
A General Framework for Active Rules in the
Semantic Web

Wolfgang May

Institut für Informatik, Universität Göttingen,
Germany

Joint work with José Júlio Alferes

CENTRIA, Universidade Nova de Lisboa, Portugal

Supported by the EU Network of Excellence

Note: this is not a single talk, but a partially
redundant collection of slides from different talks.

Background: REWERSE NoE

Network of Excellence in the 6th Framework of the
European Commission (3.2004 - 2.2008)

“Reasoning on the Web with Rules and Semantics”

one out of several NoEs (with different focuses) in the area
of the “Semantic Web”:
REWERSE: rule-based methods

about 30 research groups, 150 participating researchers

in 8 “Working Groups” I1-I5 (Rule Markup, Policies, Typing
& Composition, Querying, Dynamics), A1-A3 (Applications:
spatial/temporal, personalization, bioinformatics and 2
“Activities”: Education & Training, Technology Transfer

REWERSE I5 3

REWERSE Working Group I5: “Dynamics”

Behavior in the Semantic Web

General Framework for Evolution and Reactivity in the
Semantic Web (Göttingen, Lisbon)

RuleCore (Skövde)

Xcerpt/XChange (LMU München)

Prova (Dresden)

REWERSE I5 4

Excerpts of this talk ...

... have been given on different aspects at the following events
in 2005:

PPSWR 2005, Dagstuhl, Germany, Sept. 12-16, 2005:
A General Language for Evolution and Reactivity in the Semantic Web

ODBASE 2005, Agia Napa, Cyprus, Okt. 31 - Nov. 4, 2005:
An Ontology- and Resources-Based Approach to Evolution and
Reactivity in the Semantic Web
(Ontology of rules, rule components and languages, and the
service-oriented architecture)

RuleML 2005, Galway, Ireland, Nov. 10-12, 2005:
Active Rules in the Semantic Web: Dealing with Language
Heterogeneity
(Languages and their markup, communication and rule execution
model)

REWERSE A3-I4 Meeting, Hannover, Germany, Nov. 21/22, 2005:
A General Framework for Evolution and Reactivity in the Semantic Web

REWERSE I5 5

Excerpts of this talk ... (Cont’d)

...in the first half of 2006:

REWERSE Annual Meeting Munich, March 21-24, 2006:
A General Framework for Active Rules in the Semantic Web
(WG I5 State of the Art Report)

EDBT-Colocated Workshop “Reactitivity in the Semantic Web”, Munich,
March 31, 2006:
An ECA Engine for Deploying Heterogeneous Component Languages
in the Semantic Web
(ECA Level + Prototype)

PPSWR 2006, Budva, Montenegro, June 10/11, 2006:
Extending an OWL Web Node with Reactive Behavior
(An active domain node in OWL/Jena)

EID 2006, Brixen-Bressanone, Italy, June 11/12, 2006:
An Ontology-Based Approach to Integrating Behavior in the Semantic
Web

REWERSE I5 6

Excerpts of this talk ... (Cont’d)

...in the second half of 2006:

Dagstuhl Seminar “Scalable Data Management in Evolving Networks”,
IBFI Dagstuhl, Oct. 23-27, 2006:
Distributed Processing of Active Rules over Heterogeneous
Component Languages in the Semantic Web

RuleML 2006, Athens, Georgia, USA, Nov. 10/11, 2006:
– Combining ECA Rules with Process Algebras for the Semantic Web

(ECA and CCS)
– A Framework and Components for ECA Rules in the Web (Demo)

REWERSE I5 7

Further Contributors

At DBIS, Universität Göttingen, Germany:
Erik Behrends, Oliver Fritzen, Franz Schenk
Students: Carsten Gottschlich, Tobias Knabke, Elke von
Lienen, Daniel Schubert, Frank Schwichtenberg, Sebastian
Spautz

At CENTRIA, Universidade Nova de Lisboa, Portugal:
Ricardo Amador
Students:

REWERSE I5 8

Thesis:
There is not a single formalism/language for
describing and implementing behavior in the
Semantic Web.

Hypothesis:
Semantical approaches (i.e., not “programming”,
but based on an ontology of behavior) follow the
Event-Condition-Action paradigm.

Justification:
We show that a general framework approach with
modular components covers many existing con-
cepts that will prove useful for behavior in the Se-
mantic Web.

REWERSE I5 1

Part I: Overview and Situation

REWERSE I5 2

Motivation and Goals

(Semantic) Web:

XML: bridge the heterogeneity of data models and
languages

RDF, OWL provide a computer-understandable semantics

... same goals for describing behavior:

description of behavior in the Semantic Web

semantic description of behavior

Event-Condition-Action Rules are suitable for both goals:

operational semantics

ontology of rules, events, actions
REWERSE I5 3

Behavior

evolution of individual nodes (updates + reasoning)

cooperative evolution of the Web (local behavior +
communication)

different abstraction levels and languages

REWERSE I5 4

Behavior

decentral P2P structure, autonomous nodes

communication

behavior located in nodes

local level:
based on local information (facts + received
messages)
executing local actions (updates + sending messages
+ raising events)

Semantic Web level (in a given application area):
execution located at a certain node, but “acting globally”:

global information base
global actions (including intensional RDF/OWL
updates)

REWERSE I5 5

Update Propagation and Semantic Updates

Overlapping ontologies and information between different
sources:

updates: in the same way as there are semantic query
languages, there must be a semantic update language.

updating OWL data: just tell (a portal) that a property of a
resource changes
intensional, global updates
⇒ must be correctly realized in the Web!

reactivity – see such updates as events where sources
must react upon.

REWERSE I5 6

Cooperative Evolution of the Semantic Web

There are not only queries, but there are activities going on in
the Semantic Web:

Semantic Web as a base for processes

Business processes, designed and implemented in
participating nodes: banking, . . .

Predefined cooperation between nodes:
travel agencies, . . .

Ad-hoc rules designed by users

The less standardized the processes (e.g. human travel
organization), the higher the requirements on the Web
assistance and flexibility

⇒ local behavior of nodes and cooperative behavior in “the
Web”

Communication

⇒ specify and implement propagation by
communication/propagation strategies

Propagation of Changes

Information dependencies induce communication paths:

direct communication: subscribe – push
based on registration; requires activity by provider

direct communication: polling – pull
regularly evaluate remote query
– yields high load on “important” sources
– outdated information between intervals

+ mapping into local data, view maintenance
REWERSE I5 8

Abstraction Levels

OWL OWL View

RDF RDF View

XML Web XML View XML View

local logical XML View

Databases SQL SQL

XMLXML

XML

RDF

+ Reasoning

Mapping + Union

REWERSE I5 9

Individual Semantic Web Node

local state, fully controlled by the node

[optional: local behavior; see later]

stored somehow: relational, XML, RDF databases

local knowledge: KR model, notion of integrity, logic
Description Logics, F-Logic, RDF/RDFS+OWL

query/data manipulation languages:

database level, logical level

mapping? – logics, languages, query rewriting, query
containment, implementation

For this local state, a node should guarantee consistency

REWERSE I5 10

A Node in the Semantic Web

A Web node has not only its own data, but also “sees” other
nodes:

agreements on ontologies (application-dependent)

agreement on languages (e.g., RDF/S, OWL)

how to deal with inconsistencies?

accept them and use appropriate model/logics,
reification/annotated statements (RDF), fuzzy logics,
disjunctive logics

or try to fix them⇒ evolution of the Semantic Web

tightly coupled peers: sources are known

predefined communication

“open” world: e.g. travel planning

A Node in the Semantic Web (Cont’d)

Non-closed world

incomplete view of a part of the Web

how to deal with incompleteness?
different kinds of negation
queries, information about events

how to extend this view?

find appropriate nodes
information brokers, recommender systems
negotiation, trust

ontology querying and mapping

static (model theory) vs. dynamic (query answering in
restricted time; detection of changes/events)

different kinds of logics, belief revision etc.

Global Evolution

Semantic Web as a network of communicating nodes.

Dependencies between different Web nodes,

global Semantic Web model is an integrating view,
overlapping sources→ consistency

(the knowledge of) every node presents an excerpt of it

view-like with explicit reference to other sources
+ always uses the current state
- requires permanent availability/connectivity
- temporal overhead

materialize the used information
+ fast, robust, independent
- potentially uses outdated information

view maintenance strategies (web-wide, distributed)

Evolution and Behavior

Behavior is ...
... doing something

when it is required

upon user interaction, a message, or a service call

as a reaction to an internal event (temporal, update)

upon some events/changes in the “world”

Working Hypothesis

⇒ use Event-Condition-Action Rules as a well-known paradigm.

REWERSE I5 14

Part II: The Approach

ECA Rules

“On Event check Condition and then do Action”

Active Databases

paradigm of Event-Driven Behavior,

modular, declarative specification in terms of the domain
ontology

sublanguages for specifying Events, Conditions, Actions

simple kind (database level): triggers

high level: Business Processes, described in terms of the
domain ontology

REWERSE I5 16

ECA Rules

“On Event check Condition and then do Action”

paradigm of Event-Driven Behavior,

modular, declarative specification in terms of the domain
ontology

sublanguages for specifying Events, Conditions, Actions

global ECA rules that act “in the Web”

Requirements

ontology of behavior aspects

modular markup definition

implement an operational and executable semantics
REWERSE I5 17

Events and Actions in the Semantic Web

applications do not only have an ontology that describes
static notions

cities, airlines, flights, hotels, etc., relations between
them ...

but also an ontology of events and actions

cancelling a flight, cancelling a (hotel, flight) booking,

allows for correlating actions, events, and derivation of facts

intensional/derived events are described in terms of
actual events
e.g., “economy class of flight X is now 50% booked”
(derived by “if simple event and condition then (raise)
derived event”)

REWERSE I5 18

Events and Actions in the Semantic Web

applications do not only have an ontology that describes
static notions

cities, airlines, flights, etc., relations between them ...

but also an ontology of events and actions

cancelling a flight, cancelling a (hotel, flight) booking,

Domain languages also describe behavior:

Domain Ontology

Events Concepts Actions

Classes Relationships Individuals

influence

raise

REWERSE I5 19

Adding Events and Actions to the Ontologies
Domain languages also describe behavior:

Domain Ontology

Events Concepts Actions
<trvl:canceled-flight

flight=“LH123”>

<trvl:reason>...</trvl:reason>

</trvl:canceled-flight>

<trvl:cancel-flight
flight=“AF456”>

<trvl:reason>...</trvl:reason>

</trvl:cancel-flight>

Classes Relationships Individuals

influence

raise

Ontology of behavior aspects

correlate and axiomatize actions, events and state

combine application-dependent semantics with generic
concepts/patterns of behavior

Abstraction Levels and Types of Rules

Semantic
Level Events

Semantic
Level Actions

Integrated (RDF)
Level Events

Integrated (RDF)
Level Actions

Domain Ontology

Local (XML,SQL)
Level Events

Local (XML,SQL)
Level Actions

A
bstraction

ECA Business

ACE Mapping

localized ECA

ACE Mapping

ECE Deriv.

ECE Deriv. ACA Reduct.

ACA Reduct.

ECA triggers

database level:

actions=events

ECE Deriv. ACA Reduct.

REWERSE I5 21

Behavior on the Web: Abstraction Levels
OWL ontology level: Business Processes

XML/RDF level:

cooperation and communication between closely
coupled nodes on the XML Web level

local behavior of an application on the logical level

database level: internal behavior (cf. SQL triggers)
in terms of database items

Additional Derivation and Implementation Rules

high-level actions are translated to lower levels

events are derived from

lower-level events, same-level events

same-level actions

Sources of Events

local events: updates on the local knowledge

database level: updates of tuples, insertion into XML
data

actions on the ontology level
(e.g., banking:transfer(Alice, Bob, 200) or
cancel-flight(LH0815))

application-independent events: communication events,
system events, temporal events

REWERSE I5 23

Ontologies including Dynamic Aspects

Application-Domain Ontology

Atomic Events Concepts Atomic Actions

correlate actions, state, and events

REWERSE I5 24

Ontologies including Dynamic Aspects

Ontologies of Application-Independent Domains

messaging, time,

database level events

Atomic Events Concepts Atomic Actions

Application-Domain Ontology

Atomic Events Concepts Atomic Actions

talk about

correlate actions, state, and events

REWERSE I5 24

Example: Travel Domain

defines an ontology

Individual Nodes

access to train/flight schedules, hotels etc.

allow for actions (book a ticket, cancel a flight)

emit events (delayed or cancelled flights)

<travel:canceled-flight flight=“LH123”>

<travel:reason>bad weather</travel:reason>

</travel:canceled-flight>

rules for deriving events can also also be part of the
domain (“flight fully booked”)

REWERSE I5 25

Triggers on the XML Level

similar to SQL triggers:
ON event WHEN condition BEGIN action END

event is an (update) event on the XML level

immediately caused and identical with an update action

native storage: DOM Level 2/3 events

relational storage: must be raised/detected internally

Tasks of triggers:

local behavior of a node (including consistency
preservation),

raise (=derive) application-level events.

REWERSE I5 26

Events on the XML Level

ON {DELETE|INSERT|UPDATE} OFxsl-pattern:
operation on a node matching the xsl-pattern,

ON MODIFICATION OFxsl-pattern: update anywhere in
the subtree,

ON INSERT INTOxsl-pattern: inserted (directly) into a
node,

ON {DELETE|INSERT|UPDATE] [SIBLING
[IMMEDIATELY]] {BEFORE|AFTER} xsl-pattern:
insertion of a sibling

⇒ extension to the local database (e.g., eXist), easy to
combine with XUpdate “events”

REWERSE I5 27

Sample Rule on the XML Level

reacts on an event in the XML database

here: maps it to an event on the RDF level

actually an ECE derivation rule

ON INSERT OF department/professor
let $prof:= :NEW/@rdf-uri,

$dept:= :NEW/parent::department/@rdf-uri
RAISE RDF EVENT(INSERT OF has professor OF department)

with $subject:= $dept, $property:=has professor, $object:=$prof;

REWERSE I5 28

Triggers on the RDF Level

Events on the RDF Level

ON {INSERT|DELETE|UPDATE} OFproperty
[OF INSTANCE OFclass] .

ON {CREATE|UPDATE|DELETE} OF INSTANCE OFclass:
if a resource of a given class is created/updates/deleted.

On the RDF/RDFS level, also metadata changes are events:

ON NEW CLASS,

ON NEW PROPERTY [OF CLASSclass]

REWERSE I5 29

Sample Rule on the RDF Level

reacts on an event on the RDF view level

again an ECE derivation rule: derives an event of the
domain ontology

ON INSERT OF has professor OF department
% (comes with parameters $subject=dept,
% $property:=has professor and $object=prof)
% $university is a constant defined in the (local) database

RAISE EVENT
(professor hired($object, $subject, $university))

REWERSE I5 30

Actions, Events, Derived Events

Logical events differ from actions: an event is an observable
(and volatile) consequence of an action.

action:
“debit 200E from Alice’s bank account”

direct events:
“a change of Alice’s bank account”

“a debit of 200E from Alice’s bank account”

“the balance of Alice’s bank account becomes below zero”

derived events:
“the balance of the account of a premier customer becomes below z

“50% of all accounts at branch X are now below zero”

REWERSE I5 31

Actions, Events, Derived Events

Logical events differ from actions: an event is an observable
(and volatile) consequence of an action.

action: “book a flight for Alice with LH0815 FRA-LIS,
20.3.2006”

update: some changes in the Lufthansa database

events:
“a booking of seat 18A on flight LH0815, 20.3.2006”

“LH0815, 20.3.2006 is fully booked”

“there are no more tickets on 20.3. from Germany to LIS”

can be raised from the database updates (SQL triggers)

can be derived from the semantics of the action

REWERSE I5 32

Global and Remote Events

Events are caused by updates to a certain Web source
Applications are not actually interested where this happens

global application-level events “somewhere in the Web”

“on change of VAT do ...”

“if a flight is offered from FRA to LIS under 100E”

⇒ requires detection/communication strategies

... so far to the analysis of events and actions.
Let’s continue with the rules.

REWERSE I5 33

Analysis of Rule Components

... have a look at the clean concepts:
“On Event check Condition and then do Action”

Event: specifies a rough restriction on what dynamic
situation probably something has to be done.
Collects some parameters of the events.

Condition: specifies a more detailed condition, including
static data if actually something has to be done.
⇒ evaluate a ((Semantic) Web) query.

Action: actually does something.

Example

“if a flight is offered from FRA to LIS under 100E and I
have no lectures these days then do ...”

SQL Triggers

ON {DELETE|UPDATE|INSERT} ...
WHEN where-style condition
BEGIN

// imperative code that contains
// - SQL-queries into PL/SQL variables
// - if ... then ...

END;

only very simple events (atomic updates)

WHEN part can only access information from the event

large parts of evaluating the condition actually happen in
the non-declarative PL/SQL program part
⇒ no reasoning possible!

REWERSE I5 35

A More Detailed View of ECA

the event should just be the dynamic component

“if a flight is offered from FRA to LIS under 100E and I have
no lectures these days then do ...”

“100E” is probably contained in the event data
(insertion of a flight)

my lectures are surely not contained there

⇒ includes another query before evaluating a condition
SQL: would be in an select ... into ... and if in
the action part.

REWERSE I5 36

Clean, Declarative “Normal Form”

“On Event check Condition and then do Action”

Rule Components:
Event

dynamic
Condition

static
Action

dynamic
event query test action

collect test act

Event: detect just the dynamic part of a situation,

Query: then obtain additional information by queries,

Test: then evaluate a boolean condition,

Action: then actually do something.

Component sublanguages: heterogeneous
REWERSE I5 37

Modular ECA Concept: Rule Ontology

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Event
Ontology

State
Ontology

Action
Ontology

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

Name

URI

1 0..1
1..*

�

� �

�

↓uses ↓uses ↓uses

↓expr.by ↓expr.by ↓expr.by ↓expr.by

Rule Markup: ECA-ML
<!ELEMENT rule (event,query*,test?,action +) >

<eca:rule rule-specific attributes>

<eca:event identification of the language >

event specification, probably binding variables
</eca:event >

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others
</eca:query >

<eca:test identification of the language >

condition specification, using variables
</eca:test >

<eca:action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones
</eca:action >

</eca:rule >

Example

Sample Event: <travel:canceled-flight flight=“LH123”>

<travel:reason>bad weather</travel:reason>

</travel:canceled-flight>

<eca:rule>

<eca:event xmlns:travel=“www.travel.com”>

<eca:atomic-event>
<travel:canceled-flight flight=“{$flight}”/>

<eca:atomic-event>
</eca:event>
<eca:query>get $email of all passengers of $flight </eca:query>

<eca:test> . . . </eca:test>
<eca:action>tell each $email that $flight is cancelled </eca:action>

</eca:rule>

Combination of Ontologies

ECA Ontology

ECA Ontology

Event
Ontology

State
Ontology

Action
Ontology

Active
Concepts
Ontologies

Domain Ontologies

Ontologies for Application-Independent Domains

Atomic Events Literals Atomic Actions

Application-Domain Ontologies

Atomic Events Literals Atomic Actions

embeds embeds embeds

embeds embeds embeds

talk about

REWERSE I5 41

Embedding of Languages

... there are not only atomic events and actions.

ECA Language :
<event/ > <query/ > <test/ > <action/ >

ECA Language

Active
Concepts
Ontologies

Event
Language

Query
Language

Test
Language

Action
Language

Composite Queries Conditions Complex
Events Reactions

Domain Ontologies
Application-Domain Language

Atomic Events Literals Atomic Actions

embeds embeds embeds

REWERSE I5 42

Embedding of Languages

ECA Language :
<event/ > <query/ > <test/ > <action/ >

ECA Language

Event
Language

Query
Language

Test
Language

Action
Language

Domain Languages

Languages for Application-Independent Domains

Atomic Events Literals Atomic Actions

Application-Domain Language

Atomic Events Literals Atomic Actions

embeds embeds embeds embeds

embeds embeds embeds embeds

talk about

REWERSE I5 43

Active Concepts Ontologies

Domains specify atomic events, actions and static concepts

Composite [Algebraic] Active Concepts

Event algebras: composite events

(when) E1 and some time afterwards E2 (then do A)

(when) E1 happened and then E2, but not E3 after at
least 10 minutes (then do A)

well-investigated in Active Databases (e.g. SNOOP).

Process algebras (e.g. CCS)

⇒ See concepts defined by these formal methods as defining
ontologies.

Active Concepts Ontologies

Domains: atomic events, actions and static concepts

Event algebras: composite events (e.g. SNOOP)

Process algebras: Composite actions and processes (e.g.
CCS)

consist of composers/operators to define composite
events/processes,

leaves of the terms are atomic domain-level events/actions,

as operator trees: “standard” XML markup of terms

RDF markup as languages,

every expression can be associated with its language.

⇒ See concepts defined by these formal methods as defining
ontologies.

Algebraic Sublanguages

ComponentLanguage

DomainEngine Processor

DomainLanguage
name

AlgebraicLanguage
name

Semantics

Primitive
arity

Composer
/arity

cardinality

Parameter
name

1..* *

*

*

↓impl

*

*

REWERSE I5 46

Opaque Components

Compatibility with current Web standards:

current (query) languages do in general not use markup,
but program code

allow opaque components:

query component: XQuery, XPath, SQL

action component: updates in XQuery, XUpdate, SQL

REWERSE I5 47

Syntactical Structure of Expressions

RuleComponent Expression

AtomicExpr CompositeExpr

Variable OpaqueSpec

Parameter
name

Composer

Languages
DomainLanguage AlgebraicLanguage

Language

represented by

�

�

�

↓has language ↓has language

1

0..*
↓has language

*

*

**

**
**

�

�

as operator trees: “standard” XML markup of terms

RDF markup as languages

every expression can be associated with its language

Subconcepts and Sublanguages

different languages, different expressiveness/complexity

common structure: algebraic languages

e/q/t/a subelements contain a language identification, and
appropriate contents

embedding of languages according to language hierarchy:

algebraic languages have a natural term markup.

every such language “lives” in an own namespace,

domain languages also have an own namespace,

information flow between components by logical variables,

(sub)terms must have a well-defined result.

REWERSE I5 49

ECA Rule Markup

Ontology of behavior:

ECA rules

(composite) events

queries/conditions

(composite) actions

domain ontology

atomic events

atomic actions

individuals

Logical

Variables

Rules as tree structure patterns

Rules, components, expressions as resources

Define overall structure from domain
ontologies

extend

REWERSE I5 50

Rule Semantics/Logical Variables

Deductive Rules: head(X1, . . . ,Xn) :−body(X1, . . . ,Xn)

bind variables in the body

obtain a set of tuples of variable bindings

“communicate” them to the head

instantiate/execute head for each tuple

Rule Semantics/Logical Variables

Deductive Rules: head(X1, . . . ,Xn) :−body(X1, . . . ,Xn)

bind variables in the body

instantiate/execute head for each tuple

ECA Rules

initial bindings from the event

additional bindings from queries

restrict by the test

execute action for each tuple

action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)

Rule Semantics

Deductive rules: variable bindings Body→Head

communication/propagation of information by logical
variables:
E +
→Q→T & A

safety as usual (extended with technical details ...)

ECARule RuleComponent Expression

Variable

name

repr. by

1

↓scopes
*

*free
pos,neg

*
*pos,neg

free,bound*

REWERSE I5 52

Binding and Use of Variables in ECA Rules
action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)

<eca:event>
event component
binds X1, . . . ,Xn
</eca:event>

⇒

<eca:query>

query component
over X1, . . . ,Xn, . . . ,Xk
join vars: X1, . . . ,Xn
binds Xn+1, . . . ,Xk
</eca:query>

⇒
<eca:test>
over X1, . . . ,Xk
</eca:test>

⇒

<eca:action>

action comp.
uses X1, . . . ,Xk
</eca:action>

(Composite)
Event
Detection
Engine

Query Engine
Action/
Process
Engine

Semantic Web: Domain Brokers and Domain Nodes

register
event

comp.

upon
detection:
result
variables

send
query,

receive
result

send
action,
+ vars

Operational Semantics of Rules

Event: fires the rule

returns the sequence that matched the event

optional: variable bindings

Query: obtain additional static information

returns the answer/set of answers

optional: for each answer, restrict/extend variable
bindings (join semantics)

Condition:

check a boolean condition, constrain variable bindings

Action:

do something by using the variable bindings.

REWERSE I5 54

Binding and Use of Variables

Variables can be bound to values, XML fragments, RDF
fragments, and (composite) events

Logic Programming (Datalog, F-Logic): variables occur free
in patterns.
Markup uses XSLT-style
<variable name=“var-name”>language-expr</variable>

and $var-name
inside component expressions.

functional style (event algebras, SQL, OQL, XQuery):
expressions return a value/fragment.
⇒ must be bound to a variable to be kept and reused.
<variable name=“var-name”>language-expr</variable>

on the rule level around a component expression.

REWERSE I5 55

Rule Markup: Example (Stripped)

<!ELEMENT rule (event,query*,test?,action +) >

<eca:rule xmlns:travel=“http://www.travel.de”>

<eca:event xmlns:snoop=“http://www.snoop.org”>

<snoop:seq> <travel:delayed-flight flight=“{$flight}”/>
<travel:canceled-flight flight=“{$flight}”/> </snoop:seq>

</eca:event>
<eca:query>

<eca:variable name=“email”>

<eca:opaque lang=“http://www.w3.org/xpath”>

doc(“http://xml.lufthansa.de”)/flights[code=“{$flight}”]/passenger/@e-mail
</eca:opaque> </eca:variable> </eca:query>

<eca:action xmlns:smtp=“...”>

<smtp:send-mail to=“$email” text=“...”/>
</eca:action>

</eca:rule>

Event Algebras

... up to now: only simple events.
Atomic events can be combined to form composite events. E.g.:

(when) E1 and some time afterwards E2 (then do A)

(when) E1 happened and then E2, but not E3 after at least
10 minutes (then do A)

Event Algebras allow for the definition of composite events.

specifying composite events as terms over atomic events.

well-investigated in Active Databases
(e.g., the SNOOP event algebra of the SENTINEL ADBMS)

REWERSE I5 57

Events Subontology

Event

AtomicEvent Composite
Event Spec

DataLevel
AtomicEvent

Application
Domain

AtomicEvent

Appl.-indep.
Domain

AtomicEvent

EventOperator
arity = k

Rule Model

Definable Ontologies

Data Model
identifier

Application
identifier

EventAlgebra
identifier

Languages Model

EventLanguage

�

�

� �

�

↓from ↓from

k

1..*

1

1..*

0..*

1..*

1..*

REWERSE I5 58

Atomic Event Specifications

Sample Event: <travel:canceled-flight flight=“LH123”>

<travel:reason>bad weather</travel:reason>

</travel:canceled-flight>

Event expressions require an auxiliary formalism for specifying
relevant events:

type of event (“travel:canceled-flight”),

constraints (“must have a travel:reason subelement”),

extract data from events (“bind @flight to variable flight”)

Sample: XML-QL-style matching
<atomic-event language=“match”>

<travel:canceled-flight flight=“{$flight}”><travel:reason/></travel:canceled-flight>
</atomic-event>

Event Expressions: Languages

EventExpression

Atomic
Event

Description

Composite
Event

Specification

Rule Model

Domain
Event

EventComposer
cardinality

Ontologies/Languages

Domain
Ontology

Atomic
Event

Description
Formalism

EventAlgebra
identifier

�

� k

1..*

1describes

from

uses

REWERSE I5 60

Event Detection Communication

users,
clients

<eca:rule> ECA Engine
<eca:event>
composite event spec in event algebra CEL

</eca:event>
:

</eca:rule>

Composite Event Detection Service for CEL:
<cel:...> contains

atomic event spec in formalism AESL
<cel:...>

Event Sources,
Domain Brokers Atomic Event Matcher for formalism AESL

register
ECA rule

register composite
event spec

upon detection:
varbdgs as <log:answers>

register atomic event spec upon matching:
varbdgs as <log:answers>

events
REWERSE I5 61

Sample Markup (Event Component)

<eca:rule xmlns:travel=“...”>

<eca:variable name=“theSeq”>

<eca:event xmlns:snoop=“...”>

<snoop:sequence>

<snoop:atomic-event language=“match”>

<travel:delayed-flight flight=“{$Flight}” minutes=“{$Minutes}”/>
</snoop:atomic-event>
<snoop:atomic-event language=“match”>

<travel:canceled-flight flight=“{$Flight}”/>
</snoop:atomic-event>

</snoop:sequence>

</eca:event>
</eca:variable>

:
</eca:rule>

binds variables:

- Flight, Minutes: by matching

- theSeq is bound to the sequence of events

that matched the pattern

Example as RDF

//local/rules#delay-cancel eca:rule
rdf:type

condition action

//local/events#delay-cancel events:sequence

eca:event
eca:condition

eca:action

rdf:type

travel:delayed-flight travel:canceled-flight

1 2

eca:event

rdf:subclass

$flight

flight

travel:atomic-event

eca:atomic-event

rdf:type rdf:type

rdf:subclass

rdf:subclass

REWERSE I5 63

Ontologies, Languages and Resources

Rule components, subexpressions etc. are resources

associated with languages corresponding to the ontologies
(event languages, action languages, (auxiliary languages),
domain languages)

each language is a resource, identified by a URI.

DTD/XML Schema/RDF description of the language

Algebraic and auxiliary languages:

processing engines

Domain Languages:

Domain Nodes and Domain Broker Services

REWERSE I5 64

Detection of Atomic Events

Atomic Data Level Events [database system ontology;
local]

Appl.-indep. Domain Events

receive message [common ontology; local]
with contents [contents: own ontology] as parameter

transactional events [common ontology; local]

temporal events [common ontology]
provided by services (upon registration)

Application-Level Events [domain ontology]

derived/raised by appropriate ECE/ACE rules,
(probably also derived from other facts)

Composite Events: event detection algorithm; fed with
detection messages from atomic events

Event Component: Event Algebras

a composite event is detected when its “final” subevent is
detected:

(E1∇E2)(x, t) :⇔ E1(x, t)∨E2(x, t) ,

(E1;E2)(x,y, t) :⇔ ∃t1≤ t : E1(x, t1)∧E2(y, t)

¬(E2)[E1,E3](t) :⇔ if E1 and then a first E3 occurs,

without occurring E2 in between.

“join” variables between atomic events

“safety” conditions similar to Logic Programming rules

Result:

the sequence that matched the event

optional: additional variable bindings

REWERSE I5 66

Advanced Operators (Example: SNOOP)

ANY(m,E1, . . . ,En)(t) :⇔

∃t1≤ . . .≤ tm−1≤ t, 1≤ i1, . . . , im ≤ n pairwise

distinct s.t. Ei j(t j) for 1≤ j < m and Eim(t) ,

“aperiodic event”
A (E1,E2,E3)(t) :⇔

E2(t)∧ (∃t1 : E1(t1)∧ (∀t2 : t1≤ t2 < t : ¬E3(t2)))

,

“after occurrence of E1, report each E2, until E3 occurs”

“Cumulative aperiodic event”:
A
∗(E1,E2,E3)(t) :⇔ ∃t1≤ t : E1(t1)∧E3(t)

“if E1 occurs, then for each occurrence of an instance of E2,
collect its parameters and when E3 occurs, report all
collected parameters”.
(Same as before, but now only reporting at the end)

REWERSE I5 67

Examples of Composite Events

A deposit (resp. debit) of amount V to account A:
E1(A,V) := deposit(A,V) (resp. E2(A,V) := debit(A,V))

A change in account A: E3 := E1(A,V)∇E2(A,V).

The balance of account A goes below 0 due to a debit:
E4(A) := debit(A,V)∧balance(A) < 0
[note: not a clean way: includes a simple condition]

A deposit followed by a debit in Bob’s account:
E5 := E1(bob,V1);E2(bob,V2).

There were no deposits to an account A for 100 days:
E6(A) := (¬(∃X : deposit(A,X)))

[deposit(A,Am)∧ t = date;date = t +100days]

REWERSE I5 68

Examples of Composite Events (Cont’d)

The balance of account A goes negative and there is
another debit without any deposit in-between:
E7 := A (E4(A),E2(A,V1),E1(A,V2))

After the end of the month send an account statement with
all entries:
E8(A, list) := A ∗(f irst o f month,E3(A), f irst o f next month)

REWERSE I5 69

Query Component

... obtain additional information:

local, distributed, OWL-level

Result:

the answer to the query
XQuery, XPath, SQL

bindings of free variables
Datalog, F-Logic, XPathLog, SparQL

Test Component

evaluate (locally) a test over the collected information

REWERSE I5 70

The Action Component

invoked for a set of tuples of variable bindings

Atomic actions:

ontology-level local actions

data model level updates of the local state

explicit calls of remote procedures/services

explicit sending of messages

ontology-level intensional actions (e.g. in business
processes)

Composite actions: e.g. a process algebra like CCS

Opaque code

REWERSE I5 71

Composite Actions: Process Algebras
e.g., CCS - Calculus of Communicating Systems [Milner‘80]

operational semantics defined by transition rules, e.g.

a sequence of actions to be executed,

a process that includes “receiving” actions,

guarded (i.e., conditional) execution alternatives,

the start of a fixpoint (i.e., iteration or even infinite
processes), and

a family of communicating, concurrent processes.

Originally only over atomic processes/actions

reading and writing simulated by communication
a (send), ā (receive) “match” as communication

... extend this to the (Semantic) Web environment with autono-
mous nodes.

Composite Actions: Process Algebras

e.g., CCS - Calculus of Communicating Systems [Milner‘80]

composers; operational semantics defined by transition
rules

originally only over atomic processes/actions

reading and writing simulated by communication
a (send), ā (receive) “match” as communication

REWERSE I5 73

Composite Actions: Overview

a sequence of actions to be executed (as in simple ECA
rules),

a process that includes “receiving” actions (which are
actually events in the standard terminology of ECA rules),

guarded (i.e., conditional) execution alternatives,

the start of a fixpoint (i.e., iteration or even infinite
processes), and

a family of communicating, concurrent processes.

REWERSE I5 74

Action Component: Process Algebras

example: CCS (Calculus of Communicating Systems,
Milner 1980)

describes the execution of processes as a transitions
system:
(only the asynchronous transitions are listed)

a : P a→ P ,
Pi

a→ P

∑i∈I Pi
a→ P

(for i ∈ I)

P a→ P′

P|Q a→ P′|Q
,

Q a→ Q′

P|Q a→ P|Q′

Pi{fix ~X~P/~X} a→ P′

fixi~X~P a→ P′
REWERSE I5 75

Adaptation of Process Algebras

Goal: specification of reactions

liberal asynchronous variant of CCS: go on when possible,
waiting and delaying possible

extend with variable bindings semantics

input variables come bound to values/URIs

additional variables can be bound by “communication”

queries as atomic actions: to be executed, contribute to the
variable bindings

event subexpressions as atomic actions: like waiting for ā
communication

⇒ subexpressions in other kinds of component languages
REWERSE I5 76

Languages in the Action Component

Process
Engine

Action Component
Language, e.g. CCS

Composer

name

implements

Process Algebra Responsibility

Other Responsibilities Event
Detector

Query
Engine

Domain
Broker

Domain
Nodes

Domain

Language

uri

Event
Language

Query/
Condition
Language

Atomic
Events Literals Atomic

Actions

embeds
1..*

*

embeds

*

*

uses

uses uses

REWERSE I5 77

CCS Markup

<ccs:sequence>CCS subexpressions </ccs:sequence>

<ccs:alternative>CCS subexpressions </ccs:alternative>

<ccs:concurrent>CCS subexpressions </ccs:concurrent>

<ccs:fixpoint variables=“X1 X2 . . . Xn” index=“i” // “my” index
localvars=“...”> n subexpressions </ccs:fixpoint>

<ccs:atomic-action>domain-level action </ccs:atomic-action>

<ccs:event xmlns:ev-ns=“uri”>event expression </ccs:event>
<ccs:query xmlns:q-ns=“uri”>query expression </ccs:query>

<ccs:test xmlns:t-ns=“uri”>test expression </ccs:test>

Embedding Mechanisms: Same as in ECA-ML

communication by logical variables

namespaces for identifying languages of subexpressions

Example

Consider the following scenario:

if a student fails twice in a written exam (composite event),
it is required that another oral assessment takes place for
deciding upon final passing or failure.

Action component of the rule: Ask the responsible lecturer
for a date and time. If a room is available, the student and
the lecturer are notified. If not, ask for another date/time.
fixX .(ask appointment($Lecturer,$Subj,$StudNo) :

∂ proposed appointment($Lecturer,$Subj,$DateTime) :

(available(room,$DateTime) +

(¬ available(room,$DateTime) : X))) :
inform($StudNo,$Subj,$DateTime) :
inform($Lecturer,$Subj,$DateTime)

REWERSE I5 79

<eca:rule xmlns:uni=“http://www.education.de”>

<eca:event> failed twice – binds $student ID and $course </eca:event>
<eca:query> binds e-mail addresses of the student and the lecturer </eca:query>

<eca:action xmlns:ccs=“...”>

<ccs:seq>

<ccs:fixpoint variables=“X” index=“1” localvars=“$date $time $room”>

<ccs:seq>

<ccs:atomic> send asking mail to lecturer </ccs:atomic>

<ccs:event> answer binds $date and $time</ccs:event>
<ccs:query> any room $room at $date $time available? </ccs:query>

<ccs:alt>
<ccs:test> yes </ccs:test>
<ccs:seq>

<ccs:test> no</ccs:test> <ccs:variable name=“X”/>
</ccs:seq>

</ccs:alt>
</ccs:seq>

</ccs:fixpoint>
<ccs:atomic> send message ($date, $time, $room) to student </ccs:atomic>

<ccs:atomic> send message ($date, $time, $room) to lecturer </ccs:atomic>

</ccs:seq>

</eca:action>

</eca:rule>

Comparison

CCS (extended with events and queries) strictly more
expressive than ECA rules alone:
ECA pattern in CCS: event:condition:action,

many ECA rules have much simpler actions and do not
need CCS,

useful to have CCS as an option for the action part.

REWERSE I5 81

Part III: The Architecture

ECA Rules
Event

dynamic
Condition

static
Action

dynamic
event query test action

collect test act
each ECA Rule language uses

a (composite) event language (mostly an event algebra)

a query language

a condition language

a language for specification of actions/transactions

different languages, different expressiveness/complexity

different locations where the evaluation takes place

⇒ Modular concepts with Web-wide services

Languages and Resources

Each language is a resource, identified by a URI.
Connected to the following resources:

ECA and Generic Sublanguages

DTD/XML Schema/RDF description of the language

processing engine (according to a communication
interface)

[semantics description by a formal method for reasoning
about it]

Application Languages/Ontologies

DTD/XML Schema/RDF description of the language

Event Broker Services (subscribe)

REWERSE I5 84

Service-Based Architecture

Language Processors as Web Services:

ECA Rule Execution Engine employs other services for
E/Q/T/A parts

dedicated services for each of the event/action languages
e.g., composite event detection, process algebras

Auxiliary services: Atomic Event Matchers

Domain Brokers

Domain Services: raise events, serve as data sources,
execute actions/updates

query languages often implemented directly by the Web
nodes (portals and data sources)

REWERSE I5 85

Architecture

Event
Detection
snoop:

Atomic Event
Matcher
match:

ECA
Engine
eca:Action

Engine
ccs:

Domain
Broker
travel: SMTP Mail

Service
smtp:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register
rule
eca: travel:
match: snoop:
ccs: smtp:

1.2: register event
travel: match: snoop:

1.3: atomic
event patterns
match: travel:

1.4: register me
travel:

2.1a: atomic
events travel:

2.1b:
atomic
events
travel:

2.2: atomic
events travel:

3: detected
parameters

4: detected
parameters

5.1: action
ccs: travel: smtp:

5.2a: atomic
actions
travel:

5.2b: atomic
actions smtp:

5.3b:
message
(here:
confirm)
by url

La
ng

ua
ge

S
er

vi
ce

s
A

pp
lic

at
io

n
D

om
ai

n

5.3a:
booking
travel:

REWERSE I5 86

Part IV: Syntax Details and Implementation

ECA Architecture

ECA Engine:
<rule >

<event xmlns:ev=“. . . ”/ >. . . </event >

<query xmlns:ql=“. . . ”/ >. . . </query >

<test xmlns:tst=“. . . ”/ >. . . </test >

<action xmlns:act=“. . . ”/ >. . . </action >

</rule >

Generic
Request
Handler

Component Language Services

E · · · E Q · · · Q A · · · A

travel: banking: · · · uni:

Domain Services

LH SNCF · · ·

Individual Services

→ component,
input var.bdgs

← resulting
variable bdgs

REWERSE I5 88

Tasks

ECA Engine: Rule Semantics

Control flow: registering event component, receiving
“firing” answer, continuing with queries etc.

Variable Bindings, Join Semantics

Generic Request Handler: Mediator with Component
Engines

depending on Service Descriptions

Component Engines: dedicated to certain Event Algebras,
Query Languages, Action Languages

Domain Services (Portals): atomic events, queries, atomic
actions

REWERSE I5 89

Communication of Variable Bindings

XML markup for communication of variable bindings:

<log:variable-bindings >

<log:tuple >

<log:variable name=“ name ” ref=“ URI”/ >

<log:variable name=“ name ” > any value </log:variable >

:
</log:tuple >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

</log:variable-bindings >

REWERSE I5 90

Communication ECA → GRH

the component to be processed

bindings of all relevant variables

[Sample: a query component]
<eca:query xmlns:ql=“ url ”

rule=“ rule-id ” component=“ component-id ” >

<!-- query component -- >

< eca:query >

<log:variable-bindings >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

<log:variable-bindings >

url is the namespace used by the event language

identifies appropriate service

Communication of Variable Bindings

Sample XML markup for communication of a query and
variable bindings:

<eca:query xmlns:ql=“ url ”
rule=“ rule-id ” component=“ component-id ” >

<!-- query component -- >

< eca:query >

<log:variable-bindings >

<log:tuple >

<log:variable name=“ name ” ref=“ URI”/ >

<log:variable name=“ name ” > any value </log:variable >

:
</log:tuple >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

</log:variable-bindings >

REWERSE I5 92

Communication

ECA engine sends component to be processed together with
bindings of all relevant variables to GRH.

Generic Request Handler (GRH)

Submits component (with relevant input/used variable
bindings) to appropriate service (determined by
namespace/language used in the component)

if necessary: does some wrapping tasks
(for non-framework-aware services)

receives results and transforms them into flat variable
bindings and sends them back to the ECA engine ...

... where they are joined with the existing tuples ...

... and the next component is processed.

Communication Component Engine → GRH

result-bindings-pairs (semantics of expression)

<log:answers rule=“ rule-id ” component=“ component-id ” >

<log:answer >

<log:result >

<!-- functional result -- >

</log:result >

<log:variable-bindings >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

</log:variable-bindings >

</log:answer >

<log:answer > . . . </log:answer >

:
<log:answer > . . . </log:answer >

</log:answers >

REWERSE I5 94

Communication GRH → ECA

set of tuples of variable bindings
(i.e., input/used variables and output/result variables)

is then joined with tuples in ECA engine

... and next component is processed

REWERSE I5 95

Special Issue: Functional Results

Example: Event Component
<eca:query xmlns:ql=“uri” >

<eca:variable name=“ name ” >

event specification
</eca:variable >

</eca:query >

GRH submits event specification to processor associated
with uri

GRH receives answer(result,variable-bindings*) elements from
event detection engine

binds <result > to name and extends <variable-bindings >

REWERSE I5 96

Special Issue: Opaque Components

Example: wrapped, framework-aware XQuery engine
<eca:query >

<eca:opaque lang=“uri” >

code fragment in language lang
</eca:opaque >

</eca:query >

GRH submits event specification to processor associated
with lang

GRH receives answer(result,variable-bindings*) elements from
event detection engine

and returns them to ECA engine

REWERSE I5 97

Part V: Further Issues

Special Aspects: Indirect Communication

Communication via intermediate services:

indirect communication: publish/subscribe – push/push
sources publish data/changes at a service, others register
there to be informed
+ requires (less) activity by provider

indirect communication: continuous queries – pull/push
register query at a continuous query service
+ acceptable load also for “important” sources
+ shorter intervals possible

REWERSE I5 99

Special Aspects: Intermediate Services

Intermediate services can add functionality:

information integration from several services

checking query containment

caching

acting as information brokers (possibly specialized to an
application area)

REWERSE I5 100

Further Issues

Normal Form vs. Shortcut

note that parts of the condition can often already checked
earlier during event detection

most event formalisms allow for small conditions already in
the event part (e.g., state-dependent predicates and
functions; cf. Transaction Logic)

REWERSE I5 101

Summary

first: diversity looked like a problem, lead to the Web (XML)
and the Semantic Data Web (RDF and OWL data);

heterogeneous data models and schemata:
⇒ RDF/OWL as integrating semantic model in the
Semantic Web

extend these concepts to describe behavior

describe events and actions of an application within its
RDF/OWL model

diversity + unified Semantic-Web-based framework has
many advantages

languages of different expressiveness/complexity available

markup+ontologies make expressions accessible for
reasoning about themREWERSE I5 102

Summary

architecture: functionality provided by specialized nodes

Local: triggers (SQL, XML, RDF/Jena, ...)

local updates

raise higher-level events

Global: ECA rules

components

application-level atomic events and atomic actions

specific languages (event algebras, process algebras)

opaque (= non-markup, program code) allowed

Communication: events, event broker services, registration

Identification of services via namespaces

REWERSE I5 103

Further Information

REWERSE Deliverable I5-D4: “Models and Languages for
Evolution and Reactivity”: Everything + examples

Prototypes:

generic ECA engine with interfaces (GOE BSc)

Jena+Triggers (GOE/CLZ Diploma)

Cooperation within REWERSE I5 with RuleCore
(U Skövde/Sweden) and XChange (LMU
München/Germany)

REWERSE I5 104

	Large
	ignorethis
	Background: REWERSE NoE
	REWERSE Working Group I5: ``Dynamics''
	Excerpts of this talk ...
	Excerpts of this talk ... (Cont'd)
	Excerpts of this talk ... (Cont'd)
	Further Contributors
	
	
	Motivation and Goals
	Behavior
	Behavior
	Update Propagation and Semantic Updates
	Cooperative Evolution of the Semantic Web
	Communication
	Abstraction Levels
	Individual Semantic Web Node
	A Node in the Semantic Web
	A Node in the Semantic Web (Cont'd)
	Global Evolution
	Evolution and Behavior
	
	ECA Rules
	ECA Rules
	Events and Actions in the Semantic Web
	Events and Actions in the Semantic Web
	Adding Events and Actions to the Ontologies
	Abstraction Levels and Types of Rules
	Behavior on the Web: Abstraction Levels
	Sources of Events
	Ontologies including Dynamic Aspects
	Example: Travel Domain
	Triggers on the XML Level
	Events on the XML Level
	Sample Rule on the XML Level
	Triggers on the RDF Level
	Sample Rule on the RDF Level
	Actions, Events, Derived Events
	Actions, Events, Derived Events
	Global and Remote Events
	Analysis of Rule Components
	SQL Triggers
	A More Detailed View of ECA
	Clean, Declarative ``Normal Form''
	Modular ECA Concept: Rule Ontology
	Rule Markup: ECA-ML
	Example
	Combination of Ontologies
	Embedding of Languages
	Embedding of Languages
	Active Concepts Ontologies
	Active Concepts Ontologies
	Algebraic Sublanguages
	Opaque Components
	Syntactical Structure of Expressions
	Subconcepts and Sublanguages
	ECA Rule Markup
	Rule Semantics/Logical Variables
	Rule Semantics
	Binding and Use of Variables in ECA Rules
	Operational Semantics of Rules
	Binding and Use of Variables
	Rule Markup: Example (Stripped)
	Event Algebras
	Events Subontology
	Atomic Event Specifications
	Event Expressions: Languages
	Event Detection Communication
	Sample Markup (Event Component)
	Example as RDF
	Ontologies, Languages and Resources
	Detection of Atomic Events
	Event Component: Event Algebras
	Advanced Operators (Example: SNOOP)
	Examples of Composite Events
	Examples of Composite Events (Cont'd)
	Query Component
	The Action Component
	Composite Actions: Process Algebras
	Composite Actions: Process Algebras
	Composite Actions: Overview
	Action Component: Process Algebras
	Adaptation of Process Algebras
	Languages in the Action Component
	{CCS} Markup
	Example
	
	Comparison
	
	ECA Rules
	Languages and Resources
	Service-Based Architecture
	Architecture
	
	ECA Architecture
	Tasks
	Communication of Variable Bindings
	Communication ECA $	o $ GRH
	Communication of Variable Bindings
	Communication
	Communication Component Engine $	o $ GRH
	Communication GRH $	o $ ECA
	Special Issue: Functional Results
	Special Issue: Opaque Components
	
	Special Aspects: Indirect Communication
	Special Aspects: Intermediate Services
	Further Issues
	Summary
	Summary
	Further Information

