordinary XML based data as well
as Semantic Web data and thus builds a bridge between both worlds. Xcerpt, a pattern-based
deductive query and transformation language for semi-structured data, shows to be a perfectly
appropriate candidate to become such a versatile query language.

This thesis investigates and develops new language constructs for Xcerpt which allows con-
venient querying of RDF graphs. These language constructs also comprise numerous shorthand
notations for specific RDF constructs such as containers, reification and concise bounded de-
scriptions.

Besides the design of the new syntax, this thesis also investigates how RDF queries can be
evaluated in Xcerpt. It is thereby shown that Xcerpt’s simulation unification is a very well-suited
means to cope with RDF graphs: On the one hand, it can be easily modified and adapted for
RDF. On the other hand, simulation unification can be used for a variety of tasks: the evaluation
of RDF queries, the optimization of query evaluation by determining subsumption and finally
the checking of leanness of RDF graphs.

Keyword List
language design, RDF, Xcerpt, syntax, constructs

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth
Framework Programme.

c© REWERSE 2008.

ii

RDF Querying in Xcerpt

Alexander Pohl1

1 Institute for Informatics, University of Munich, Germany
http://pms.ifi.lmu.de/

10 April 2008

Abstract
A versatile query language provides capabilities of querying ordinary XML based data as well
as Semantic Web data and thus builds a bridge between both worlds. Xcerpt, a pattern-based
deductive query and transformation language for semi-structured data, shows to be a perfectly
appropriate candidate to become such a versatile query language.

This thesis investigates and develops new language constructs for Xcerpt which allows con-
venient querying of RDF graphs. These language constructs also comprise numerous shorthand
notations for specific RDF constructs such as containers, reification and concise bounded de-
scriptions.

Besides the design of the new syntax, this thesis also investigates how RDF queries can be
evaluated in Xcerpt. It is thereby shown that Xcerpt’s simulation unification is a very well-suited
means to cope with RDF graphs: On the one hand, it can be easily modified and adapted for
RDF. On the other hand, simulation unification can be used for a variety of tasks: the evaluation
of RDF queries, the optimization of query evaluation by determining subsumption and finally
the checking of leanness of RDF graphs.

Keyword List
language design, RDF, Xcerpt, syntax, constructs

iv

Contents

1 Introduction 3
1.1 Extending XcerptXML for Querying RDF . 4
1.2 Contributions and Outline of this Thesis . 5

2 Preliminaries 7
2.1 The Data Model of RDF . 7
2.2 Built-In Vocabularies of RDF . 9

2.2.1 Reification . 9
2.2.2 Containers and Collections . 9
2.2.3 RDF Schema . 11

2.3 Introduction to Turtle, SPARQL and TRIPLE . 11
2.3.1 Turtle - Terse RDF Triple Language . 11
2.3.2 SPARQL . 13

2.3.2.1 Anonymous Blank Nodes . 13
2.3.2.2 Nested Collection Elements . 14
2.3.2.3 SPARQL Query Constructs . 14

2.3.3 TRIPLE . 15
2.4 Introduction to XcerptXML . 16

2.4.1 Data Terms . 16
2.4.2 Query Terms . 17
2.4.3 Construct Terms . 19
2.4.4 XcerptXML Programs . 20

3 XcerptRDF Language Constructs 23
3.1 RDF Terms in XcerptRDF . 23
3.2 Data Terms . 24

3.2.1 Simple Statements . 25
3.2.2 Composition of Data Terms . 25

3.3 Shorthand Notations for Graph Patterns . 26
3.3.1 Factorizations of Data Terms . 27

3.3.1.1 Factorization of Subjects . 27
3.3.1.2 Factorization of Predicate-Object Pairs 28
3.3.1.3 Factorization of Subject-Object Pairs 29
3.3.1.4 Factorization of Subject-Predicate Pairs 29
3.3.1.5 More Factorizations . 30

v

3.3.2 Types for Nodes and Properties . 30
3.3.3 Reification . 33
3.3.4 Containers and Collections . 34
3.3.5 The EBNF Grammar of XcerptRDF Data Terms 37

3.4 Query Terms . 39
3.4.1 Variables for Concise Bounded Descriptions 40
3.4.2 Shorthand Notations for Containers in Query Terms 41
3.4.3 The EBNF Grammar of XcerptRDF Query Terms 44
3.4.4 XcerptRDF Queries - Connectives for Query Terms 47

3.5 Construct Terms . 47
3.6 From XcerptXML to XcerptRDF Back and Forth . 50
3.7 Xcerpt by Example . 52
3.8 Digression: Specifying Injectivity in XcerptXML by Delimiters 58

4 Normalizing XcerptRDF Terms 61
4.1 Normalizing XcerptRDF Data Terms . 61

4.1.1 Expanding XcerptRDF Data Terms . 62
4.1.2 Flattening an Expanded XcerptRDF Data Term 65

5 Evaluation of Queries and Data in XcerptRDF 69
5.1 Preliminaries . 70

5.1.1 Matching Labels . 72
5.2 Anwering Queries . 73
5.3 The Simulation of Query Terms with Containers in Data Terms 76

5.3.1 Preliminaries for the Evaluation of Container Pseudo-Terms 76
5.3.2 Extending the Simulation of Ground Query Terms in Data Terms 77

5.4 Notes on the Simulation of Ground Query Terms in Data Terms 80
5.4.1 Simulation into Sets of Normalized Data Terms, Connectives for Query

Terms . 80
5.4.2 Data Term Selector Revised . 81
5.4.3 Matching of Blank Nodes Against Blank Nodes by Simulation of their

Concise Bounded Descriptions . 81
5.4.4 About the Shorthand Notations for Containers in Query and Data Terms . 82

5.5 Deciding Subsumption . 84
5.6 Deciding Leanness of RDF Graphs . 88

6 Conclusion and Pending Issues 95

vi

Overview of this Deliverable

Xcerpt is the rule-based query language is at the heart of the REWERSE project. Its pattern-
based approach to querying semi-structured and graph-structured data has proven to be intu-
itive to the user and a declarative way of writing reusable and easy to understand programs.
One of the declared goals of developing Xcerpt is its data versatility. Since XML has become the
de facto lingua franca for representing data on the web, and for Xcerpt’s ability to natively deal
with XML Xcerpt already can treat all Web formats that have some kind of XML serialization
such as HTML, RDF, Topic Maps, microformats, etc. RDF as one of these formats is prone to
become one of the basic building blocks for the semantic web. Besides its possible serialization
as XML, RDF also offers an abstract graph data model, that is distinct from its XML serializa-
tion and is the recommended way of keeping RDF data in mind. XML query languages such as
XQuery, XSLT, and also Xcerpt have been used to syntactically process the XML serializations
of RDF data, but this approach has often ignored the underlying semantics of RDF. XcerptRDF

is an attempt to overcome this limitation, by adhering to the true graph data model of RDF,
providing a syntax aimed at RDF specificities such as RDF containers, collections, reifications,
blank nodes and concise bounded descriptions. While XcerptRDF is a somewhat ambitious
extension to Xcerpt, it builds upon Xcerpt’s strengths such as simulation unification, chaining,
rich query patterns, and extends its possibilities in a straightforward and coherent manner. The
outcome is a versatile query language that is especially useful for the plethora of use-cases that
depend on querying both ordinary and Semantic Web data.

In the following deliverable we discuss the latest revision of RDF access in Xcerpt. In contrast
to previous approaches (as described in deliverable I4-D6 and [7]), this revision

1. introduces language constructs specifically for querying RDF data.

2. shows that simulation unification can be leveraged to check and ensure leanness of RDF
graphs,

3. adapts the Xcerpt data model to properly fit RDF graphs.

1

2

Chapter 1

Introduction

The Resource Description Framework (cf. [4, 17, 19, 15, 9]), or RDF for short, is one of the
cornerstones of Semantic Web technology. It is a formal language that enables the provision
of meta-data, i.e. data that describe conventional web data. Additionally, RDF can be used for
making statements about real world entities that are not existent or retrievable in the world
wide web, for example persons or organisations. In RDF, one can make statements about
anything that is identifiable by a URI. Thus, RDF is capable of providing meta-data for the con-
ventional web as well as data that is unrelated to conventional web data, for example social
networks as they are established in the FOAF project [10] – one of several RDF applications.
Semantic Web and conventional web data are often associated with each other by kind of refer-
ences (for example, using the link-Element in HTML, cf. [27]) or by mixing both conventional
and Semantic Web data (for example, RDF in the head section of an HTML document [27],
RDFa [8, 1], Microformats [26]). Apart from these “explicit” associations, both worlds also
come together in query scenarios. As an example, consider the following case: The names of
all people of a FOAF network whose email addresses are listed in a given HTML page should
be extracted and the relationships between the persons to which the names refer to should be
rendered as an SVG graphic (cf. [2]). Usually, in order to support both data formats, this task
involves a query processor for the email addresses in the HTML page, a query processor for the
RDF document representing the FOAF network and a transformation processor for the creation
of the SVG graphic out of the query results. Today’s standard query languages are not capable
of maintaining such data interrelations, since they can only query either conventional web data
or Semantic Web data so that several kinds of query languages and transformation languages
must be used simultaneously which is inconvenient and tedious. A versatile query language, i.e.
a query language that is able to process both conventional and Semantic Web data, could rem-
edy this situation. In supporting both data models, a versatile query language provides a high
flexibility in processing web data and in offering common language constructs for both worlds
to a great extent; it provides a high convenience and ease in tackling sophisticated querying of
both the conventional and the Semantic Web.

This thesis describes such a versatile query language designed for both semi-structured data
(like XML or HTML) and RDF data. Furthermore, this query language provides complex con-
structions allowing the structuring of answers as desired. This thesis extends the capabilities of
the existing Xcerpt [22] in a way that one can also query and transform RDF data.

3

In this thesis the versatile query language, which combines the semi-structured query lan-
guage with its extension to query RDF, is referred to as Xcerpt. The original language as de-
scribed in [22] only being capable of querying and transforming semi-structured data is referred
to as XcerptXML. Finally, the component of Xcerpt for querying and transforming RDF data in-
troduced in this thesis is referred to as XcerptRDF. Figuratively, the following equation illustrates
the relation between the three languages:

Xcerpt = XcerptXML + XcerptRDF

1.1 Extending XcerptXML for Querying RDF

In [12] it has been argued that a versatile query language shall exhibit the following three
features at its core.

Convenient and efficient access to any kind of web data A versatile query language should
be able to process both conventional and Semantic Web data disregarding the way they
are made available (e.g. separated in different documents or mixed within a document,
serialization format).

Referential Transparency and answer-closedness A versatile query language should provide
referential transparency (i.e. values only depend on their environments and not on the
point of time in which they are evaluated) and be answer-closed (i.e. querying XML yields
answers compliant to the data model of XML, querying RDF yields answers compliant to
the data model of RDF) which is realized by rules and patterns. Patterns serve as molds
for valid data in which variables are replaced by values. Rules provide basic reasoning
capabilities.

Admissibility of incomplete queries and answers It should be possible to specify the requested
information only partially and to select only important pieces of information from given
answers. This should be admissible due to the heterogeneity and incompleteness of web
data.

XcerptXML as a declarative and pattern-based query and transformation language for semistruc-
tured data is referentially transparent, answer-closed and admits incomplete query specifica-
tions as well as incomplete answers. The retention of these features for an extension to query
RDF makes XcerptXML a versatile query language. For the reasons given below, XcerptXML is
amenable to extensions that are necessary in order to master the challenges that accompany
the extension for dealing with RDF. These challenges, among others, comprise the following
(for a detailed discussion refer to [13]).

Data Model The data model of XML is basically a node-labelled tree (i.e. a rooted acyclic
graph) with additional edges expressed using the attributes ID and IDREF possibly yield-
ing non-tree graphs. The data model of RDF is an unrooted graph with labelled nodes and
edges. Since the data model of XcerptXML is based on semi-structured graphs XcerptXML

can be adapted to RDF more easily than other query languages. Besides the graph nature

4

of XcerptXML’s data model, labelled edges as in the RDF data model can also be trans-
formed to unlabelled edges in introducing nodes representing these labels, thus bringing
the data models of XML and RDF closer to each other and paving the way to a common
query language.

Incomplete and Unbounded Data XML data is complete whereas RDF data is incomplete, so
to speak. In contrast to the XML data model RDF does not distinguish between occur-
rences of resources. That is, a resource can be addressed globally, hence allowing anyone
to make statements about a resource. As a consequence, it cannot be assumed that the
knowledge about a given resource is completely given. However, several scenarios are
conceivable in which completeness of data and restricted access to RDF data is required.
As a means to restrain incompleteness of data, named graphs [14] have shown to be
useful in practice.

Many features which are necessary to cope with RDF and other Semantic Web data are
already available in XcerptXML, thus, it is worthwile to undertake the expenditure of extending
XcerptXML for querying RDF:

n XcerptXML has the capability of to cope with graph based data.

n Subterms can be specified as unordered.

n XcerptXML rules provide means for RDF entailment.

n The semantics of XcerptXML is intuitive and can be easily extended for RDF querying.

1.2 Contributions and Outline of this Thesis

This thesis discusses and suggests syntactic and semantic extensions to XcerptXML. XcerptXML ex-
tended with RDF querying capabilities will be denoted as XcerptRDF in this thesis. An overview
of existent RDF query languages is given in order to recognize language constructs being useful
and convenient. These query languages do not only serve as positive examples. In cases of
insufficient constructs, alternative solutions are suggested and discussed. XcerptRDF is provided
with a declarative semantics that is tailored for querying RDF. Again, other query languages
serve as examples. Furthermore, this thesis aims at finding and discussing solutions for prob-
lems regarding querying RDF that are currently not or only marginally solved by existent query
languages:

n An intuitive syntax that integrates well to the existing XcerptXML.

n Comprehensive and systematic shorthand notations, also for RDF collections.

n Meaningful querying of blank nodes by means of concise bounded descriptions.

n Constructs for expressing negative statements.

n An intuitive semantics based on the simulation unification of XcerptXML, the core tech-
nique making incomplete queries possible.

5

This thesis shall show that simulation unification turns out to be very useful for querying
RDF as it is appropriate to evaluate queries on the data model of RDF.

Chapter 1 is this introduction. Chapter 2 introduces state-of-the-art serialization formats
and query languages which serve as models for the design of XcerptRDF. Chapter 3 introduces
the syntax of XcerptRDF and explains the language constructs with numerous examples. Chapter
4 provides a formal description of normalizing XcerptRDF terms simplifying the introduction of
the semantics of XcerptRDF which is given in Chapter 5. The thesis finishes with a conclusion
and an outline.

6

Chapter 2

Preliminaries

This chapter gives a short and concise overview of RDF constructs relevant for this thesis and
also introduces important modelling and query languages for RDF serving as models for the
design of XcerptRDF.

2.1 The Data Model of RDF

The Resource Description Framework [4, 9, 17, 15, 19] is a Semantic Web formalism in which
entities (resources or labels) are related to another by binary relations (predicates or properties).
There are three kinds of resources: URIs [6], literals and blank nodes. URIs are globally visi-
ble and, hence, also addressable from other RDF graphs. Furthermore, URIs are considered to
uniquely identify resources, i.e. each occurrence of the same URI denotes the same resource.
In accordance to [19], URIs may also be abbreviated by qualified names. For example, the
URI http://www.example.org/persons#john may be abbreviated by eg:john, where the prefix eg
stands for the namespace http://www.example.org/persons#. In this thesis, URIs are abbreviated
by qualified names whenever possible. For frequently used namespaces, this thesis commits to
the prefixes given in Table 2.1.

Prefix Namespace Comment

rdf http://www.w3.org/1999/02/22−rdf−syntax−ns# The namespace for RDF
built-in vocabulary [4]

rdfs http://www.w3.org/2000/01/rdf−schema# namespace for RDF Schema
vocabulary [9]

foaf http://xmlns.com/foaf/0.1/ namespace for the FOAF

vocabulary [10]
eg http://www.example.org/xcerptrdf# namespace for example

resources

Table 2.1: Prefixes and the namespaces for which they stand throughout this thesis

7

Literals are constant values which are represented as character strings. Literals can be typed
by or can be tagged by XML Language Tags [20]. Blank Nodes represent anonymous (unnamed)
resources and can be seen as existential quantified variables.

Statements in RDF are called triples, each consisting of a subject label, a predicate or prop-
erty label and an object label. Furthermore, RDF does not distinguish between URI occurrences,
except for property resources. This leads to graph-structured data with directed and labelled
arcs (the properties) each connecting two labels (subject and object). Labels are also usually
called nodes because of the graph structured data model.

For example, the following RDF graph states that a person John knows another person Jim,
whereby John is represented by the URI eg:john, the relation knows by the URI foaf :knows and
Jim is represented by the URI eg:jim.

eg:john eg:jim
foaf :knows

Triples can be seen as logical formulas. The triple above can be written as the logical for-
mula foaf :knows(eg:john, eg:jim), where foaf :knows is a relation symbol, eg:john and eg:jim being
constants.

Using blank nodes, the following graph expresses that there exists someone who knows jim
(whereby knows is further on represented by foaf :knows and Jim by eg:jim) and whose name is
John (whereby the name-relation is represented as foaf :knows).

eg:john eg:jim

‘‘ John’’ˆˆxsd:string

foaf :knows

foaf :name

The use of the blank node in the graph above aims at conveying that the person who knows
Jim and who is named John is not fully identified.

Note that the literal together with its type which, by convention, is attached to the character
string by a preceding “ˆˆ” is a single node in the graph. The blank node is represented as an
empty node in the graph. This notation is in line with [19].

However, for RDF modelling languages it is necessary to distinguish between blank nodes.
Otherwise, it is not possible to express graph-structured relationships. Hence, blank nodes can
be given names which, however, are only declared in the scope of the graph in which they
occur. As their names are not visible outside the graph, one says that blank nodes do not have
an intrinsic name. Blank nodes are named by so-called “blank node identifiers”. Resembling
the notation of [19], blank node identifiers are written as “ :” followed by an identifier. Using
blank node identifiers, the latter example is as follows.

:abc123 eg:jim

‘‘ John’’ˆˆxsd:string

foaf :knows

foaf :name

8

There, :abc123 represents the blank node within the graph. Note that in analogy to URIs
blank nodes with identical blank node identifiers are supposed to be identical, whereas blank
nodes with different blank node identifiers do not necessarily represent different resources.

During reasoning, blank nodes might be identified with other nodes (blank nodes or non-
blank nodes).

2.2 Built-In Vocabularies of RDF

As described in [19] particular sets of URIs which are used for special purposes are referred
to as vocabularies. These built-in properties share the namespaces http://www.w3.org/1999/02/
22−rdf−syntax−ns# which is usually abbreviated by the prefix rdf. For example, the property
rdf:type is used to specify the concrete type of a resource.

2.2.1 Reification

RDF provides reification as means to make statements about statements. This is useful when
additional information (so-called provenance information) describes existing statements. Such
information comprises, amongst other things, the date of asserting the statement and the author
of the statement. Thus, it is possible to state that there exists a statement which expresses that
the person John knows the person Jim and which is asserted by (represented as eg:author) the
person Anna as pictured by the following RDF graph.

:abc123

rdf:Statement

eg:john

eg:knows

eg:jim

eg:anna

rdf:type

rdf: subject

rdf:predicate

rdf:object

eg:author

RDF therefore offers the built-in resources rdf:Statement which specifies that a statement is
a reification of another statement, rdf: subject, rdf:predicate and rdf:object for the specification
of the reified statement itself.

2.2.2 Containers and Collections

RDF offers built-in vocabularies for describing container and collection datatypes such as bags
(multisets), sequences (vectors), alternatives and lists. A tutorial explanation of containers and
collections is given in [19]. The kind of the datatype is given by the rdf:type declaration, cf.
following possibilities.

9

Container Type Declaration
bag (multiset) rdf:Bag
sequence (vector) rdf:Seq
alternative rdf:Alt
Collection Type Declaration
list rdf: List

The elements of an RDF container are declared by so-called membership-properties which
are of the form rdf: N where N stands for a numeric literal. For example, rdf: 1, rdf: 13 are
membership-properties, whereas rdf: 12f is not. The following RDF graph models a shopping
cart (represented as eg:cart123) as an rdf:Bag container which contains one item of eg:coffee
and two items of eg:milk.

eg:cart123

eg:milk eg:coffee

rdf:Bag
rdf:type

rdf: 1

rdf: 2 rdf: 3

RDF containers are considered unclosed, i.e. in RDF it is not possible to express that an RDF
container exclusively comprises the declared members. For rdf:Bag and rdf:Alt the order of the
numbering of the membership-properties (rdf: 1, rdf: 2, and further) are irrelevant. However,
the numbering is relevant to distinguish between multiple occurrences of identical elements
within the container.

In contrast to RDF containers, lists as RDF collections can be closed – the empty list is
described by the resource rdf: nil . The structure of a list is straightforward: A list consists of
a list head (declared by the property rdf: first) and a tail (declared by the property rdf: rest)
which in turn is a list. The following graph models the shopping cart of the latter example as
the list [milk,milk,coffee].

eg:cart

rdf: List

eg:milk

: sublist1

: sublist2

eg:coffee

rdf: nil

rdf: first

rdf:type
rdf:type

rdf: first

rdf: rest

rdf: first

rdf: rest

rdf:type

rdf: rest

10

2.2.3 RDF Schema

RDF Schema [9] is a special vocabulary with which one can define application specific vocabu-
laries. This comprises the description of new resource classes and new properties. New classes
are defined by asserting that the rdf:type of a resource is rdfs :Class. Properties are described by
asserting that the rdf:type of a resource is rdfs :Property. Furthermore, the domain (i.e. the set
of potential subjects of the property) can be described by rdfs :domain and the range (i.e. the
set of potential objects of the property) by rdfs :range.

The following graph states that eg:MotorVehicle and eg:Person describe classes, and eg:owns is
a property that relates persons to their vehicles. Furthermore, it states that eg:john is a person
who owns a vehicle of type eg:MotorVehicle.

eg:MotorVehiclerdfs :Classeg:Person

eg:owns rdfs :Property

eg:john :vehicle

rdf:type rdf:type

rdf:type

rdfs :domain
rdfs :range

rdf:type rdf:type

eg:owns

In RDF classes and properties are integrated in a class (property, resp.) hierarchy, each
class is a subclass of rdfs :Resource and each property is a subclass of rdfs :Property. In order to
describe that a class is a sub-class of another class, the property rdfs :subClassOf is used. In order
to describe that a property is a sub-property of another, the property rdfs :subPropertyOf is used.

2.3 Introduction to Turtle, SPARQL and TRIPLE

This section gives a short overview of the well-known and standard RDF serialization syntax
Turtle and the RDF query languages SPARQL and TRIPLE. The introduction focuses more on
the syntax than on the query evaluation. Several papers discuss and compare the evaluation of
queries of the different RDF query languages.

2.3.1 Turtle - Terse RDF Triple Language

Turtle [3] is a concrete syntax for RDF. It is a subset of N3 [5] and, thus, is generally usable in
systems that support N3. N3, Turtle and derivatives are very easy to use, which certainly is the
reason for several standard query languages being based on these syntaxes.

The building blocks of Turtle are triples of the form <SUBJECT> <PREDICATE> <OBJECT>..
The period finishes the triple. <SUBJECT> and <OBJECT> may be URIs, QNames or Blank

11

Nodes. <PREDICATE> may be URIs or QNames. In order to simplify parsing, URIs are distin-
guished from QNames by parenthesizing them in angle brackets. Blank Nodes are written as
:<IDENT>, where <IDENT> is a valid identifier. Turtle offers the keyword @prefix to declare

namespace prefixes. The following RDF graph can be described in Turtle as follows.

:abc123 eg:jim

‘‘ John’’ˆˆxsd:string

foaf :knows

foaf :name

1 @prefix eg : <ht tp ://www. example . org/>
2 @prefix f o a f : <ht tp :// xmlns . com/ f o a f /0.1/>
3 @prefix rd f : <ht tp :// ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#>
4 @prefix xsd : <ht tp ://www.w3. org /2001/XMLSchema#>
5

6 : abc123 f o a f : knows eg : john .
7 : abc123 f o a f :name ” John ”ˆˆ xsd : s t r i n g .

Turtle offers shorthand notations for abbreviating groups of triples, sometimes referred to
as factorization. Therefore, the comma is used to repeat the subject and predicate of triples
only differing in the objects (subject-predicate factorization):

1 eg : a eg : p eg : o1 ,
2 eg : o2 ,
3 eg : o3 .

This excerpt is syntactic sugar for the following triples:

1 eg : a eg : p eg : o1 .
2 eg : a eg : p eg : o2 .
3 eg : a eg : p eg : o3 .

Additionally, the semi-colon is used to repeat the subject of triples which only differ in the
predicates and objects. The excerpt

1 eg : a eg : p1 eg : o1 ;
2 eg : p2 eg : o2 ;
3 eg : p3 eg : o3 .

abbreviates the following triples:

1 eg : a eg : p1 eg : o1 .
2 eg : a eg : p2 eg : o2 .
3 eg : a eg : p3 eg : o3 .

Finally, Turtle offers shorthand notations for RDF collections (RDF lists). A collection is
written as a parenthesized list of labels. The description

12

1 eg : a eg : p (eg : i1 , eg : i2 , eg : i3) .

stands for the following triples:

1 eg : a eg : p : b1 .
2

3 : b1 rd f : f i r s t eg : i1 ;
4 rd f : r e s t : b2 .
5

6 : b2 rd f : f i r s t eg : i2 ;
7 rd f : r e s t : b3 .
8

9 : b3 rd f : f i r s t eg : i3 ;
10 rd f : r e s t rd f : n i l .

Note that this shorthand notation implicitly expresses blank nodes, i.e. the expansion of
this shorthand notation yields blank nodes. In particular, (eg:a, eg:b) describes a valid graph in
Turtle since it can be expanded to the following triples.

1 : b1 rd f : f i r s t eg : a ;
2 rd f : r e s t : b2 .
3 : b2 rd f : f i r s t eg : b ;
4 rd f : r e s t rd f : n i l .

2.3.2 SPARQL

SPARQL [21] is a query language for RDF which has recently reached W3C Recommendation
status. It is based on a non-XML syntax comparable to Turtle. Additionally, SPARQL offers the
following further language constructs.

2.3.2.1 Anonymous Blank Nodes

Beside the named blank nodes, SPARQL offers anonymous blank nodes (wildcards) which are
written as [], i.e. square brackets. Each occurrence of [] denotes a new blank node not occur-
ring elsewhere in the document. Using anonymous blank nodes, SPARQL offers two forms of
writing the same triple.

1 [] eg : p eg : o .
2 [eg : p eg : o] .

Within these square brackets, Turtle factorizations may occur as shown in line 2. This allows
to describe several triples sharing the same anonymous blank node as subject. Note that

1 [] eg : p1 eg : o1 ;
2 eg : p2 eg : o2 .

is not the same as

13

1 [eg : p1 eg : o1 ;
2 eg : p2 eg : o2] .

since the first triples refer to two distinct blank nodes whereas the second triples refer to the
same anonymous blank node.

2.3.2.2 Nested Collection Elements

Within the shorthand notation for RDF collections as introduced in Turtle, SPARQL allows that
certain syntactic sugar for triples may occur as collection elements. This comprises either RDF
collections themselves or triples within square brackets (i.e. referring to anonymous blank
nodes). The following description shows composition (taken from [21]).

1 (1 [: p : q] (2)) .

The collection above can be expanded as follows.

1 : b0 rd f : f i r s t 1 ;
2 rd f : r e s t : b1 .
3 : b1 rd f : f i r s t : b2 .
4 : b2 : p : q .
5 : b1 rd f : r e s t : b3 .
6 : b3 rd f : f i r s t : b4 .
7 : b4 rd f : f i r s t 2 ;
8 rd f : r e s t rd f : n i l .
9 : b3 rd f : r e s t rd f : n i l .

2.3.2.3 SPARQL Query Constructs

SPARQL offers several ways to query data. Using SELECT-queries only variable bindings are
returned (just like in SQL), whereas CONSTRUCT-queries yield RDF graphs. That is, SPARQL
supports answer-closedness. ASK-queries only return ”yes/no” answers. Neither RDF graphs,
nor variable bindings are computed. Finally, SPARQL supports the notion of so-called concise
bounded descriptions by DESCRIBE-queries.

SPARQL supports the querying of optional values, but it does not provide syntax for nega-
tion. Negation is realized in SPARQL by a workaround using the predicate isBound by which it
can be tested whether variables are bound to values or not.

The following program queries the URIs which represents the books and the title of the
books the URIs refer to. The RDF document is assumed to be retrievable at http://www.example.org/
books.rdf.

1 PREFIX dc : <ht tp :// pur l . org /cd/ elements /1.1/>
2 PREFIX ex : <ht tp :// example . org /book/>
3 SELECT ?book , ? t i t l e
4 FROM <ht tp ://www. example . org /books . rdf>
5 WHERE { ?book dc : t i t l e ? t i t l e }

14

The program below queries the same as the program above but yields an RDF graph instead
of just variable bindings.

1 PREFIX dc : <ht tp :// pur l . org /cd/ elements /1.1/>
2 PREFIX ex : <ht tp :// example . org /book/>
3 PREFIX eg : <ht tp ://www. example . org#>
4 CONSTRUCT { ?book eg : h a s T i t l e ? t i t l e }
5 FROM <ht tp ://www. example . org /books . rdf>
6 WHERE { ?book dc : t i t l e ? t i t l e }

2.3.3 TRIPLE

TRIPLE [23] is a query, inference and transformation language for RDF. It allows flexible ab-
breviations not only applicable for the declaration of namespace prefixes but also for replacing
entire QNames being frequently used. For example, the declaration isa := rdf:type allows to use
the name isa as a replacement of rdf:type.

TRIPLE provides a slot-oriented syntax i.e. a Turtle triple eg:s eg:p eg:o. is written in TRIPLE
as eg:s[eg:p −> eg:o]. Furthermore, TRIPLE supports molecules as factorizations of subjects.
The Turtle triples

1 eg : s eg : p1 eg : o1 ;
2 eg : p2 eg : o2 .

correspond to the TRIPLE molecule eg:s[eg:p1 −> eg:o1; eg:p2 −> eg:o2]. The slotted nota-
tion also allows composition. For example, the Turtle triples

1 eg : s eg : p1 eg : o1 .
2 eg : o1 eg : p2 eg : o2 .

can be written in TRIPLE as eg:s[eg:p1 −> eg:o1[eg:p2 −> eg:o2]].

Remarkably, TRIPLE does not support explicit blank nodes and neither does it provide short-
hand notations for RDF collections. Rather, TRIPLE provides syntactic sugar for reification
which implicitly expresses a blank nodes. The turtle triples

1 eg : Anna eg : b e l i e v e s : b1 .
2 : b1 rd f : type rd f : Statement ;
3 rd f : s u b j e c t eg : John ;
4 rd f : p red i ca t e f o a f : knows ;
5 rd f : o b j e c t eg : Jim .

can be described in TRIPLE as eg:anna[eg:believes −> <eg:john[foaf:knows −> eg:Jim]>].

15

2.4 Introduction to XcerptXML

As this thesis deals with the extension of XcerptXML, a short introduction of this language is also
given. XcerptXML [22] is a deductive, pattern based query and transformation language for semi-
structured data. XcerptXML uses terms as patterns for representing, querying and constructing
semi-structured data. These kinds of data are described in the following sections.

2.4.1 Data Terms

Data terms are abstract term representations of semi-structured data in XcerptXML. For a given
element of the form <ns:elem>...</ns:elem> the term representation is either ns:elem{...} or
ns:elem[...] . The curly braces specify that the children of the element ns:elem (also called im-
mediate subterms of ns:elem) are considered as unordered. The square brackets specify that the
immediate subterms are considered as ordered. For the translation of XML to XcerptXML data
terms, the subterms are considered as ordered by default. XML attributes of an element are
represented as subterms of the element. That is, an XML element

1 <ns : elem a t t r 1=value1 a t t r 2=value2 . . . a t t rN=valueN>
2 . . .
3 </ns : elem>

is represented in XcerptXML as follows.

1 ns : elem [
2 a t t r i b u t e s { a t t r 1 [value1] ,
3 a t t r 2 [value2] ,
4 . . . ,
5 at t rN [valueN]
6 }
7 . . .
8]

To sum up the introduction of XcerptXML data terms, the RDF/XML representation of the
following RDF graph is given as XcerptXML data term.

eg:john eg:jim

‘‘ John’’ˆˆxsd:string

foaf :knows

foaf :name

16

1 <?xml ve r s ion =”1.0”?>
2 <rd f :RDF xmlns : rd f =”ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#”
3 xmlns : eg =”ht tp ://www. example . org /”
4 xmlns : f o a f =”ht tp :// xmlns . com/ f o a f /0.1/”>
5

6 <eg : john>
7 <f o a f : knows><eg : j im /></f o a f : knows>
8 <f o a f : name rd f : datatype=”ht tp ://www.w3. org /2001/XMLSchema#s t r i n g ”>
9 John

10 </ f o a f : name>
11 </eg : john>
12

13 </rd f :RDF>

The XcerptXML data term representing the XML document above is as follows. Note the
declaration of namespaces with the keyword ns−prefix as shown below.

1 ns−p r e f i x rd f = ” ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#”
2 ns−p r e f i x eg = ” ht tp ://www. example . org /”
3 ns−p r e f i x f o a f = ” ht tp :// xmlns . com/ f o a f /0 .1/”
4

5 rd f :RDF [
6 eg : john [
7 f o a f : knows[eg : j im []] ,
8 f o a f : name [
9 a t t r i b u t e s {

10 rd f : datatype [” ht tp ://www.w3. org /2001/XMLSchema#s t r i n g ”]
11 } ,
12 ” John ”
13]
14]
15]

2.4.2 Query Terms

Query terms are patterns which usually contain variables (introduced by the keyword var).
They are matched against data to determine variable bindings, thus, the resulting ground query
term can be found in the data. Thereby, amongst others, it is possible to specify the following
conditions, which must be fulfilled.

Incompleteness in Breadth The data term the query term is matched against must contain at
least the subterms specified by the query term but may contain further subterms.

Incompleteness in Depth The query is matched against data which is at arbitrary depth.

Optional Subterms Subterms within the query term may be specified as optional so that
matching the query term against data terms not providing suitable subterms for the op-
tional subterms is considered to be successful.

17

Subterm Specification Condition for Matching Data Terms
of the Query Term by the Query Term

a[s1, s2] Complete and ordered: there may be only the subterms
in the order s1, s2

a{s1, s2} Complete and unordered: there may be only the subterms
s1 and s2 but they may also occur in the order s2, s1.

a[[s1, s2]] Incomplete and ordered: there may be more than the subterms
s1 and s2 but s1 must immediately precede s2.

a{{s1, s2}} Incomplete and unordered: there may more than the subterms
s1 and s2. It is just required that s1 and s2 are also available.

Table 2.2: Subterm specifications of query terms

Negation of Subterms Subterms may be specified as negative such that within suitable data
terms there are no subterms against which these query subterms can be matched.

Incompleteness in breadth is specified using double braces. In conjunction with the specifi-
cation of the order of subterms, four kinds of bracketing can be used in query terms. These are
listed in Table 2.2.

Incompleteness in depth is specified by the keyword desc and specifies that the query term
following desc may match with all data terms that contains subterms at arbitrary depth that is
matched by the query term.

Query terms containing optional subterms specified by the keyword optional also match
against data terms which do not contain subterms which can be matched by the optional sub-
terms. In the case of optional subterms not matching against the data subterms, the query still
succeeds but does not yield bindings for the variables occurring in the optional subterm, i.e.
optional subterms only affect variable bindings.

Query terms containing negative subterms which are specified by the application of without
only match with data terms that do not contain subterms which are matched by negative sub-
terms. Note that negative subterms do not yield any bindings. Thus, all variables occurring
within negative subterms must already be bound. This is the case when variables within a neg-
ative subterm also occur within a positive subterm.

For example, consider the following query term.

1 var U {{
2 var V{{”1”}}
3 op t iona l var W{{ var X{{”10”}} }}
4 without var V{{”3”}}
5 }}

This query term matches against the data terms a[b[”1”]], a [b[”2”, ”1”], c[d[”10”]]]
but not against a[b[”2”]] and neither against a[b[”1”], b[”3”]].

18

In XcerptXML, queries may be query terms or recursively built by queries using the binary
connectives and{t,t ’}, or{t , t ’} or the unary connective not t.

Input resources can be assigned to queries. For example, suppose the query above shall be
matched against data which can be found at http://www.example.org/test.xml. Then the query
looks as follows:

1 in {
2 resource [ht tp ://www. example . org / t e s t . xml ,]
3 var U {{
4 var V{{”1”}}
5 op t iona l var W{{ var X{{”10”}} }}
6 without var V{{”3”}}
7 }}
8 }

2.4.3 Construct Terms

Construct terms consume variable bindings resulting from the matching of queries against data
in order to create new data. That is, construct terms make XcerptXML answer-closed.

Construct terms are similar to data terms, however, variables and the grouping constructs
all and some may occur. Since construct terms consume variable bindings resulting from the
evaluation of query terms the variables within the construct terms must be a subset of the vari-
ables within the query terms. This is referred to as range restrictedness.

For each variable binding the construct term creates a new instance of the answer term.
However, it is often desired that for some or all bindings of certain variables only one answer
term is created. That is, the answer term shall group the variable bindings according to the
values of certain variables. This is done by using the grouping constructs all and some n. For
example, consider the following bindings.

Bindings Value

var U person[name[”Anna”]]
var V person[name[”John”]]

var U person[name[”Anna”]]
var V person[name[”Jim”]]

The construct term friends[knows[var U, var V]] creates the following answer terms:

19

1 f r i e n d s [
2 knows [
3 person [name[” Anna ”]] ,
4 person [name[” John ”]]
5]
6]
7

8 f r i e n d s [
9 knows [

10 person [name[” Anna ”]] ,
11 person [name[” Jim ”]]
12]
13]

The construct term friends[all knows[var U, var V]], however, yields the following answer:

1 f r i e n d s [
2 knows [
3 person [name[” Anna ”]] ,
4 person [name[” John ”]]
5]
6

7 knows [
8 person [name[” Anna ”]] ,
9 person [name[” Jim ”]]

10]
11]

If the answer shall be grouped according to variables which do not appear within the an-
swer, the explicit grouping applied by the construct group by {<VARIABLES>} can be used. For
example, the construct term

1 f r i e n d s [a l l knows[var V]] group by {var U}

yields the following answer:

1 f r i e n d s [
2 knows [
3 person [name[” John ”]]
4]
5 knows [
6 person [name[” Jim ”]]
7]
8]

2.4.4 XcerptXML Programs

Simple XcerptXML programs consists of rules (goal and construct) and hence have the following
form.

20

1 GOAL
2 out {
3 resource{<RESOURCE>},
4 <CONSTRUCT−TERM>
5 }
6 FROM
7 <QUERY>
8 END
9

10 CONSTRUCT
11 <CONSTRUCT−TERM>
12 FROM
13 <QUERY>
14 END
15

16 . . .
17

18 CONSTRUCT
19 <CONSTRUCT−TERM>
20 FROM
21 <QUERY>
22 END

Each XcerptXML program has at least one goal. Goals may be associated with output re-
sources to which the answer (i.e. the instantiations of answers by the construct term of the
goal) is written. If the output resource is not specified the answer is written to stdout. Construct
rules associate construct terms to query terms. A program may comprise an arbitrary amount
of construct rules (including zero).

21

22

Chapter 3

XcerptRDF Language Constructs

In this chapter the syntax of XcerptRDF for querying and delivering RDF data is introduced. The
syntax is basically inspired by Triple [23] which, in turn, is inspired by F-Logic [16]. Hence,
XcerptRDF ,like Triple and F-Logic, supports two different views on the data which is valuable for
the modelling. On the one hand, the syntax captures the view of RDF data as directed graphs.
On the other hand, it captures the view of RDF data as objects (in the sense of object-oriented
modelling), their attributes and their values. How both views are supported by XcerptRDF is
shown in this chapter. Furthermore, the additional syntax constructs of XcerptRDF integrates
well with that of XcerptXML for reasons which are also discussed in this chapter. Furthermore,
XcerptRDF offers various shorthand notations to simplify the authoring of RDF facts and queries.
These shorthand notations comprise constructs for frequently used subgraph-structures of RDF
as well as syntactic means to compose RDF data coherently and with few redundancies.

3.1 RDF Terms in XcerptRDF

As mentioned above, every RDF triple consists of a subject node which can either be a URI or
a blank node, a property which can only be a URI and an object which can either be a URI,
a blank node or a literal. In this section, it is shown how these RDF terms (i.e. URIs, blank
nodes and literals) are represented in XcerptRDF. In many cases their notations adhere to the
conventions that have been established by N3 and other RDF serialization formats [7].

XcerptRDF offers several ways to represent resources. The simplest and certainly most fre-
quent way is to use qualified names [25]. For instance, the person called John could then be
represented as eg:John, where the prefix eg represents the namespace http://www.example .org/.
Prefixes in XcerptRDF are declared the same way as it is done in XcerptXML, i.e. by ns−prefix
eg = http://www.example.org/. Another way to represent the person John would be to write the
entire URI, i.e. http://www.example.org/John. In order to simplify parsing (i.e. to differentiate
between qualified names and URIs), one can also think of prefixing the URI with @, so that the
notation of the URI would be @http://www.example.org/John and the notation of the respective
qualified name eg:John.

While the usage of blank nodes is clear, the ways of their expression in query languages is

23

diverse. They can either be expressed explicitly, i.e. by the user, or implicitly, i.e. by the system.
Explicit blank nodes can be subdivided into those that are named explicitly by the user or named
implicitly by the system. The syntax of explicitly named blank nodes corresponds to the syntax
which is introduced above, i.e. :abc123, where : specifies that the node which is identified as
abc123 is a blank node. As in other RDF query languages like SPARQL, when a user wants the
system to name a blank node, he simply omits the identifier. Hence, an implicitly named blank
node is written as :. For each occurrence of :, XcerptRDF creates a new and unique identifier
which, hence, is not addressable from elsewhere. The implicit naming of blank nodes is, thus,
reminiscent of the naming of anonymous variables or wildcards, e.g. as they are known from
e.g. Prolog.

Reserving the underscore as the namespace for blank nodes leads to conflicts, since the un-
derscore is a possible namespace prefix in XML and, thus, free. These conflicts could be resolved
by transforming the original document to another, thereby, replacing the underscore by another
conflict-free namespace prefix. Another possibility is to disallow the usage of the underscore as
XML namespace prefix when XcerptXML is used so that it may not be used for purposes other
than defining blank nodes. This makes sense as the underscore is supposed to be seldom used
as a user-defined namespace prefix.

Implicit blank nodes are created by the system during the expansion of shorthand notations
which are offered in many RDF query languages, e.g. Triple [23], SPARQL [21] and SeRQL
[11] for extensive and frequently used constructs such as reification or collections. These short-
hand notations express blank nodes without any assistance by the user. As a consequence, the
user can only take advantage from these shorthand notations when blank nodes that cannot
be addressed from elsewhere in the RDF graph are sufficient. Otherwise the corresponding
longhand notations (i.e. the corresponding RDF triples) have to be used instead. This problem
is overcome in XcerptRDF by more flexible shorthand notations for reification, collections and
containers so that XcerptRDF can get along without implicit blank nodes.

Literals are written in XcerptRDF the same way as it is the case in N3, SPARQL and others, i.e.
the syntax of literals are quoted strings like ‘‘ abc ’’ . Language tags are separated from the literal
string by the symbol @, for example ‘‘ abc ’’ @de. Language tags are optional. Moreover, optional
type URI for literals are introduced in XcerptRDF with ˆˆ, for example ‘‘ abc ’’ˆˆxsd:string , as it is
also done in most other RDF query languages.

Using the symbol @ for separation of the language tag from the literal does not lead to
confusions with its usage for references in XcerptXML and either for the differentiation between
URIs and qualified names since references are not used in XcerptRDF and language tags are
preceded by strings.

3.2 Data Terms

Data terms are abstract representations of RDF data in XcerptRDF. They also serve as a seri-
alization format for RDF graphs. Thus, they do not contain (XcerptRDF) variables. Note that
in XcerptRDF one distinguishes between blank nodes and variables so that also RDF statements
containing blank nodes are considered ground. For frequently used RDF constructs XcerptRDF

24

offers several shorthand notations which simplify the authoring and manipulation of RDF data.
These shorthand notations are introduced in this section.

3.2.1 Simple Statements

Simple statements in XcerptRDF correspond to RDF triples and hence consist of a subject, prop-
erty and an object. The following example shows an RDF triple as a graph and the correspond-
ing notation in XcerptRDF.

eg:john eg:annafoaf :knows 1 eg : john {
2 f o a f : knows → eg : anna
3 }

Example 3.1: RDF Triple as a graph and as an XcerptRDF data term

In XcerptRDF, the subject is separated from its subterm, i.e. its property and object by curly
braces. The property points to the object by an arrow1.

As mentioned above, this syntax supports two different viewpoints, the graph-based and
the object-oriented viewpoint. Considering the graph-based viewpoint, the XcerptRDF data term
immediately corresponds to the directed RDF graph that is shown above: The property together
with the arrow represents the edge that connects the subject with the object. This allows for
an intuitive authoring of RDF data. When considering the object-oriented viewpoint, in the
example above eg:john is the object (in the object-oriented sense) which has as an attribute
foaf :knows referencing the object (in the object-oriented sense) eg:anna. Furthermore, this no-
tation resembles the slot notation from frame languages with RDF properties as slots and RDF
objects as fillers.

RDF graphs consisting of more than one triple can be described by several XcerptRDF data
terms which are optionally separated by commas. Commas for separating data terms are op-
tional due to the fact that they are also optional in XcerptXML. As a digression, the use of
delimiters to revoke injectivity of subterm mappings in XcerptXML is discussed in Section 3.8.
Example 3.2 shows an RDF graph and its corresponding description in XcerptRDF asserting that
the person who is represented by the URI eg:john knows someone whose name is Jim.

3.2.2 Composition of Data Terms

In the latter example, the RDF graph is described in XcerptRDF with two data terms which cor-
respond to triples. Such a description, however, does not take the structure of the graph into
account. That is, the structure of the graph remains implicit. In XcerptRDF syntactic sugar is
offered in order to describe graphs coherently, thus, making their structures explicit. This syn-
tactic sugar is usually referred to as composition. Using composition, the latter example looks

1The actual textual representation of this arrow is “-->” (cf. Section 3.3.5).

25

eg:john :xyz345

‘‘ Jim ’’

foaf :knows

foaf :name

1 eg : john {
2 f o a f : knows → : xyz345
3 }
4

5 : xyz345 {
6 f o a f : name → ” Jim ”
7 }

Example 3.2: An RDF graph and its representation in XcerptRDF

as follows.

eg:john :xyz345

‘‘ Jim ’’

foaf :knows

foaf :name

1 eg : john {
2 f o a f : knows → : xyz345 {
3 f o a f : name → ” Jim ”
4 }
5 }

Example 3.3: The graph from Example 3.2 and the corresponding composed data term

Data terms can be composed recursively at any depth, i.e. composites of a data term can
in turn be composed. It should be mentioned that in composed data terms objects are further
on RDF terms and not XcerptRDF data terms. The fact that data terms occur at object positions
might give the wrong impression that entire data terms may also be object nodes. In Example
3.3, the data term :xyz345{ foaf:name → ”Jim” } occurs at object position, but the actual RDF
object retains to be :xyz345. Composition of data terms is, thus, similar to subordinate sen-
tences. Example 3.3 can be expressed in English using a subordinate sentence such as: “John
knows someone who is named Jim”.

3.3 Shorthand Notations for Graph Patterns

RDF data can be completely expressed in XcerptRDF as it is specified so far. However, several
graph structures occur frequently in RDF data. For these, query languages like SPARQL or
Triple offer several shorthand notations which are, however, often restricted to certain settings
(cf. implicit blank node generation as mentioned in Section 3.1). Other shorthand notations
are not offered since they are supposed to be seldom used. This is contrary to a systematic ap-
proach. Abandoning systematic language constructs makes program development error prone
because the capabilities of stepwise changes and refinements of programs are limited.

In the design of XcerptRDF it is strived for a clear, i.e. systematic language which allows for
flexible shorthand notations. Besides the abbreviation of extensive but frequently used con-
structs, shorthand notations can also be used for abstraction, thus placing a special emphasis

26

on the ideas behind the constructs they abbreviate. For example, in analogy to mathematics, it
makes sense to consider the specification of the domain and the range of an RDF property as
part of its type rather than just stating that the property is a rdf:Property. Although the specifi-
cations of the type, domain and range are independent, the use of a shorthand notation makes
their logical interconnections explicit (the shorthand notation for type specification is discussed
in Section 3.3.2). Both purposes of shorthand notations are taken into account in XcerptRDF.

It has been decided that shorthand notations, except factorizations, stand for sets of property
object-pairs. This decision not only provides for subject nodes to remain explicit which has
advantages especially when considering shorthand notations for reification (cf. Section 3.3.3),
collections and containers (cf. Section 3.3.4). It also makes these shorthand notations only
occur as subterms, thus, offering the programmer uniformity in their application. Furthermore,
this decision admits an in situ expansion of these shorthand notation which simplifies their
processing.

3.3.1 Factorizations of Data Terms

XcerptRDF offers ways to merge several data terms to a single data term by factoring out identical
parts. Whereas other query languages only support certain factorizations, XcerptRDF supports
all combinations. In factoring out, so-called lists of RDF terms and combinations of them are
generated. These lists are usually referred to as subject-lists, subject-property-lists and so on.
Lists of RDF terms and also data terms (which is due to the ability of composing data terms) are
thereby written as parenthesized sequences whose elements are separated by commas. This is
illustrated by several examples below.

3.3.1.1 Factorization of Subjects

The factorization of subjects merges data terms that share the same subject. Therefore, the
properties and objects can be arbitrary. Thus, factoring out subjects reduces the expense of
writing graph patterns that express 1-to-n relationships between the subject and its objects.
This kind of factorization occurs often and is therefore also offered by several RDF serializa-
tion formats such as Turtle (cf. Section 2.3.1). The factorization of subjects results in lists of
property-object pairs. This is illustrated in the following example:

eg:john eg:anna

‘‘ John’’

foaf :knows

foaf :name

1 eg : john {
2 f o a f : knows → eg : anna ,
3 f o a f : name → ” John ”
4 }

Example 3.4: The XcerptRDF data term using factorization of subjects

The above code fragment in Example 3.4 is equivalent to the following two data terms.

27

1 eg : john { f o a f : knows → eg : anna }
2 eg : john { f o a f : name → ” John ” }

Lists of property-object pairs are written between the curly braces of the data term. This
notation supports the object-oriented viewpoint which is mentioned above. The data term in
the example above can be seen as an object-specification, i.e. as an instance with its attributes
and their values. Predicate-object pairs may be separated by commas. Such a separation can be
useful as points for the parser to continue its work in cases of syntactic errors. However, from
the modelling point of view these commas are not necessary and, hence, can be omitted.

Now that this shorthand notation is introduced, the use of curly braces for separating the
subject from its subterms makes sense: in XcerptXML, curly braces specify that the order of
subterms is irrelevant. Since in RDF there is no inherent order of (sub-)terms using the same
bracketing is consistent to XcerptXML.

Though being a shorthand notation, for the issues dealt with in this thesis there is no need
to expand this factorization to its corresponding longhand notation.

3.3.1.2 Factorization of Predicate-Object Pairs

Factoring out property-object pairs serves as a shorthand notation of graph patterns which ex-
press n-to-1 relationships where each subject is related to the same object by the same property.
The factorization of property-object pairs results in subject-lists. Consider the Example 3.5 in
which it is asserted that the three persons represented as eg:john, eg:anna, eg:jim know the per-
son represented as eg:tim.

eg:john

eg:anna

eg:jim

eg:tim

foaf :knows

foaf :knows

foaf :knows

1 (eg : john , eg : anna , eg : j im) {
2 f o a f : knows → eg : tim
3 }

Example 3.5: XcerptRDF data term using factorization of property-object pairs

As explained in the introductory part of this section the subject-list consisting of eg:john,
eg:anna and eg:jim is written as a parenthesized sequence of RDF terms. The XcerptRDF data
term of Example 3.5 is a shorthand notation for the following three statements:

1 eg : john { f o a f : knows → eg : tim }
2 eg : anna { f o a f : knows → eg : tim }
3 eg : j im { f o a f : knows → eg : tim }

28

3.3.1.3 Factorization of Subject-Object Pairs

The factorisation of subject-object pairs is not offered in most RDF query languages since cor-
responding RDF graph structures are considered to rarely occur. However, since it is argued
for a systematic language design factoring out subject-object pairs is supported in XcerptRDF.
The factorisation of subject-object pairs results in property-lists and serves as a shorthand no-
tation for RDF graph structures that express multiple relationships between a subject and an
object. Such structures occur in cases when graphs are integrated to a single graph where differ-
ent vocabularies shall still be available. In Example 3.6 this is illustrated by two persons which
know each other but where this “knows”-relationship is expressed in two different vocabularies.

eg:john eg:tim
foaf :knows

eg:knows

1 eg : john {
2 (f o a f : knows , eg : knows)
3 → eg : tim
4 }

Example 3.6: XcerptRDF data term with factorization of subject-object pairs

The RDF graph of Example 3.6 merges the two data terms below.

1 eg : john { f o a f : knows → eg : tim }
2 eg : john { eg : knows → eg : tim }

3.3.1.4 Factorization of Subject-Predicate Pairs

The factorization of subject-property pairs results in object-lists. It is useful especially for abbre-
viating data terms which express 1-to-n relationships where the subject is related to n objects
by the same property. Consider the Example 3.7 which shows that the person represented by
eg:tim knows the persons represented by eg:john, eg:Anna and eg:jim.

eg:john

eg:anna

eg:jim

eg:tim

foaf :knows

foaf :knows

foaf :knows

1 eg : tim {
2 f o a f : knows →
3 (eg : john , eg : anna , eg : j im)
4 }

Example 3.7: Factorization of subject-property pairs

The RDF graph of Example 3.7 can also be equivalently described by the following data
terms.

29

Factorization Resulting List Example

subject property-object-list

s {
p1 → d1 ,
. . .
pn → dn

}

property subject-object-list
(s1 , . . . , sn) {

p → (d2 , . . . , dm)
}

object subject-property-list
(s1 , . . . , sn) {

(p1 , . . . , pm) → d
}

subject, property object-list s { p → (d1 , . . . , dn) }

subject, object property-list s { (p1 , . . . , pn) → d }

property, object subject-list (s1 , . . . , sn) { p → d }

subject, property, object
subject-,
property-,
object-list

(s1 , . . . , s l) {
(p1 , . . . , pm) → (d1 , . . . , dn)

}

Table 3.1: Possible factorizations of data terms and resulting lists

1 eg : tim { f o a f : knows → eg : john } ,
2 eg : tim { f o a f : knows → eg : anna } ,
3 eg : tim { f o a f : knows → eg : j im }

3.3.1.5 More Factorizations

In the previous paragraphs the basic factorizations are introduced. In XcerptRDF it is also possi-
ble to freely combine these factorizations. Hence, in conjunction with composition it is possible
to describe an entire RDF graph with a single data term while making the structure and m-to-n
relationships explicit. There are seven different factorizations possible. An overview is given in
Table 3.1.

3.3.2 Types for Nodes and Properties

The type description for nodes is a graph pattern which is certainly often used. Although the
notation is not extensive (since it consists of only one rdf:type edge), a shorthand notation for
it is discussed for the following reasons. First, in this thesis it is aimed at shorthand notations
for all frequently used graph patterns. Second, other query and RDF languages such as N3
[5] also offer shorthand notations for rdf:type. Third, this shorthand notation shall provide the

30

typing of both nodes and properties, whereas for properties it also shall be possible to specify
their domains and ranges. This kind typing specification resembles the “typing” of relations in
mathematics. Such a shorthand notation is currently not provided by existing query languages
(cf. [13], Section 2.3).

The typing of nodes can be abbreviated by the is construct. Consider the Example 3.8 in
which it is stated that eg:john is of the type foaf :Person.

eg:john foaf :Person
rdf:type 1 eg : john {

2 i s f o a f : Person
3 }

Example 3.8: The shorthand notation for specifying the type of a node

Alternatively, it has been suggested to suffix the resource by ˆˆ followed by the URI of the
type in analogy to the typing of literals. However, differences between typed literals and typing
of nodes exist. Whereas typed literals are represented as single nodes in RDF, the typing of
nodes involves an rdf:type edge and two nodes, the subject and the type URI. This might lead
to confusion and, thus, argues against the usage of the same construct for different notions of
typing.

Furthermore, the shorthand notation for typing nodes can be extended for properties. For
typing properties, the is construct is extended by two URIs specifying the domain and range
within square brackets. The domain is separated from the range by an arrow2. These square
brackets indicate that the URIs are considered ordered since the first URI specifies the domain
and the second specifies the range. Additionally, the parsing is easier since the opening square
brackets clearly distinguishes the typing of properties between the typing of nodes. Moreover,
the brackets also support a clear factorization of domains and ranges. Consider Example 3.9 in
which it is stated that the property eg:name relates persons, i.e. resources of the type eg:Person
to their names which are resources of the type eg:Name.

eg:name

rdf:Property

eg:Person

eg:Name

rdf:type

rdfs :domain

rdfs :range

1 eg :name {
2 i s [eg : Person → eg :Name]
3 }

Example 3.9: The shorthand notation for specifying the type of a property

The shorthand notation in Example 3.9 is expanded as follows.

2The actual textual representation of the arrow is -->

31

1 eg :name {
2 rd f : type → rd f : Proper ty
3 r d f s : domain → eg : Person
4 r d f s : range → eg :Name
5 }

When the domain or range is unknown the respective position within the square brackets
of the is construct can be left empty. For example, if the domain is unknown eg:name could be
specified as follows.

1 eg :name {
2 i s [→ eg :Name]
3 }

Note that the arrow within the square brackets is obligatory. Otherwise it is not clear which
of the domain and range is specified and which is unknown. The shorthand notation could then
be expanded by stating that the omitted domain is of type rdf:Resource since every resource is
of type rdf:Resource (cf. [15]).

1 eg :name {
2 rd f : type → rd f : Proper ty
3 r d f s : domain → rd f : Resource
4 r d f s : range → eg :Name
5 }

Another possibility is to leave the unspecified domain also unspecified in the expansion.
When the range is unknown it can be omitted the same way.

1 eg :name {
2 i s [eg : Person →]
3 }

This fragment is equal to the following data term.

1 eg :name {
2 rd f : type → rd f : Proper ty
3 rd f : domain → eg : Person
4 rd f : range → rd f : Resource
5 }

Consistently, both domain and range can be omitted, thus, stating that the subject of the data
term is a property which relates resources of type rdf:Resource to resources of type rdf:Resource.

1 eg :name {
2 i s [→]
3 }

32

This abbreviation can be expanded as follows.

1 eg :name {
2 rd f : type → rd f : Proper ty
3 r d f s : domain → rd f : Resource
4 r d f s : range → rd f : Resource
5 }

As mentioned earlier, domains and ranges can be factorized as introduced in the previous sec-
tions. In Example 3.10 factorization is used to state that the property eg:name has the domains
eg:Person and eg:Pet.

eg:name

rdf:Property

eg:Person

eg:Pet

eg:Name

rdf:type

rdfs :domain

rdfs :domain
rdfs :range

1 eg :name {
2 i s [
3 (eg : Person , eg : Pet) → eg :Name
4]
5 }

Example 3.10: The shorthand notation for specifying the type of a property

3.3.3 Reification

Most RDF query languages (e.g. SPARQL, Triple and SeRQL) support reification to an extent
that they offer syntactic sugar for more convenient writing of reified statements. As mentioned
in Section 2.3, this syntactic sugar expresses an implicit blank node. This might be a conse-
quence of giving the reified statement the notion of a “super-node”. A super-node represents
the reified statement and looks like a special node which may occur at subject as well as object
positions. Though the notion of super-nodes is only illustrative, its removal by the correspond-
ing RDF triples leads to a particular shortcoming: The resulting implicit blank node cannot be
given a user-defined name, thus, it is not addressable from elsewhere within the RDF graph.
Moreover, it cannot be replaced by an URI making program editing unnecessary complicated.
In those cases, the shorthand notation for reification is not applicable which makes using the
corresponding longhand notations unavoidable. Therefore, the notion of reified statements as
super-nodes is not retained for XcerptRDF. Instead, the node that represents the reified state-
ment remains explicit. Thus, it can be named either explicitly (i.e. by the user) or implicitly
(i.e. by the system) or it can be replaced by an URI. Note that the case of implicit naming of
the blank node yields the same result one would get in the query languages mentioned above.
Consider the following example in which the statement eg:John{foaf:knows→eg:Tim} is reified
with :abc123 as the reification quad.

According to the example above, the reified statement is written between < · >. The short-
hand notation above abbreviates the following data term:

33

:abc123 rdf:Statement

eg:john

foaf :knowseg:tim

rdf:type
rdf: subject

rdf:property
rdf:object

1 : abc123 {
2 <eg : john{ f o a f : knows → eg : tim}>
3 }

Example 3.11: Syntactic sugar for reification in XcerptRDF

1 : abc123 {
2 rd f : type → rd f : Statement
3 rd f : s u b j e c t → eg : john
4 rd f : p red i ca t e → f o a f : knows
5 rd f : o b j e c t → eg : tim
6 }

As the Example 3.11 shows, the shorthand notation for reification does not hide the blank
node :abc123 representing the reification quad, thus, it can be easily replaced by an implicitly
named blank node representing the reification quad.

1 : {
2 <eg : john{ f o a f : knows → eg : tim}>
3 }

Moreover, it is possible to identify the reification quad by a URI, e.g. eg:reif123 as it is shown
below.

1 eg : re i f123 {
2 <eg : john{ f o a f : knows → eg : tim}>
3 }

Recapitulatory, when using the shorthand notation in conjunction with explicitly named
blank nodes or URIs, the reification quad remains addressable. In these cases, compared to the
respective shorthand notations of other query languages, the shorthand notation of XcerptRDF

is applicable to a greater extent. In conjunction with implicitly named blank nodes, the expres-
siveness of the shorthand notation is equal to those of current RDF query languages.

3.3.4 Containers and Collections

As mentioned in Section 2.1, RDF supports several collection types. For example, a bag is a col-
lection whose elements are unordered and may comprise duplicates, whereas a sequence can
be seen as a vector, i.e. its elements are considered to be ordered. For a motivating example

34

eg:cart123 rdf:Bag

eg:milk eg:coffee

rdf: 1 rdf: 2 rdf: 3

rdf:type

1 eg : cart123 {
2 rd f : type → rd f : Bag
3 rd f : 1 → eg : milk
4 rd f : 2 → eg : milk
5 rd f : 3 → eg : c o f f e e
6 }

Example 3.12: A shopping cart modelled as a bag (i.e. multiset)

consider a shopping cart to be modelled as a rdf:Bag container.

Shorthand notations for containers are not available in current RDF query languages. This
might result from the fact that containers are supposed to be rarely used. However, especially
when rdf:Bag containers contain many elements a shorthand notation can be useful. That is
why XcerptRDF supports shorthand notations for containers. Example 3.12 can then be rewrit-
ten as shown in Example 3.13.

eg:cart123 rdf:Bag

eg:milk eg:coffee

rdf: 1 rdf: 2 rdf: 3

rdf:type

1 eg : cart123 {
2 bagOf{eg : milk , eg : milk ,
3 eg : c o f f e e }
4 }

Example 3.13: A shopping cart modelled as a bag using bagOf{...}

The rdf:Bag container is abbreviated by the shorthand notation bagOf. The elements of the
bag are parenthesized in double curly braces and separated by commas. The list of elements
within the bagOf-macro may also be composed. In stipulating the use of the appropriate kinds
of parentheses, XcerptRDF implements the intended semantics of containers as it is described in
[15].

For the remaining RDF containers, i.e. rdf:Seq and rdf:Alt containers, respective shorthand
notations are also provided by XcerptRDF. Consider the following Example 3.14 for rdf:Alt.

Obviously, the XcerptRDF data term is equivalent to the following.

35

eg:progLang rdf:Alt

eg:imperative

eg:functional

eg:logicBased

rdf: 1

rdf: 2

rdf: 3

rdf:type

1 eg : progLang {
2 a l tO f { eg : imperat ive ,
3 eg : func t iona l ,
4 eg : log icBased
5 }
6 }

Example 3.14: Types of programming languages modelled as a rdf:Alt container using altOf{...}

1 eg : progLang {
2 rd f : type → rd f : A l t
3 rd f : 1 → eg : imperat ive
4 rd f : 2 → eg : f u n c t i o n a l
5 rd f : 3 → eg : log icBased
6 }

As in rdf:Alt-containers the order of elements is irrelevant; the shorthand notation altOf is
used in conjunction with curly braces. The rdf:Seq container can be abbreviated by the follow-
ing shorthand notation.

eg:3dVector rdf:Seq

‘‘1’’ ‘‘2’’ ‘‘3’’

rdf : 1 rdf: 2 rdf: 3

rdf:type

1 eg :3 dVector {
2 seqOf [”1 ” , ”2” , ”3”]
3 }

Example 3.15: A three-dimensional vector modelled as a rdf:Seq container using seqOf [...]

The rdf:Seq container is the only container in which the elements’ order is considered rel-
evant. To take the order into account, the seqOf-macro is used in conjunction with square
brackets. The XcerptRDF data term can be equivalently expressed using the RDF-native descrip-
tion.

1 eg :3 dVector {
2 rd f : type → rd f : Seq
3 rd f : 1 → ”1”
4 rd f : 2 → ”2”
5 rd f : 3 → ”3”
6 }

Although its structure differs from that of the RDF containers, the collection rdf: List is sup-
ported in XcerptRDF using listOf the same way. Whereas the elements of RDF containers are

36

described by rdf: 1, rdf: 2, ..., rdf: n, lists are built by rdf: first describing the element and
rdf: rest recursively describing the rest of the list. A list can be closed by using rdf: nil , i.e. ac-
cording to the intended semantics of rdf: List only the elements which are specified belong to a
list. Consider Example 3.16 which is taken from [19].

rdf: nil

exc:6.001

exs:johann

exs:mohamed

exs:amy

rdf: first

rdf: first

rdf: first

rdf: rest

rdf: rest

rdf: rest

exsv:students

1 exc :6.001 {
2 exsv : s tudent s → : {
3 rd f : f i r s t → exs :amy
4 rd f : r e s t → : {
5 rd f : f i r s t → exs :mohamed
6 rd f : r e s t → : {
7 rd f : f i r s t → exs : johann
8 rd f : r e s t → rd f : n i l
9 }

10 }
11 }
12 }

Example 3.16: The example of rdf:List taken from [19]

As can be seen, the notation of rdf: List containers is very cumbersome and confusing. That
is why RDF query languages like SPARQL also offer shorthand notations for rdf: List containers.
Example 3.17 shows the equivalent XcerptRDF data term of the example above using the short-
hand notation listOf .

Note that in XcerptRDF the notation listOf is used in conjunction with single square brackets
having the same meaning as in XcerptXML, i.e. it specifies the order of subterms as relevant and
the list as being complete.

3.3.5 The EBNF Grammar of XcerptRDF Data Terms

XcerptRDF data terms can be constructed according to the EBNF-Grammar given in the following
listing.

Listing 3.1: EBNF grammar for XcerptRDF data terms
1 <RDF−DATA> ::= ”RDF−GRAPH” [<URI>] ”{” <RDF−STATEMENTS> ” } ” .
2 <RDF−STATEMENTS> ::= <STATEMENT> { [” , ”] <STATEMENT> } .
3 <STATEMENT> ::= <SUBJECTS> ”{” <SUBTERMS> ” } ” .

37

rdf: nil

exc:6.001

exs:johann

exs:mohamed

exs:amy

rdf: first

rdf: first

rdf: first

rdf: rest

rdf: rest

rdf: rest

exsv:students

1 exc :6.001 {
2 exsv : s tudent s → : {
3 l i s t O f [
4 exs :amy , exs :mohamed,
5 exs : johann
6]
7 }
8 }

Example 3.17: The example of rdf:List taken from [19] using listOf[...]

4 <SUBTERMS> ::= <SUBTERM> { [” , ”] <SUBTERM> } .
5 <SUBTERM> ::= <CONTAINER> | <RDF−LIST> |
6 <TYPE> | <REIFICATION> |
7 <PROPERTY−OBJ>.
8 <CONTAINER> ::= ” bagOf ” ”{” <TERM> { ” , ” <TERM> } ”}” |
9 ” seqOf ” ” [” <TERM> { ” , ” <TERM> } ”] ” |

10 ” a l tO f ” ”{” <TERM> { ” , ” <TERM> } ” } ” .
11 <RDF−LIST> ::= ” l i s t O f ” ” [” <TERM> { ” , ” <TERM> } ”] ” .
12 <TYPE> ::= ” i s ” (<NO−LITERALS> |
13 ”[”[<NO−LITERALS>] ”−−>” [<NO−LITERALS>] ”] ”) .
14 <REIFICATION> ::= ”<” <SUBJECT> ”{” <PROPERTY> ”−−>” <SUBJECT> ”}” ” >”.
15 <PROPERTY−OBJ> ::= <PROPERTIES> ”−−>” <TERMS>.
16 <SUBJECTS> ::= <SUBJECT> |
17 ” (” <SUBJECT> ” , ” <SUBJECT> { ” , ” <SUBJECT> } ”) ” .
18 <SUBJECT> ::= <URI> | <BNODE>.
19 <PROPERTIES> ::= <URI> | ” (” <URI> ” , ” <URI> { ” , ” <URI> } ”) ” .
20 <TERMS> ::= <TERM> | ” (” <TERM> ” , ” <TERM> { ” , ” <TERM> } ”) ” .
21 <TERM> ::= <URI> | <BNODE> | <LITERAL> | <STATEMENT>.
22 <NO−LITERAL> ::= <URI> | <BNODE> | <STATEMENT>.
23 <NO−LITERALS> ::= <NO−LITERAL> | ” (” <NO−LITERAL> ” , ” <NO−LITERAL>
24 { ” , ” <NO−LITERAL> } ”) ” .
25 <BNODE> ::= ” : ” [<IDENT>] .
26 <LITERAL> ::= <STRING> ([<LTAG>] | [<LTYPE>]) .
27 <LTYPE> ::= ”ˆˆ” <URI>.
28 <LTAG> ::= ”@” <XML−LANGUAGE−TAG>.

38

29 <URI> ::= ”@”<RFC−URI> | <QNAME>.

For abbreviation purposes the productions of several grammar variables are omitted. The
production of <XML−LANGUAGE−TAG> is conformable to [20], the production of <RFC−URI>
is according to [6] and <QNAME> is according to [25]. <STRING> produces arbitrary quoted
strings and <IDENT> produces any legal label.

Note that because of the lines 21 and 22 the grammar is not LL(1).

3.4 Query Terms

Just like in XcerptXML, query terms in XcerptRDF serve as patterns for selecting data. These
patterns may be incomplete and also specify optional and negative subterms with the same
notions as given in Section 2.4 and [22]: If a subterm is declared optional, it will not need to
be necessarily available; and if a subterm is declared negative, it may not be available within the
data selected. XcerptRDF also resembles XcerptXML in occurrence of label variables. Moreover,
regular expressions serve as constraints for the labels within the data selected. Just like in
XcerptXML, incompleteness is specified by double curly braces. Note that single or double square
brackets do not occur as subterm specifications since subterms are always considered unordered
in XcerptRDF. Label variables are declared the same way as in XcerptXML by the keyword var
followed by an identifier. Regular expressions may occur at label positions, i.e. as subjects,
properties or objects.

Example 3.1 (Query Terms in XcerptRDF). In the following example of XcerptRDF query terms are
given.

n var X{{var Y → var Z}} is a pattern for selecting every XcerptRDF data term.

n var X{{ foaf:knows → var Z}} is a pattern for selecting persons X who know some Y .

n var X{{ foaf:knows → var Z, foaf:knows → var W}} is a pattern for selecting persons X
who know at least two different persons Z and W .

n var X{{ foaf:knows → var Z, optional foaf:mbox → var M}} is a pattern for selecting
persons X and, if available, their email addressed M who know some persons Z.

F

Regarding negative subterms, explicit bracketing must be introduced in order to define the
scopes of this construct. This is due to the fact that, in contrast to XcerptXML, subterms in
XcerptRDF consist of two parts, the property and the object, thus, it must be specified which of
these parts are affected by without. This is done by round parentheses which are also used
for bracketing subject, property and object lists. Consider the following example in which all
possible scopes are listed.

Example 3.2 (Different Positions and Scopes of without). For convenience, namespace prefixes
are omitted, X denotes a variable standing for a person.

n X{{(without knows → Jim)}} is a pattern for retrieving those persons who do not know Jim,
while these persons may be related to Jim by another property.

39

n X{{(without knows) → Jim}} is a pattern for retrieving those persons who are related to
Jim in a way other than by knowing him. The difference between this pattern and the first
pattern is that the persons must be related to Jim.

n X{{ knows → (without Jim)}} is a pattern for retrieving persons who know someone other
than Jim. F

In the latter case of Example 3.2, the explicit bracketing can be omitted since there is no
possibility of confusion.

Regarding the optional construct two scopes are meaningful: Either the entire subterm or
the object is within the scope of optional. Only the property within the scope of optional makes
no sense because whenever a subject and a object are obligatory there must be a property
available.

3.4.1 Variables for Concise Bounded Descriptions

Variables may often be bound to blank nodes which, however, only state the existence of a
resource. The only further information carried by blank nodes is that two blank nodes with
identical names can be considered to be identical. However, the opposite does not hold, i.e.
two blank nodes with different names cannot be considered to be different. In order to get
more information about blank nodes, their immediate environment, i.e. their concise bounded
descriptions [24], can be used to “locate” the blank node in the RDF graph. Moreover, concise
bounded descriptions comprise all the direct information about a given resource. For exam-
ple, the query “Give me all you know about John” can be evaluated by the concise bounded
description of the resource representing John. Therefore, in XcerptRDF a new variable type is
introduced, standing for the concise bounded description of a resource. A concise bounded
description variable – or CBD variable for short – is declared by the keyword cbdvar followed
by an identifier and is bound to the CBD of the label to which the variable is bound. Consider
the following example.

Example 3.3 (Concise Bounded Description Variables). Let the following data be given.
eg:John {{ foaf:knows → :abc123, foaf:knows → eg:Anna }},
:abc123{{ foaf:knows → :xyz321, foaf:knows → eg:Anna }}

The query term cbdvar X{{ foaf:knows → eg:Anna }} would yield two concise bounded descrip-
tions.

1. X is bound to eg:John and the concise bounded description of eg:John is
eg:John {{ foaf:knows → :abc123, foaf:knows → eg:Anna }},
:abc123{{ foaf:knows → :xyz321, foaf:knows → eg:Anna }}

2. X is bound to :abc123 and the concise bounded description of :abc123 is
:abc123{{ foaf:knows → :xyz321, foaf:knows → eg:Anna }} F

No RDF query language currently supports concise bounded descriptions (cf. [13]), but in
SPARQL (cf. [21]) concise bounded descriptions as a possible mechanism for evaluating the
construct DESCRIBE are mentioned explicitly.

40

Usually, blank nodes are frequently used when prototyping RDF data or when describing
RDF containers and collections. However, an exhaustive use of blank nodes results in expensive
computations of concise bounded descriptions. In the worst case the concise bounded descrip-
tion of a blank node comprises the complete RDF graph. Thus, as an efficiency consideration it
is rational to limit the maximum depth of the computation. As the maximum depth depends on
the field of application it is suggested that the user may optionally set this value globally at the
beginning of an Xcerpt program. Therefore, the maximum depth of the computation of concise
bounded description can be declared by the keyword cbd−depth−counter at the beginning of an
Xcerpt program.

For example, the declaration cbd−depth−counter = 23 sets the maximum depth counter to
23 which means that starting from the label for which the concise bounded description is to be
computed the maximum path length may not exceed 23 steps.

Within an Xcerpt query it might also be useful to provide means to deviate from the global
declaration of the maximum depth counter. This could be done by redefining this value either
within the scope of the query (e.g. re-declaring cbd−depth−counter within the WHERE clause of
the query) or for each CBD variable declaration. Regarding the latter, it is suggested to add the
maximum depth counter in parentheses to the keyword cbdvar. For example, having globally
declared cbd−depth−counter = 23 the declaration cbdvar(10) X within a query overrides the
maximum depth counter for the CBD variable X to 10. For further CBD variables other than X
the global depth counter of 23 remains decisive.

3.4.2 Shorthand Notations for Containers in Query Terms

As XcerptRDF is based on patterns, shorthand notations, especially for containers, may also occur
in query terms. However, shorthand notations for containers within XcerptRDF query terms have
to be treated differently from data terms because their capabilities described below exceed the
expressiveness of RDF.

Example 3.4 (The Problem of Expanding bagOf in Query Terms). Let the data term eg:John {
bagOf { ”a”,”p”,”w”,”l” } } be given. Furthermore, let the ground query term eg:John {{ bagOf {
”a”,”l” } }} be given. According to the intended semantics of rdf :Bag the query term is supposed to
match with the data term, since it queries for the elements ”a” and ” l” which are contained in the
data. Now, consider the expansion of both query and data term which yields the following.

Query Term Data Term

1 eg : John {{
2 r d f : t ype → r d f : Bag
3 r d f : 1 → ”a ”
4 r d f : 2 → ” l ”
5 }}

1 eg : John {
2 r d f : t ype → r d f : Bag
3 r d f : 1 → ”a ”
4 r d f : 2 → ” p ”
5 r d f : 3 → ”w”
6 r d f : 4 → ” l ”
7 }

The expanded query term, however, does not match with the data term, since in the query term
the element ” l” is connected by the property rdf : 2 whereas in the data term the element ” l” is
connected by the property rdf : 3. F

41

This problem does not occur when expanding seqOf (due to its ordered nature). Another
issue regarding RDF sequences (but also the other RDF containers) is the incompleteness of
its elements . There are query scenarios conceivable in which an RDF sequence is queried ac-
cording to an incomplete specification of its elements and the relative order between them. For
example, consider a query of an RDF sequence in which the element ”a” shall range before the
element ” l” independently from the positions of ”a” and ” l” within the sequence.

XcerptXML already offers a way for expressing incompleteness by using double brackets.
Thus, double square brackets are adopted to express incomplete specification of RDF container
elements. Consider Example 3.5 which contrasts both ways of querying RDF sequences.

Example 3.5. Let the data term a{ seqOf[”x”, ”y”, ”z”] } be given.

n var X{{ seqOf[”x”, ”y”, ”z”] }} matches with the data term.

n var X{{ seqOf[”x”, ”y”] }} matches with the data term, since the element list of the sequence
within the data term starts with ”x”, ”y”.

n var X{{ seqOf[”x”] }} matches with the data term, since the element list of the sequence
within the data term starts with ”x”.

n var X{{ seqOf[”x”, ”z”] }} does not match with the data term.

n var X{{ seqOf[”y”, ”z”] }} does not match with the data term.

n var X{{ seqOf[[”x”, ”z”]] }} matches with the data term, since in the element list of the se-
quence within the data term, ”x” comes before ”z”.

n var X{{ seqOf[[”y”, ”z”]] }} matches with the data term, since in the element list of the se-
quence within the data term ”y” comes before ”z”. F

The different kinds of specifying RDF container elements offered in XcerptRDF prohibit the
expansion of these shorthand notations within query terms because they exceed the expressive-
ness of RDF. Moreover, it has been decided to reduce longhand notations of RDF containers
within query terms to their respective shorthand notations. This simplifies the simulation of
query terms in query terms which is used for deciding subsumption (cf. Section 5.5).

However, making this decision, the so-called “well-formedness” of RDF containers (cf. [19])
becomes an issue. An RDF container is considered to be not well-formed if, among other
things, its membership-properties are not numbered subsequently. Consider the following non
well-formed RDF container written as XcerptRDF data term.

1 eg : shoppingCart {
2 rd f : type → rd f : Bag
3 rd f : 1 → eg : Milk
4 rd f : 5 → eg : Cof fee
5 rd f : 100 → eg : Milk
6 }

42

The rdf:Bag container lacks the member properties rdf: 2 to rdf: 4 and rdf: 6 to rdf: 99.
In data terms non well-formedness of RDF containers plays a minor role so that XcerptRDF

only offers shorthand notations for well-formed containers. However, in query terms non well-
formed RDF containers are quite eligible. For example the query term

1 var X {{
2 rd f : type → rd f : Seq
3 rd f : 1 → eg : anna
4 rd f : 52 → eg : john
5 }}

queries for any RDF sequence in which eg:anna is at the first position and eg:john is at the
52nd position. No restrictions are given for the remaining elements.

However, the missing specifications of the remaining container elements become problem-
atic when the container subterms shall be abbreviated by the corresponding shorthand notation
in which well-formedness is required. A solution would be to pad the element list of the short-
hand notation by blank nodes or wildcards. Additionally, a warning could be issued to give the
user the opportunity to review his query. Nonetheless, such queries are conceivable and not
necessarily flawed. In these cases, this approach would slow down the evaluation considerably.

Another more robust approach is to adopt the notion of positional variables as introduced
in XcerptXML. Elements of RDF containers within query terms can then be extended by a spec-
ification of their positions (introduced by the keyword pos). In the remaining thesis container
elements with positions specifications will be referred to as extended container elements. For
example, the query term given above could be reduced to the following query term.

1 var X {{
2 seqOf [[pos 1 eg : anna , pos 52 eg : john]]
3 }}

The double brackets of seqOf specify incompleteness of the elements. Thus, the element
specification by brackets in conjunction with the position specification of container elements
also permits the querying of non well-formed containers. For example, var X {{ seqOf[pos 1 a, pos
4 w] }} matches with every sequence to which the subterms rdf: 1 → a and rdf: 4 → w exclu-
sively belong.

Mixing of elements and extending elements within an XcerptRDF container is conceivable
and certainly useful. By mixing, it would be possible to query extended elements on the basis
of the actual data base whereas for the unextended elements the intended semantics is used.
However, the evaluation of XcerptRDF containers would become very complex so that (for now)
it is suggested to disallow mixing both kinds of elements within an XcerptRDF container.

However, the interpretation of the brackets for container elements as described above, con-
flicts with their meanings in XcerptXML. The meanings of the brackets originate from the evalua-
tion of the longhand notations of containers in conjunction with the inherent incompleteness of
query terms. Consider Example 3.5: The single square brackets of RDF containers within query

43

terms make the RDF container match with the data if their element lists are prefixes of the
element lists of the RDF containers within the data terms. Reading single square brackets from
the XcerptXML perspective means that the element list is, in particular, considered as complete.
Thus, in Example 3.5 only the first query would succeed.

As a remedy, it is suggested to retain the meanings of the various kinds of brackets as given
in XcerptXML in order to stay conform with XcerptXML. Furthermore, it is suggested to elaborate
on other ways of bracketing the elements in order to express the meanings given in Example
3.5. Unfortunately, due to time limitations, this topic cannot be covered in this thesis.

Summarizing the above, the different kinds of brackets and elements allow querying RDF
containers not only on the basis of the intended semantics but also on the basis of the actual
specification of the data. No current RDF query language supports the querying of RDF con-
tainers to that extent. The evaluation of unexpanded containers in XcerptRDF conforming to
XcerptXML is discussed in Chapter 5.

3.4.3 The EBNF Grammar of XcerptRDF Query Terms

The EBNF grammar of XcerptRDF query terms builds upon the grammar of XcerptRDF data terms.
The main differences are the introduction of label and CBD variables, positive and negative
subterms and labels and additional bracketing for RDF containers and collections.

Listing 3.2: The EBNF Grammar for Query Terms
1 <QUERYTERM> ::=
2 <QANYSUBJECTS> ”{{” <QANYSUBTERMS> ”}} ” .
3

4 <QANYSUBTERMS> ::=
5 <QANYSUBTERM> (” , ” | ”\n”) { <QANYSUBTERM> } .
6

7 <QANYSUBTERM> ::=
8 <QNEGSUBTERM> | <QOPTSUBTERM> | <QSUBTERM>.
9

10 <QNEGSUBTERM> ::=
11 ” (” ” without ” <QSUBTERM> ”) ” .
12

13 <QOPTSUBTERM> ::=
14 ” (” ” op t iona l ” <QSUBTERM> ”) ” .
15

16 <QSUBTERM> ::=
17 <QCONTAINER> | <QRDF−LIST> |
18 <QTYPE> | <QREIFICATION> |
19 <QPROPERTY−OBJ> .
20

21 <QCONTAINER> ::=
22 ” bagOf ” (<UNORDINCPL−LIST> | <UNORDCPL−LIST>) |
23 ” a l tO f ” (<UNORDINCPL−LIST> | <UNORDCPL−LIST>) |
24 ” seqOf ” (<ORDINCPL−LIST> | <ORDCPL−LIST>) .
25

26 <QRDF−LIST> ::=

44

27 ” l i s t O f ” (<ORDINCPL−LIST> | <ORDCPL−LIST>) .
28

29 <QTYPE> ::=
30 ” i s ” (<QANYNO−LITERALS> |
31 ” [” [<QANYNO−LITERALS>] ”−−>” [<QANYNO−LITERALS>] ”] ”) .
32

33 <QREIFICATION> ::=
34 ”<” <QANYSUBJECT> ”{”
35 <QANYPROPERTY> ”−−>” <QANYSUBJECT> ”}” ” >”.
36

37 <UNORDINCPL−LIST> ::=
38 ”{{” <QELEMENTLIST> ”}} ” .
39

40 <UNORDFCPL−LIST> ::=
41 ”{” <QELEMENTLIST> ” } ” .
42

43 <ORDINCPL−LIST> ::=
44 ” [[” <QELEMENTLIST> ”]] ” .
45

46 <ORDCPL−LIST> ::=
47 ” [” <QELEMENTLIST> ”] ” .
48

49 <QELEMENTLIST> ::=
50 <QANYTERM> { ” , ” <QANYTERM>}.
51

52 <QPROPERTY−OBJ> ::=
53 <QANYPROPERTIES> ”−−>” <QANYTERMS>.
54

55

56 <QANYSUBJECTS> ::=
57 <QANYSUBJECT> |
58 ” (” <QANYSUBJECT> ” , ” <QANYSUBJECT> { ” , ” <QANYSUBJECT> } ”) ” .
59

60 <QSUBJECTS> ::=
61 <QSUBJECT> |
62 ” (” <QSUBJECT> ” , ” <QSUBJECT> { ” , ” <QSUBJECT> } ”) ” .
63

64 <QANYSUBJECT> ::=
65 <QNEGSUBJECT> | <QOPTSUBJECT> | <QSUBJECT>.
66

67 <QNEGSUBJECT> ::=
68 ” (” ” without ” <QSUBJECTS> ”) ” .
69

70 <QOPTSUBJECT> ::=
71 ” (” ” op t iona l ” <QSUBJECTS> ”) ” .
72

73 <QSUBJECT> ::=
74 <VAR> | <CBD−VAR> | <SUBJECT>.
75

76 <QANYPROPERTIES> ::=
77 <QANYPROPERTY> |

45

78 ” (” <QANYPROPERTY> ” , ” <QANYPROPERTY> { ” , ” <QANYPROPERTY> } ”) ” .
79

80 <QPROPERTIES> ::=
81 <QPROPERTY> | ” (” <QPROPERTY> { ” , ” <QPROPERTY> } ”) ” .
82

83 <QANYPROPERTY> ::=
84 <QPROPERTY> | <QNEGPROPERTY> | <QOPTPROPERTY>.
85

86 <QPROPERTY> ::=
87 <VAR> | <URI>.
88

89 <QNEGPROPERTY> ::=
90 ” (” ” without ” <QPROPERTY> ”) ” .
91

92 <QOPTPROPERTY> ::=
93 ” (” ” op t iona l ” <QPROPERTY> ”) ” .
94

95 <QANYTERMS> ::=
96 <QANYTERM> |
97 ” (” <QANYTERM> ” , ” <QANYTERM> { ” , ” <QANYTERM> } ”) ” .
98

99 <QTERMS> ::=
100 <QTERM> |
101 ” (” <QTERM> ” , ” <QTERM> { ” , ” <QTERM> } ”) ” .
102

103 <QANYTERM> ::=
104 <QTERM> | <QNEGTERM> | <QOPTTERM>.
105

106 <QTERM> ::=
107 <VAR> | <CBD−VAR> | <TERM>.
108

109 <QNEGTERM> ::=
110 ” (” ” without ” <QTERM> ”) ” .
111

112 <QOPTTERM> ::=
113 ” (” ” op t iona l ” <QTERM> ”) ” .
114

115 <QANYNO−LITERALS> ::=
116 <QNO−LITERAL> |
117 ” (” <QANYNO−LITERAL> ” , ” <QANYNO−LITERAL>
118 { ” , ” <QANYNO−LITERAL> } ”) ”
119

120 <QNO−LITERALS> ::=
121 <QNO−LITERAL> | ” (” <QNO−LITERAL> ” , ” <QNO−LITERAL>
122 { ” , ” <QNO−LITERAL> } ”) ”
123 | <QNO−LITERALS>.
124

125 <QANYNO−LITERAL> ::=
126 <QNEGNO−LITERAL> | <QOPTNO−LITERAL> | <QNO−LITERAL>.
127

128 <QNEGNO−LITERAL> ::=

46

129 ” (” ” without ” <QNO−LITERAL> ”) ” .
130

131 <QOPTNO−LITERAL> ::=
132 ” (” ” op t iona l ” <QNO−LITERAL> ”) ” .
133

134 <QNO−LITERAL> ::=
135 <VAR>| <CBD−VAR> | <NO−LITERAL>.
136

137 <VAR> ::= ” var ” <IDENT>.
138

139 <CBD−VAR> ::= ” cbdvar ” <IDENT>.

3.4.4 XcerptRDF Queries - Connectives for Query Terms

Just like in XcerptXML, query terms can be connected to queries by using the binary connectives
and{...}, or {...} and the unary connective not{...} in a straightforward fashion. For the sake of
completeness the EBNF grammar for XcerptRDF queries is given as follows.

Listing 3.3: The EBNF Grammar for XcerptRDF Queries
1

2 <QUERY> ::= ”RDF−GRAPH” ([<URI>] ”{” <QUERY−BODY> ”}” |
3 ”{” [<INPUT−RESOURCE>] <QUERY−BODY> ”}”) .
4 <QUERY−BODY> ::= <QUERYTERM> |
5 ” and” ”{” <QUERY−BODY> ” , ” <QUERY−BODY> ”}” |
6 ” or ” ”{” <QUERY−BODY> ” , ” <QUERY−BODY> ”}” |
7 ” not ” <QUERY−BODY>.

The Section 3.7 extensively illustrates the writing of queries using these connectives.

3.5 Construct Terms – The Grouping Construct all

Construct terms are used to create new data, thereby consuming the bindings which result from
the evaluation of queries. Therefore, it is necessary that variables which occur in a construct
term of a rule also occur in the query part of the rule. This is usually referred to as range
restrictedness (cf. [22]).

The grammar of construct terms basically complies with the grammar of data terms (cf. Sec-
tion 3.3.5). However, also variables may occur as labels within construct terms. Furthermore,
the grouping constructs all and some can be used to group results according to free variables
as described in [22] (also cf. Section 2.4). It is also suggested that the explicit grouping of re-
sults using the construct group by {<Variables>} is also available in XcerptRDF. Note that explicit
grouping allows a grouping of the results according to variables which are not within the scope
of the grouping constructs all and some.

In contrast to XcerptXML, similar to the constructs optional and without, grouping constructs
have several scopes which must be specified by explicit bracketing.

Example 3.6 (Scopes of the Grouping Construct all). The scopes and the results of the grouping
construct all are given for the term var S{var P → var O}.

47

1. (all var S {var P → var O}) groups all possible instances of var S {var P → var O}
which result from the different bindings of the variables S, P and O. Such usage leads to
triples as answers.

2. (all var S){var P → var O} groups all possible instances of var S for each binding of P
and O. This results in subject lists.

3. var S {(all var P → var O)} groups all possible instances of var P → var O for each
binding of the variable S which leads to property-object lists.

4. var S {(all var P) → var O} groups all possible instances of var P for each binding of
the variables S and O which yields property lists.

5. var S {var P → (all var O)} groups all possible instances of var O for each binding of
the variables S and P which yields object lists. F

As in XcerptRDF occurrences of labels are not distinguished, in contrast to XcerptXML, only
few scenarios exist in which the use of the all grouping construct yields results different from
construct terms without this grouping construct. To see this, consider the following Example
3.7.

Example 3.7 (Equivalent Construction of Data in XcerptRDF Independent from the Grouping
Construct all). Consider the following variable binding given as a set of substitutions { {var S 7→
eg:john, var P 7→ eg:knows, var O 7→ eg:jim}, {var S 7→ eg:john, var P 7→ eg:name, var O 7→
”John”}, {var S 7→ eg:anna, var P 7→ eg:knows, var O 7→ eg:john}, {var S 7→ eg:anna,
var P 7→ eg:name, var O 7→ ”Anna”} }. We compare the data created by the following construct
terms.

var S{var P → var O} var S{(all var P → var O)}
eg:john{eg:knows → eg:jim} eg:john{eg:knows → eg:jim, eg:name → ”John”}
eg:john{eg:name → ”John”}
eg:anna{eg:knows → eg:john} eg:anna{eg:knows → eg:john, eg:name → ”Anna”}
eg:anna{eg:name → ”Anna”}

Comparing both columns shows that the use of the all grouping construct does not lead to different
results, except the fact that the data terms are factorized. F

Although the construct terms in Example 3.7 yield syntactical different data terms, the re-
sults describe identical RDF graphs.

However, one case in which the grouping construct all makes sense or is even necessary
is the construction of well-formed RDF containers. Therefore, consider the following Example
3.8.

Example 3.8 (The Grouping Construct all in Conjunction with the Construction of RDF Con-
tainers). Let the substitution set { {var X 7→ a}, {var X 7→ b}, {var X 7→ c} } be given. Consider
the following construct terms.

48

eg:b{bagOf{var X}} eg:b{bagOf{(all var X)}}
eg:b{bagOf{a}} eg:b{bagOf{a, b, c}}
eg:b{bagOf{b}}
eg:b{bagOf{c}}

The resulting data terms in the left column is equivalent to the data term

1 eg : b {
2 r d f : t ype → r d f : Bag
3 r d f : 1 → a
4 r d f : 1 → b
5 r d f : 1 → c
6 }

which describes a non well-formed RDF container. The resulting data term in the right column,
however, is equivalent to the data term

1 eg : b {
2 r d f : t ype → r d f : Bag
3 r d f : 1 → a
4 r d f : 2 → b
5 r d f : 3 → c
6 }

which describes a well-formed RDF container. F

Furthermore, grouping with all makes sense in conjunction with anonymous blank nodes.
Consider Example 3.9.

Example 3.9 (The Grouping Construct all in Conjunction with Anonymous Blank Nodes). Let
the RDF graph with the URL http://www.example.org/cities.rdf be as follows.

1 RDF−GRAPH {
2 (eg : munich ,
3 eg : co logne ,
4 eg : b e r l i n) { eg : c i t y O f → eg : germany}
5

6 (eg : par i s ,
7 eg : lyon) { eg : c i t y O f → eg : f r a n c e }
8 }

The following Xcerpt program queries all cities and construct data terms in which the cities are
grouped according to the countries to which they belong.

1 CONSTRUCT RDF−GRAPH {
2 : {(a l l eg : inSameCountry → var C i t y)} group by { var Country}
3 }
4 FROM RDF−GRAPH @http ://www. example . org / c i t i e s . r d f {
5 var C i t y {{ eg : c i t y O f → var Country }}
6 }
7 END

49

The construct term constructs a new blank node for each countries. If we assume, that these
constructed blank nodes were :anonymous122 and :anonymous349 the Xcerpt program above yields
the following data terms.

1 RDF−GRAPH {
2 : anonymous122 {
3 eg : inSameCountry → eg : munich
4 eg : inSameCountry → eg : co l ogne
5 eg : inSameCountry → eg : b e r l i n
6 }
7

8 : anonymous349 {
9 eg : inSameCountry → eg : p a r i s

10 eg : inSameCountry → eg : lyon
11 }
12 }

Without the all construct only one blank node would have been constructed. Thus, using this
grouping construct in combination with anonymous blank nodes leads to different answers than
one gets when omitting it. F

The discussion shows that the grouping construct all makes only sense when it is used in
conjunction with RDF containers or anonymous blank nodes. In other cases the results are
syntactically different but represent the same RDF graph.

3.6 From XcerptXML to XcerptRDF Back and Forth

XcerptXML and XcerptRDF support two different data models, the rooted node labelled tree struc-
ture of semi-structured data and the unrooted node labelled and edge labelled directed graph
structure of RDF respectively. Moreover, other differences exist between XML and RDF. For
example, XcerptRDF provides other language constructs than XcerptXML. These differences ne-
cessitate the separation of both worlds and, hence, XcerptXML and XcerptRDF. This is achieved
by the language construct RDF−GRAPH which embraces XcerptRDF terms as follows.

1 RDF−GRAPH {
2 eg : john {
3 f o a f : knows → : xyz345 {
4 f o a f : name → ” Jim ”
5 }
6 }
7 }

In XcerptRDF rules, query terms are usually associated with input resources. For example,
all triples of an RDF graph with the URL http://www.example.org/myfriends.rdf are queried as
illustrated in the following listing.

50

1 CONSTRUCT
2 . . .
3 FROM
4 RDF−GRAPH {
5 in {
6 resource [ht tp ://www. example . org / myfr iends . rd f] ,
7 var X {{ var Y → var Z }}
8 }
9 }

10 END

A shorter way to specify input resources, thus, abbreviating the specification as described
above is to declare the graph URL following the keyword RDF−GRAPH. This leads to the short-
hand notation as given below.

1 CONSTRUCT
2 . . .
3 FROM RDF−GRAPH @http ://www. example . org / myfr iends . rd f {
4 var X {{ var Y → var Z }}
5 }
6 END

This notation also expresses in a more intuitive way that the RDF graph which is retrievable
at the location http://www.example.org/myfriends.rdf shall be queried.

The specification of output resources appearing in construct terms of XcerptRDF goals could
be written in the same way. Consider the following construction part of an XcerptRDF goal.

1

2 GOAL RDF−GRAPH {
3 out {
4 resource [f i l e : ///home/ a lex / myfr iends . rd f] ,
5 a l l : { var Y → var Z }
6 }
7 }
8 FROM
9 . . .

10 END

Regarding output resources, it is suggested to use the same shorthand notation as intro-
duced for the specification of input resources.

1 G0AL RDF−GRAPH @fi le : ///home/ a lex / myfr iends . rd f {
2 a l l : { var Y → var Z }
3 }

Note that although the specifications are written in the same way, their meanings differ.
In query parts the resource URI specifies the input resource, whereas in construct parts the
resource URI specifies the output resource.

51

3.7 Xcerpt by Example

This section shows how XcerptRDF can be used in conjunction with XcerptXML to query RDF data
and transfrom RDF to XML based data such as HTML. Therefore, consider the example RDF
graph as illustrated in Figure 3.1.

Figure 3.1: The RDF graph example used in this section. The book titles are abbreviated. Also,
for simplicity, the figure omits the descriptions of eg:CompTheory, eg:SWE and eg:Math being of
type rdfs :Class, and eg:author, eg:isbn and eg: title being of type rdfs :Property.

Using the shorthand notations introduced in the previous sections the graph in Figure 3.1
can be written in XcerptRDF as the following listing shows.

Listing 3.4: The representation of the RDF graph
1

2 RDF−GRAPH
3 {
4 (eg : Book ,
5 eg : CompSci ,
6 eg : CompTheory ,
7 eg :SWE) { i s r d f s : C la s s }
8

9 (eg : CompTheory , eg :SWE) { r d f s : subClassOf → eg : CompSci }

52

10

11 eg : author { i s [f o a f : Person → eg : Book] }
12 eg : t i t l e { i s [eg : Book → xsd : s t r i n g] }
13 eg : i sbn { i s [eg : Book → xsd : s t r i n g] }
14

15 : b1 {
16 i s eg :SWE
17 eg : author → : p1 { eg :name → ” Ian Sommervil le ” }
18 eg : t i t l e → ” Software Engineer ing ”
19 eg : i sbn → ”0−321−31379−8”
20 }
21

22 : b2 {
23 i s eg : CompTheory
24 eg : author → : p2 { eg :name → ” John E . Hopcroft ” }
25 eg : author → : p3 { eg :name → ” Rajeev Motwani ” }
26 eg : author → : p4 { eg :name → ” J e f f r e y D. Ullman ” }
27 eg : t i t l e → ” In t roduc t i on to Automata Theory ,
28 Languages and Computation ”
29 eg : i sbn → ”0−321−51448−3”
30 }
31

32 : b3 {
33 i s eg : CompTheory
34 eg : author → : p5 { eg :name → ” Ronald Brachman ” }
35 eg : author → : p6 { eg :name → ” Hector Levesque ” }
36 eg : t i t l e → ” Knowledge Representa t ion and Reasoning ”
37 eg : i sbn → ”1−558−60932−6”
38 }
39 }

Furthermore, consider that the RDF graph is located at www.example.org/mybooks.rdf.

The first Xcerpt program illustrates the querying of RDF. It constructs a new RDF graph in
which the authors of a book are listed within an RDF bag container. The resulting RDF graph is
saved as file :///home/alex/authors in bags.rdf.

Listing 3.5: Transforming RDF
1

2 GOAL RDF−GRAPH @fi le : ///home/ a lex / au thor s in bags . rd f {
3 var Book {
4 eg : authors → bagOf{ a l l var Author }
5 var X → var Y
6 }
7 }
8 FROM RDF−GRAPH @http ://www. example . org /mybooks . rd f {
9 var Book {{

10 eg : author → var Author
11 var X → var Y
12 }}
13 }

53

14 END

The resulting RDF graph is the following.

Listing 3.6: The resulting RDF graph of the transformation as given above
1

2 RDF−GRAPH
3 {
4 : b1 {
5 eg : authors → bagOf{ : p1}
6 rd f : type → eg :SWE
7 eg : t i t l e → ” Software Engineer ing ”
8 eg : i sbn → ”0−321−31379−8”
9 }

10

11 : b2 {
12 eg : authors → bagOf{ : p2 , : p3 , : p4}
13 rd f : type → eg : CompTheory
14 eg : t i t l e → ” In t roduc t i on to Automata Theory ,
15 Languages and Computation ”
16 eg : i sbn → ”0−321−51448−3”
17 }
18

19 : b3 {
20 eg : authors → bagOf{ : p5 , : p6}
21 rd f : type → eg : CompTheory
22 eg : t i t l e → ” Knowledge Representa t ion and Reasoning ”
23 eg : i sbn → ”1−558−60932−6”
24 }
25 }

The following Xcerpt program determines the titles, authors and ISBN numbers of each
book and returns a HTML file in which these pieces of information are listed within a table.
This example program shows the ease of transforming RDF data into semi-structured data in
Xcerpt.

Listing 3.7: Transforming RDF to HTML
1

2 GOAL
3 out {
4 resource {” f i l e : ///home/ a lex /mybooks−as−html . html ”} ,
5 html [
6 body [
7 t a b l e [
8 t r [th [” T i t l e ”] , th [” Author (s) ”] , th [” ISBN Number ”]] ,
9 t r [

10 td [var T i t l e] ,
11 td [a l l p[var Author]] ,
12 td [var Isbn]
13]
14]
15]

54

16]
17 }
18 FROM RDF−GRAPH @http ://www. example . org /mybooks . rd f {
19 var Book {{
20 eg : t i t l e → var T i t l e
21 eg : author → var Author
22 eg : i sbn → var Isbn
23 }}
24 }
25 END

This query yields the answer as given below.

Listing 3.8: The resulting HTML file
1

2 <html>
3 <body>
4 <tab le>
5 <t r><th>T i t l e </th><th>Author (s)</th><th>ISBN</th></t r>
6 <t r>
7 <td>Software Engineering </td>
8 <td>Ian Sommerville</td>
9 <td>0−321−31379−8</td>

10 </t r>
11 <t r>
12 <td>I n t roduc t i on to Automata Theory ,
13 Languages and Computation</td>
14 <td><p>John E . Hopcroft </p>
15 <p>Rajeev Motwani</p>
16 <p>J e f f r e y D. Ullman</p>
17 </td>
18 <td>0−321−51448−3</td>
19 </t r>
20 <t r>
21 <td>Knowledge Representa t ion and Reasoning</td>
22 <td><p>Ronald Brachman</p>
23 <p>Hector Levesque</p>
24 </td>
25 <td>1−558−60932−6</td>
26 </t r>
27 </tab le>
28 </body>
29 </html>

Another way of crossing the border between RDF meta-data and semi-structured data is
the possibility to combine the querying of RDF data with the querying of XML based data.
Therefore, consider an HTML page with the URL http://www.example.org/price−list.html which
contains the books including their prizes. Additionally, the table cells which contain the ISBN
numbers are tagged by the attribute class=”isbn”, and the cells containing the prizes are tagged
by the attribute class=”prize”.

55

Listing 3.9: The sample prize list at the URL http://www.example.org/price−list.html

1

2 <html>
3 <body>
4 <tab le>
5 <t r>
6 <th>T i t l e </th><th>Author (s)</th><th>ISBN</th><th>P r i c e /EUR</th>
7 </t r>
8 <t r>
9 <td>Software Engineering </td>

10 <td>Ian Sommerville</td>
11 <td c l a s s =”i sbn”>0−321−31379−8</td>
12 <td c l a s s =”p r i z e ”>67,95</td>
13 </t r>
14 <t r>
15 <td>I n t roduc t i on to Automata Theory ,
16 Languages and Computation</td>
17 <td>John E . Hopcroft , Rajeev Motwani , J e f f r e y D. Ullman</td>
18 <td c l a s s =”i sbn”>0−321−51448−3</td>
19 <td c l a s s =”p r i z e ”>89,99</td>
20 </t r>
21 <t r>
22 <td>Knowledge Representa t ion and Reasoning</td>
23 <td>Ronald Brachman , Hector Levesque</td>
24 <td c l a s s =”i sbn”>1−558−60932−6</td>
25 <td c l a s s =”p r i z e ”>74,85</td>
26 </t r>
27 </tab le>
28 </body>
29 </html>

The following Xcerpt program shows how to transfer the prizes given in the HTML table to
the RDF graph. The program selects the respective books according to their ISBN numbers.

Listing 3.10: Adding the prize information of the prize-list to the RDF graph
1

2 CONSTRUCT RDF−GRAPH {
3 var Book {
4 eg : i sbn → var Isbn
5 eg : p r i z e → var P r i z e
6 var P → var O
7 }
8 }
9 FROM

10 and {
11 RDF−GRAPH @http ://www. example . org /mybooks . rd f {
12 var Book {{
13 eg : i sbn → var Isbn
14 (op t iona l var P → var O)
15 }}
16 } ,

56

17 in {
18 resource {ht tp ://www. example . org / pr ice− l i s t . html } ,
19 desc t r {{
20 td {{
21 a t t r i b u t e s { c l a s s {” i sbn ”} } ,
22 var Isbn
23 }} ,
24 td {{
25 a t t r i b u t e s { c l a s s {” p r i z e ”} } ,
26 var P r i z e
27 }}
28 }}
29 }
30 }
31 END

Note that according to line 14 further property-object pairs are declared optional. Thus,
only the ISBN number of a book is required. The program would answer this query as stated
below.

Listing 3.11: The resulting RDF graph
1 RDF−GRAPH
2 {
3 : b1 {
4 eg : i sbn → ”0−321−31379−8”
5 eg : p r i z e → ”67 ,95”
6 rd f : type → eg : CompTheory
7 eg : author → : p1
8 eg : t i t l e → ” Software Engineer ing ”
9 }

10

11 : b2 {
12 eg : i sbn → ”0−321−51448−3”
13 eg : p r i z e → ”89 ,99”
14 rd f : type → eg : CompTheory
15 eg : author → : p2
16 eg : author → : p3
17 eg : author → : p4
18 eg : t i t l e → ” In t roduc t i on to Automata Theory ,
19 Languages and Computation ”
20 }
21

22 : b3 {
23 eg : i sbn → ”1−558−60932−6”
24 eg : p r i z e → ”74 ,85”
25 rd f : type → eg : CompTheory
26 eg : author → : p5
27 eg : author → : p6
28 eg : t i t l e → ” Knowledge Representa t ion and Reasoning ”
29 }
30 }

57

Furthermore, Xcerpt programs for example can be used in order to compute the transitive
closure of the rdfs :subClassOf-relationship and, thus, can be used to implement the RDF Seman-
tics (cf. [15]). The following suggested Xcerpt program could be used for this purpose.

Listing 3.12: Computing the transitive closure of the rdfs :subClassOf-relationship
1

2 CONSTRUCT RDF−GRAPH {
3 var Concept1 {
4 r d f s : subClassOf → var Concept3
5 }
6 }
7 FROM RDF−GRAPH @http ://www. example . org /mybooks . rd f {
8 and {
9 var Concept1 {{

10 r d f s : subClassOf → var Concept2
11 }} ,
12 var Concept2 {{
13 r d f s : subClassOf → var Concept3
14 }}
15 }
16 }
17 END

This program yields the following data terms if it is evaluated with forward chaining (oth-
erwise it does not terminate).

Listing 3.13: The answer of the program above
1

2 RDF−GRAPH
3 {
4 eg : CompTheory { r d f s : subClassOf → eg : Book }
5 eg :SWE { r d f s : subClassOf → eg : Book }
6 }

3.8 Digression: Specifying Injectivity in XcerptXML by Delimiters

Discussing about the syntax of XcerptRDF it has been pointed out that delimiters like the semi-
colon can also be used in XcerptXML in order to specify whether subterms are matched injectively
or not. In XcerptXML the use of the triple brackets {{{, }}} or [[[,]]] specifies that the subterms
are to be mapped revoking injectivity. This is illustrated in Example 3.10.

Example 3.10 (Revoking the Injectivity of Subterm-Mapping). The XcerptXML term a{{ b{{ }},
b{{ }} }} cannot be mapped to the term a{{ b{{ }} }} since injectivity is required. The term
a{{{ b{{ }}, b{{ }} }}}, however, can be mapped to a{{ b{{ }} }}, since the triple brackets specify,
that both occurrences of b{{ }} may be mapped to the same subterm. F

Instead of using the triple brackets, semicolons can be used in order to revoke injectivity. The
subterm order and completeness is further on specified by the respective single or double brack-
ets. Thus, with semicolons the term a{{{ b{{ }}, b{{ }} }}} could be written as a{{ b{{ }}; b{{ }} }}.

58

Note the semicolon between the two b{{ }}. The advantage of using semicolons is that for some
subterms the injectivity can be revoked, whereas for the remaining subterms, injectivity is still
required. This enables to specify injectivity more fine-grained than be done by triple brackets.

Example 3.11 (Revoking Injectivity of Subterm-Mapping with Semicolons). When assuming
that a semicolon binds stronger than a comma, then the term a{{ b{{ }}; b{{ }}, c{{ }}, c{{ }} }}
specifies that the both subterms of the form b{{ }} may be mapped to the same subterm, whereas
the subterms of the form c{{ }} have to be mapped to two distinct subterms. Thus, the term could
be mapped to a{{ b{{ }}, c{{ }}, c{{ }} }}, but not to a{{ b{{ }}, c{{ }} }}. F

59

60

Chapter 4

Normalizing XcerptRDF Terms

Normalizing XcerptRDF terms is necessary to keep their evaluation clear and simple. The various
possibilities to express knowledge in XcerptRDF makes normalization necessary.

XcerptRDF data terms correspond to pure RDF data although the various shorthand nota-
tions for RDF constructs discussed in Chapter 3 exceed the expressivity of RDF. However, in
this thesis it has been decided to retain RDF expressivity as far as possible. As a consequence,
XcerptRDF shorthand notations are expanded within data terms, thus, in normalized data terms
only property-object pseudo-terms occur. Furthermore, composition of data terms are removed.
This removal results in data terms whose pseudo-terms do only have labels and not XcerptRDF

terms at object positions. As a consequence all subject labels are at the same level which sim-
plifies the referencing of data terms.

The treatment of XcerptRDF query terms differs from that of data terms. Here, the considera-
tion for RDF expressivity is unimportant since queries usually provide constructs which are not
offered in RDF. For example, variables, optionality and negation which are essential for query-
ing do not have any RDF counterparts. Furthermore, shorthand notations for RDF containers
within query terms are enriched by different kinds of brackets used for specifying complete-
ness and order such that these shorthand notations are considered as separate constructs which
are not abbreviations any more. Thus, these shorthand notations may not be expanded when
occurring within query terms.

4.1 Normalizing XcerptRDF Data Terms

When normalizing data terms, shorthand notations are replaced by their respective longhand
notations. Furthermore, factorizations, except for the factorization of subjects, are expanded
and compositions are resolved. The resulting data terms are of the form s{p1 → o1, . . . , pn →
on} such that the oi are labels and the subjects are all on the same (lowest) level. Thus, root
nodes can be omitted. Besides the expansion of the shorthand notations as described in Section
3.3, the normalization consists of several steps which are illustrated in Figure 4.1.

61

(s1 ,s2){ (p1 , p2) → (o1 ,o2){q → l} }

s1{
p1 → o1{q → l}
p1 → o2{q → l}
p2 → o1{q → l}
p2 → o2{q → l}

} ,
s2{

p1 → o1{q → l}
p1 → o2{q → l}
p2 → o1{q → l}
p2 → o2{q → l}

}

o1{q → l} ,
o2{q → l} ,
s1{

p1 → o1

p1 → o2

p2 → o1

p2 → o2

} ,
s2{

p1 → o1

p1 → o2

p2 → o1

p2 → o2

}

Expansion by ε

Flattening of data terms by λ

Figure 4.1: Overview of the normalization of an XcerptRDF data term

In the following, each transformation step is explained, where several abbreviations are
convenient.

Definition 4.1 (Abbreviations for Lists of Nodes and Data Terms). Let s denote a URI, blank or
literal node which occurs as a subject, let p denote a predicate. Further, let t denote an XcerptRDF

data term or a URI, blank node or literal node which occurs as an object. A list of subjects
(s1, s2, . . . , sn) will be abbreviated as sn. The same applies to lists of predicates and XcerptRDF

data terms. F

With the notation above, an XcerptRDF data term as, for example, (s1, s2){(p1, p2, p3) →
(t1, t2)} can be abbreviated as s2{p3 → t2}. A data term like s{p11 → (t11, t12), (p21, p22) → t21}
can be abbreviated as s{p1

1 → t21, p
2
2 → t12}.

4.1.1 Expanding XcerptRDF Data Terms

The expansion of XcerptRDF data terms removes lists of subjects, predicates and objects by
expanding the factorizations in a data term.

Definition 4.2 (Expansion of XcerptRDF Data Terms). The expansion of XcerptRDF data terms is
denoted by ε and defined as follows.

1. If t is a URI, a blank node or a literal in object position then ε (t) = t.

62

2. ε
(
sk{pk1

1 → tl11 , . . . , pkn
n → tlnn }

)
= ε

(
s1{pk1

1 → tl11 , . . . , pkn
n → tlnn }

)
,

ε
(
s2{pk1

1 → tl11 , . . . , pkn
n → tlnn }

)
,

...
ε
(
sk{pk1

1 → tl11 , . . . , pkn
n → tlnn }

)

3. ε
(
s{pk1

1 → tl11 , . . . , pkn
n → tlnn }

)
= s{εst(pk1

1 → ε(tl11)), . . . , εst(pkn
n → ε

(
tlnn

)
)}

4. ε (t1, t2, . . . , tn) = ε (t1) , ε (t2) , . . . , ε (tn).
ε ((t1, t2, . . . , tn)) = (ε (t1) , ε (t2) , . . . , ε (tn)).

The expansion of pseudo-terms is denoted by εst and defined as follows:

4a. εst

(
pi → tj

)
= εst

(
p1 → tj

)
, . . . , εst

(
pi → tj

)
4b. εst

(
p → tj

)
= p → t1, . . . , p → tj

where t1, t2, . . . , tj are expanded XcerptRDF data terms. F

The Example 4.1 illustrates in detail how ε is used to expand an XcerptRDF data term.

Example 4.1 (Expansion of XcerptRDF data term).

ε(s1{(p1, p2) → ((s2, s3){q → l}, s4)})
3.= s1{εst((p1, p2) → (ε((s2, s3){q → l}, s4))}
4.= s1{εst((p1, p2) → (ε((s2, s3){q → l}), ε(s4))}
1.= s1{εst((p1, p2) → (ε((s2, s3){q → l}), s4)}
2.= s1{εst((p1, p2) → (ε(s2{q → l}), ε(s3{q → l}), s4)}
3.= s1{εst((p1, p2) → (s2{εst(q → ε(l))}, s3{εst(q → ε(l))}, s4)}
1.= s1{εst((p1, p2) → (s2{εst(q → l)}, s3{εst(q → l)}, s4)}
4b.= s1{εst((p1, p2) → (s2{q → l}, s3{q → l}, s4))}
4a.= s1{εst(p1 → (s2{q → l}, s3{q → l}, s4)),

εst(p2 → (s2{q → l}, s3{q → l}, s4))}
4b.= s1{p1 → s2{q → l}, p1 → s3{q → l}, p1 → s4,

p2 → s2{q → l}, p2 → s3{q → l}, p2 → s4}F

It should be mentioned that εst is only defined on p → t, where t is already expanded. That
is, ε occurrences within an argument of εst must be evaluated first (cf. Example 4.1). This is
necessary because otherwise the expansion is incomplete as shown in Example 4.2.

63

Example 4.2 (Incomplete Expansion by εst in case of t being not already expanded).

εst((p1, p2) → ε((t1, t2)))
4a.= εst(p1 → ε((t1, t2))),

εst(p2 → ε((t1, t2)))
4b.= p1 → ε((t1, t2)),

p2 → ε((t1, t2))
4.= p1 → (ε(t1), ε(t2)),

p2 → (ε(t1), ε(t2))
= . . .

The list (ε(t1), ε(t2)) will never be eliminated, since the embracing εst is already eliminated before
the list of objects is created by ε. Thus, the expansion must be computed in a depth-first manner.F

In general, the resulting XcerptRDF data term has the form s{p1 → t1, . . . , pn → tn}, where
the ti are in turn expanded.

The following Proposition 4.1 states the termination of the expansion algorithm.

Proposition 4.1 (Termination of the Expansion of XcerptRDF Data Terms). The expansion of
XcerptRDF Data Terms as given in Definition 4.2 terminates.

Proof. Let an arbitrary data term t = sm{pk1
1 → tl11 , . . . , pkn

n → tlnn } be given. Recall that
the notation tkn

n is an abbreviation of the list (tn1, tn2, . . . , tnkn
). Assume that ε(t) does not

terminate. The termination of εst does not need to be discussed separately for the following
reason: since t is finite by assumption, the number of predicates within t is also finite. That
is, according to rule 3 the termination of εst only depends on the termination of ε. Construct a
tree illustrating the incarnations of ε on t. The arcs of the tree are thereby labelled by the rules
of Definition 4.2 yielding the incarnations of ε. The tree is constructed as follows.

n Set ε(t) as the root of the tree.

n Set as children of the root the incarnations of ε resulting from the application of rule 2 in
Definition 4.2.

n For each resulting data term with only one remaining subject label add as its children the
incarnations of ε resulting from the application of rule 3.

n Repeat the steps for the resulting incarnations of ε for the label or terms at object posi-
tions.

The resulting tree is shown in Figure 4.2.

As it can be seen, finitely many steps are necessary to traverse from the subject of t to its
objects. We assume that ε does not terminate, thus, the tree consists of infinitely many nodes.
According to König’s Lemma [18], a tree with infinitely many nodes has an infinite branching
factor or an infinite branch. That is, either the subject list or the object list of t or some tij
within some of the lists tl11 to tkn

n must be infinite. However, these assertions make t infinite

64

ε(sm{pk1
1 → tl11 , . . . , p

kn
n → tlnn })

ε(s1{pk1
1 → tl11 , . . . , p

kn
n → tlnn }) . . . ε(sm{pk1

1 → tl11 , . . . , p
kn
n → tlnn })

ε(tl11) . . . ε(tlnn) ε(tl11) . . . ε(tlnn)

ε(tn1) . . . ε(tnln)ε(t11) . . . ε(t1l1)ε(tn1) . . . ε(tnln)ε(t11) . . . ε(t1l1)

...
...

...
...

...
...

...
...

2. 2. 2.

3. 3. 3. 3. 3. 3.

4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.

Figure 4.2: Tree illustrating the invocations of ε on the data term t. The edges are labelled by
the rules of Definition 4.2 yielding the incarnations of ε.

which contradicts the assumption that t is finite and, thus, ε(t) terminates. F

The rules in Definition 4.2 are selected deterministically, i.e. in each step only one rule is
applicable. Thus, the following Proposition 4.2 trivially holds.

Proposition 4.2. The rules given in Definition 4.2 are confluent. F

4.1.2 Flattening an Expanded XcerptRDF Data Term

As a next step, duplicate occurrences of subjects resulting from the expansion process have to
be removed. Furthermore, one has to lower the level of those occurrences to the lowest. This
is an important preprocessing step for the forthcoming transformation to XcerptXML. In doing
so, a global set variable that contains XcerptRDF data terms is used. A set is used because it
filters out duplicates by itself. In order to distinguish XcerptRDF data terms from the set, it will
be embraced in 〈·〉. The flattening is defined according to Definition 4.3.

Definition 4.3 (Flattening an Expanded XcerptRDF Data Term). The flattening including the
removal of duplicates of an expanded XcerptRDF data term is denoted by λ and defined as follows,
where s and o denote URI or blank nodes and δ describes a set of XcerptRDF data terms.

1. λ (s1 { p11 → t11, p12 → t12, . . . , p1n1 → t1n1},
s2 { p21 → t21, p22 → t22, . . . , p2n2 → t2n2},
...
sk { pk1 → tk1, pk2 → tk2, . . . , pknk

→ tknk
}) 〈∅〉 =

λ (s1 { p11 → t11, p12 → t12, . . . , p1n1 → t1n1}),
λ (s2 { p21 → t21, p22 → t22, . . . , p2n2 → t2n2}),

...
λ (sk { pk1 → tk1, pk2 → tk2, . . . , pknk

→ tknk
}) 〈∅〉

65

2. λ (s1 { p11 → t11, p12 → t12, . . . , p1n1 → t1n1}) 〈δ〉 =

s1 { p11 → λ(t11), p12 → λ(t12), . . . , p1n1 → λ(t1n1)} 〈δ〉

3. s { p1 → λ(o1{u11 → t11, . . . , u1n1 → t1n1}),
p2 → λ(o2{u21 → t21, . . . , u2n2 → t2n2}),
...
pm→ λ(om{um1 → tm1, . . . , umn2 → tmnm

})} 〈δ〉 =

s{p1 → o1, . . . , pm → om} 〈δ ∪ { o1{u11 → t11, . . . , u1n1 → t1n1},
o2{u21 → t21, . . . , u2n2 → t2n2},
...
om{um1 → tm1, . . . , umnm

→ tmnm
}}〉

There, the subjects o1 to om of the term within the resulting set δ are considered to be differ-
ent. This can be achieved by replacing two data terms s{p11 → t11, . . . , p1n1 → t1n1} and
s{p21 → t21, . . . , p2n2 → t2n2} with identical subjects by the data term resulting from the
merge of their pseudo-terms, i.e. s{p11 → t11, . . . , p1n1 → t1n1 , p21 → t21, . . . , p2n2 → t2n2}.

4. s{p1 → o1, . . . , pn → on} 〈{t1, t2, . . . , tm}〉 = λ(t1),
λ(t2),
...
λ(tm),
s{p1 → o1, . . . , pn → on}
〈∅〉

5. if t is an URI, blank or literal node then λ(t) = t. F

The following Example 4.3 shows how the flattening works on an expanded XcerptRDF data
term.

66

Example 4.3 (Flattening an Expanded XcerptRDF Data Term).

λ(s1{p1 → s2{q → l}, p1 → s3{q → l}, p1 → s4}),

p2 → s2{q → l}, p2 → s3{q → l}, p2 → s4}) 〈∅〉 2.=

s1{p1 → λ(s2{q → l}), p1 → λ(s3{q → l}), p1 → λ(s4),

p2 → λ(s2{q → l}), p2 → λ(s3{q → l}), p2 → λ(s4)}} 〈∅〉 5.=

s1{p1 → λ(s2{q → l}), p1 → λ(s3{q → l}), p1 → s4,

p2 → λ(s2{q → l}), p2 → λ(s3{q → l}), p2 → s4}} 〈∅〉 3.=

s1{p1 → s2, p1 → s3, p1 → s4,

p2 → s2, p2 → s3, p2 → s4} 〈{s2{q → l}, s3{q → l}}〉 3.=

λ(s2{q → l}),
λ(s3{q → l}),

s1{p1 → s2, p1 → s3, p1 → s4,

p2 → s2, p2 → s3, p2 → s4} 〈∅〉 2.=

s2{q → λ(l)},
s3{q → λ(l)},

s1{p1 → s2, p1 → s3, p1 → s4,

p2 → s2, p2 → s3, p2 → s4} 〈∅〉 5.=

s2{q → l},
s3{q → l},

s1{p1 → s2, p1 → s3, p1 → s4,

p2 → s2, p2 → s3, p2 → s4} 〈∅〉 F

As it can be seen in the example above, duplicates of s2{q → l} and s3{q → l} are elim-
inated. Furthermore, all subjects are at the same (lowest) level. In general, the result of
flattening is of the form s1{p11 → o11, p12 → o12, . . . , p1n1 → o1n1}, . . . , sk{pk1 → ok1, pk2 →
ok2, . . . , pknk

→ oknk
} where oij are URI, blank or literal nodes.

The termination of the flattening algorithm can be shown similarly to the termination of the
expansion algorithm. The confluence of the flattening rules is also trivially given since only one
rule in each rewriting step is applicable.

67

The factorizations reduce a data term polynomially in space. That is, the normalization of
the data term

1 (s1 , s2 , . . . , sn) {
2 (p1 , p2 , . . . , pm) → (o1 , o2 , . . . , ok)
3 }

results in O(n) data terms each having O(m · k) property-object pseudo-terms.

68

Chapter 5

Evaluation of Queries and Data in
XcerptRDF

The evaluation in XcerptRDF uses the notion of simulation of XcerptRDF terms into XcerptRDF

terms. Using simulation for this purpose has been introduced in [22]. Intuitively, asking
whether an XcerptRDF term t simulates into an XcerptRDF term t′ is equal to asking whether t
can be found in t′ with respect to the resources involved as well as the structure of t. For exam-
ple, :X {eg:knows → eg:john} simulates in eg:anna { eg:knows → eg:john, eg:name → ‘‘ Anna’’}
because the first term can be found in the latter term assuming that :X is eg:anna which is ad-
missible since the blank node :X can be seen as an existential quantified variable. Additional
constraints (regarding completeness and order) can be stipulated which is done in XcerptRDF by
several single or double brackets.

Due to RDF and XcerptRDF specifities, the simulation of XcerptXML must be adapted to RDF.
In contrast to XcerptXML, the simulation in XcerptRDF has no explicit root since RDF graphs (and
thus their syntactic representations) have no roots. In query terms the shorthand notations of
RDF containers are retained and, thus, simulation needs to be extended in order to deal with
these shorthand notation. Regarding RDF, the data model is completely different from that of
XML: There are directed labelled edges, and occurrences of labels are not distinguished. Blank
nodes must also be considered. Among other things, that is why the matching-relation (cf. Sec-
tion 5.1.1) between labels must be a many-to-one relationship (i.e. a partial function).

The syntax of XcerptRDF offers a great latitude in writing queries and RDF data. Hence, in
order to define a clear cut evaluation mechanism it is rational to restrict the set of XcerptRDF

terms which are evaluated. The remaining XcerptRDF terms need to be normalized according
to Section 4. Moreover, several language constructs discussed in this thesis are omitted in the
evaluation. This results from the lack of time and from the decision to introduce the simulation
on a sufficient but still clear subset of XcerptRDF. The concepts which are disregarded in the
evaluation method of XcerptRDF are described below.

n Variables for Concise Bounded Descriptions

n Simulation of Construct Terms into Query Terms

69

n Substitution and Substitution Sets

n Named Graphs

n Filtering answers using WHERE-clauses of XcerptXML

None of the well-known RDF query languages follow the approach of a simulation based
evaluation of RDF queries and data. For example, SPARQL is based on an algebraic semantics
and TRIPLE is based on a model-theoretic semantics. But the following sections illustrate that
the concept of simulation of XcerptRDF terms in XcerptRDF terms is a perfectly appropriate means
to evaluate RDF data. So, the computation of answers for queries as a key issue is based on the
simulation of query terms in data terms. As an optimization of query evaluation subsumption
is defined by the simulation of query terms into data terms. Finally, leanness of RDF graphs can
be checked by the simulation of data terms into data terms.

5.1 Preliminaries

The discussion of XcerptRDF’s semantics makes use of the following notations.

Definition 5.1 (Sets of Labels and XcerptRDF Terms). In order to specify the semantics of XcerptRDF

the following sets are useful.

n U denotes the set of URI labels.

n B denotes the set of blank nodes.

n L denotes the set of literals.

n N = U ∪B ∪ L denotes the set of all labels (or RDF nodes).

n V denotes the set of XcerptRDF variables.

n X denotes the set of XcerptRDF terms.

n Q ⊆ X denotes the set of XcerptRDF query terms.

n Qg ⊆ Q denotes the set of XcerptRDF ground query terms.

n D ⊆ Qg denotes an arbitrary set of normalized XcerptRDF data terms. F

Moreover, in the discussion of the evaluation method it is often referred to the slots (i.e.
property-object pairs) and container shorthand notations within an XcerptRDF term. To simplify
matters, these components are named as given in Definition 5.2.

Definition 5.2 (Pseudo-Term). The property object-pairs and container shorthand notations ap-
pearing within the brackets of a given XcerptRDF term are denoted as pseudo-terms. More specifi-
cally,

n a property-object pair of the form p → o is called a positive property-object pseudo-term.

70

n a property-object pair of the form (without p → o) is called a negative property-object pseudo-
term.

n a property-object pair of the form (optional p → o) is called an optional property-object
pseudo-term.

n the bagOf, seqOf, altOf shorthand notations are called container pseudo-terms. They are called
negative (optional, resp.) if they occur within the scope of without (optional, resp.).

n the listOf shorthand notation is called an collection pseudo-term. It is called negative (op-
tional, resp.) if it occurs within the scope of without (optional, resp.). F

Note that the evaluation of optional and negative property-object pseudo-terms is restricted
to those which are of the form (optional p → o) and (without p → o), respectively. In order to
simplify matters, the remaining scopes which are given in Example 3.2 are disregarded. Besides,
query terms which contain negative or optional property-object pseudo-terms with other scopes
can be rewritten to queries that do not contain pseudo-terms with such scopes. However, these
rewritings often necessitate WHERE-clauses and can be very involved. For example, the query
term a{{(without p) → o}} is equivalent to the query a{{q → o}}WHEREq 6= p. As another
example, the query term s{{p → (without o{{q → l}})}} can be rewritten to the following
query:

1 or {
2 and {
3 s {{p → o}} ,
4 not o {{q → l }}
5 } ,
6 s {{p → u}}
7 }
8 WHERE u 6= o

However, it is suggested to extend the evaluation of XcerptRDF queries in forthcoming ver-
sions to also support the remaining scopes of negative and optional property-object pseudo-
terms which are given in Example 3.2.

Furthermore, the simulation uses various subsets of the set of pseudo-terms of a query term.
These (sub-)sets are given in Definition 5.3.

Definition 5.3 (Set of Pseudo-Terms of a Query Term and its Partitioning). For an arbitrary
XcerptRDF term t

n PT (t) denotes the set of all pseudo-terms of t.

n PT+(t) denotes the set of positive pseudo-terms of t, i.e. pseudo-terms preceeded neither by
without nor optional.

n PT−(t) denotes the set of negative pseudo-terms of t, i.e. pseudo-terms preceeded by without.

n PT ?(t) denotes the set of optional pseudo-terms of t, i.e. pseudo-terms preceeded by optional.

71

n PTcont(t) denotes the set of (positive, optional and negative) container pseudo-terms. Re-
spective partitions are indicated by PT+

cont(t) (for the set of positive container pseudo-terms),
PT ?

cont(t) (for the set of optional container pseudo-terms) and by PT−
cont(t) (for the set of

negative container pseudo-terms).

n PTPO(t) denotes the set of (positive, optional and negative) property-object pseudo-terms.
Respective parititions are indicated by PT+

PO(t) (for the set of positive property-object pseudo-
terms), PT ?

PO(t) (for the set of optional property-object pseudo-terms) and by PT−
PO(t) (for

the set of negative property-object pseudo-terms) F

The Figure 5.1 illustrates one kind of partitioning of a set of query pseudo-terms which is
often used in this thesis. Here, a set within the the tree consists of its children.

PT (t)

PT+(t) PT ?(t) PT−(t)

PT+
PO(t) PT+

cont(t) PT ?
PO(t) PT ?

cont(t) PT−
PO(t) PT−

cont(t)

Figure 5.1: The partitioning of an arbitrary set of query pseudo-terms. The naming of the sets
is according to Defintition 5.3. Read the directed arcs as “consists of”. Siblings in the tree are
supposed to be pairwise disjunct. The relationships PTPO(t) = PT+

PO(t) ∪ PT ?
PO(t) ∪ PT−

PO(t)
and PTcont(t) = PT+

cont(t) ∪ PT ?
cont(t) ∪ PT−

cont(t) are not shown in the figure.

Moreover, it is useful to provide a function called Sub which returns the subject of a given
XcerptRDF term and functions Prop and Obj which return the property and object of a given
property-object pseudo-term. These functions allow to access the labels of property-object
pseudo-terms indepedently from their actual kinds (positive, optional or negative).

Definition 5.4 (Label-Projections of XcerptRDF Terms). Let t denote an XcerptRDF term. Define
the following label-projections.

n Sub(t) is the subject of t.

n For st ∈ PTPO(t) which may be of the form p → q, (without p → q) or (optional p → q)

l Prop(st) = p

l Obj(st) = q F

5.1.1 Matching Labels

The simulation of XcerptRDF terms uses the notion of matching labels. Testing whether a label
matches against another means testing whether both labels denote the same resource. Thus,

72

matching is weaker than testing equality since equality of both labels is generally not required
for matching. For example, two different blank nodes are supposed to match since it cannot be
concluded that two different blank nodes also denote two different resources.

Definition 5.5 (Matching of Labels). A label l1 matches against another label l2, written as l1�l2,
if one of the following cases hold.

n l1 and l2 are both literals and l1 = l2.

n l1 and l2 are URIs (or expanded qualified names) and l1 = l2.

n l1 is a blank node and l2 is a URI.

n l1 and l2 are blank nodes.

n l1 is a regular expression, l2 is a label and l2 ∈ L(l1).

n l1 and l2 are regular expressions and L(l1) ⊇ L(l2).

For a given regular expression (or string) r, L(r) denotes the language expressed by r. F

The matching of labels is generally not symmetric and is directed from the more generic to
the more specific case.

Matching of labels is also used to retrieve data terms from a known dataset according to
their subjects. That is, for a given label there is a data term to be found within the dataset such
that the label matches against the subject of that data term. The function that accomplishes
this task is called data term selector and is defined as follows.

Definition 5.6 (Data Term Selector). Let G ⊆ D be a set of normalized XcerptRDF data terms,
then define λG : N → G which maps a label l to a data term λG(l) such that l � Sub(λG(l)). F

λG can be naively implemented by traversing the list of data terms and trying to match the
label against each subject. If such a subject is found then λ returns the entire data term.

Note that data terms are normalized, thus, subjects are all at the same level whereas query
terms remain composed. The advantages of this approach is discussed in Section 5.4.2 after the
simulation of ground query terms in data terms is introduced.

5.2 Answering Queries - Simulation of Ground Query Terms into Data
Terms

The simulation of ground query terms into data terms is used in order to find answers for
XcerptRDF queries by determining whether a given substitution is valid. This can be pictured as
follows. First, a substitution is guessed which at least makes the subject and all positive and
negative pseudo-terms of a given query term ground. Next, the validity of the substitution is
verified by simulating the ground query term into the data terms. The guessed substitution is
rejected, if the simulation fails.

73

While guessing of suitable substitution simplifies the discussion of the simulation of ground
query terms, operationally, substitutions are determined by simulation unification [22], a unifi-
cation algorithm perfectly appropriate for graph-structured data models which is based on the
simulation of graphs.

In the simulation of ground query terms into data terms, optional pseudo-terms play a spe-
cial role. If a guessed substitution provides bindings for variables occurring within an optional
pseudo-term making the optional pseudo-term ground, this pseudo-term has to be treated as
an ordinary positive pseudo-term. Otherwise, if the optional pseudo-term is not made ground
by the substitution to be verified, the pseudo-term is deleted from the set of the query pseudo-
terms and hence not considered in the simulation. As a consequence, optional pseudo-terms
does not need to be separately considered.

The Definition 5.8 introduces the simulation of ground query terms into data terms, for
now disregarding container pseudo-terms which are added to the simulation later. Thereby,
the notion of pseudo-term simulation as given in Definition 5.9 is used. In the simulation, the
existence of a finite many-to-one relation R� is assumed which fulfills the property that for
all label-pairs (x, y) ∈ R� it holds that x � y. For a simulation, R� must exist and provide
appropriate matching-partners for the simulation to succeed. Operationally, this is achieved by
constructingR� during the simulation, thereby testing the restrictions ofR� given in Definition
5.7.

Definition 5.7 (Finite Matching-Relation). Define the finite matching relation R� ⊆ N×N such
that

1. R� satisfies the many-to-one property, i.e. for all (x, y) ∈ R� it holds that if (x, y) ∈ R�
and (x, z) ∈ R� then y = z.

2. R� 6= ∅

3. For all (x, y) ∈ R� it holds that x � y. F

With the finite matching relation R� the simulation of ground query terms can be defined
as given in Definition 5.8.

Definition 5.8 (Simulation of Ground Query Terms in Data Terms). Let q ∈ Qg, d ∈ D′ ⊆ D.
One says that q simulates (via R�) in d which is written q �R�

d if (Sub(q), Sub(d)) ∈ R� and
the following holds.

1. Case: q does not contain negative pseudo-terms, i.e. PT−(q) = ∅.
An injective and total mapping π : PT+(q) → PT (d) exists such that for all s ∈ PT+(q) it
holds that s �pt

R�
π(s).

2. Case: q contains negative pseudo-terms, i.e. PT−(q) 6= ∅.

(a) An injective and total mapping π : PT+(q) → PT (d) exists with the properties as
defined above.

(b) π cannot be extended to a π : (PT+(q) ∪ PT−(q)) → PT (d) such that for some s− ∈
PT−(q) it holds that s− �pt

R�
π(s−). F

74

The Definition 5.8 uses the simulation of query pseudo-terms in data pseudo-terms which is
defined in Definition 5.9.

Definition 5.9 (Simulation of Query Pseudo-Terms in Data Pseudo-Terms). Let a query pseudo-
term sq of a query term q and and a data pseudo-term sd of a data term d ∈ D′ ⊆ D be given.
One says that sq simulates via R� in sd which is written sq �pt

R�
sd if following holds.

1. (Prop(sq), P rop(sd)) ∈ R�

2. If Obj(sq) ∈ N then (Obj(sq), Obj(sd)) ∈ R�

3. If Obj(sq) ∈ Qg then Obj(sq) �R�
λD′(Obj(sd)).

Definition 5.8 shows that the simulation of ground query terms into data terms is basically
the same as introduced in [22] except the modifications which are necessary due to the differ-
ences between XcerptRDF and XcerptXML. For example, the relation R� basically relates blank
nodes to other blank nodes. In cases of other labels, R� is the identity. That is, the relation R�
is not needed in XcerptXML since blank nodes do not occur in XcerptXML.

The following Example 5.1 illustrates the simulation of ground query terms into data terms.

Example 5.1 (Simulation of Ground Query Terms into Data Terms). Let the following set of
normalized data terms D′ be given.

1 u { v → w } (d1)
2 w { x → y } (d2)

Let the ground query term q be a{{b → c{{d → e}} }}. Let R� = {(a, u), (b, v), (c, w), (d, x),
(e, y)}. Then, q �R�

d1 because:

1. (Sub(q), Sub(d1)) = (a, u) ∈ R�

2. π(b → c{{d → e}}) = v → w and b → c{{d → e}} �pt
R�

v → w because

n (b, v) ∈ R� and

n (c, w) ∈ R�. It remains to show that c{{d → e}} �R�
λD′(w) with λD′(w) = d2.

3. c{{d → e}} �R�
d2 because (c, w) ∈ R� and d → e �pt

R�
π(d → e) with π(d → e) = x → y

because (d, x) ∈ R� and (e, y) ∈ R�.

Suppose, that q were a{{b → c{{(without d → e)}} }}. Then q would not simulate into d1

anymore. The beginning of the simulation is the same as described above. However, now π may
not be extensible to a π such that the negative pseudo-term would simulate. However, point 3 of
the derivation above shows that π is extensible such that (without d → e) �pt

R�
x → y. Thus, q

does not simulate into d1. F

As next, the simulation-relations as given in the Definitions 5.8 and 5.9 are extended with
capabilities to cope with container subterms.

75

5.3 The Simulation of Query Terms with Containers in Data Terms

In the last section it has been shown how simulation basically works. In order to simplify
matters, container pseudo-terms have been omitted in the simulation (cf. Definitions 5.12 and
5.13). This section extends the simulation as discussed in Section 5.2 with capabilities to also
evaluate container pseudo-terms.Therefore, several definitions are introduced in the following
section.

5.3.1 Preliminaries for the Evaluation of Container Pseudo-Terms

As mentioned in Section 3.4.2, shorthand notations for RDF containers cannot be expanded to
RDF predicate-object-pairs, since the various kinds of bracketing the elements cannot be ex-
pressed in RDF. As a consequence, the evaluation of these shorthand notations must be defined
separately. Therefore, several definitions are convenient.

Definition 5.10. Let the set of all XcerptRDF containers be denoted as PTcont. Let an arbitrary
XcerptRDF container c ∈ PTcont be given. For an arbitrary data term t define the mapping
U : PTcont(t) → U such that

U(c) =

rdf:Bag if c is a bagOf pseudo-term
rdf:Alt if c is an altOf pseudo-term
rdf:Seq if c is a seqOf pseudo-term

Furthermore, let the (multi-)set of the elements of c be denoted as E(c).
A container element e ∈ E(c) of the form pos N o is called extended and index(e) is the integer
number represented by N is called its position.
A container element of the form e is called unextended and index(e) is the position of e within the
element list.
For an RDF container membership description m ∈ PT of the form rdf: N → o (N is a numeric
literal) index(m) is the integer number represented by N , otherwise index(m) is undefined. F

The evaluation of container pseudo-terms uses the notion of suitable mappings for con-
tainer pseudo-terms. These are mappings which adhere the specification of container elements
(indicated by the brackets used in the container pseudo-term).

Definition 5.11 (Suitable Mapping for a Container Subterm). Let a query term q be given and
let c ∈ PTcont(q) be a container pseudo-term of q. Furthermore, let be an arbitrary data term d be
given. The mapping γ : E(c) → PT (d) is called suitable for c if it meets the following conditions.

1. If the elements of c are unextended, i.e. of the form e then the following holds.

(a) If the elements are specified as unordered and complete (indicated by the brackets {·})
then γ is element-bijective.

(b) If the elements are specified as unordered and incomplete (indicated by the brackets
{{·}}) then γ is injective.

(c) If the elements are specified as ordered and complete (indicated by the brackets [·]) then
γ is element-bijective and position-preserving.

76

(d) If the elements are specified as ordered and incomplete (indicated by the brackets [[·]])
then γ is injective and position-monotone.

2. If c contains extended elements, i.e. elements which are of the form pos N o then following
holds.

(a) If the elements are specified as complete (indicated by brackets {·} or [·]) then γ is
element-bijective and position-preserving.

(b) If the brackets are specified as incomplete (indicated by the brackets {{·}} or [[·]]) then
γ is injective and position-preserving.

There, γ is called

n injective, if and only if for all x, y ∈ E(c) it holds that whenever γ(x) = γ(y) then x = y.

n element-bijective, if and only if γ is injective and for all pseudo-terms s ∈ PT (d) describing
a container membership an x ∈ E(c) exists such that γ(x) = s.

n position-preserving, if and only if for all x ∈ E(c) it holds that index(x) = index(γ(x)).

n position-monotone, if and only if for all x, y ∈ E(c) it holds that if index(x) < index(y) then
index(γ(x)) < index(γ(y)). F

5.3.2 Extending the Simulation of Ground Query Terms in Data Terms

The extension of the simulation relation for container pseudo-terms introduces a certain amount
of complexity. This results from the fact that a single container pseudo-terms simulates into
several property-object pseudo-terms. The brackets used to parenthesize the elements of the
container also have meanings (cf. Section 3.4.2). Moreover, the elements themselves may again
be positive, optional or negative. As a consequence, the evaluation of a container pseudo-term
yields a separate simulation embedded in the simulation of ground query terms in data terms.
This embedded simulation, however, is very similar to the simulation as introduced in the Sec-
tion 5.2. Consider the following Definition 5.12.

Definition 5.12 (Simulation of Ground Query Terms with Container Pseudo-Terms in Data
Terms). Let q ∈ Qg, d ∈ D′ ⊆ D. One says that q simulates (via R�) in d which is written
q �R�

d if (Sub(q), Sub(d)) ∈ R� and the following holds.

1. Case: q does not contain negative pseudo-terms, i.e. PT−(q) = ∅.

(a) An injective and total mapping π : PT+(q) → PT (d) exists such that for all s ∈ PT+(q)
it holds that s �pt

R�
π(s).

(b) For each ci ∈ PT+
cont(q) there exists a total mapping γi : E+(ci) → PT (d) suitable for

ci with the following properties:
n γi is total on E+(ci) and for all container elements e+ of the form pos N e or e it

holds that e+ �elem
R�

γi(e+).
n γi cannot be extended to a γi : (E+(ci) ∪ E−(q)) → PT (d) such that for some

negative container element e− of the form (without e) it holds that e �elem
R�

γi(e).

77

(c) The images of the γi are pairwise disjoint.

(d) Let Imγ =
⋃

Image(γi). Then for all sPO ∈ PTPO(q) it holds that π(sPO) ∈ PT (d)\ Imγ

(e) Image(π) ∩ Imγ = ∅.

2. Case: q contains negative pseudo-terms, i.e. PT−(q) 6= ∅.

(a) An injective and total mapping π : PT+(q) → PT (d) exists with the properties as
defined above.

(b) π cannot be extended to a π : (PT+(q) ∪ PT−(q)) → PT (d) such that for some s− ∈
PT−(q) it holds that s− �pt

R�
π(s−) and such that following properties are satisfied.

i. For some c− ∈ PT−
cont(q) a total and injective mapping γ−i : E+(c−i) → PT (d)

which is suitable for c−i exists with the following properties.
n For all container elements e+, i.e. elements which are of the form pos N e or

e, γ−i is defined and it holds that e+ �elem
R�

γ−i (e+).

n γ−i cannot be extended to a γ−i : (E+(ci)∪E−(ci)) → PT (d) such that for some
negative container element e− which is of the form (without e) it holds that
e− �elem

R�
γ−i (e−).

ii. The images of the γ−i are pairwise disjoint.
iii. With Imγ− =

⋃
Image(γ−i). for all s−PO ∈ PT−

PO(q) it is π(s−PO) ∈ PT (d) \ Imγ−

iv. Image(π) ∩ Imγ− = ∅. F

Definition 5.12 uses the simulation of query pseudo-terms in data pseudo-terms which is
defined in Definition 5.13.

Definition 5.13 (Simulation of Query Pseudo-Terms in Data Pseudo-Terms). Let a query pseudo-
term sq of a query term q and and a data pseudo-term sd of a data term d ∈ D′ ⊆ D be given. sq

simulates (via R�) in sd which is written sq �pt
R�

sd if following holds.

n If sq 6∈ PTcont(q) then

1. (Prop(sq), P rop(sd)) ∈ R�

2. If Obj(sq) ∈ N then (Obj(sq), Obj(sd)) ∈ R�

3. If Obj(sq) ∈ Qg then Obj(sq) �R�
λD′(Obj(sd)).

n If sq ∈ PTcont(q) then

1. (Prop(sd), rdf:type) ∈ R�,

2. (U(sq), Obj(sd)) ∈ R�. F

Finally, the definition uses the simulation of container elements in data pseudo-terms which
is defined in Definition 5.14.

Definition 5.14 (Simulation of Container Elements in a Data Subterm). Let a ground container
element e of the form pos N e′ or of the form e′ be given. Furthermore, let a data pseudo-term
s ∈ PT (d) of a data term d ∈ D′ ⊆ D be given. e simulates (via R�) in s which is written
c �elem

R�
s if the following holds.

78

1. s describes a container membership, i.e. is of the form rdf : N → o, where N is a numeric
literal.

2. If e′ ∈ N then (e′, Obj(s)) ∈ R�.

3. If e′ ∈ Qg then e′ �R�
λD′(Obj(s)). F

Consider Example 5.2 below which illustrates the simulation of container pseudo-terms in
data pseudo-terms.

Example 5.2 (Simulation of Container Pseudo-Terms in Data Pseudo-Terms). Let the data term
d be

1 eg : c a r t {
2 r d f : t ype → r d f : Bag
3 r d f : 1 → eg : milk
4 r d f : 2 → eg : c o f f e e
5 r d f : 3 → eg : sugar
6 eg : weight → ”2 .5 kg ”
7 }

and let the query term q be

1 : whatever {{
2 bagOf{{ : item1 , : item2 }}
3 (o p t i o n a l r d f : 2 → eg : c o f f e e)
4 (wi thout eg : cu r r en cy → eg : euro)
5 }}

Since the optional pseudo-term of q is ground it will be treated as an ordinary positive pseudo-term.
Hence, the ground query term to be simulated in the data term is the following.

1 : whatever {{
2 bagOf{{ : item1 , : item2 }}
3 r d f : 2 → eg : c o f f e e
4 (wi thout eg : cu r r en cy → eg : euro)
5 }}

Let R� = {(:whatever,eg: cart), (rdf :Bag,rdf :Bag), (:item1,eg:milk), (:item2,eg:sugar)}. Then, fol-
lowing holds.

n (:whatever,eg: cart) ∈ R�.

n bagOf{{ :item1, :item2}} �pt
R�

rdf :type → rdf :Bag because U(bagOf{{ :item1, :item2}}) =
rdf :Bag and (rdf :Bag,rdf :Bag) ∈ R�.

n For R� an injective (thus suitable for bagOf{{ :item1, :item2}}) mapping γ exists:

l γ(:item1) =rdf : 1 → eg:milk, :item1 �elem
R�

eg:milk because (:item1, eg:milk) ∈ R�.

l γ(:item2) =rdf : 3 → eg:sugar, :item2 �elem
R�

eg:sugar because (:item2, eg:sugar) ∈ R�.

79

Imγ = Image(γ) = { rdf : 1 → eg:milk, rdf : 3 → eg:sugar }. Thus, for the simulation of non-
container pseudo-terms of q the following set of data pseudo-terms are available for the remain-
ing pseudo-term simulation: {rdf : 2 → eg: coffee , eg:weight → ”2.5kg” }. This set contains the
data pseudo-term rdf : 2 → eg: coffee in which the query pseudo-term rdf : 2 → eg: coffee simulates.
Since for the remaining query pseudo-term (without eg:currency → eg:euro) there exists no simula-
tion partner (because eg:currency → eg:euro does not simulate in the remaining data pseudo-term
eg:weight → ”2.5kg”) it holds that q simulates in d.

There are six different extensions of R� and for each of these extensions a suitable mapping for
the bag pseudo-term exists.

Suppose another query q′ of the form

1 : whatever {{
2 bagOf{{ pos 1 : item1 , pos 2 : item2 }}
3 }}

Identical to the simulation of q in d, (:whatever,eg: cart) ∈ R�. For the container pseudo-term
which is very similar to the container pseudo-term in q, except the fact that the container elements
are extended by position specifications, only one extension of R� exists such that there is a suitable
mapping γ which maps pos 1 :item1 to rdf : 1 → eg:milk and pos 2 :item2 rdf : 2 → eg: coffee .
Thus, q′ also simulates in d, but from the six possibilities of simulating the container elements of q
in d are only one remains for the container elements in q′. F

5.4 Notes on the Simulation of Ground Query Terms in Data Terms

During the investigation of the simulation of ground query terms in data terms, several inter-
esting topics came up. These are discussed in the following section.

5.4.1 Simulation into Sets of Normalized Data Terms, Connectives for Query Terms

A ground query term may simulate in several or all data terms of a given set of normalized data
terms. As mentioned above, this results from the fact that the data terms are normalized, thus,
the subjects are all on the same level, whereas in query terms subjects may occur on abitrary
levels. Unlike in XcerptXML, the structure of the query term, which results from composition, is
irrelevant. Thus, a ground query term can also be said to simulate in a set of normalized data
terms which can be defined as follows.

Definition 5.15 (Simulation of a Ground Query Term in a Set of Normalized Data Terms). Let
D′ ⊆ D be a set of normalized data terms and tq be a ground query term. tq simulates (via R�) in
D′, which is written as tq �R�

D′, if a td ∈ D′ exists such that td = λD′(Sub(tq)) and tq �R�
td

(according to Definition 5.12). F

With Definition 5.15 the simulation can be extended to conjunction, disjunction and nega-
tion of ground query terms.

80

Definition 5.16 (Simulation of Conjuction, Disjunction and Negation of Ground Query Terms
in a Set of Normalized Data Terms). Let D′ ⊆ D be a set of normalized data terms, and let tq
and t′q be ground query terms. Then following holds.

n and{tq, t′q} �R�
D′ if tq �R�

D′ and t′q �R�
D′.

n or{tq, t′q} �R�
D′ if tq �R�

D′ or t′q �R�
D′.

n not tq �R�
D′ if for all td ∈ D′ it is not the case that tq �R�

td. F

5.4.2 Data Term Selector Revised

During the simulation of a ground query term which has ground query terms at object posi-
tions in a dataset G, λG selects appropriate data terms by which the simulation can proceed.
This includes the search for the first data term in G to start the simulation (cf. Definition 5.6).
Thus, a data term selector supersedes root nodes. Whereas root nodes could be easily added
to XcerptRDF , the simulation does not become easier. Moreover, root nodes are not part of the
data model of RDF.

The following Example 5.3 shows how a query is evaluated on cyclic data by simulation
using data term selectors.

Example 5.3 (λG on a Cyclic Data Term). Let the cyclic data term td = a{ b → c{ d → e{ f →
a } } } be given. Furthermore, let the ground query term tq = e{{ f → a{{ b → c }} }} be given.
Let R� = {(e, e), (f, f)}. First, td is normalized to t1d = a{ b → c }, t2d = c{ d → e } and t3d =
e{ f → a }.

n Sub(tq) = e and λG(Sub(tq)) = t3d = e{ f → a }. Thus, the simulation starts by showing
that tq �R�

t3d.

n (Sub(tq), Sub(t3d)) ∈ R�, so that it remains to show that f → a{{ b → c }} �pt
R�

f → a.

n (f, f) ∈ R� and a{{ b → c }} ∈ Qg, so that it remains to show that a{{ b → c }} �R�
λG(a).

Since λG(a) = t1d = a{ b → c } it is clear that both terms simulate.

Altogether, it holds that tq �R�
td. F

According to Example 5.3 the query term is completely read while pseudo-term simulation
and data term selection λG follows the reading of the query term. If the pseudo-term simulation
or λG cannot follow, e.g. if the pseudo-terms do not simulate, the simulation fails. The simula-
tion terminates as soon as the query term is completely read because every qery term is finite
and probably cyclic query terms have always an acyclic (linear) representation in XcerptRDF .

5.4.3 Matching of Blank Nodes Against Blank Nodes by Simulation of their Concise
Bounded Descriptions

As the simulation of ground query terms in data terms was intrdoced, the matching between
blank nodes can be discussed from another perspective considering concise bounded descrip-
tions (cf. [24]). The matching of a blank node b1 with another blank node b2 shall be equivalent
to the notion of finding a suitable blank node b2 for b1 in the data. For b1 the blank node b2 is

81

suitable when the concise bounded description of b1 can be found in the concise bounded de-
scription of b2. This could be described more formally in the following proposition that specifies
the the matching of blank nodes against blank nodes more specifically as given in Definition
5.5.

Definition 5.17 (Matching of Blank Nodes Against Blank Nodes by Simulation). A blank node
b1 matches against another blank node b2 if and only if cbd(b1) �R�

cbd(b2), where cbd(b) is the
concise bounded description of b. F

This definition actually captures the notion between matching between blank nodes in con-
trast to Definition 5.5 in which it is said that two blank nodes always match. However, the
replacement of Definition 5.5 by Definition 5.17 in the simulation as given in Definition 5.12
yield the same simulation results.

In order to show that both definitions of matching between blank nodes do not affect the
results of simulation (and hence subsumption), consider two XcerptRDF terms t1 and t2, both
having blank nodes in subject position, i.e. Sub(t1) = b1 ∈ B and Sub(t2) = b2 ∈ B. Ac-
cording to Definition 5.5 b1 always matches with b2. Thus, whenever blank nodes are matched
according to Definition 5.5, all possible simulation candidates remain to be tried. That is, the
matching between blank nodes according to Definition 5.5 has no effect on the simulation re-
sults. According to Definition 5.17 the actual pseudo-term simulation of t1 and t2 is only done
when cbd(b1) simulates in cbd(b2). However, since both concise bounded descriptions are sub-
graphs of or equal to the graphs described by t1 and t2, it holds that whenever t1 �R�

t2 it is
also the case that cbd(b1) �R�

cbd(b2).

Definition 5.17 refines the matching between blank nodes by simulating the concise bounded
descriptions of t1 in that of t2, which, however, is already contained in the simulation of the
entire graphs described by t1 and t2. Despite this efficiency consideration, one can argue that
Definition 5.17 is more elegant than Definition 5.5 in the sense that it captures the notion of
matching between blank nodes more directly and profoundly than it is done in Definition 5.5.

5.4.4 About the Shorthand Notations for Containers in Query and Data Terms

As mentioned in Section 4, shorthand notations for RDF containers in data terms are replaced
by their respective longhand notations, whereas within query terms these shorthand notations
are retained and hence immediately evaluated. The evaluation of container shorthand nota-
tions in query terms against their respective longhand notations in data terms, however, leads
to complications which are discussed hereafter.

One interesting query example is the querying of a single RDF container in a data term
by several XcerptRDF query container pseudo-terms. Consider the following data term which
models a tutorial group.

82

1 eg : tu to r i a lGroup {
2 rd f : type → rd f : Bag
3 rd f : 1 → eg : john
4 rd f : 2 → eg : j im
5 rd f : 3 → eg : tim
6 rd f : 4 → eg : anna
7 rd f : 5 → eg : j u l i a
8 }

The following query term retrieves all possible partitions of the container into two contain-
ers, one consisting of two members and the other consisting of three members.

1 var X {{
2 bagOf{{ var A , var B}}
3 bagOf{{ var C , var D, var E}}
4 }}

However, such a query cannot be evaluated because according to Definition 5.12 the simu-
lation of the query term in the data term fails. Due to the injectivity of the simulation, only one
bagOf-pseudo-term of the query term can simulate in the data pseudo-term rdf:type → rdf:Bag.
An implicit revocation of the injectivity of the mapping for bagOf-pseudo-term to the rdf:type →
rdf:Bag would be a remedy. However, this leads to an unintuitive and unsystematic semantics
of XcerptRDF queries and provides the risk that the user might be hindered in understanding the
query evaluation of XcerptRDF. Therefore, another approach could be to introduce the revoca-
tion of injectivity by delimiters as discussed in Section 3.8 with which the user can decide when
bagOf-pseudo-terms shall be mapped without requiring injectivity. Following this approach, by
the use of semicolons for this purpose, the query term could then be rewritten as follows.

1 var X {{
2 bagOf{{ var A , var B}} ;
3 bagOf{{ var C , var D, var E}}
4 }}

The semicolon could indicate that both bagOf-pseudo-terms shall simulate in the same
pseudo-term rdf:type → rdf:Bag. The element lists of the bagOf-containers would still have
to simulate in distinct data pseudo-terms. This approach, however, is ambiguous. Beside the
meaning of the semicolon as previously described, the semicolon could also express that the el-
ements of each bagOf-pseudo-term shall be mapped injectively, whereas both element lists may
be mapped to the same data pseudo-terms. The latter reading of the semicolon is even likely to
be more intuitive than the former reading, since the semicolon would comprise the complete
pseudo-terms including their element lists.

This example shows that evaluation of XcerptRDF container shorthand notations against their
respective RDF longhand notations can be very involved. As a remedy, the shorthand notations
of RDF containers could also be retained within data terms. Additionally, it would be necessary
to reduce RDF container descriptions to the respective XcerptRDF shorthand notations resem-
bling the treatement of container descriptions in XcerptRDF query terms. However, in this thesis

83

such a reduction is not considered. This decision stems from the fact that the shorthand nota-
tions of RDF containers exceeds the expressiveness of pure RDF, whereas it has been decided
for this thesis that XcerptRDF data terms are considered to retain the expressivity of pure RDF.

5.5 Deciding Subsumption - Simulation of Query Terms in Query
Terms

This section discusses the simulation of XcerptRDF query terms into XcerptRDF query terms. This
kind of simulation is intended to serve as a method for deciding subsumption. Subsumption
imposes an partial ordering of query terms with respect to their generality: A query term q is
more general than (or subsumes) another query term q′ if and only if all valid answers of q′ are
also valid for q where validity of answers is defined by the simulation of ground query terms in
data terms (cf. Section 5.2). Using the simulation of query terms in data terms, subsumption
can be defined as given in Definition 5.18.

Definition 5.18. A query term q subsumes a query term q′ which is written q �S q′ if and only
if for all data terms d ∈ D it holds that whenever q′ � d then q � d. In other words: let
answer(q) =def {d ∈ D | q � d}. Then the subsumption is defined as q �S q′ ⇔ answer(q′) ⊆
answer(q) F

The latter reading of Definition 5.18 shows that subsumption actually defines a partial or-
dering of query terms since these properties are inherited from the subset-relation.

Subsumption can be used as an optimization method for query evaluation. Knowing that a
query term q subsumes q′ avoids a redundant determination of answers for q′ since these are
already contained in the evaluation of q.

The simulation of query pseudo-terms in query pseudo-terms differs from the pseudo-term
simulation of query pseudo-terms in data terms introduced in Definition 5.21. Whereas in Def-
inition 5.12 ground query terms are considered, the simulation between query terms is defined
on non-ground query terms (non-ground in the sense that it contains XcerptRDF variables). As a
consequence, the matching of labels must be extended in order to consider XcerptRDF variables.

Definition 5.19 (Matching of Labels Including XcerptRDF Variables). A label l1 matches against
a label l2, written as l1 � l2, if one of the cases as given in Definition 5.5 or one of the following
cases hold.

n Both l1 and l2 are XcerptRDF variables, i.e. l1, l2 ∈ V .

n l1 ∈ V and l2 ∈ N . F

One the one hand, the simulation of XcerptRDF container shorthand notations in property-
object pseudo-terms is replaced by the simulation of container shorthand notations in container
shorthand notations since for simplicity it has been decided to retain existing shorthand nota-
tions and to reduce longhand notations to their respective shorthand notations in query terms.
On the other hand, additional cases must be considered, e.g. the simulation of negative pseudo-
terms in negative pseudo-terms. As another example, in query terms not only labels may occur

84

as objects but also query terms. The simulation of query terms into query terms given in Defin-
tion 5.20 uses the simulation of query pseudo-terms into query pseudo-terms (cf. Definition
5.21).

Definition 5.20 (Simulation of Query Terms into Query Terms). Let two query terms q and q′

be given. One says that q simulates (via R�) in q′, written as q �R�
q′ if (Sub(q), Sub(q′)) ∈ R�

and the following holds.

1. Case: Both q and q′ do not contain negative pseudo-terms PT−(q) = ∅ and PT−(q′) = ∅

(a) A total and injective mapping π : PT+(q) → PT+(q′) exists such that for all s ∈
PT+(q) it holds that s �pt

R�
π(s).

2. Case: q contains negative pseudo-terms, i.e. PT−(q) 6= ∅, PT−(q′) = ∅

(a) An total and injective mapping π : PT+(q) → PT+(q′) as described above exists.

(b) π is not extensible to a π : (PT+(q) ∪ PT−(q)) → PT+(q′) such that for some s− ∈
PT−(q) it holds that s− �pt

R�
π(s−).

3. Case: Both q and q′ contain negative pseudo-terms, i.e. PT−(q) 6= ∅ and PT−(q′) 6= ∅

(a) An total and injective mapping π : (PT+(q)∪PT−(q)) → (PT+(q′)∪PT−(q′)) exists.

(b) On PT+(q), γ is given as described above.

(c) π is not extensible to a π : (PT+(q) ∪ PT−(q′)) → PT+(q′) such that for some s− ∈
PT−(q) it holds that s− �pt

R�
π(s−) and π(s−) ∈ PT+(q′) \ Image(π).

(d) For all s− ∈ PT−(q) it holds that π(s−) ∈ PT−(q′) and π(s−) �pt
R�

s−. F

Beside the syntactic specifities of query terms, simulation between query terms (and thus
between query pseudo-terms) is carefully designed to serve as a decision procedure for sub-
sumption between query terms.

Note that in Definition 5.20 optional pseudo-terms are disregarded. From the viewpoint of
subsumption this is eligible since optional pseudo-terms never shrink the set of possible answers
for a query term. Thus, optional pseudo-terms do not affect subsumption.

The simulation of query pseudo-terms is given in Definition 5.21 and uses the simulation of
container elements into container elements as given in Definition 5.22.

Definition 5.21 (Simulation of a Query Pseudo-Term in a Query Pseudo-Term). Let two query
pseudo-terms sq and s′q of arbitrary XcerptRDF query terms q and q′ be given. One says that sq �pt

R�

s′q if the following holds.

n If sq ∈ PTPO(q) then s′q ∈ PTPO(q′) and the following statements are valid.

1. (Prop(sq), P rop(s′q)) ∈ R�

2. If Obj(sq) ∈ N then one of the following alternatives hold.

(a) Obj(s′q) ∈ N and (Obj(sq), Obj(s′q)) ∈ R�.
(b) Obj(s′q) ∈ Qg and (Obj(sq), Sub(Obj(s′q))) ∈ R�.

85

3. If Obj(sq) ∈ Qg, then Obj(s′q) ∈ Qq and Obj(sq) �R�
Obj(s′q).

n If sq ∈ PTcont(q) then s′q ∈ PTcont(q′). Furthermore, (U(sq),U(s′q)) ∈ R� and the following
holds.

l Case: E−(sq) = ∅ and E−(s′q) = ∅.
1. A total mapping γ : E+(sq) → E+(s′q) suitable for sq exists.

2. For all e ∈ E+(sq) it holds that e �elem
R�

γ(e).

l Case: E−(sq) 6= ∅ and E−(s′q) = ∅.
1. A total mapping γ : E+(sq) → E+(s′q) as described above exists
2. γ cannot be extended to a γ : (E+(sq) ∪ E−(sq)) → E+(s′q) such that for some

e− ∈ E−(sq) it holds that e− �elem
R�

γ(e−).

l Case: E−(sq) 6= ∅ and E−(s′q) 6= ∅.
1. A total mapping γ : (E+(sq) ∪ E−(sq)) → (E+(s′q) ∪ E−(s′q)) suitable for sq exists
2. On E+(sq), γ is as described above.
3. γ is not extensible to a γ : (E+(sq)∪E−(sq)) → E+(s′q) such that γ(e−) ∈ E+(s′q)\

Image(γ) for some e− ∈ E−(sq).
4. For all e− ∈ E−(sq) it holds that γ(e−) �elem

R�
e−. F

Since container elements of container descriptions in query terms are not further simulated
in property-object pseudo-terms (cf. Definition 5.14), a new kind of pseudo-term simulation,
viz. simulation of container elements in container elements, is necessary which is given in
Definition 5.22.

Definition 5.22 (Simulation of Container Elements in Container Elements). Given two container
elements e1 of the form pos N e′1 or e′ and e2 of the form pos N e′2 or e′2. e1 is said to simulate
(via R�) in e2 which is written e1 �elem

R�
e2 if one of the following two cases hold.

1. If e′1 ∈ N ∪ V and e′2 ∈ N ∪ V then (e′1, e
′
2) ∈ R�.

2. If e′1 ∈ N ∪ V and e′2 ∈ Qq then (e′1, Sub(e′2)) ∈ R�.

3. If e′1 ∈ Qg then e′2 ∈ Qg and e′1 �R�
e′2. F

The following Example 5.4 shows how simulation of query terms into query terms is com-
puted.

Example 5.4 (Simulation of Query Terms into Query Terms to Decide Subsumption). Let the
query term q be given as follows.

1 var U {{
2 var V → var W
3 bagOf{{ var X , var Y}}
4 (wi thout eg : knows → var W{{ f o a f : knows → eg : j im }})
5 }}

86

Furthermore, let the query term q′ be given as follows.

1 var A {{
2 f o a f : knows → var B
3 bagOf{ var C , var D}
4 (wi thout eg : knows → var B)
5 }}

We want to show that q simulates into q′.

n Let R� = {(var U, var A), (var V, foaf :knows), (var W, var B), (rdf :Bag, rdf :Bag), (var X,
var C), (var Y, var D), (eg:knows, eg:knows), (var B, var W)}. Thus, R� satisfies the many-to-
one property as requested.

n The subjects match, i.e. (var U,var A) ∈ R�.

n Case 3 of Definition 5.20 holds. Let π be the following mapping.

l var V → var W 7→ foaf :knows → var B.
l bagOf{{var X, var Y}} 7→ bagOf{var C, var D}.

n var V → var W �pt
R�

foaf :knows → var B because (var V, foaf :knows) ∈ R� and (var W,var B)
∈ R�.

n bagOf{{var X, var Y}} �pt
R�

bagOf{var C, var D} because U(bagOf{{var X, var Y}}) =
rdf :Bag, U(bagOf{var C, var D}) =rdf :Bag and (rdf :Bag,rdf :Bag) ∈ R�.

n Let γ be the suitable mapping for bagOf{{var X, var Y}}, i.e. injective and total as follows.

l var X 7→ var C and var X �elem
R�

var C because (var X,var C) ∈ R�.

l var Y 7→ var D and var Y �elem
R�

var D because (var Y,var D) ∈ R�.

n (without eg:knows→ var W{{ foaf:knows→ eg:jim }}) cannot be mapped to any positive pseudo-
term in q′ because every positive pseudo-term is already in the image of π.

n (without eg:knows → var W{{ foaf:knows → eg:jim }}) 7→ (without eg:knows → var B) and
(without eg:knows → var B) �pt

R�
(without eg:knows → var W{{ foaf:knows → eg:jim }}) be-

cause (eg:knows,eg:knows) ∈ R� and (var B,var W) ∈ R�.

n Thus, π is injective and total as requested.

Thus, q �R�
q′ and hence q subsumes q′. F

Besides the syntactic differences of XcerptXML and XcerptRDF, the simulation relations of
query terms into query terms of XcerptRDF and XcerptXML also differ in the property 3c in Defini-
tion 5.20. This property stipulates that a query term q1 simulates into a query term q2 not only if
all negative pseudo-terms in q1 can be mapped injectively to appropriate negative pseudo-terms
in q2 but also if none of the negative pseudo-terms in q1 can be mapped injectively to a positive
pseudo-term unused by the pseudo-term mapping π in q2, such that they simulate in the sense
of 5.21. This is necessary because otherwise, there were query terms which would simulate
according to Definition 5.20 but are not in the subsumption hierarchy. Consider the following
ground XcerptRDF query terms.

87

q1 q2

1 a {{
2 (without b → c)
3 (without d → e)
4 }}

1 a {{
2 b → c
3 (without b → c)
4 (without d → e)
5 }}

Assume that property 3c in Definition 5.20 is not required. Then q1 simulates into q2. As the
simulation of ground query terms into ground query terms is designed to serve as a decision
procedure for subsumption, one expects that q1 subsumes q2, i.e. answer(q2) ⊆ answer(q1) (cf.
Definition 5.18). That is, if q2 simulates into a data term d then q1 simulates into d as well.
Now, let d be a{b → c}. The query term q2 simulates into d but q1 does not. That is, q1 does
not subsume q2 and thus, the simulation without the property 3c in Definition 5.20 yields an
incorrect result.

5.6 Deciding Leanness of RDF Graphs - Simulation of Data in Data
Terms

A permissive usage of blank nodes in RDF graphs carries the risk of redundancy. For the formal
foundations of RDF, as a kind of graph normalization, as well as for an efficient answering
of queries it is considerable to detect these redundancies. Moreover, merging of two RDF
graphs can lead to redundant knowledge. For example, consider an RDF graph containing :x
{ foaf :name → ‘‘ John’’} and another containing eg:john{foaf:name → ‘‘ John ’’, foaf :phone
→ ‘‘555−1234’’}. The merge of both RDF graphs preserves both data terms, although the knowl-
edge represented by the first data term is already contained in the second data term. Therefore,
the notion of lean graphs is introduced (cf. [15]). In this section, it is discussed how simulation
of data terms into data terms can be used to check leanness of RDF graphs which are given
as sets of XcerptRDF data terms. Therefore, Definition 5.23 recapitulates the notion of an RDF
graph according to [15].

Definition 5.23 (RDF Graph). An RDF graph is defined as a set of RDF triples. RDF triples are
3-tuples consisting of a subject, a predicate and an object (also cf. Section 2.1). F

Furthermore, Definition 5.24 recapitulates the notion of lean graphs according to [15].

Definition 5.24 (Lean Graphs (According to [15])). Let G be an RDF graph. G is called lean if
it has no instance G′ which is a proper subset of G.
G′ is called an instance of G if there exists a mapping m : B → N such that some or all blank
nodes b in G are replaced by m(b). Recall that B denotes the set of blank nodes and N denotes the
set of RDF nodes (cf. Definition 5.1). F

Intuitively, no subgraph of a lean graph can be omitted without changing the knowledge
represented by the graph. The following Example 5.5 illustrates how Definition 5.24 can be
used to show the non-leanness of an RDF graph.

Example 5.5 (Leanness of RDF Graphs). Let G1 = {(eg:a, eg:b, eg:c), (:X, eg:b, eg:c), (:Y,
eg:b, eg:c)} be an RDF graph. To show that G1 is not lean we have to find a mapping m : B → N
which yields an instance G′ ⊂ G1. Let m be as follows: :X 7→ eg:a, :Y 7→ eg:a. Hence we get

88

G′ = {(eg:a, eg:b, eg:c)} and G′ ⊂ G1. Thus, G1 is not lean.
As another example, let G2 = {(:X, p, :Y), (:Y, p, :X)}. This graph is lean, since there’s no
mapping which yields an instance being a proper subset of G2:

n :X 7→ :Y yields the triple (:Y, p, :Y) 6∈ G2

n :Y 7→ :X yields the triple (:X, p, :X) 6∈ G2

n The combination of both also does not yield an instance being a proper subset of G2.

Thus, G2 is lean. F

Transferred to XcerptRDF, leanness concerns sets of normalized data terms. For example, the
data set

1 : someone { f o a f : knows → : someoneElse } ,
2 eg : john { f o a f : knows → eg : anna }

is not lean, since the latter data term already contains the knowledge expressed by the first
data term. The latter data term entails the first data term. Thus, the first data term can be
omitted.

In this section, a special kind of simulation-relation is introduced to determine (non-)leanness
of sets of normalized XcerptRDF data terms. But therefore, it is necessary to refer to those data
terms which have as object labels the subject of a given data term d. Consider the following
Definition 5.25.

Definition 5.25. Let an arbitrary set of normalized data terms D′ ⊆ D be given. Let d ∈ D′.
Define δ(d) as the set of normalized data terms in D′ in which the subject of d occurs as object
labels: δ(d) =def {d′ ∈ D′|∃s ∈ PT (d′) : Obj(s) = Sub(d)} F

With the Definition 5.25 the simulation of data terms into data terms can be defined as
given in Definition 5.26.

Definition 5.26 (Simulation of Data Terms into Data Terms). Let an arbitrary set of normalized
data terms D′ ⊆ D and two normalized data terms d1, d2 ∈ D′ be given. d1 simulates (via R�) in
d2, written as d1 �L

R�
d2, if the following holds.

1. (Sub(d1), Sub(d2)) ∈ R�

2. A total mapping π : PT (d1) → PT (d2) exists such that for all s ∈ PT (d1) it holds that
s �pt

R�
π(s). If d1 = d2 then π is not the identity mapping.

3. If there is an object label oi in d1 which is subject of a data term d ∈ D′, then for oj in d2

with (oi, oj) ∈ R� there also exists a data term d′ ∈ D′ with subject oj and d �L
R�

d′.

4. The domain and the range of R� without identity mappings are disjunct . That is, with
R6=

� =def R� \ {(l, l) | (l, l) ∈ R�} it holds that domain(R6=
�) ∩ range(R6=

�) = ∅.

5. For all d1, d2 ∈ D′ it holds that if d1 �L
R�

d2 then for each d ∈ δ(d1) a data term d′ ∈ δ(d2)
exists such that d �L

R�
d′. F

89

The properties 1 and 2 are similar to the other kinds of simulation-relations as described
in the sections above. However, the restriction in property 2 that π may not be the identity
mapping when a data term is simulated into itself is necessary since otherwise data terms
always simulate into themselves. Concerning the property 3 consider the following Example
5.6.

Example 5.6 (Necessity of the Property 3 in Definition 5.26). Consider the RDF graph G =
{((eg:a, eg:b, eg:c), (eg:a, eg:b, :X), (:X, eg:b, eg:d)}. According to Definition 5.24 the RDF
graph G is lean. Rewrite G as the following set of normalized data terms D′.

1 eg : a { eg : b → eg : c , (d1)
2 eg : b → : X }
3 : X { eg : b → eg : d } (d2)

Without the property 3 in Definition 5.26 the data term d1 simulates into itself because

n Let R� = {(eg:a, eg:a), (eg:b, eg:b), (:X, eg:c), (eg:c, eg:c)}

n (eg:a, eg:a) ∈ R�

n eg:b → :X �pt
R�

eg:b → eg:c

n eg:b → eg:c �pt
R�

eg:b → eg:c

n The pseudo-term mapping is not the identity mapping.

However, it is disregarded that for :X additional knowledge is given by the data term d2 whereas
for eg:c nothing further is known. Thus, it cannot be assumed that :X and eg:c denote the same
resource. With the property 3 in Definition 5.26 the existence of additional knowledge about :X is
taken into consideration and, hence, the set of data terms is correctly determined as lean. F

Concerning the property 4 the following Example 5.7 serves as a justification.

Example 5.7 (The Necessity of the Property 4 in Definition 5.26). Consider the RDF Graph
G = {(:X, eg:p, :Y), (:Y, eg:p, :X)}. In Example 5.5 it has been shown, that G is lean. Rewrite
G as the following set of normalized data terms D′:

1 : X { eg : p → : Y } (d1)
2 : Y { eg : p → : X } (d2)

We show that d1 simulates into d2 (by now, disregarding the non-termination which is discussed
later):

n Let R� = {(:X, :Y), (eg:p, eg:p), (:Y, :X)}

n (:X, :Y) ∈ R�

n eg:p → :Y �pt
R�

eg:p → :X, since (eg:p, eg:p) ∈ R� and (:Y, :X) ∈ R�.

n For :Y the data term d2 and for :X the data term d1 exists and d2 �L
R�

d1.

90

Thus, without property 4 the data set is supposed to be not lean. Considering the resulting relation
R�, removing identity mappings, R6=

� = {(:X, :Y), (:Y, :X)} whose domain and range are not
disjunct. Thus, to guarantee that simulation yields the correct result, property 4 must be requested
in Definition 5.26. F

The property 4 excludes identity mappings since these unavoidably appear when simulating
data terms into themselves, which is eligible.

However, not all data terms which simulate into others (by the properties 1 to 4 in Definition
5.26) make sets of normalized data terms non-lean. The reason for this is that for a data term
d references by other data terms are disregarded. From the RDF graph perspective, incoming
edges are disregarded. This issue is discussed in Example 5.8.

Example 5.8 (Necessity of Property 5 in Definition 5.26). Let the lean RDF graph G = {
(:A, eg:r , eg:m), (:A, eg:p, :C), (:B, eg:p, :C), (eg:m, eg:q, :B) } be given. Rewrite the
RDF graph G as the following data set D′:

1 :A { eg : r → eg :m (d1)
2 eg : p → : C }
3 : B { eg : p → : C } (d2)
4 eg :m { eg : q → : B } (d3)

However, this data set shows to be not lean in the sense of Definition 5.26 excluding property 2
because d2 simulates into d1 (again, by now, disregarding non-termination):

n Let R� = {(:B, :A), (eg:p, eg:p), (:C, :C)}.

n (:B, :A) ∈ R�

n eg:p → :C �pt
R�

eg:p → :C

The reference of d3 to d2 via eg:q which makes the graph lean is disregarded. In the given data set it
is necessary that each data term in which d2 occurs as object must also have a simulation partner.
This is formalized by property 5 in Definition 5.26. Accordingly, these data terms are comprised
by δ(:B{ eg:p → :C }) which evaluates to { eg:m{eg:q → :B} } for which no data term d′ ∈ D′

exists such that d′ simulates into eg:m{eg:q → :B}. Thus, according to Definition 5.26 (including
property 2) D′ is recognized as lean. F

One issue of Definition 5.26 which appeared in the examples above is that the simulation
of data terms does not always terminate. Therefore, consider the following set of normalized
data terms.

1 : x { eg : b → : x } (d1)
2 eg : a { eg : b → eg : a } (d2)

With R� = {(:x, eg:a), (eg:b, eg:b)} it is (:x, eg:a) ∈ R�. Furthermore, eg:b → :x �pt
R�

eg:b → eg:a. For :x as well as for eg:a data terms exists, viz. d1 and d2 which have to be tested
next. That is, in order to show that d1 simulates into d2 one has to show that d1 simulates into
d2.

91

This example shows that it is rational to consider a cyclic simulation to terminate with result
true whenever the cycle only depends on itself. The example above shows the smallest possible
cycle. As the simulation of d1 into d2 only depends on itself the simulation can be aborted
and considered as terminating with result true. If the simulation of any member of such cycle
additionally depends on a simulation which is not part of that cycle this dependency is decisive
for the simulation to succeed or to fail.

The simulation of data terms into data terms is constructed in a way that it can be used
to check non-leanness of sets of normalized data terms. This idea is summarized in Definition
5.27.

Definition 5.27 (Non-Leanness of a Set of Normalized XcerptRDF Data Terms). A set of normal-
ized XcerptRDF data terms which is denoted by D′ is called non-lean if there are two data terms
d1, d2 ∈ D′ such that d1 �L

R�
d2. F

The following Example 5.9 shall demonstrate the recognition of non-leanness of graphs (and
thus sets of XcerptRDF normalized data terms) according to 5.27.

Example 5.9 (Determining Non-Leanness of an RDF Graph). Let the RDF graph G = {(eg:a,
eg:b, eg:c), (eg:a, eg:b, :x), (:x, eg:b, :y), (eg:c , eg:b, eg:e)} be given. G is not lean. Let m be
as follows: :x 7→ c, :y 7→ e. The resulting instance of G is G′ = {(a,b,c), (c ,b,e)} and G′ ⊂ G.
Hence, G is not lean.

Rewrite G as the XcerptRDF data set D′ as follows.

1 eg : a { eg : b → eg : c (d1)
2 eg : b → : x } ,
3 : x { eg : b → : y } , (d2)
4 eg : c { eg : b → eg : e } (d3)

d3 does neither simulate into itself nor does it simulate into d2. d2 does not simulate into itself
nor into d1. The latter can be seen as follows: Mapping eg:b → :y in d2 to eg:b → eg:c in d1

requires that for :y a data term exists which simulates into d3. This is not the case. The same
holds for mapping eg:b → :y to d2 to eg:b → :x in d1.

But d1 simulates into itself: π(eg:b → eg:c) = eg:b → :x and π(eg:b → :x) = eg:b → :x.
Note that according to Definition 5.26 injectivity of π is not required. For :x and for eg:c data
terms exist which simulate as shown above. Furthermore, δ(d1) = ∅, i.e. eg:a does not occur as an
object within a data term in D′. Hence, the property 2 in Definition 5.27 is trivially satisfied.

Besides, d2 simulates into d3: :x matches against eg:c and eg:b → :y �pt
R�

eg:b → eg:e because
eg:b matches against itself and :y matches against eg:e. Furthermore, δ(:x{eg:b → :y}) = {d1}
which we saw that it simulates into itself. Thus, D′ is not lean. F

We introduced the simulation of data terms into data terms with several examples illustrat-
ing the necessity of the properties specified in Definition 5.26, and we defined non-leanness
of sets of normalized XcerptRDF data terms by means of the simulation of data terms into data
terms. Finally, it remains to show that non-leanness of RDF graphs (according to Definition
5.24) is equivalent to non-leanness of the corresponding sets of normalized XcerptRDF data
terms (according to Definition 5.27). This is stated in the following Proposition 5.1.

92

Proposition 5.1 (Equivalence of Non-Leanness of RDF Graphs and Non-Leanness of Sets of
Normalized XcerptRDF Data Terms). Let G be an arbitrary RDF graph and let D′ be the corre-
sponding set of normalized XcerptRDF data terms. G is not lean (in the sense of Definition 5.24) if
and only if D is not lean (in the sense of Definition 5.27).

Proof. “if”: Let G be a non-lean RDF graph. Then there exists a mapping m : B → N
which creates an instance of G, denoted as G′, in replacing all or some blank nodes b in G by
m(b), such that G′ ⊂ G. There, m cannot be the identity mapping since all triples in G are
syntactically different.
Now, translate G to a set of normalized XcerptRDF data terms D′: for all triples (s, p1, o1),
(s, p2, o2), . . . , (s, pn, on) ∈ G add to D′ the data term s{p1 → o1, p2 → o2, . . . , pn → on}.
Furthermore, construct the finite matching relation R� such that the following is satisfied:

n For all blank nodes b occurring in G for which m(b) is defined, (b, m(b)) ∈ R�.

n For all nodes n occurring in G for which m(n) is undefined, (n, n) ∈ R�.

n m may contain chains of the form x 7→ x1 7→ x2 7→ . . . 7→ xn−1 7→ xn which, how-
ever, are equivalent to x 7→ xn. If m contains such a chain, replace the resulting chain
(x, x1), (x1, x2), . . . , (xn−1, xn) in R� by (x, xn).

We have to show, that with the constructed R�, D′ is recognized as not lean.
Since G is not lean, there exist triples ti in G which are made equal to other triples t′j in G by
application of m. Let d1 be the data term resulting from the translation of these ti sharing the
same subject s and let d2 be the corresponding data term resulting from the translation of these
t′j sharing the same subject s′. By the choice of the ti and tj , either s = s′ or m(s) = s′. We
show that the corresponding XcerptRDF data terms d1 and d2 satisfy the properties requested in
Definition 5.27. In order to prove that d1 �L

R�
d2 we have to show that the requirements given

in Definition 5.26 are satisfied:

n Property 1) By construction of R�, (Sub(d1), Sub(d2)) ∈ R�.

n Property 2) A total pseudo-term mapping π : PT (d1) → PT (d2) exists such that for each
p1 ∈ PT (d1) it is p1 �pt

R�
π(p1) = p2 ∈ PT (d2), i.e. (Prop(p1), P rop(p2)) ∈ R� and

(Obj(p1), Obj(p2)) ∈ R�. We show this by contradiction. Assume that there exists a
pseudo-term p∗ → o∗ in d1 which cannot be mapped to a p′∗ → o′∗ in d2 such that
p∗ → o∗ �pt

R�
p′∗ → o′∗. For G, this would mean that there exists a triple t = (s, p∗, o∗)

which is mapped by m to t∗ = (s′, p′∗, o′∗) in G′ and t 6= t∗. However, this contradicts the
assumption that m makes the triples corresponding to d1 equal to the triples correspond-
ing to d2. Consider the case d1 = d2. If π is the identity, all triples being translated to
d1 would be mapped to themselves. This would only be possible when R� relates labels
to themselves, and thus, m would have to map the nodes of these triples to themselves.
However, this would mean that G contains duplicates which is impossible, since G is a
set.

n Property 3) We show this by contradiction. Assume that for an object label o in d1 there
exists a data term d ∈ D′ with Sub(d) = o but for the object label o′ in d2 with (o, o′) ∈ R�
there does not exist a data term d′ ∈ D′ with Sub(d′) = o′. For the RDF graph G this would
mean that m maps the triples ti = (o, pi, ni) ∈ G to t′i = (o′, pi, n

′
i) ∈ G′ but t′i 6∈ G, which

contradicts the assumption that G′ ⊂ G. Now, assume that for o′ a data term d′ ∈ D′

93

with Sub(d′) = o′ exists but d 6�L
R�

d′. However, as a consequence there would exist at
least one triple t in G which is mapped by m to a triple t′ in G′ which is not in G. This
contradicts the assumption that G is not lean.

n Property 4) R� satisfies this property by construction.

n Property 5) This can be shown by contradiction. Assume that for some d ∈ δ(d1) there is
no d′ ∈ δ(d2) such that d �L

R�
d′. Then, again, for some triples t the mapping m would

yield triples t′ ∈ G′ which are not in G, and hence G′ would not be a proper subset of G
which contradicts the assumption that G is not lean.

“only if”: Let D′ be a non-lean set of normalized XcerptRDF data terms. That is, there exists
a matching relation R� for d1 and d2 such that d1 �L

R�
d2.

Construct an RDF graph G corresponding to D′ in a straightforward manner: for each data
term s{p1 → o1, p2 → o2, . . . , pn → on} ∈ D′ add to G the triples (s, p1, o1), (s, p2, o2), . . . ,
(s, pn, on). Construct the mapping m required in Definition 5.24 such that for all (x, y) ∈ R�
with x 6= y, m(x) = y. We have to show that m creates an instance of G, denoted by G′, such
that G′ is a proper subset of G. This is done by disproving that 1) G′ = G and 2) G′ 6⊆ G. As a
consequence it remains that G′ ⊂ G.

n Ad 1) Assume that G′ = G, i.e. all triples in G are mapped to themselves. That is, by
construction, m = ∅ because R� is the identity and by construction m does not contain
identity mappings. Assume that m 6= ∅, i.e. there exists a triple t ∈ G which is mapped
by the application of m to a triple t1. However, to maintain G′ = G, t1 has to be mapped
to a t2 which in turn has to be mapped to another t3. This chain must continue because
otherwise there would be two triples which are made equal by the application of m, thus,
yielding G′ 6= G. However, this chain of mappings cannot continue infinitely when we
assume that G is finite. That is, there must exist a tn within the chain which is finally
mapped to t. However, the chain t 7→ t1 7→ t2 7→ . . . 7→ tn 7→ t is equivalent to t 7→ t. m
cannot contain such a chain because it is constructed according toR� and the intersection
of the domain and range of R� is disjunct. Hence m = ∅. Because of R�, for all d ∈ D′,
d �L

R�
d. As R� is the identity, the subject of d matches with itself and the pseudo-term

mapping π must also be the identity mapping. However, this violates the property 2 in
Definition 5.26.

n Ad 2) Assume that G′ 6⊆ G. Then there exists a triple tm which results from the appli-
cation of m to a triple t ∈ G but tm 6∈ G. Let d be the normalized XcerptRDF data term
whose translation led to t. As we assume that tm results from the application of m, which
is constructed by R�, d must be affected by R�. Since R� is constructed during the sim-
ulation of d1 into d2, d must be considered in this simulation (because of the properties
3 and 5 in Definition 5.26). Since tm 6∈ G there cannot be a data term d′ ∈ D′ such that
d �L

R�
d′. However, this violates one of the properties 3 and 5 in Definition 5.26. Hence,

we would have to conclude that d1 6�L
R�

d2 contradicting the assumption that d1 �L
R�

d2.
Thus, G′ must be a proper subset of G. F

94

Chapter 6

Conclusion and Pending Issues

The contributions of this thesis can be subdivided into two parts. First, a new syntax for RDF
querying and authoring capabilities is introduced. As in XcerptXML, data terms serve as an ab-
stract representation of RDF data in XcerptRDF. The intuitive syntax of XcerptRDF is adapted
from TRIPLE [23] because it supports two perspectives valuable for the modelling: the graph
based view, where the arrows symbolize the directed edges in an RDF graph and a slot-oriented
notation supporting object-oriented design. This basic syntax is systematically enriched in vari-
ous shorthand notations such as composition, numerous factorizations, and syntactic sugar for
RDF specifities like type descriptions for nodes and properties, reification and containers as
well as collections. This syntax offers convenience in writing RDF to a great extent such that
XcerptRDF certainly bears comparison with any other RDF serialization format.
Furthermore, the syntax of query terms introduces all well-known and established query con-
structs of XcerptXML to XcerptRDF. This comprises not only the specification of incompleteness,
but also optional and negative property-object pairs. There are two types of variables intro-
duced to XcerptRDF: label variables which can be bound to RDF nodes and CBD variables which
can be bound to concise bounded descriptions of RDF nodes. Moreover, this thesis extensively
investigates different kinds of querying RDF containers and shows that the shorthand notations
for an RDF container are more expressive than pure RDF. This necessitates to rather evaluate
these shorthand notations than their respective longhand notations in query terms.

Second, it is investigated how queries can be evaluated using simulation unification. This is
achieved by consideration of a reasonable subset of XcerptRDF terms. Data terms are normalized
in order to keep the evaluation as simple as possible. The normalization comprises the expan-
sion of shorthand notations and factorizations as well as the lifting of subjects. It is shown that
the rules of normalization terminate and are confluent.
The evaluation uses three different ways of simulation: the simulation of ground query terms
in data terms to determine answers of queries, the simulation of ground query terms in ground
query terms to determine subsumption and, last but not least, the simulation of data terms in
data terms to determine leanness of sets of data terms. This thesis also shows that determining
the leanness of sets of data terms defined by simulation is equivalent to determining the lean-
ness of the corresponding RDF graph according to [15].
The simulation of ground query terms in data terms is developed with capabilities to evaluate
shorthand notations for containers in query terms. The simulation of ground query terms in

95

ground query terms has shown to be an appropriate and intuitive way of deciding subsump-
tion. The development of this kind of simulation also shows that the simulation of ground query
terms in ground query terms as specified in XcerptXML must be corrected in order to decide sub-
sumption. Finally, it is shown that the simulation of data terms in data terms as described in
this thesis is appropriate to determine leanness of RDF graphs.

Finally, the thesis also comprises a prototypical implementation of the simulation of ground
query terms in data terms and the simulation of query terms in query terms. Because of time
limitations the simulation of data terms in data terms could not be finished in time. This imple-
mentation therefore is meant to serve as a proof of concept.

This thesis is the first step towards querying RDF in Xcerpt. That is why several issues are
either not covered by this thesis, e.g. due to time limitations, or are only marginally described
because of simplicity. Thus, several issues are pending:

The Evaluation of Shorthand Notations of RDF Collections And the desc Construct The eval-
uation of RDF collections, i.e. RDF lists, is much more involved than the evaluation of
container shorthand notations because the elements of a list are not within a single data
term but distributed within the set of data terms. For example, to query whether an
element is within a list the evaluation must follow the rdf: rest-edges within the data
terms to an arbitrary length. This is infeasible without the notion of incompleteness in
depth of XcerptXML which is expressed by the language construct desc. The introduction
of the (qualified) descendant construct in forthcoming versions of XcerptRDF will certainly
increase the expressivity of XcerptRDF because it enables for example the querying of tran-
sitive closures.

The Evaluation of Concise Bounded Descriptions This thesis does not specify the meaning
of construct terms which consist only of a CBD variable or in which CBD variables occur
at subject or object positions. In conjunction with the depth counter introduced in Section
3.4.1 the evaluation is likely to be very involved. Probably, the evaluation also makes use
of a kind of qualified descendant construct in which a maximum depth can be specified.

The Evaluation of Optional and Negative Pseudo-Terms with all Possible Scopes In the eval-
uation described in this thesis only property-object pseudo-terms of the (without p → o}
and (optional p → o} are considered. Due to time limitations the other scopes given in
Section 3.4 could not be considered.

Further Element Specifications for Container Shorthand Notations in Query Terms As
it is mentioned in Section 3.4.2 the different kinds of brackets introduced by XcerptXML do
not suffice because there are further eligible queries given in Section 3.4.2 which cannot
be expressed in XcerptRDF without conflicting with the meanings of the diverse bracketing
used in XcerptXML.

Unordered Queries for Ordered Container and Collections Due to limitations in time this
thesis does not specify how unordered queries can be included to the evaluation of
XcerptRDF queries.

96

Acknowledgements.

This research has been funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme project REWERSE number
506779 (cf. http://rewerse.net).

97

http://rewerse.net

98

Bibliography

[1] B. Adida, M. Birbeck, RDFa Primer Embedding Structured Data in Web Pages, W3C
Working Draft, October 2007, http://www.w3.org/TR/xhtml-rdfa-primer/

[2] Ola Andersson et al., Scalable Vector Graphics (SVG) 1.1 Specification, W3C Rec-
ommendation, January 2003, http://www.w3.org/TR/SVG/

[3] D. Beckett, Turtle – Terse RDF Triple Language, November 2007,
http://www.dajobe.org/2004/01/turtle/

[4] D.Beckett, B. McBride, RDF/XML Syntax Specification (Revised), W3C Recommen-
dation, February 2004, http://www.w3.org/TR/rdf-syntax-grammar/

[5] T. Berners-Lee, Primer: Getting into RDF & Semantic Web using N3, August 2005,
http://www.w3.org/2000/10/swap/Primer

[6] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier (URI): Generic
Syntax, RFC 3986, January 2005, http://tools.ietf.org/html/rfc3986

[7] O. Bolzer, Towards Data-Integration on the Semantic Web: Querying RDF
with Xcerpt, Diploma Thesis, 2005, Institute for Informatics, University of
Munich, http://www.pms.ifi.lmu.de/publikationen/diplomarbeiten/Oliver.Bolzer
/Oliver.Bolzer.DA.pdf

[8] M. Birbeck, S. Pemperton, B. Adida, RDF/A Syntax A collection of attributes
for layering RDF on XML languages, W3C Editor’s Draft, October 2005,
http://www.w3.org/2001/sw/BestPractices/HTML/2005-rdfa-syntax

[9] D. Brickley, B. McBride, RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation, February 2004, http://www.w3.org/TR/rdf-schema/

[10] D.Brickley, L. Miller, FOAF Vocabulary Specification 0.91, Namespace Document,
November 2007, http://xmlns.org/foaf/0.1/,

[11] J. Broekstra, A. Kampman, SeRQL: An RDF Query and Transformation Language,
International Semantic Web Conference, ISWC 2004, August 2004

[12] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, S. Berger, Querying the
Web Reconsidered: Design Principles for Versatile Query Languages, Journal of
Semantic Web and Information Systems (IJSWIS) 1 (2), April-June 2005,
http://www.pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2005-3.pdf

99

[13] F. Bry, T. Furche, B. Linse, Data Model an Query Constructs for Versatile
Query Languages: State-of-the-Art and Challenges for Xcerpt, Proceedings of
4th Workshop on Principles and Practice of Semantic Web Reasoning (PP-
SWR 2006), Budva, Montenegro (10th - 11th June 2006), LNCS 4187,
2006, Springer-Verlag, http://www.pms.ifi.lmu.de/publikationen/PMS-FB/PMS-
FB-2006-19/PMS-FB-2006-19.pdf

[14] J. Carroll, Ch. Bizer, P. Hayes, P. Stickler, Named Graphs, Provenance and Trust,
WWW 2005, May 2005, Japan, http://www2005.org/cdrom/docs/p613.pdf

[15] P. Hayes, RDF Semantics, W3C Recommendation, February 2004,
http://www.w3.org/TR/rdf-mt/

[16] M. Kifer, G. Lausen, J. Wu, Logical Foundations of Object-Oriented and Frame-
Based Languages, Journal of the Association for Computing Machinery, May 1995,
http://www.cs.umbc.edu/771/papers/flogic.pdf

[17] G. Kline, J. J. Carroll, Resource Description Framework (RDF): Con-
cepts and Abstract Syntax, W3C Recommendation, February 2004,
http://www.w3.org/TR/rdf-concepts/

[18] D. König, Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topolo-
gie der Streckenkomplexe, Akademischer Verlag, Leipzig, 1936

[19] B. McBride, RDF Primer, W3C Recommendation, February 2004,
http://www.w3.org/TR/rdf-primer/

[20] A. Philips, M. Davis (Eds.), Tags for Identifying Languages, RFC 4646, September
2006, http://www.rfc-editor.org/rfc/rfc4646.txt

[21] Eric Prud’hommeaux, Andy Seaborne, SPARQL Query Language for RDF, W3C Rec-
ommendation, January 2008, http://www.w3.org/TR/rdf-sparql-query

[22] S. Schaffert, Xcerpt: A Rule-Based Query and Transformation Language for
the Web, PhD Thesis, 2004, Institute for Informatics, University of Mu-
nich, http://www.pms.ifi.lmu.de/publikationen/dissertationen/PMS-DISS-2004-
1/ Schaffert Sebastian.pdf

[23] M. Sintek, S. Decker, TRIPLE—An RDF Query, Inference, and
Transformation Language, DDLP’2001, Japan, October 2001,
http://triple.semanticweb.org/doc/ddlp2001/TripleReport.pdf

[24] P. Stickler, CBD - Concise Bounded Description, W3C Member Submission, June
2005, http://www.w3.org/Submission/CBD/

[25] N. Walsh, Using Qualified Names (QNames) as Identifiers in XML Content, W3C Tag
Finding, March 2004, http://www.w3.org/2001/tag/doc/qnameids.html

[26] http://www.microformats.org

[27] http://infomesh.net/2002/rdfinhtml/

100

	Introduction
	Extending XcerptXML for Querying RDF
	Contributions and Outline of this Thesis

	Preliminaries
	The Data Model of RDF
	Built-In Vocabularies of RDF
	Reification
	Containers and Collections
	RDF Schema

	Introduction to Turtle, SPARQL and TRIPLE
	Turtle - Terse RDF Triple Language
	SPARQL
	Anonymous Blank Nodes
	Nested Collection Elements
	SPARQL Query Constructs

	TRIPLE

	Introduction to XcerptXML
	Data Terms
	Query Terms
	Construct Terms
	XcerptXML Programs

	XcerptRDF Language Constructs
	RDF Terms in XcerptRDF
	Data Terms
	Simple Statements
	Composition of Data Terms

	Shorthand Notations for Graph Patterns
	Factorizations of Data Terms
	Factorization of Subjects
	Factorization of Predicate-Object Pairs
	Factorization of Subject-Object Pairs
	Factorization of Subject-Predicate Pairs
	More Factorizations

	Types for Nodes and Properties
	Reification
	Containers and Collections
	The EBNF Grammar of XcerptRDF Data Terms

	Query Terms
	Variables for Concise Bounded Descriptions
	Shorthand Notations for Containers in Query Terms
	The EBNF Grammar of XcerptRDF Query Terms
	XcerptRDF Queries - Connectives for Query Terms

	Construct Terms
	From XcerptXML to XcerptRDF Back and Forth
	Xcerpt by Example
	Digression: Specifying Injectivity in XcerptXML by Delimiters

	Normalizing XcerptRDF Terms
	Normalizing XcerptRDF Data Terms
	Expanding XcerptRDF Data Terms
	Flattening an Expanded XcerptRDF Data Term

	Evaluation of Queries and Data in XcerptRDF
	Preliminaries
	Matching Labels

	Anwering Queries
	The Simulation of Query Terms with Containers in Data Terms
	Preliminaries for the Evaluation of Container Pseudo-Terms
	Extending the Simulation of Ground Query Terms in Data Terms

	Notes on the Simulation of Ground Query Terms in Data Terms
	Simulation into Sets of Normalized Data Terms, Connectives for Query Terms
	Data Term Selector Revised
	Matching of Blank Nodes Against Blank Nodes by Simulation of their Concise Bounded Descriptions
	About the Shorthand Notations for Containers in Query and Data Terms

	Deciding Subsumption
	Deciding Leanness of RDF Graphs

	Conclusion and Pending Issues

