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Abstract. Time is omnipresent on the (Semantic) Web. However, for-
malism like XML, XML Schema, RDF, OWL and (Semantic) Web query
languages have, if any, only very limited notions of temporal data types
and temporal theories built-in. Recently, the development of Web Ser-
vices for temporal operations has begun. In this article, we describe a
connection, possibly the first one, between such Web Services and Web
formalisms: A proposal of a type system for temporal and calendric data,
called multi-calendar temporal type system seamlessly integrated into a
host (query) language. The type system’s associated type checking meth-
ods are beyond the scope of this article. For proof-of-concept purposes,
the Web and Semantic Web query language Xcerpt has been chosen.

1 Introduction

Time is omnipresent on the Web or Semantic Web (for short (Semantic) Web).
Many Web sites and pages implicitly or explicitly refer to temporal and calendric
data. Many advanced (Semantic) Web applications like web-based information
and appointment scheduling systems and so-called adaptive Web systems re-
fer to temporal and calendric data, as well. Most existing or foreseen mobile
computing applications refer not only to locations but also to time. For exam-
ple, a mobile application listing pharmacies in the surrounding of a user will
preferably only mention those that are currently open, i.e. it refers to rather
sophisticated temporal and calendric data. The temporal and calendric data in-
volved are most often rather complex, sometimes involving different calendars
(e.g. cultural calendars like the Gregorian and the Islamic and business calen-
dars) with various regulations and lots of irregularities (e.g. leap years), and
‘trimmed to fit’ individual use. For example, one might think of the Web sites
of a university announcing lectures, courses, examinations, consultation hours
of professors, etc. within a teaching term, or a personal appointment book con-
taining entries like business conferences or personal work out times during the
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summer period. How to represent, query, and process such kind of time and cal-
endar data on the (Semantic) Web, i.e. using Web formalisms like XML, XML
Schema, RDF, OWL, and (Semantic) Web query languages?

On the one hand, those formalisms developed for the (Semantic) Web have,
if any, only very limited notions of temporal datatypes and temporal theories
built-in. The W3C standard XML Schema, for example, supports some temporal
data types which are restricted to the Gregorian calendar without multi-calendar
reasoning, e.g. no ”calendar cast primitives”. Furthermore, only some operations
over temporal data types for temporal computation and/or reasoning in XQuery
implementing XMLSchema are supported. On the other hand, several time and
calendar theories have been investigated and developed for a long time from
different perspectives: (1) In Artificial Intelligence, temporal logics and calculi
and temporal constraint reasoning independent of calendars have been investi-
gated, e.g. [1–5]. (2) In temporal databases, algebraic representations for time
and calendars have been theoretically investigated, e.g. [6–8]. It is however not
clear, neither how these general methods can be applied to both real time deal-
ing with irregularities (e.g. leap seconds1 and castings between different calen-
dars) and temporal types, nor how static type checking and type inferencing as
needed when types are integrated in programming or query languages can be
performed. (3) Several algorithms for calendrical calculations [9] are developed
and implemented allowing for various calendar-based calculations. Recently, the
development of some Web Services for temporal operations have begun [10, 11].

In this article, we describe a (possibly first) connection between such Web
Services and Web formalisms: A proposal of a type system for temporal and cal-
endric data, called multi-calendar temporal type system, seamlessly integrated
into the Web and Semantic Web query language Xcerpt [12]. This article is de-
voted to the language of the type system. Its associated type checking methods
are beyond the scope of this article. Static type checking is as useful and desirable
with temporal and calendric data types as it is with whatever other data type.
It makes error detection at compile time possible, and it improves code genera-
tion, as well. Specific aspects of calendar systems make static type checking for
such data an interesting challenge. The temporal type system is open inasmuch
that the type system is neither restricted to a particular calendar nor to specific
temporal or calendric data. Instead, a programmer can specify any professional,
cultural, religious, etc. time concept his/her application might need. The type
system provides a small, but powerful, declarative set of type constructors, se-
lectors, and, as they are sometimes called, mutators. Note that, for example the
temporal data types defined in XML Schema are specified without such type
operators.

This article is organized as follows. Section 1 is this introduction. Section
2 sketches the major concepts of the time model used for the multi-calendar
temporal type system. Section 3 introduces the multi-calendar temporal type
system: the type constructors and selectors and its module structure, and this
section exemplifies the type system’s expressiveness. Section 4 gives perspectives

1 International System of Units(SI), http://www.bipm.org/en/si/



for proof-of-concept of the multi-calendar temporal type system. Finally, Section
5 concludes this article.

2 Time Model

The time model used for the multi-calendar temporal type system combines
interval-based temporal logics, in particular Allen’s interval calculus [2] with
the concept of ‘hierarchical time lines’ to represent time and so-called calendar
units like ‘hour’ or ‘day’ (often realized as time granularities, e.g. in [6–8]).
In the present time model, however, hierarchical time lines are realized as time
partitions of a time domain and selections of time partitions. Additional concepts
are durations and time intervals over those time partitions (resp. selections),
improving and simplifying the layered time model presented in [13].

The time domain is the set of time points used to interpret time and calendar
concepts. A time point is a non-divisible moment of time which is much smaller
than the smallest extend of time which can be modeled in the type system.

Definition 1. (Time Domain.) The time domain is a pair (T ,<T ) where T
is an infinite set and <T is a total order on T such that T is not bounded for
<T . If (T ,<T ) is a time domain, then an element t ∈ T is called time point.

To introduce hierarchical time lines, the time domain can be partitioned into
countable finite many, finite or infinite parts in the time domain (T ,<T ).

Definition 2. (Time Partition of (T ,<T ) and Parts). Let (T ,<T ) be a
time domain. Then P ⊂ P(T ) (i.e. the powerset of T is a time partition of
(T ,<T ), if

1. all sets of P are non-empty,
2. if for all ti ∈ p and for all tj ∈ q with ti, tj ∈ T , p and q sets in P ti <T tj,

then p < q,
3. any two distinct sets of P are disjoint, and
4. every time point of T belongs exactly to one of the sets of P, i.e. T is the

union of the sets of P.

A set p of a time partition P is called part.

With Definition 2, the calendar units hour, day, week, and month of the Gre-
gorian calendar are time partitions, and 2004-05-05 (using the notation of the
ISO 8601 standard for dates and time2) is a part of day. Note that in a concrete
implementation, a part of a time partition may be represented by an interval in
the time domain.

Infinite sets of gapped subsets of a time partition are called selections. The
set of all Saturdays is a selection of the time partition day, for example.

Time Partitions are related in the sense that the parts of one time partition
may be further aggregated by a specific set of parts of another time partition to
form one part in an including time partition.

2 http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html



Definition 3. (Include Relation). Let P and Q be two time partitions. P
includes Q (P � Q) if for each part p ∈ P there exists a set S of parts in Q
such that p = S. Then Q is included in P ( Q � P).

With Definition 3, day � day, day � week, day � month, but not week �

month (if the Gregorian calendar is used). The include relation introduces a
partial order over time partitions.

The include relation permits to specify and relate time partitions in terms of
included time partitions as further ”aggregations” of the time domain to larger
parts. The larger parts are specified by durations of parts of the included time
partition which need to be anchored in the included time partition. Of course, if
the time partition day is included in the time partition week, for example, then
any selection of day is included in week, as well.

In the multi-calendar temporal type system, the include relation is realized
as a typing relation, called include typing relation between types.

To measure the amount of time in a time partition (resp. a selection), for
example 4 weeks (in the time partition week), durations are defined.

Definition 4. Let P be a time partition or a selection of a time partition. Then
a duration d in P is a signed integral number of parts of P, i.e. an amount of
time with known length but no specific starting or ending point.

A time interval is a not necessarily connected, possibly infinite, anchored number
of parts of a time partition (resp. selection) with the constraints that the parts
in a time interval are totally ordered and disjoint.

Definition 5. Let P be a time partition or a selection of a time partition. Then
a time interval I is a finite or infinite collection of pairwise disjoint, totally
ordered intervals [p, q], p, q ∈ P where p ≤ q.

With Definition 5, [2003-03,2003-08] (using the notation of the ISO 8601
standard for dates and time3) is a time interval of time partition month.

3 The multi-calendar temporal Type System

This section introduces and exemplifies the syntactic forms of the type sys-
tem, i.e. its type constructors and selectors which are similar to base types and
structured types in programming languages like integers, strings, and lists with
appropriate operations over these types and the type system’s module structure.

3.1 Base Types

In general, a base type is a set of simple, unstructured values such as numbers
or booleans with appropriate primitive operations for manipulating these values,
pre-defined in the type system. Base types are also called atomic types, because
they have no internal structure as far as the type system is concerned. A base

3 http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html



type in the temporal type system is a base type in this sense, and in the sense,
that it is the reference type for any further type declared (w.̊.�. include Definition
3), using type constructors of the type system.

The type system supports a single base type called reference time partition
type. A reference time partition type is a set of parts of some chosen reference
time partition whose parts are indexed by integers – plus appropriate primitive
operations to manipulate these values. A reference time partition is a time par-
tition of the time domain according to Definition 2 with a fixed part in the time
domain indexed by 1. A reference time partition with a fixed part is required
for a computer implementation of the multi-calendar temporal type system to
reckon time: Fix an arbitrary starting point as 1 in the time domain, and specify
any other part of this time partition by giving a number relative to that fixed
point. The duration of any part of the reference time partition is 1.

The reference time partition type with a fixed part in the time domain pro-
vides a semantics for any further type declared (see below Section 3.2 for details).
In particular, conversions to and from this reference type to other types become
possible which can be expressed by mappings to and from some chosen reference
time partition, of course with a fixed part anchored in the time domain. This
enables processing of dates and times from arbitrary types and/or calendars and
type casting. Note that the reference time partition must be chosen such that
any further time partition may be declared directly or indirectly in terms of the
reference time partition.

In the type system, the reference time partition type Ref has the constant
1 (intended to represent the fixed part of the reference time partition) and the
operations next (successor part) and previous (predecessor part) to enumerate
the parts of the reference time partition, and the duration of any part of type
Ref is 1 Ref.

For example, we may chose the time partition second as the reference time
partition type Ref with midnight at the onset of Thursday, January 1 of year
1970 (Gregorian) as fixed point second 1 (according to Unix time). It is thus the
first second of the first minute and the first hour; this assumption is correct4)
and valid for any civil calendar in use today. The duration of a second in type
second is 1 second.

In the concrete syntax of the type system, i.e. the syntax used by some
programmer, the reference time partition type is referenced by its name, e.g.
second. A part (i.e. a value of the reference time partition type) is specified by
its integer index (e.g. second(2)). In addition to the (integer) index (relative to
the fixed point) for each part of this reference time partition, textual values to
represent dates and times for input and output of the type’s values are supported,
as well. We suggest to choose the ISO Standard 8601 for Dates and Time5 as
textual representation format in the type system; then second(1) might equally
be used with ‘1970-01-01T00:00:00’, for example.

4 International System of Units (SI), http://www.bipm.org/en/si/
5 http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html



3.2 Structured Types

This section introduces the different ways of building structured types in the
multi-calendar temporal type system, using type constructors and selectors.

Time Partitions Many programs need to deal with time partitions whose
parts are aggregations of sets of parts of the reference time partition. These
time partitions can be (directly or indirectly) constructed from the reference
time partition. The type mechanism that supports this kind of programming
with arbitrary time partitions is time partition type. The elements of a time
partition type are called parts.

A time partition is a data structure that specifies a partition of the time do-
main into finite or infinite parts (cf. Definition 2), possibly of different durations,
by an aggregation of sets of parts of the reference time partition or another, al-
ready declared, time partition as follows: A time partition type specifies the first
part, the durations, and an ordered finite periodic pattern of parts of different
durations, possibly with finite many exceptions such that all parts of a time
partition are clearly located by possibly infinite (convex) intervals in the time
domain. The type constructor for time partition types is timepartition. For
every time partition T, the type

timepartition d1[ named n1]>> . . . >> dm[named nm] where anchor=a

describes a time partition T whose parts are constructed from an already declared
time partition S such that time partition T includes time partition S, and S

is included in T (cf. Definition 3). With the type constructor timepartition,
di, i ∈ {1, ..., m} are durations in an already declared time partition S, and a,
the anchor is the first part of a set of parts of S determining the first part of
the time partition T. The order of the durations of the parts of time partition
T is syntactically committed by >>, connecting the anchored durations in the
given periodic order, called periodic pattern which may be nested. Exceptions
in the durations of the parts of some time partition (e.g. leap seconds in the
specification of the time partition minute) are captured by a common case

expression (which can be nested). Subsets of a time partition T may be named
by [named ni], i ∈ {1...m}. Each named subset of T builds a subtype of T usable
as any other type declared. An additional syntactic form of the type constructor
timepartition is provided, where the parts in the periodic pattern of the time
partition declared can be numbered:

timepartition 1:d1[named n1]... m:dm[named nm] where anchor=a

The fundamental property of time partitions is that T(i), the ith part of time
partition T can be computed according to the specifications in the type declara-
tion for T quickly for any value i ∈

�
at run time. i is called the (integer) index

of the ith part of the time partition T relative to its first part (i.e. its anchor)
located in the time domain. Of course, as it is the case for the reference time
partition type, each part of a time partition type has an additional textual value
representation of dates and times for input and output of type values.



Let’s consider a small example. We declare the time partition teaching term

(according to teaching terms at Bavarian universities where winter terms always
begin in October) by an aggregation of the time partition month (of the Gregorian
calendar), assuming that month is already declared, as follows:

type teaching_term = timepartition

1: 6 month named winterterm

2: 6 month named summerterm

anchored_at month (10);

With this type declaration, a part of type teaching term has a duration of
1 teaching term, and the teaching term indexed by 1 is defined by includ-
ing 6 months starting with the month indexed by 10. The ith part of the
time partition teaching term is teaching term(i). winterterm is a subtype
of teaching term that can be used in the same way as the type teaching term.

Selectors So far, we have studied the type constructor for time partitions to-
tally covering the time domain (T ,<T ) in terms of Definition 2. But people
frequently use particular selected, gapped subsets of a partition like Saturday

of the partition day or the 8’o clock news of the partition hour: Saturday is
the infinite set of every 6th part out of a period of 7 parts of day and the 8’o

clock news is an infinite set of every 8th part out of any period of 24 parts of
hour.

Selectors construct subtypes of a type by selecting specific sets of its super-
type. We accomplish this by formalizing the intuition that any type S constructed
by a selector is more informative than the type T, S is constructed from. We say
S is a subtype of T, written S <: T6, to mean that any part of S can safely be
used in a context where a part of T is expected. For types T1, T2, . . . , and i ∈

�
,

the following selectors are supported. The selectors are subsequently explained
by examples (using time and calendar concepts of the Gregorian calendar).

Selector Syntactic From Conditions

select select T1(i) where < condition >

select during select during(i,T1,T2) T1 � T2

select overlaps select overlaps(i,T1,T2) neither T1 � T2 nor T1 � T2

includes T1 includes T2 T1 � T2

included in T1 included in T2 T1 � T2

union T1 union T2 T1,T2 <: T3

intersects T1 intersects T2 T1,T2 <: T3

minus T1 minus T2 T1,T2 <: T3

join T1 join T2 T1,T2 <: T3

shift shift(T1,d) d :: duration of T1

With the selector select, specific sets of a type can be selected using con-
straints over the type’s parts expressed by conditions the parts must satisfy,
usable after the keyword where. For example, the subtype winterterm of the
type teaching term, i.e. always the first out of two teaching terms, can be de-
clared as follows:

6 Denoting predicate subtyping constraining the parts of T satisfying a selector.



(1) type winterterm = select teaching_term (i) where i mod 2==1;

This selector comes with an additional syntactic form which provides a rather
textual representation to formulate rather simple conditions, e.g.

(2) type winterterm = select teaching_term

anchored_at teaching_term (1) in_period 2 teaching_term ;

Note that the syntactic form (2) is merely syntactic sugar for the form (1).
The selectors select during and select overlaps enable to select subsets

of parts of a time partition T1 by locating specific parts in another time partition
T2 where the parts of the time partition T1 are either during, start, or finish [2]
those of T2 (i.e. T1 is included in T2) or might overlap [2] those of T2 (i.e. T1 is
not included in T2). For example,

type christmas_day = select_during (25, day ,december );

type 1 stweek_winterterm = select_overlaps (1,week , winterterm );

With these type declarations christmas day is a subtype of day, locating al-
ways the 25th part of type day in each part of type december, and 1stweek winterterm

is a subtype of week, locating always the first part of week that possibly overlaps
with the respective part of type winterterm. The select overlaps selector is
used, because the type week is not included in the type winterterm.

The selectors includes and included in select included (resp. including)
parts of type T1 in type T2. For example,

type christmas_week = week includes christmas_day ;

specifies the set of all those weeks which include a Christmas Day.
The shift selector shifts each part of type T by a duration of type Duration

of T. For example, the 4th Advent can be specified as the Sunday in the week
before the week including Christmas Day.

type Advent4 =shift(sunday included_in christmas_week ),-7 day );

The three selectors union, minus, and intersects are the usual set-theoretic
operations over types. They can be, for example, used to declare the following
calendar types:

type weekend_days := sunday union saturday ;

type weekday = day minus weekend;

type sunday&lastday_month = sunday intersects lastday_month ;

The set of all weekend days is the union of all Saturdays and Sundays, any
weekday is the difference of days and weekend days, and those Sundays which
are also the last day of some month are straightforwardly declared by union,
minus, and intersects, respectively.

To declare a type weekend instead of weekend days, for example, whose parts
have the length of two consecutive days, the selector join over types T1 and T2

both having the same supertype can be used, concatenating the parts of both
types.



Durations Many programs dealing with time make use of means to measure
time or specifying extends of temporal events in terms of durations. A duration is
a signed integral number of parts in any type with known length but no specific
starting or ending parts.

The type constructor duration of T describes for any type T a duration
drawn from the type T. A duration value of type duration of T formed by a
signed number and a type T is written q T where q ∈ � . For example YearsOfStudy
has a duration of 9 teaching terms (at a Bavarian university).

YearsOfStudy :: duration of teaching_term = 9 teaching_term ;

Note that type ascription is not require for duration types in the type system,
because type inferencing is supported. For example, the duration of the variable
YearsOfStudy may be declared without previous type ascription.

Time Intervals For many programs dealing with time it is useful to have a
mechanism to specify somehow related parts in some time partition building
particular time intervals. The type mechanism that supports this kind of pro-
gramming with time intervals is time interval type. A time interval is a finite or
infinite sequence of possibly non-connected parts of some time partition where
the parts are ordered and pairwise disjoint. For example, my holidays in 2003
between 8 to 14 April and 29 July to 6 August is a time interval in time partition
day.

The type constructor for time intervals is timeinterval. For every type T,

the type timeinterval of T describes finite or infinite ordered sequences of
possibly non-connected parts whose elements are drawn from T.

Time intervals can be constructed by the following syntactic forms, i.e. by
the following value constructors.
– The empty time interval (with elements of type T) is written []::T.
– A time interval constructed by its ending points t1 and t2 (both of type T),

including all parts between t1 and t2 of T, is written [t1..t2]::T.
– A time interval constructed by a duration q T (of type duration of T)

and an anchor t (of type T) is written q T from t::T, meaning that q

consecutive parts of T are included in the time interval where t is the first
of those parts.

– A possibly infinite time interval constructed by a selector s (cf. Section 3.2)
(of type T), possibly an anchor t1 and possibly an endpoint t2 (both of
type T) is written s [from t1] [to t2]::T, meaning that those parts of
T satisfying s between a possible anchor t1 and a possible endpoint t2 are
included in the constructed time interval.

Time intervals constructed in one of the previously introduced forms can be
related by a comma, interpreted as concatenation time intervals.

Let’s turn attention to the following example. We assume that the types day,
month, and sunday (all of the Gregorian calendar) are already declared.

Holidays03 = [2003 -04 -08..2003 -04 -14] ,[2003 -07 -29..2003 -08 -06];

KickoffMeeting = 4 day from 2004 -03 -01;

ClubMeeting = select_during (2,sunday ,month) from 2004 -02 -15;



The variable MyHolidays03 is of type time interval of days as previously
illustrated. KickoffMeeting is a time interval of four consecutive days starting
with day 2004-03-01 (and ending with day 2004-03-04). And ClubMeeting is
a time interval including always the second Sunday of each month starting with
day 2004-02-15. As illustrated, type ascription is also not required for variables
and constants of type timeinterval, because type inferencing is supported.

3.3 Modules

Types in the multi-calendar temporal type system are declared within a module.
A module defines a scope for a finite set of type declarations belonging together.
A module has the following syntactic form:

CALENDAR [ qualified ] MY_CALENDAR

(* finite set of type declarations *)

END

The attribute qualified is optional. If used, the declarations made in this mod-
ule are restricted to the scope of this module. If the module is imported, i.e.

CALENDAR ANOTHER_CALENDAR

import MY_CALENDAR ;

(* finite set of type declarations *)

END

then declaration d made within the module MY CALENDAR and used in the mod-
ule ANOTHER CALENDAR is accessed by MY CALENDAR.d. Thus, the name d might
also be used for a declaration within the module ANOTHER CALENDAR. For ex-
ample, if the Gregorian calendar is declared in a qualified module GREGORIAN

containing a type christmas day and the Julian calendar is declared in another
qualified module JULIAN containing also the type christmas day, then Julian
and Gregorian Christmas can be used together within some program using the
dot notation: GREGORIAN.christmas day7 and JULIAN.christmas day8, respec-
tively. That means, qualified calendar modules provide a means for dealing with
context-dependent temporal and calendric data.

3.4 Examples

Let us consider a detailed example on programming with the multi-calendar
temporal type system. Example 1 is an exemplary declaration of the Gregorian
calendar, and Example 2 is an exemplary declaration of the arithmetic Islamic
calendar in which months follow a pattern set. In this example, the declarations
of the Islamic calendar are based on those of the Gregorian calendar (i.e. the
calendar declarations are directly related), to enable straightforward comparison
and casting of Islamic and Gregorian calendar concepts in some program. This
can be realized by declaring one time partition of the Islamic calendar in terms of

7 25 December
8 7 January



a time partition of the Gregorian calendar, and subsequently relating any further
type declaration to this time partition and the system’s fixed part in time. Note
that the type system also supports the possibility to declare the Islamic calendar
independent of the Gregorian calendar, both only with relation to the reference
time partition type, for example.

For the following examples we assume that the time partition second is the
pre-defined reference time partition type with midnight at the onset of Thursday,
January 1 of year 1970 (Gregorian) (according to Unix time) as fixed part second
1. Furthermore, we assume that the following relations and a function are pre-
defined such that they are usable in the subsequent examples: (1) leapYear is
a pre-defined relation that returns true if a given Gregorian month falls into a
Gregorian leap year, otherwise it returns false; (2) islamicLeapYear is a pre-
defined relation that returns true if a given Islamic month falls into an Islamic
leap year, otherwise it returns false; and (3) sunset(Locale) is a pre-defined
function that returns the time in local mean time for a given Locale.

Example 1. (Gregorian Calendar.)

CALENDAR GREGORIAN

type minute = timepartition 60 second anchored_at second (1);
type hour = timepartition 60 minute anchored_at minute (1);
type day = timepartition 24 hour anchored_at hour(1);

type week = timepartition 7 day anchored_at day(-2); (* begin on Mondays *)
type month = timepartition

1: 31 day named january
2: case

leapYear = 29 day named february

| otherwise = 28 day named february
end

3: 31 day named march
4: 30 day named april

5: 31 day named may
6: 30 day named june
7: 31 day named july

8: 31 day named august
9: 30 day named september

10: 31 day named october
11: 30 day named november
12: 31 day named december

anchored_at day(1);
type year = timepartition 12 month anchored_at month (1);

with select day(i) where i mod 7 == j
type monday = j == 5

type tuesday = j == 6
type wednesday = j == 0
type thursday = j == 1

type friday = j == 2
type saturday = j == 3

type sunday = j == 4
end

END

The Gregorian calendar is declared straightforward using some of the previously
introduced type constructors defining specific sets with the intended meaning.
Exceptions are captured using case expressions which are usable within any
type declaration, e.g. the declaration of type month to capture the irregularity of
Gregorian months due to Gregorian leap year rules. In Example 1 it is demon-



strated how type declarations can be group using the with ...end construct,
declaring weekdays, for example.

In real life minutes contain leap seconds from time to time. This phenomenon
can also be expressed in the type system:

type minute = timepartition case

minute (1051200) = 70 second

| containsLeapSeconds = 61 second

| otherwise = 60 second

end

anchored_at second (1);

assuming that containsLeapSeconds is a pre-defined relation that returns true
if a given minute contains leap seconds, otherwise it returns false.

Note that type declarations for the most important Christian and Orthodox
holidays are straightforward when using the temporal type system, extending
the program given in Example 1 only by a few lines.

Now let us consider declarations for the Islamic calendar.

Example 2. (Islamic Calendar.)

CALENDAR ISLAMIC

import GREGORIAN;
type i_day = shift(day,distance (sunset(Locale),midnight ));

type i_week = timepartition 7 i_day anchored_at i_day(-1); (* begin on Sundays *)
type i_month = timepartition

1: 30 i_day named muharram
2: 29 i_day named safar
3: 30 i_day named rabiI

4: 29 i_day named rabiII
5: 30 i_day named jumadaI

6: 29 i_day named jumadaII
7: 30 i_day named rajab
8: 29 i_day named sha‘ban

9: 30 i_day named ramadan
10: 29 i_day named shawwal

11: 30 i_day named dhu_al -qa‘da
12: case

islamicLeapYear = 30 i_day named dhu_al_hijja
| otherwise = 29 i_day named dhu_al_hijja

end

anchored_at i_day( -286);
type i_year = timepartition 12 month anchored_at i_month (1);

with select day(i) where i mod 7 == j
type yaum_al -ahad = j == 4 (* Sunday *)
type yaum_al -ithnayna = j == 5 (* Monday *)

type yaum_al -thalatha = j == 6 (* Tuesday *)
type yaum_al -arba ‘a = j == 0 (* Wednesday *)

type yaum_al -hamis = j == 1 (* Thursday *)
type yaum_al -jum‘a = j == 2 (* Friday *)

type yaum_al -as-sabt = j == 3 (* Saturday *)
end

END

In Example 2 we define an explicit relation between the Gregorian and the
Islamic calendar. In the Islamic calendar, the chosen fixed part, i.e. midnight
at the onset of Thursday, January 1 of year 1970 (Gregorian) corresponds to
22 October 1398 (Islamic). Note that an Islamic day begins at sunset of the
previous Gregorian day and ends at sunset of the next Gregorian day. The sunset



depends on a specific location. However, Islamic days are also defined by a period
of 24 hours. The aspect of sunset is only of interest if we talk of evening or for
determining the beginning of Islamic holidays. An Islamic type i day may thus
simply be declared by a shift according to sunset of the Gregorian calendar type
day as illustrated in Example 2. The other time partition of this calendar are
then straightforward declared in the expected manner.

Note that type declarations also for the most important Islamic holidays are
straightforward when using the temporal type system, extending the program
given in Example 2 only by a few lines.

4 Perspective: Integration into the Web Query Language
Xcerpt

With the multi-calendar temporal type system, we develop a type language for
time and calendar concepts with which the programmer can declare concepts of
his/her needs within a (intern or extern) module, seamlessly integrated into a
host (query) language. For proof-of-concept purposes, we have chosen the (Se-
mantic) Web query language Xcerpt [12] as host language for the type system.
The multi-calendar temporal type system integrated into the (Semantic) Web
query language Xcerpt is intended to support temporal adaptive Web systems9,
formulating queries independent of a particular web-based application and/or a
particular temporal or calendric context.

For explicitly ascribing a particular type to an Xcerpt term, we write "t::T"
for ”the term t which we ascribe the type T”. A value or object v of some type
defined in a module can be used as an Xcerpt term appearing in an Xcerpt
program simply by using its name v.

Let us consider an oversimpled database (Example 3) of a travel agency
containing air journey offers during the summer period as it is defined for the
traveling industry (a type declaration for type summer is illustrated in the calen-
dar JOURNEY used by some travel agency). The offers come with destination,

price-per-week, and bookable elements. A person inquiries the travel agency
for a one week journey during his summer vacations, which he/she has de-
fined in the module JOURNEY, as well in the element MyVacation04 (of type
timeinterval of day). The module in Example 3 imports the Gregorian cal-
endar module declared in Example 1 such that its declarations can be used in
the module JOURNEY.

Example 3. (Data Term and Query).

CALENDAR JOURNEYS

import_calendar GREGORIAN;
type summer = june join july join august join september;

Summer2004 = 2004 includes summer;
MyVacation04 = [2004 -07 -19..2004 -08 -22];

END

9 Adaptation basically means delivering and/or rendering data in a context-aware
manner, i.e. combining parts of Web data depending on context specified, e.g. by
some user model, parameters of the rendering, or time and location of some user.



air_journeys {

season { Summer2004 }
journey {

destination { "Santorini" },
price -per -week { "329 €" },
bookable { [2004 -06 -01..2004 -06 -20] or

[2004 -07 -17..2004 -08 -04] or
[2004 -09 -15..2004 -09 -22] }

},
journey {

destination { "Sicily" },

price -per -week { "461 €" },
bookable { [2004 -06 -24..2004 -07 -23] or

[2004 -08 -02..2004 -08 -19] }
}, ...

}

CONSTRUCT

destinations { all var Dest }
FROM

air_journeys {{

journey {{
var Dest ; destination ,

bookable { var Booking }
}}

}} where {

zip_some_contains(var Booking ,
(MyVacation04 includes week))

}
END

With Example 3, the tourist looks for a week which is included in his/her summer
vacations in year 2004. This is expressed by the function includes casting the
time interval MyVacation04 to a time interval of weeks of the same time period.
At least one of these weeks must be contained in one of the bookable time
intervals. This is expressed with the relation zip some contains, generalizing
Allen’s interval relation contains [2] such that each of the bookable time intervals
are related to each of the weeks according to the contains relation, returning true
if at least one week is contained in one of the bookable time intervals.

Note that several functions and relations over values of any type are sup-
ported, e.g. Allen’s interval relations [2], casting functions, and functions to
relate parts and/or time intervals and durations. Relations over types can be
used in an Xcerpt condition box (i.e. the WHERE-part of an Xcerpt query) and
functions over temporal and calendric types supported with the temporal type
system can be used within relations and in an Xcerpt CONSTRUCT-part.

5 Conclusion

This article has introduced the type constructors and selectors of a multi-calendar
temporal type system seamlessly integrated into a host (query) language. Its as-
sociated type checking methods have not been considered in this article.

The type constructors and selectors of the type system presented in this ar-
ticle, form a small and simple, but powerful set: As illustrated in this article,
different calendars like the Gregorian and the Islamic calendar can be defined;
the Hebrew calendar, which is slightly more complicated than the addressed ones,
may also be defined in the temporal type system. Furthermore, several time and
calendar notions used in a university context and in a business context have been
defined in the type system. For proof-of-concept purposes, we currently imple-
ment the introduced type constructors and selectors and several functions and
operations over temporal types in the (Semantic) Web query language Xcerpt.

The type constructors and selector of the temporal type system, presented
in this article, are designed to provide a means for modeling typed time and
calendar data in (Semantic) Web queries in a declarative way integrated into
its host language, to allow for context-aware queries, and to enable static type
checking. A type amenable to static type checking, i.e. at compile time before



the actual value in some program is computed, must be ‘value independent’.
For this reason, a type like working week which depends on concrete values
like the US holiday Independence Day being in each year at 4th July must be
derived from a more general time partition type. Note that other time models for
calendars are data dependent (e.g. [6, 7]). Type checking and type inferencing
types in the multi-calendar temporal type system is an interesting challenge
due to specific aspects of time concepts and calendar systems. For example,
type equivalence since a type like 4thAdvent might be declared in different
ways, however defining the same time, or type casting, because casting type
week to type month information is lost that cannot be recovered. In addition,
two interesting typing relations includes and subtype of between temporal and
calendric types exist. Beyond this, several relations and functions supported over
temporal and calendric types are polymorph.
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