14-DX2
RDF Querying in Xcerpt

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE

Project number: IST-2004-506779

Project instrument: EU FP6 Network of Excellence (NoE)

Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)

Nature of document: R (report)

Dissemination level: PU (public)

Document number: IST506779/Munich/14-DX2/D/PU/al
Responsible editors: Benedikt Linse

Reviewers: Tim Furche and Francois Bry

Contributing participants: Munich

Contributing workpackages: 14

Contractual date of deliverable: —

Actual submission date: 10 April 2008

Abstract

A versatile query language provides capabilities of querying ordinary XML based data as well
as Semantic Web data and thus builds a bridge between both worlds. Xcerpt, a pattern-based
deductive query and transformation language for semi-structured data, shows to be a perfectly
appropriate candidate to become such a versatile query language.

This thesis investigates and develops new language constructs for Xcerpt which allows con-
venient querying of RDF graphs. These language constructs also comprise numerous shorthand
notations for specific RDF constructs such as containers, reification and concise bounded de-
scriptions.

Besides the design of the new syntax, this thesis also investigates how RDF queries can be
evaluated in Xcerpt. It is thereby shown that Xcerpt’s simulation unification is a very well-suited
means to cope with RDF graphs: On the one hand, it can be easily modified and adapted for
RDF. On the other hand, simulation unification can be used for a variety of tasks: the evaluation
of RDF queries, the optimization of query evaluation by determining subsumption and finally
the checking of leanness of RDF graphs.

Keyword List
language design, RDF, Xcerpt, syntax, constructs

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth
Framework Programme.

(© REWERSE 2008.

ii

RDF Querying in Xcerpt

Alexander Pohl!

! Institute for Informatics, University of Munich, Germany
http://pms.ifi.1lmu.de/

10 April 2008

Abstract

A versatile query language provides capabilities of querying ordinary XML based data as well
as Semantic Web data and thus builds a bridge between both worlds. Xcerpt, a pattern-based
deductive query and transformation language for semi-structured data, shows to be a perfectly
appropriate candidate to become such a versatile query language.

This thesis investigates and develops new language constructs for Xcerpt which allows con-
venient querying of RDF graphs. These language constructs also comprise numerous shorthand
notations for specific RDF constructs such as containers, reification and concise bounded de-
scriptions.

Besides the design of the new syntax, this thesis also investigates how RDF queries can be
evaluated in Xcerpt. It is thereby shown that Xcerpt’s simulation unification is a very well-suited
means to cope with RDF graphs: On the one hand, it can be easily modified and adapted for
RDF. On the other hand, simulation unification can be used for a variety of tasks: the evaluation
of RDF queries, the optimization of query evaluation by determining subsumption and finally
the checking of leanness of RDF graphs.

Keyword List
language design, RDF, Xcerpt, syntax, constructs

iv

Contents

(0__Introduction|
[1.1 Extending Xcerpt*™™ for Querying RDF
1.2 ntributions an tline of this Thesig
B Preliminarics
2.1 The Data Modelof RDE
[2.2 Built-In Vocabulariesof RDH
[2.2.1 Reification|.
[2.2.2 Containers and Collections|
23 RDFSchemal
2.3 Introduction to Turtle, SPARQL and TRIPLE|
[2:3:1 Turtle - Terse RDF Triple Language]
32 SPAROT] oo i i
2.3.2.1 Anonymous Blank Nodes|
......
2.3.2.3 SPARQL Query Constructs|.
R33TRIPLE . . - o v v ovveee et e
[2.4 Introduction to Xcerpt™™
....................
2.4.2 Querylerms|
2.4.3 Construct Terms|
[2.4.4 Xcerpt*™ Programs|
[3_ Xcerpt™™" Language Constructs|
3.1 RDF Termsin Xcerpt™™|
(2.2 Datalerms|,
[3.2.1 Simple Statements|
[3.2.2 Composition of Data Terms]
[3.3 Shorthand Notations for Graph Patterns]
[3.3.1 Factorizations of Data Termd.
[3.3.1.1 Factorization of Subjects|.
[3.3.1.2 Factorization of Predicate-Object Pairs]
[3.3.1.3Factorization of Subject-Object Pairg] .
[3.3.1.4 Factorization of Subject-Predicate Pairs|
B3 1.5 More Facforizations

.................................... 33

3.3.4 Containers and Collections] 34

[3.3.5 The EBNF Grammar of Xcerpt™" Data Terms| 37

[3.4 Query Terms| e 39
[3.4.1 Variables for Concise Bounded Descriptions] 40

[3.4.2 Shorthand Notations for Containers in Query Terms]. 41

3.4.3 The EBNF Grammar of Xcerpt™>F Query Terms|. 44

3.4.4 Xcerpt®™" Queries - Connectives for Query Terms| 47

Bo _Construc Terms] . .« « v v v v v i e e e e e e e e e e 47
[3.6 From Xcerpt*™™™ to Xcerpt™ " Backand Forthf 50
[3.7 XcerptbyExample] 52
3.8 Digression: Specifying Injectivity in Xcerpt™™ by Delimiters| 58

[4 Normalizing Xcerpt™>" Terms| 61
[4.1 Normalizing Xcerpt™>" DataTerms| 61
4.1.1 Expanding Xcerpt™ DataTerms|o ... 62

4.1.2 Flattening an Expanded Xcerpt™" Data Term| 65
[5_Evaluation of Queries and Data in Xcerpt*"'| 69
...................................... 70
[5.1.1 Matching Labels| 72

B2 Anwerlng QUETTES|. oo v v vt e 73
[5.3 The Simulation of Query Terms with Containers in Data lerms]. 76
[5.3.1 _Preliminaries for the Evaluation of Container Pseudo-Terms| 76

[5.3.2 Extending the Simulation of Ground Query Terms in Data Terms| 77

[5.4 Notes on the Simulation of Ground Query Terms in Data Terms| 80
[5.4.1 Simulation into Sets of Normalized Data Terms, Connectives for Query |

[Termsl o e e 80
[5.4.2 Data Term Selector Revised| 81

[5.4.3 Matching of Blank Nodes Against Blank Nodes by Simulation of their |

| Concise Bounded Descriptions|. 81
[5.4.4 About the Shorthand Notations for Containers in Query and Data Terms| . 82

[5.5 Deciding Subsumption| L Lo oo 84
[5.6 Deciding Leanness of RDF GIaphs|. « v v v v o v i i e e e e e e 88

|6 Conclusion and Pending Issues| 95

vi

Overview of this Deliverable

Xcerpt is the rule-based query language is at the heart of the REWERSE project. Its pattern-
based approach to querying semi-structured and graph-structured data has proven to be intu-
itive to the user and a declarative way of writing reusable and easy to understand programs.
One of the declared goals of developing Xcerpt is its data versatility. Since XML has become the
de facto lingua franca for representing data on the web, and for Xcerpt’s ability to natively deal
with XML Xcerpt already can treat all Web formats that have some kind of XML serialization
such as HTML, RDF, Topic Maps, microformats, etc. RDF as one of these formats is prone to
become one of the basic building blocks for the semantic web. Besides its possible serialization
as XML, RDF also offers an abstract graph data model, that is distinct from its XML serializa-
tion and is the recommended way of keeping RDF data in mind. XML query languages such as
XQuery, XSLT, and also Xcerpt have been used to syntactically process the XML serializations
of RDF data, but this approach has often ignored the underlying semantics of RDF. Xcerpt?P¥
is an attempt to overcome this limitation, by adhering to the true graph data model of RDF,
providing a syntax aimed at RDF specificities such as RDF containers, collections, reifications,
blank nodes and concise bounded descriptions. While Xcerpt®P¥ is a somewhat ambitious
extension to Xcerpt, it builds upon Xcerpt’s strengths such as simulation unification, chaining,
rich query patterns, and extends its possibilities in a straightforward and coherent manner. The
outcome is a versatile query language that is especially useful for the plethora of use-cases that
depend on querying both ordinary and Semantic Web data.

In the following deliverable we discuss the latest revision of RDF access in Xcerpt. In contrast
to previous approaches (as described in deliverable 14-D6 and [71]), this revision

1. introduces language constructs specifically for querying RDF data.

2. shows that simulation unification can be leveraged to check and ensure leanness of RDF
graphs,

3. adapts the Xcerpt data model to properly fit RDF graphs.

Chapter 1

Introduction

The Resource Description Framework (cf. [4} [17) [19] [15] [9]), or RDF for short, is one of the
cornerstones of Semantic Web technology. It is a formal language that enables the provision
of meta-data, i.e. data that describe conventional web data. Additionally, RDF can be used for
making statements about real world entities that are not existent or retrievable in the world
wide web, for example persons or organisations. In RDF, one can make statements about
anything that is identifiable by a URI. Thus, RDF is capable of providing meta-data for the con-
ventional web as well as data that is unrelated to conventional web data, for example social
networks as they are established in the FOAF project [10] — one of several RDF applications.
Semantic Web and conventional web data are often associated with each other by kind of refer-
ences (for example, using the link-Element in HTML, cf. [27]) or by mixing both conventional
and Semantic Web data (for example, RDF in the head section of an HTML document [27],
RDFa [8| [1]], Microformats [26]). Apart from these “explicit” associations, both worlds also
come together in query scenarios. As an example, consider the following case: The names of
all people of a FOAF network whose email addresses are listed in a given HTML page should
be extracted and the relationships between the persons to which the names refer to should be
rendered as an SVG graphic (cf. [2]]). Usually, in order to support both data formats, this task
involves a query processor for the email addresses in the HTML page, a query processor for the
RDF document representing the FOAF network and a transformation processor for the creation
of the SVG graphic out of the query results. Today’s standard query languages are not capable
of maintaining such data interrelations, since they can only query either conventional web data
or Semantic Web data so that several kinds of query languages and transformation languages
must be used simultaneously which is inconvenient and tedious. A versatile query language, i.e.
a query language that is able to process both conventional and Semantic Web data, could rem-
edy this situation. In supporting both data models, a versatile query language provides a high
flexibility in processing web data and in offering common language constructs for both worlds
to a great extent; it provides a high convenience and ease in tackling sophisticated querying of
both the conventional and the Semantic Web.

This thesis describes such a versatile query language designed for both semi-structured data
(like XML or HTML) and RDF data. Furthermore, this query language provides complex con-
structions allowing the structuring of answers as desired. This thesis extends the capabilities of
the existing Xcerpt [22] in a way that one can also query and transform RDF data.

3

In this thesis the versatile query language, which combines the semi-structured query lan-
guage with its extension to query RDF, is referred to as Xcerpt. The original language as de-
scribed in [22] only being capable of querying and transforming semi-structured data is referred
to as Xcerpt™L, Finally, the component of Xcerpt for querying and transforming RDF data in-
troduced in this thesis is referred to as Xcerpt®PF. Figuratively, the following equation illustrates
the relation between the three languages:

’ Xcerpt = Xcerpt™ML + XcerptRPF ‘

1.1 Extending Xcerpt*Mt for Querying RDF

In [12] it has been argued that a versatile query language shall exhibit the following three
features at its core.

Convenient and efficient access to any kind of web data A versatile query language should
be able to process both conventional and Semantic Web data disregarding the way they
are made available (e.g. separated in different documents or mixed within a document,
serialization format).

Referential Transparency and answer-closedness A versatile query language should provide
referential transparency (i.e. values only depend on their environments and not on the
point of time in which they are evaluated) and be answer-closed (i.e. querying XML yields
answers compliant to the data model of XML, querying RDF yields answers compliant to
the data model of RDF) which is realized by rules and patterns. Patterns serve as molds
for valid data in which variables are replaced by values. Rules provide basic reasoning
capabilities.

Admissibility of incomplete queries and answers It should be possible to specify the requested
information only partially and to select only important pieces of information from given
answers. This should be admissible due to the heterogeneity and incompleteness of web
data.

Xcerpt™ as a declarative and pattern-based query and transformation language for semistruc-
tured data is referentially transparent, answer-closed and admits incomplete query specifica-
tions as well as incomplete answers. The retention of these features for an extension to query
RDF makes Xcerpt™™!' a versatile query language. For the reasons given below, Xcerpt®™ is
amenable to extensions that are necessary in order to master the challenges that accompany
the extension for dealing with RDF. These challenges, among others, comprise the following
(for a detailed discussion refer to [[13]]).

Data Model The data model of XML is basically a node-labelled tree (i.e. a rooted acyclic
graph) with additional edges expressed using the attributes ID and IDREF possibly yield-
ing non-tree graphs. The data model of RDF is an unrooted graph with labelled nodes and
edges. Since the data model of Xcerpt™" is based on semi-structured graphs Xcerpt®\
can be adapted to RDF more easily than other query languages. Besides the graph nature

4

of Xcerpt™Vs data model, labelled edges as in the RDF data model can also be trans-
formed to unlabelled edges in introducing nodes representing these labels, thus bringing
the data models of XML and RDF closer to each other and paving the way to a common
query language.

Incomplete and Unbounded Data XML data is complete whereas RDF data is incomplete, so
to speak. In contrast to the XML data model RDF does not distinguish between occur-
rences of resources. That is, a resource can be addressed globally, hence allowing anyone
to make statements about a resource. As a consequence, it cannot be assumed that the
knowledge about a given resource is completely given. However, several scenarios are
conceivable in which completeness of data and restricted access to RDF data is required.
As a means to restrain incompleteness of data, named graphs [14] have shown to be
useful in practice.

Many features which are necessary to cope with RDF and other Semantic Web data are
already available in Xcerpt®™L, thus, it is worthwile to undertake the expenditure of extending
Xcerpt®™! for querying RDF:

» Xcerpt™! has the capability of to cope with graph based data.
= Subterms can be specified as unordered.
» Xcerpt®™! rules provide means for RDF entailment.

» The semantics of Xcerpt®™ is intuitive and can be easily extended for RDF querying.

1.2 Contributions and Outline of this Thesis

This thesis discusses and suggests syntactic and semantic extensions to Xcerpt®™L. Xcerpt®™! ex-
tended with RDF querying capabilities will be denoted as Xcerpt®F in this thesis. An overview
of existent RDF query languages is given in order to recognize language constructs being useful
and convenient. These query languages do not only serve as positive examples. In cases of
insufficient constructs, alternative solutions are suggested and discussed. Xcerpt®PF is provided
with a declarative semantics that is tailored for querying RDF. Again, other query languages
serve as examples. Furthermore, this thesis aims at finding and discussing solutions for prob-
lems regarding querying RDF that are currently not or only marginally solved by existent query
languages:

» An intuitive syntax that integrates well to the existing Xcerpt™™r,

= Comprehensive and systematic shorthand notations, also for RDF collections.

Meaningful querying of blank nodes by means of concise bounded descriptions.

Constructs for expressing negative statements.

An intuitive semantics based on the simulation unification of Xcerpt®™!, the core tech-
nique making incomplete queries possible.

5

This thesis shall show that simulation unification turns out to be very useful for querying
RDF as it is appropriate to evaluate queries on the data model of RDF.

Chapter 1 is this introduction. Chapter 2 introduces state-of-the-art serialization formats
and query languages which serve as models for the design of Xcerpt®PF. Chapter 3 introduces
the syntax of Xcerpt®PF and explains the language constructs with numerous examples. Chapter
4 provides a formal description of normalizing Xcerpt®PF terms simplifying the introduction of
the semantics of Xcerpt®PF which is given in Chapter 5. The thesis finishes with a conclusion
and an outline.

Chapter 2

Preliminaries

This chapter gives a short and concise overview of RDF constructs relevant for this thesis and
also introduces important modelling and query languages for RDF serving as models for the
design of XcerptRPF,

2.1 The Data Model of RDF

The Resource Description Framework [4} [9] [17, 15} [19] is a Semantic Web formalism in which
entities (resources or labels) are related to another by binary relations (predicates or properties).
There are three kinds of resources: URIs [6], literals and blank nodes. URIs are globally visi-
ble and, hence, also addressable from other RDF graphs. Furthermore, URIs are considered to
uniquely identify resources, i.e. each occurrence of the same URI denotes the same resource.
In accordance to [[19]], URIs may also be abbreviated by qualified names. For example, the
URI http://www.example.org/persons#john may be abbreviated by eg:john, where the prefix eg
stands for the namespace http://www.example.org/persons#. In this thesis, URIs are abbreviated
by qualified names whenever possible. For frequently used namespaces, this thesis commits to
the prefixes given in Table

Prefix Namespace Comment

rdf http://www.w3.0rg/1999/02/22—rdf—syntax—ns# The namespace for RDF
built-in vocabulary [4]]

rdfs http://www.w3.0rg/2000/01/rdf—schema# namespace for RDF Schema
vocabulary [9]

foaf http://xmlns.com/foaf/0.1/ namespace for the FOAF
vocabulary [10]

eg http://www.example.org/xcerptrdf# namespace for example
resources

Table 2.1: Prefixes and the namespaces for which they stand throughout this thesis

Literals are constant values which are represented as character strings. Literals can be typed
by or can be tagged by XML Language Tags [20]. Blank Nodes represent anonymous (unnamed)
resources and can be seen as existential quantified variables.

Statements in RDF are called triples, each consisting of a subject label, a predicate or prop-
erty label and an object label. Furthermore, RDF does not distinguish between URI occurrences,
except for property resources. This leads to graph-structured data with directed and labelled
arcs (the properties) each connecting two labels (subject and object). Labels are also usually
called nodes because of the graph structured data model.

For example, the following RDF graph states that a person John knows another person Jim,
whereby John is represented by the URI eg:john, the relation knows by the URI foaf:knows and
Jim is represented by the URI eg:jim.

foaf :knows
eg:john

Triples can be seen as logical formulas. The triple above can be written as the logical for-
mula foaf:knows(eg:john, eg:jim), where foaf :knows is a relation symbol, eg:john and eg:jim being
constants.

Using blank nodes, the following graph expresses that there exists someone who knows jim
(whereby knows is further on represented by foaf:knows and Jim by eg:jim) and whose name is
John (whereby the name-relation is represented as foaf:knows).

“John”" "xsd: string |

The use of the blank node in the graph above aims at conveying that the person who knows
Jim and who is named John is not fully identified.

Note that the literal together with its type which, by convention, is attached to the character
string by a preceding “**” is a single node in the graph. The blank node is represented as an
empty node in the graph. This notation is in line with [19]].

However, for RDF modelling languages it is necessary to distinguish between blank nodes.
Otherwise, it is not possible to express graph-structured relationships. Hence, blank nodes can
be given names which, however, are only declared in the scope of the graph in which they
occur. As their names are not visible outside the graph, one says that blank nodes do not have
an intrinsic name. Blank nodes are named by so-called “blank node identifiers”. Resembling
the notation of [[19]], blank node identifiers are written as “_:” followed by an identifier. Using
blank node identifiers, the latter example is as follows.

| “John”" "xsd: string

foaf :knows

There, _:abc123 represents the blank node within the graph. Note that in analogy to URIs
blank nodes with identical blank node identifiers are supposed to be identical, whereas blank
nodes with different blank node identifiers do not necessarily represent different resources.

During reasoning, blank nodes might be identified with other nodes (blank nodes or non-
blank nodes).

2.2 Built-In Vocabularies of RDF

As described in [[19] particular sets of URIs which are used for special purposes are referred
to as vocabularies. These built-in properties share the namespaces http://www.w3.0rg/1999,/02/
22—rdf-syntax—ns# which is usually abbreviated by the prefix rdf. For example, the property
rdf:type is used to specify the concrete type of a resource.

2.2.1 Reification

RDF provides reification as means to make statements about statements. This is useful when
additional information (so-called provenance information) describes existing statements. Such
information comprises, amongst other things, the date of asserting the statement and the author
of the statement. Thus, it is possible to state that there exists a statement which expresses that
the person John knows the person Jim and which is asserted by (represented as eg:author) the
person Anna as pictured by the following RDF graph.

o

df: subject

rdf:predicate

rdf: object

(eg:anna

RDF therefore offers the built-in resources rdf:Statement which specifies that a statement is
a reification of another statement, rdf:subject, rdf:predicate and rdf:object for the specification
of the reified statement itself.

2.2.2 Containers and Collections

RDF offers built-in vocabularies for describing container and collection datatypes such as bags
(multisets), sequences (vectors), alternatives and lists. A tutorial explanation of containers and
collections is given in [19]. The kind of the datatype is given by the rdf:type declaration, cf.
following possibilities.

Container Type Declaration

bag (multiset) rdf:Bag
sequence (vector) rdf:Seq
alternative rdf: Alt
Collection Type Declaration
list rdf: List

The elements of an RDF container are declared by so-called membership-properties which
are of the form rdf: N where N stands for a numeric literal. For example, rdf:_1, rdf: 13 are
membership-properties, whereas rdf:_12f is not. The following RDF graph models a shopping
cart (represented as eg:cart123) as an rdf:Bag container which contains one item of eg:coffee

and two items of eg:milk.
eg:cart123

rdf:type

RDF containers are considered unclosed, i.e. in RDF it is not possible to express that an RDF
container exclusively comprises the declared members. For rdf:Bag and rdf:Alt the order of the
numbering of the membership-properties (rdf:_1, rdf: 2, and further) are irrelevant. However,
the numbering is relevant to distinguish between multiple occurrences of identical elements
within the container.

In contrast to RDF containers, lists as RDF collections can be closed — the empty list is
described by the resource rdf:nil. The structure of a list is straightforward: A list consists of
a list head (declared by the property rdf: first) and a tail (declared by the property rdf: rest)
which in turn is a list. The following graph models the shopping cart of the latter example as
the list [milk,milk,coffee].

rdf:type

rdf: rest

rdf: rest

10

2.2.3 RDF Schema

RDF Schema [9] is a special vocabulary with which one can define application specific vocabu-
laries. This comprises the description of new resource classes and new properties. New classes
are defined by asserting that the rdf:type of a resource is rdfs:Class. Properties are described by
asserting that the rdf:type of a resource is rdfs:Property. Furthermore, the domain (i.e. the set
of potential subjects of the property) can be described by rdfs:domain and the range (i.e. the
set of potential objects of the property) by rdfs:range.

The following graph states that eg:MotorVehicle and eg:Person describe classes, and eg:owns is
a property that relates persons to their vehicles. Furthermore, it states that eg:john is a person
who owns a vehicle of type eg:MotorVehicle.

rdf:type rdf:type

eg:Person eg:MotorVehicle
rdfs:range
rdfs:domain
rdf:type
rdf:type eg:owns rdfs :Property rdf:type
- eg:owns
eg: Joh? qhicle

In RDF classes and properties are integrated in a class (property, resp.) hierarchy, each
class is a subclass of rdfs:Resource and each property is a subclass of rdfs:Property. In order to
describe that a class is a sub-class of another class, the property rdfs:subClassOf is used. In order
to describe that a property is a sub-property of another, the property rdfs:subPropertyOf is used.

2.3 Introduction to Turtle, SPARQL and TRIPLE

This section gives a short overview of the well-known and standard RDF serialization syntax
Turtle and the RDF query languages SPARQL and TRIPLE. The introduction focuses more on
the syntax than on the query evaluation. Several papers discuss and compare the evaluation of
queries of the different RDF query languages.

2.3.1 Turtle - Terse RDF Triple Language

Turtle [3] is a concrete syntax for RDF. It is a subset of N3 [5] and, thus, is generally usable in
systems that support N3. N3, Turtle and derivatives are very easy to use, which certainly is the
reason for several standard query languages being based on these syntaxes.

The building blocks of Turtle are triples of the form <SUBJECT> <PREDICATE> <OBJECT>..
The period finishes the triple. <SUBJECT> and <OBJECT> may be URIs, QNames or Blank

11

Nodes. <PREDICATE> may be URIs or QNames. In order to simplify parsing, URIs are distin-
guished from QNames by parenthesizing them in angle brackets. Blank Nodes are written as
_:<IDENT>, where <IDENT> is a valid identifier. Turtle offers the keyword @prefix to declare
namespace prefixes. The following RDF graph can be described in Turtle as follows.

@prefix eg:
@prefix foaf:
@prefix rdf:

foaf :knows

| “John”" "xsd: string

<http://www. example . org/>
<http://xmlns.com/foaf/0.1/>
<http://http://www.w3.0rg/1999/02/22 —rdf —syntax —ns#>
<http ://www.w3. org/2001/XMLSchema#>

_:rabcl23 foaf:knows eg:john.
_:abcl23 foaf:name ”John”""xsd:string.

1
2
3
4+ @prefix xsd:
5
6
7

Turtle offers shorthand notations for abbreviating groups of triples, sometimes referred to
as factorization. Therefore, the comma is used to repeat the subject and predicate of triples
only differing in the objects (subject-predicate factorization):

1 eg:a eg:p eg:ol,
2 eg:02,
3 eg:03.

This excerpt is syntactic sugar for the following triples:

1 eg:a eg:p eg:ol.
2 eg:a eg:p eg:02.
3 eg:a eg:p eg:03.

Additionally, the semi-colon is used to repeat the subject of triples which only differ in the
predicates and objects. The excerpt

1 eg:a eg:pl eg:o0l;
2 eg:p2 eg:02;

w

eg:p3 eg:03.

abbreviates the following triples:

1 eg:a eg:pl eg:ol.
2 eg:a eg:p2 eg:02.
3 eg:a eg:p3 eg:03.

Finally, Turtle offers shorthand notations for RDF collections (RDF lists). A collection is
written as a parenthesized list of labels. The description

12

1 eg:a eg:p (eg:il, eg:i2, eg:i3).

stands for the following triples:

1 eg:a eg:p _:bl.

2

3 _:bl rdf:first eg:il;

4 rdf:rest _:b2.

5

6 _:b2 rdf:first eg:i2;

7 rdf:rest _:b3.

8

9 _:b3 rdf:first eg:i3;
10 rdf:rest rdf:nil.

Note that this shorthand notation implicitly expresses blank nodes, i.e. the expansion of
this shorthand notation yields blank nodes. In particular, (eg:a, eg:b) describes a valid graph in
Turtle since it can be expanded to the following triples.

_:bl rdf:first eg:a;

1

2 rdf:rest _:b2.

3 _:b2 rdf:first eg:b;

4 rdf:rest rdf:nil.
2.3.2 SPARQL

SPARQL [21] is a query language for RDF which has recently reached W3C Recommendation
status. It is based on a non-XML syntax comparable to Turtle. Additionally, SPARQL offers the
following further language constructs.

2.3.2.1 Anonymous Blank Nodes

Beside the named blank nodes, SPARQL offers anonymous blank nodes (wildcards) which are
written as [], i.e. square brackets. Each occurrence of [] denotes a new blank node not occur-
ring elsewhere in the document. Using anonymous blank nodes, SPARQL offers two forms of
writing the same triple.

1 [] eg:p eg:o.
2> [eg:p eg:o0].

Within these square brackets, Turtle factorizations may occur as shown in line 2. This allows
to describe several triples sharing the same anonymous blank node as subject. Note that

1 [] eg:pl eg:ol;
2 eg:p2 eg:o02.

is not the same as

13

1 [eg:pl eg:0l;
2 eg:p2 eg:02].

since the first triples refer to two distinct blank nodes whereas the second triples refer to the
same anonymous blank node.

2.3.2.2 Nested Collection Elements

Within the shorthand notation for RDF collections as introduced in Turtle, SPARQL allows that
certain syntactic sugar for triples may occur as collection elements. This comprises either RDF
collections themselves or triples within square brackets (i.e. referring to anonymous blank
nodes). The following description shows composition (taken from [21]).

1 (@ [rpoiql C2))
The collection above can be expanded as follows.

_:b0 rdf:first 1 ;

rdf:rest _:bl .

_:bl rdf:first _:b2 .
_:b2 :p :q .

:bl rdf:rest _:b3 .

_:b3 rdf:first _:b4 .
_:b4 rdf:first 2 ;
rdf:rest rdf: nil
_:b3 rdf:rest rdf:nil

O ® N o v A W N e
|

2.3.2.3 SPARQL Query Constructs

SPARQL offers several ways to query data. Using SELECT-queries only variable bindings are
returned (just like in SQL), whereas CONSTRUCT-queries yield RDF graphs. That is, SPARQL
supports answer-closedness. ASK-queries only return “yes/no” answers. Neither RDF graphs,
nor variable bindings are computed. Finally, SPARQL supports the notion of so-called concise
bounded descriptions by DESCRIBE-queries.

SPARQL supports the querying of optional values, but it does not provide syntax for nega-
tion. Negation is realized in SPARQL by a workaround using the predicate isBound by which it
can be tested whether variables are bound to values or not.

The following program queries the URIs which represents the books and the title of the
books the URIs refer to. The RDF document is assumed to be retrievable at http://www.example.org/
books.rdf.

1 PREFIX dc: <http://purl.org/cd/elements/1.1/>
> PREFIX ex: <http://example.org/book/>

3 SELECT ?book, ?title

4+ FROM <http://www. example.org/books.rdf>

s WHERE { ?book dc:title ?title}

14

The program below queries the same as the program above but yields an RDF graph instead
of just variable bindings.

PREFIX dc: <http://purl.org/cd/elements/1.1/>
PREFIX ex: <http://example.org/book/>

PREFIX eg: <http://www.example. org#>
CONSTRUCT { ?book eg:hasTitle ?title }

FROM <http://www. example.org/books.rdf>
WHERE { ?book dc:title ?title}

[T, BT O O C R

2.3.3 TRIPLE

TRIPLE [23] is a query, inference and transformation language for RDF. It allows flexible ab-
breviations not only applicable for the declaration of namespace prefixes but also for replacing
entire QNames being frequently used. For example, the declaration isa := rdf:type allows to use
the name isa as a replacement of rdf:type.

TRIPLE provides a slot-oriented syntax i.e. a Turtle triple eg:s eg:p eg:o. is written in TRIPLE

as eg:s[eg:p —> eg:o]. Furthermore, TRIPLE supports molecules as factorizations of subjects.
The Turtle triples

1 eg:s eg:pl eg:0l;
2 eg:p2 eg:o02.

correspond to the TRIPLE molecule eg:s[eg:pl