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1 Introduction

Xcerpt [1] is a declarative and pattern-based query and transformation language
for the Web with deductive capabilities. In contrast to Web query languages
like XQuery and XSLT [2,3], Xcerpt relies on concepts and techniques from
logic programming and automated theorem proving such as declarative “query
patterns” and “rule chaining”. Xcerpt can also be used for querying Web meta-
data, like OWL or RDF data [4,5], and reasoning on such metadata. In contrast
to specific languages for OWL and RDF, however, Xcerpt is a general purpose
query, transformation, and reasoning language, i.e. it can be used for reasoning
not only with Web metadata but also with plain Web data.

Salient aspects of Xcerpt are its nonstandard “query patterns” for retrieving
incompletely specified data and its unusual “grouping constructs” some and all
that significantly depart from the standard approaches in logic programming or
automated theorem proving. Xcerpt relies on a new, assymmetric unification,
called simulation unification for evaluating query patterns that incompletely
specify data. Furthermore, Xcerpt does not rely on meta reasoning for express-
ing and processing “grouping” constructs corresponding to Prolog’s metalevel
predicates setof and bagof.

This article gives a brief overview over challenges of applying logic pro-
gramming techniques to Web querying. In particular it suggests two different
approaches for treating the meta-level grouping constructs all and some in a
proof calculus formalising the operational semantics of Xcerpt.

2 Requirements of a Web Query Language

2.1 Differences to Traditional Logic Programming

The observation that motivated the development of Xcerpt is that Web data
formats like XML describe tree or graph structures just like terms in logic
programming. However, the usage of these terms differs in several important
aspects from the terms used in traditional logic programming, which are dis-
cussed below.

Information Representation. In logic programming, a database usually consists
of a set of facts, each of which comprises an alternative entry in the database.
In the Web, the concept of a database is usually much broader. Besides consid-
ering a collection of terms (or documents) as a database, it is very common to
represent a complete database within a single term, where the individual entries
are subterms of the database.



Structure. Whereas logic programming (and relational databases, for that mat-
ter) assumes very homogenous sets of data, databases on the Web are in general
more flexible and data items of a similar kind often have a slightly different
structure. For example, an address book might contain one address entry which
has two email addresses and no phone, and another which has no email address
but a phone as well as a mobile number.

Schema. Terms in logic programming follow a rather rigid schema, in which
both the term label and the arity are fixed (i.e. f{a} and f{a, b} are instances
of different schemas and a query for f{X} would match only the first).

Semistructured databases as found on the Web are much more flexible in
this respect, mostly due to the heterogeneous and constantly evolving nature
of the Web. In particular,

– documents are not required to have a schema at all
– if a schema exists, they do not need to fully comply to it
– schema languages like XML Schema or RelaxNG [6,7] allow more flexible

structures, where subterms might be optional, alternatives, or repeated an
arbitrary number of times

For example, f{a} and f{a, b} might both be instances of the same schema
and should thus both match with the query f{{X}}.

Note that this article uses for simplicity reasons a reduced syntax, in which
terms are limited to the curly braces { }. Curly braces denote that the order
of subterms is irrelevant. The full language Xcerpt [1] also allows a so called
ordered term specification with square brackets [ ], which is a more precise
representation for XML documents as they are always ordered.

2.2 Partial Patterns and Grouping Constructs

To summarise, a Web query language like Xcerpt needs to fulfill the following
requirements:

– it needs to be able to work with partial information about the queried
document, as schema information might be missing or incomplete

– it needs to be able to query several alternatives within the same document,
which might even differ in their structure.

– it needs to be able to construct new documents in the same manner, i.e.
where several alternatives are grouped in the same document

Xcerpt addresses the first two requirements by extending the notion of terms
to partial patterns (expressed by double curly braces as in f{{a}}) and by the
descendant construct (expressed by the keyword desc as in f{{desc a}}). Par-
tial patterns allow the programmer to specify only the minimum information
that is necessary for querying (e.g. in an address book, it is sufficient to spec-
ify the name to retrieve an entry). Partial patterns also allow to query several
alternatives in a single term, as these can be identified with the different alter-
native ways of matching a partial pattern with the term (e.g. a partial query for
f{{X}} against a database f{a, b} matches either with X = a or with X = b).
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The descendant construct allows to match a pattern at arbitrary depth (e.g.
a partial query for f{{desc X}} against the database f{g{a}, h{b}} matches
with X = g{a}, with X = h{b}, with X = a or with X = b).

The last requirement is addressed by the grouping constructs all and some,
which are similar in meaning to the Prolog predicates setof or bagof in that
they collect all possible alternative solutions. Since grouping constructs are very
frequently used in Web querying, Xcerpt includes them into the language itself
rather than as external predicates. As a consequence, the proof calculi should
support such grouping constructs directly, whereas Prolog works around this
problem with meta reasoning. An example of an Xcerpt rule containing both
grouping constructs and partial query patterns is given in Figure 2.

Xcerpt has many constructs that are not covered here for space reasons. A
more detailed introduction into Xcerpt can e.g. be found in [1].

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<authors>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
</authors>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">

<title>
Advanced Programming ...

</title>
<authors>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
</authors>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">

<title>Data on the Web</title>
<authors>
<author>

<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>

<last>Buneman</last>
<first>Peter</first>

</author>
<author>

<last>Suciu</last>
<first>Dan</first>

</author>
</authors>
<publisher>Morgan Kaufmann</publisher>
<price>39.95</price>

</book>...
</bib>

<reviews>
<entry>
<title>Data on the Web</title>
<price>34.95</price>
<review>

A very good discussion of semi-
structured database systems and XML.

</review>
</entry>
<entry>
<title>

Advanced Programming
</title>
<price>65.95</price>
<review>

A clear and detailed discussion of
UNIX programming.

</review>
</entry>
<entry>
<title>TCP/IP Illustrated</title>
<price>65.95</price>
<review>

One of the best books on TCP/IP.
</review>

</entry>...
</reviews>

Fig. 1. Two bookstore databases with different structures but similar contents.
Note that several alternative entries are contained within the same document
and how book entries in the left database differ slightly in structure.
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CONSTRUCT
books {

all book {
var TITLE, price-a { var PRICEA }, price-b { var PRICEB } }

}
FROM
and {

in { resource { "http://bn.com" },
bib {{
book {{ var TITLE ; title{{}}, price { var PRICEA } }}

}} },
in { resource { "http://amazon.com" },

reviews {{
entry {{ var TITLE ; title{{}}, price { var PRICEB } }}

}} }
}

WHERE
or {

var PRICEA < 40,
var PRICEB < 40

}
END

Fig. 2. An Xcerpt rule that queries two book databases (given in Figure 1) and
returns a list of book titles with price comparisons (given in Figure 3). Partial
query patterns are indicated by double braces. A more detailed presentation of
Xcerpt can be found in [1].

<books>
<book>

<title>TCP/IP Illustrated</title>
<price-a>65.95</price-a>
<price-b>65.95</price-b>

</book>
<book>

<title>Advanced Programming ...</title>
<price-a>65.95</price-a>
<price-b>65.95</price-b>

</book>
<book>

<title>Data on the Web</title>
<price-a>39.95</price-a>
<price-b>34.95</price-b>

</book>
</books>

Fig. 3. The XML document resulting from the evaluation of the Xcerpt rule
in Figure 2. For each book, the element price-a contains the price of the first
database of Figure 1, the element price-b the price from the second database.
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3 Simulation Unification

Simulation unification [8] is a non-standard, asymmetric unification method
that respects partial term specifications. Simulation unification is based on a
relation called simulation, which is a partial ordering on the set of terms. Intu-
itively, a term t1 is simulated in a term t2 if the structure of t1 can be found in
t2 (see Figure 4).

f

b

d e d

b

a

f

d

e

da c

Fig. 4. A simulation between two graph representations of terms. Note that the
subterm c is contained in the term on the right but not in the term on the left.

Simulation unification of a partial term t1 and a term t2 computes a set
of alternative substitutions for the variables in t1 and t2 such that the ground
instance of t1 simulates into the ground instance of t2. For instance, simulation
unification of the partial term f{{X}} and the term f{a, b} yields the two
alternative substitutions σ1 = {X = a} and σ2 = {X = b}.

The simulation unification algorithm is specified in terms of constraint re-
duction rules that operate on a constraint store initialised with t1 �S t2 (mean-
ing that t1 should simulation unify into t2, i.e. after adequate variable bindings
t1 should simulate into t2). All unification rules decompose a single constraint
to a formula containing conjunctions and/or disjunctions of smaller constraints,
until no further decomposition is possible (i.e. until either the left or the right
side consists of a variable, or a constraint is reduced to one of the boolean values
true or false). If no further rule is applicable, simulation unification creates a
set of substitutions by computing the disjunctive normal form of the constraint
store, and by replacing all constraints of the form X �S t by X = t. Each
disjunct in the disjunctive normal form is an alternative substitution.

It is assumed that the constraint store applies simplification rules as needed
(e.g. remove conjunctions that contain a boolean value false). Furthermore, the
following rule enforces consistency between different constraints for the same
variable and ensures that after the evaluation there exists only a single upper
bound for each variable.

X �S t1 ∧X �S t2
X �S t1 ∧ t1 �S t2 ∧ t2 �S t1

In case that the two bounds for the variable (t1 and t2) are inconsistent, i.e.
cannot be unified, one of the constraints t1 �S t2 or t2 �S t1 is reduced to false
in further evaluation steps.
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3.1 Decomposition Rules

Root Elimination Root elimination rules compare the roots of the two terms
and distribute the unification to the children.

Left Term without Children This set of rules consider all such cases where
the left term does not contain child elements. These cases have to be treated
separately from the general decomposition rules below as this would yield the
wrong result. For instance, an empty or is equivalent to False but the result
should always be True in case the left term is only a partial specification. In
the following, let m ≥ 0 and k ≥ 1:

l{{ }} �S l{t21, . . . , t2m} l{ } �S l{t21, . . . , t2k} l{ } �S l{ }
True False True

As specified by these rules, a term without children, but with a partial
specification (double braces) matches with any term which has the same label.
If the term specification is not partial, it matches only with such terms that
also do not have subterms.

Decomposition The general decomposition rule eliminates the two root nodes in
parallel and distributes the unification to the various combinations of children
that result from total/partial specification. If there exists no such combination,
then the result is an empty or, which is equivalent to False.

In the following, let n, m ≥ 1, and, given two terms l{t11, . . . , t1n} and
l{t21, . . . , t2m}, let Π,Πsurj : {1, . . . , n} → {1, . . . ,m} be defined as follows:

– Π is the set of all total, injective functions from {1, . . . , n} to {1, . . . ,m}.
– Πsurj is the set Π restricted to all surjective functions

l{{t11, . . . , t1n}} �S l{t21, . . . , t2m} l{t11, . . . , t1n} �S l{t21, . . . , t2m}∨
π∈Π

∧
1≤i≤n t1i �S t2π(i)

∨
π∈Πsurj

∧
1≤i≤n t1i �S t2π(i)

For instance, if the left term has a partial specification for the subterms,
the simulation unification has to consider as alternatives all combinations of
children from the left term with children from the right term, provided that
each child on the left gets a matching partner on the right.

Label Mismatch In case of a label mismatch, the unification fails. In the follow-
ing, let l1 6= l2.

l1{{t11, . . . , t1n}} �S l2{t21, . . . , t2m} l1{t11, . . . , t1n} �S l2{t21, . . . , t2m}
False False
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Descendant Elimination The descendant construct is eliminated by adding
a disjunction of constraints, which express that the current term t2 is matched
by t1 or that at least one of the subterms of t2 is matched by desc t1, thus
distributing the decomposition to the children of t2. Let m ≥ 0.

desc t1 �S l2{t21, . . . , t2m}
t1 �S l2{t21, . . . , t2m} ∨

∨
1≤i≤m desc t1 �S t2i

4 Two Approaches to Proof Calculi for Xcerpt

The suggested calculi are inspired by the SLD resolution used in logic program-
ming. However, traditional approaches like the SLD resolution do not account
well for constructs like partial patterns or grouping constructs. Both kinds of
constructs have implications on possible proof calculi.

High Branching Rate. In traditional logic programming, there are two elements
of nondeterminism that lead to branching in the proof tree: selection of the
predicate to unfold in the evaluation of a rule body, and the selection of the
program rule used for further chaining. Xcerpt’s usage of partial patterns adds
a third element: When using partial patterns, there is in general no single
way to match two terms. Instead, all possible alternative matchings have to
be considered, which leads to a significantly higher branching rate.

Grouping Constructs all and some. Unlike Prolog’s setof and bagof predicates,
the grouping constructs all and some are an integral part of the language. It
is hence desirable to support such higher order constructs in the proof calculus
itself rather than treating them as external predicates.

This article gives a brief overview over possible approaches to proof calculi
that are taking into account the above-mentioned issues. The remainder of this
section introduces two approaches called “one at once” and “all at once”, which
differ in that “one at once” follows only a single proof path at a time (like SLD
resolution), whereas “all at once” allows to follow a different proof path at each
step, regardless of whether the previous path was finished or not.

4.1 Common Properties

The evaluation of the two approaches yields a set of substitutions which is
constructed in almost the same manner as for simulation unification above. In
both approaches, the proof tree is represented as a formula of constraints, the
constraint store. Such constraints are one of

– folded queries represent query parts that have not yet been evaluated (e.g.
a query pattern or a conjunction of query patterns) and are expressed as
〈Q〉.

– simulation constraints specify that two terms t1 and t2 have to be unified
and are expressed as t1 �S t2,

– dependency constraints specify that the evaluation of one constraint depends
on the evaluation of another and are expressed as (C1 | C2).
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Furthermore, the following notations are used:

– Pgrouping denotes the set of all rules in the program P that contain one of
the grouping constructs all or some

– Pnongrouping denotes the set of all rules in the program P that do not contain
one of the grouping constructs all or some

– T denotes the set of all database terms contained in the program, or refer-
enced by resource specifications

The following constraint reduction rules are also common to both ap-
proaches:

Dependency Resolution. The dependency resolution is required for computa-
tions that involve the all and some constructs. A dependency constraint of the
form (t1 �S t2 | C2) requires to evaluate the complete proof tree (in case of all)
or parts of the proof tree (in case of some) of C2 before C1, and applies the
resulting substitution Σ to t2 (application to t1 is not necessary, as t1 and C2

are variable disjunct).

( t1 � t2 | D )∨
t′2∈Σ(t2) t1 � t′2

Σ = subst(solveall(D))

The actual implementation of the solveall function depends on whether the
“one at once” or “all at once” algorithm is used. In the “one at once” algorithm,
solveall evaluates all paths in the proof tree. In the “all at once” approach,
solveall evaluates the complete constraint store.

4.2 One at once

The “one at once” calculus is similar to the SLD resolution calculus with op-
erational treatment of higher order predicates used in logic programming. Like
SLD resolution, the calculus considers only a single path at a time. If a group-
ing construct occurs, the calculus interrupts the evaluation of the current path,
visits each of the paths of the queries in scope of this grouping construct in
turn and collects the respective solutions, and afterwards continues with the
evaluation of the current path.

“One at once” consists of three unfolding rules which are introduced below:

Query Unfolding against Database Term. Unfold a folded query term against a
database term t by replacing the folded query term by a simulation constraint
between the folded query term and the term t.

〈tq〉
t ∈ T
tq �S t
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Query Unfolding against Rule. Unfold a folded query term tq against the head
tc of a rule.

1. In case tc contains none of the grouping constructs all and some, add a
constraint for the simulation of tq in tc and add the query part of the rule
as a folded query.

2. In case tc contains at least one of the grouping constructs all and some,
add a dependency constraint such that the unification of tq in tc is only
evaluated in case the query part is evaluated successfully.

〈tq〉 〈tq〉
(tc → Q) ∈ Pnongrouping (tc → Q) ∈ Pgrouping

tq �S tc ∧ 〈Q〉 (tq �S tc | 〈Q〉)

The dependency part in a dependency constraint (as in the result of the right
rule) is solved in an auxiliary calculation. In case tc contains an all construct,
or nested some constructs, it is necessary to solve the complete query part. If tc

contains only a single some construct, it is sufficient to only search for solutions
until a sufficient amount is found.

Disjunctive Split. Note that all of these rules need to select both a folded
query to continue with and either a rule or a term, and backtrack in case the
selected rule or term leads to failure. This selection with backtracking yields a
so-called proof tree. Both the selection of constraints and of rules/terms is non-
deterministic and different search strategies, like the depth-first search used in
SLD resolution, are conceivable.

Some of the rules above may yield a disjunction as a result (most notably the
dependency resolution and the unification part of the consistency verification).
In such cases, the “one at once” approach needs to split the disjunction into
different paths of the proof tree (and insert a choice point). The following rule
represents this split. Assume that C is in disjunctive normal form:

C1 ∨ . . . ∨ Cn

C1 | . . . | Cn

“One at once” has the advantage that it only needs to consider a single con-
junctive path at a time. On the other hand, only a depth first search is possible
and occurrences of grouping constructs externally “interrupt” the evaluation
by requiring an auxiliary application of the calculus to certain queries until all
solutions are found.

4.3 All at once

The “all at once” calculus considers all paths in the proof tree at once. Thus,
the considered constraint store contains conjunctions as well as disjunctions.
Where “one at once” unfolds a query with only one of the alternatives at a
time (and then relies on backtracking for finding different alternatives), “all
at once” unfolds all possible alternatives simultaneously and adds them to the
proof tree. If a grouping construct occurs, it adds a dependency constraint to a
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certain subtree of the proof tree. The evaluation may then continue at any node
in the proof tree. If this subtree is completely solved, the grouping construct
can be solved as well.

〈tq〉∨
t∈T tq �S t ∨∨
(tc←Q)∈Pnongrouping

(tq �S tc ∧ 〈Q〉) ∨∨
(tc←Q)∈Pgrouping

(tq �S tc | 〈Q〉)

This approach has the advantage that higher order constructs are included
more naturally into the calculus. Instead of relying on external control for solv-
ing higher order constructs, the dependency constraint can be treated by the
rules of the calculus.

In addition, the possibility to continue at any node in the proof tree gives
rise to interesting considerations about selection strategies. With a depth-first
search, the calculus would resemble “one at once” or SLD resolution. Different
search strategies might however be auspicious. A cost based A* search that
tries to first select such nodes that contribute most to the result could provide
performance benefits in practical applications, in particular in the context of
the Web where IO costs for remote resources are often considerably higher than
for local or even in-memory resources.

As the “all at once” approach works with both conjunctions and disjunc-
tions of contraints, a further interesting aspect is to integrate the evaluation
of the rule chaining with the evaluation of the simulation unification. Doing so
might allow optimisations of the evaluation, e.g. by interleaving chaining and
unification steps when feasible.

5 Related Work and Conclusion

This abstract gives a short overview over issues and problems of applying tech-
niques used in logic programming to the Web query language Xcerpt. Two
different approaches for treating Xcerpt’s built-in higher level constructs all
and some have been presented.

The language Xcerpt is work in progress. A project website is located at
http://www.xcerpt.org. An comprehensive introduction into the language
Xcerpt with many examples can be found in [1]. The simulation unification
algorithm has first been presented at [8]. A declarative semantics in form of a
model theory in the style of classical logic is currently being worked on and first
results have been published in [9]. A prototype of Xcerpt exists and has been
demonstrated at [10].

Xcerpt is not the only rule-based query language for Web data. Most note-
ably, the language UnQL [11] first introduced the concept of rule-based querying
to the XML world, but it does not provide important features like rule chaining
and is not based on logic programming.

The necessity of higher order predicates like setof and bagof in Prolog have
been discussed in numerous articles (see e.g. [12]). Also, a formal semantics
has been considered e.g. in [13]. However, such considerations in general do not
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include support for higher order constructs into the calculus itself but instead
treat them as external predicates.
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