
A Logical Characterization of Adaptive
Educational Hypermedia

Nicola Henze and Wolfgang Nejdl

ISI- Knowledge-Based Systems,
University of Hannover,

Appelstr. 4, D-30167 Hannover, Germany
{henze,nejdl}@kbs.uni-hannover.de

http://www.kbs.uni-hannover.de/~{henze,nejdl}

Abstract. Currently, adaptive educational hypermedia systems (AEHS)
are described with nonuniform methods, depending on the specific view on
the system, the application, or other parameters. There is no common lan-
guage for expressing functionality of AEHS, hence these systems are difficult
to compare and analyze. In this paper we investigate how a logical descrip-
tion can be employed to characterize adaptive educational hypermedia. We
propose a definition of AEHS based on first-order logic, characterize some
AEHS due to this formalism, and discuss the applicability of this approach.

1 Motivation

This paper aims at developing a logical characterization of adaptive educational hy-
permedia and web-based systems (AEHS). AEHS have been developed and tested in
various disciplines and have proven their usefulness for improved and goal-oriented
learning and teaching. However, these systems normally come along as stand-alone
systems - proprietary solutions have been investigated, tested and improved to fulfill
specific, often domain-dependent requirements. So far, there has been no attempt
to define a common language for describing AEHS. Such a shared language will
support the analysis and comparison of AEHS, and, in addition, a comprehensible
description of AEHS will encourage an extended use of adaptive functionalities in
e-learning. This is especially important with respect to the Semantic Web [1], and,
associated, the Adaptive Web [8] which knows like a personal agent the specific
requirements of a user, takes goals, preferences or the actual context into account
in order to optimize the access to electronic information.
Bringing personalization to the Web requires an analysis of existing adaptive sys-
tems, and of course this also holds for the special case of e-learning and education.
In this paper, we propose a component-based definition of adaptive educational hy-
permedia systems. A functionality-oriented definition of adaptive hypermedia has
been given by Brusilovsky, 1996 [5].:

Definition 1 (Adaptive hypermedia system) ”By adaptive hypermedia sys-
tems we mean all hypertext and hypermedia systems which reflect some features
of the user in the user model and apply this model to adapt various visible aspects
of the system to the user.”

The component-based definition proposed in this paper is motivated by Reiter‘s
theory of diagnosis [22] which settles on characterizing systems, observations, and
diagnosis in first-order logic (FOL). We decompose adaptive educational hypermedia
systems into basic components, according to their different roles in the system:
Each adaptive (educational) hypermedia system is obviously a hypermedia system,
therefore it makes assumptions about documents and their relations in a document

space. It uses a user model to model various characteristics of individual users or
user groups. During runtime, it collects observations about the user’s interactions.
Based on the organization of the underlying document space, the information from
user model and from the system’s observation, adaptive functionality is provided.

1.1 Why is a logical characterization of adaptive (educational)
hypermedia required?

With Brusilovsky’s definition of adaptive hypermedia, we can describe the general
functionality of an adaptive hypermedia system, and we can compare which kind of
adaptive functionality is offered by such a system.
In the literature, we can find reference models for adaptive hypermedia, e.g. the
AHAM Reference Model [4], or the Munich Reference Model [20]. Both, the AHAM
and Munich Reference Model, extend the Dexter Hypertext Model [16], and pro-
vide a framework for describing the different components of adaptive hypermedia
systems. The focus of these reference models is on process modeling and engineer-
ing of adaptive hypermedia applications, so they are process-oriented and therefore
provide process-oriented descriptions of adaptive (educational) hypermedia systems.
However, a formal description of adaptive educational hypermedia which allows
for a system-independent characterization of adaptive functionality is still missing.
Currently, we cannot answer a request like the following: ”I want to apply the adap-
tive functionality X in my system. Tell me what information is required with the
hypermedia-documents, which interactions at runtime need to be monitored, and
what kind of user model information and user modeling is required.” At the mo-
ment, we can only describe the functionality with respect to a specific environment,
which means we can describe the functionality only in terms of the system that
implements it. We cannot compare how different systems implement them, nor can
we benchmark adaptive systems. A benchmark of adaptive systems would require at
least a comparable initial situation, observations about a user’s interactions with the
system during some defined interaction period, before the result of the system, the
adaptive functionality as well as the changes in the user model could be compared.
The logical definition of adaptive educational hypermedia given in this paper focuses
on the components of these systems, and describes which kind of processing infor-
mation is needed from the underlying hypermedia system (the document space), the
runtime information which is required (observations), and the user model character-
istics (user model). Adaptive functionality is then described by means of these three
components, or more precisely: how the information from these three components,
the static data from the document space, the runtime-data from the observations,
and the processing-data from the user model, is used to provide adaptive func-
tionality. The aim of this logical definition of adaptive educational hypermedia is
to provide a language for describing adaptive functionality, to allow comparison of
adaptive functionality in a well-grounded way, and to enable the re-use adaptive
functionality in different contexts and systems.
We require a formalism expressing adaptive functionality in a system-independent
and re-usable manner, which allows us to apply this adaptive functionality in vari-
ous contexts. In the educational context, a typical scenario where re-usable adaptive
functionality is required would be: Imagine a learner who wants to learn a specific
subject. The learner registers to some learning repository, which stores learning ob-
jects. According to her/his current learning progress, some of the learning objects
which teach the subject s/he is interested in, are useful, some of them require addi-
tional knowledge that the learner does not have so far (in accordance to his/her user
model), and some might teach the subject only on the surface and are too easy for
this learner. This kind of situation has been studied in adaptive educational hyper-
media in many applications, and with successful solutions. However, these solutions

are specific to certain adaptive hypermedia applications, and are hardly generaliz-
able for re-use in different applications. Another reason why adaptive functionality
is not re-usable today is related to the so-called open corpus problem in adaptive
(educational) hypermedia, which states that currently, adaptive applications work
on a fixed set of documents which is defined at the design time of the system, and di-
rectly influences the way adaptation is implemented, e.g. that adaptive information
like ”required prerequisites” is coded on this fixed set of documents.
A first step to come to re-usable adaptive functionality is to analyze and describe
adaptive functionality system-independent, and in a comparable manner, which we
undertake in this paper.

This paper is organized as follows: In the next section we give a first description of
the components of an AEHS and explain their roles and functionality with examples.
We then give a definition of AEHS based on FOL. Based on this formalization, three
simple AEHS with few adaptive functionalities are described in section 3. From the
many adaptive educational hypermedia systems which have been developed in the
past, we have selected four exemplary systems to verify the logical definition of
AEHS we propose. In this selection, three of the systems belong to the first genera-
tion (Interbook [7]) and the second generation of adaptive educational hypermedia
systems (NetCoach [26] and KBS Hyperbook [18]), as well as a recent system which
is also an authoring framework for adaptive educational hypermedia (AHA!2.0 [2])
(see section 4). A synopsis of the results is given in section 4.5. We conclude with a
discussion about the results of our logic-based characterization of AEHS.

2 Towards a Logic-Based Definition of AEHS

In this section we will first give a description of the components in AEHS and their
roles. Afterwards we will give a formal definition of adaptive educational hyper-
media systems based on first-order logic. We claim that an Adaptive Educational
Hypermedia System (AEHS) is a Quadruple

(DOCS, UM, OBS, AC)

with

DOCS: Document Space belonging to the hypermedia system in question as well
as information associated to this document space. This associated information
might be annotations (e.g. metadata attributes, usage attributes, etc.), domain
graphs that model the document structure (e.g. a part-of structure between doc-
uments, comparable to a chapter - section - subsection - hierarchy), or knowledge
graphs that describe the knowledge contained in the document collections (e.g.
domain ontologies).

UM: User Model: stores, describes and infers information, knowledge, preferences
etc. about an individual user (might share some models with DOCS). The ob-
servations OBS are used for updating the user model UM. Examples of user
models are overlay models where the user’s state of knowledge is described as a
subset of an expert’s knowledge of the domain. Student’s lack of knowledge is
derived by comparing it to the expert’s knowledge. A stereotype user modeling
approach classifies users into stereotypes: Users belonging to a certain class are
assumed to have the same characteristics.

OBS: Observations about user interactions with the AEHS. Here, everything
about the runtime behavior of the system concerning user interactions is con-
tained. Examples are observations whether a user has visited a document, or
visited document for some amount of time, etc. Other examples are rules for
compiling e.g. quizzes for testing a user’s knowledge on some subject, etc.

AC: Adaptation Component: rules for adaptive functionality (e.g. whether to sug-
gest a document for learning, or for generating reasonable learning paths, etc.),
rules for adaptive functionality (e.g. sorting the links leading to further docu-
ments according to their usefulness for a particular user, etc.), etc.

To formalize this above definition we will discuss these components in more detail.

2.1 DOCS: The Document Space

The objects of discourse in the document space are the documents, and, if applicable,
the knowledge topics. Their counterpart in the logical description are the constants:
the document identifier (doc id) or topic identifier (topic id) respectively.
Domain graphs (or knowledge graphs) are expressed as predicates that state the
relations between the documents (or topics). For formalizing the part-of domain
graph mentioned as an example in the previous section, we define predicates like

part of(doc id1, doc id2) .

Another example is the prerequisite relation between documents stating which doc-
uments need to be learned before a certain document can be studied:

preq(doc id1, doc id2) .

Some AEHS use a separate knowledge graph to express relations about knowledge
topics. These topics normally do not correspond one-to-one to the documents. If a
separate knowledge graph exists, this graph will be expressed by several predicates
as well. E.g., a taxonomy on topics will be expressed by predicates like

is a(topic id1, topic id2) .

A further example are learning dependencies modeled on topics:

is dependent(topic id1, topic id2) .

2.2 UM: The User Model

The user model expresses, derives and draws conclusions about the characteristics
of users. This might be done by modeling each individual user or by modeling typ-
ical groups that represent users with similar behavior, requirements, etc. (so called
stereotypes). Objects of discourse in the user model are the user which are logically
expressed by constants, the user identifier (user id), and the various characteristics
which can be assigned to this user in this AEHS. The characteristics of a user are
expressed by predicates:

has property(user id, characteristic x) or
has property(user id, characteristic x, value), etc.

A prominent characteristic in AEHS is the knowledge a user has on documents (or
knowledge topics). The first of the following examples uses a binary value for the
knowledge, the second example allows different grades of knowledge:

has property(doc id, user id, topic) or
has property(doc id, user id, topic, value), etc.

The characteristic ”knowledge” is very prominent for educational adaptive hyper-
media systems, so we can abbreviate the above predicates by:

knows(doc id, user id) or
knows(doc id, user id, value), etc.

2.3 OBS: The Observations

Observations are the result of monitoring a user’s interactions with the AEHS at
runtime. Therefore, the objects for modeling observations are the users (as in the
case of the UM) and the observations.
Typical observations in AEHS are whether a user has studied some document. The
corresponding predicate is

obs(doc id, user id, visited) or
obs(doc id, user id, visited, value), etc.

If the document is a test and the user has worked on this test by answering the
corresponding questions, predicates like

obs(doc id, user id, worked on) or
obs(doc id, user id, worked on, value), etc.,

are used.

2.4 AC: The Adaptation Component

Finally, the adaptation component contains rules for describing the adaptive func-
tionality of the system. An example for adaptive functionality is to decide whether a
user has sufficient knowledge to study a document (recommended for learning). This
functionality belongs to the group of functionalities which determine the ”learning
state” of a document. A simple rule might be to recommend a document for learning
if all documents that are ”prerequisites”, e.g. that need to be studied before this
document can be learned, have been visited:

∀user id ∀doc id1

(∀doc id2 preq(doc id1,doc id2) =⇒ obs(doc id2, user id, visited))
=⇒ learning state(doc id1, user id, recommended for reading).

The adaptive functionality is a set of rules describing the runtime behavior of the
system. An often used adaptive functionality is the traffic light metaphor [5] to
annotate links: Icons with different colors are used to show whether a document
corresponding to a link is recommended for reading (green color), might be too
difficult to study (yellow color), or is not recommended for reading (red color).
Variations of the colors and their meaning in the various adaptive educational hy-
permedia systems exist. A rule for defining the adaptive functionality ”document
annotation” is given in the following:

∀doc id ∀user id
learning state(doc id, user id, recommended for learning)
=⇒document annotation(doc id, user id, green icon).

2.5 Definition of Adaptive Educational Hypermedia Systems

In this section, we will give a logic-based definition for AEHS. We have chosen first
order logic (FOL) as it allows us to provide an abstract, generalized formalization.
The notation chosen in this paper refers to [23]. The aim of this logic-based defini-
tion is to accentuate the main characteristics and aspects of adaptive educational
hypermedia.

Definition 2 (Adaptive Educational Hypermedia System (AEHS)) An
Adaptive Educational Hypermedia System (AEHS) is a Quadruple

(DOCS, UM, OBS, AC)

with

DOCS: Document Space: A finite set of first order logic (FOL) sentences with
constants for describing documents (and knowledge topics), and predicates for
defining relations between these constants.

UM: User Model: A finite set of FOL sentences with constants for describing
individual users (user groups), and user characteristics, as well as predicates
and rules for expressing whether a characteristic applies to a user.

OBS: Observations: A finite set of FOL sentences with constants for describing
observations and predicates for relating users, documents / topics, and obser-
vations.

AC: Adaptation Component: A finite set of FOL sentences with rules for describ-
ing adaptive functionality.

The components ”document space” and ”observations” describe basic data (DOCS)
and run-time data (OBS). User model and adaptation component process this data,
e.g. for estimating a user’s preferences (UM), or for deciding about beneficial adap-
tive functionalities for a user (AC).

3 Examples

In this section we will provide some examples of a prototypical AEHS to illustrate
the applicability of our framework. The first three examples describe prototypi-
cal (artificial AEHS) whose purpose is to illustrate the applicability of the above
proposed framework. The following four examples show the logical descriptions of
existing AEHS: the NetCoach system [26], the AHA!2.0 system [2], the Interbook
system [7], and the KBS hyperbook system [18].

3.1 A simple AEHS

We describe a simple AEHS, called Simple with the following functionality: Simple
can annotate hypertext-links to documents by using the traffic light metaphor with
two colors: red for non recommended, green for recommended pages.

Simple: Document Space A set of n constants (n corresponds to the number of
documents in the document space) which represent the documents:

D1, D2, . . ., Dn.

A finite set of predicates stating the documents that need to be studied before a
document can be learned, e.g. Dj is a prerequisite for Di:

preq(Di, Dj) for certain Di 6= Dj .

Simple: User Model A set of m axioms, one for each individual user:

U1, U2, . . ., Um.

Simple: Observations One constant for the observation whether a document has
been visited:

Visited.

And a set of predicates

obs(Di, Uj , Visited) for certain Di, Uj .

Simple: Adaptation Component One constant for describing the values of the
adaptive functionality ”learning state”:

Recommended for reading,

and two constants representing values of the adaptive functionality:

Green Icon, Red Icon.

Rules for describing the learning state of a document

∀Ui∀Dj

(∀Dkpreq(Dj , Dk) =⇒ obs(Dk, Ui, Visited))
=⇒ learning state(Dj ,Ui, Recommended for reading).

And rules for describing the adaptive link annotation with traffic lights:

∀Ui∀Dj

learning state(Dj , Ui, Recommended for reading)
=⇒document annotation(Dj , Ui, Green Icon),
∀Ui∀Dj

¬ learning state(Dj , Ui, Recommended for reading)
=⇒document annotation(Dj , Ui, Red Icon).

3.2 A simple AEHS - Extension 1

We extend our AEHS Simple by an additional rule in the user model UM. The
visible adaptive functionality of this system, which we call Simple 1, will remain
the same as in Simple, however Simple 1 deduces more information from the user
observations as Simple.

Simple 1: Document Space Same as the document space in Simple.

Simple 1: User Model As the user model in Simple, plus a rule for inferring
that whenever a document has been learned by a user, all the documents that
are prerequisites for this document are learned, too. Simple 1 uses an additional
constant for describing user characteristics:

Learned.

A document D is assumed to be learned by a user, if it has been visited,

∀Ui∀Dj

obs(Dj , Ui, Visited) =⇒p obs(Dj , Ui, Learned).

or if a document D′, for which D is a prerequisite, has been visited:

∀Ui∀Dj

(∃Dkpreq(Dk, Dj) ∧ obs(Dk, Ui, Visited))
=⇒p obs(Dj , Ui, Learned).

These inference rules process an observation, they are therefore abbreviated by
p obs for process observation.

Simple 1: Observations Same as Simple.

Simple 1: Adaptation Component The rule describing the learning state of a
document is updated as follows:

∀Ui∀Dj

∀Dk(preq(Dj , Dk) =⇒
(

obs(Dk,Ui,Visited) ∨ p obs(Dk,Ui,Learned)
)

=⇒ learning state(Dj , Ui, Recommended for reading).

The rules for adaptive link annotation remain unchanged with respect to Simple.

3.3 A simple AEHS - Extension 2

We can extend this simple AEHS by using a knowledge graph instead of a domain
graph. The system, called Simple 2 is able to give a more differentiated traffic light
annotations to hypertext links as Simple or Simple 1. It is able to recommend pages
(green icon), shows which links lead to documents that will become understandable
(dark orange icon), which might be understandable (yellow icon), or which are not
recommended yet (red icon).

Simple 2: Document Space The document space contains all axioms of the
document space of Simple, but does not contain any of the predicates. In addition, it
contains a set of s constants (s corresponds to the number of topics in the knowledge
space) which name the knowledge topics:

T1, T2, . . ., Ts.

A finite set of predicates stating the learning dependencies between these topics:
Topic Tkis required to understand Tj :

depends(Tj , Tk) for certain Tj 6= Tk.

The documents are characterized by a set of n predicates which assign a non-empty
set of topics to each document. This can be compared by assigning a set of keywords
to each document (keep in mind that more than one keyword might be assigned to
a document):

∀Di∃Tj

keyword(Di,Tj).

Simple 2: User Model The user model is the same as in Simple, plus an addi-
tional rules which defines that a topic Ti is assumed to be learned whenever the
corresponding document has been visited by the user. Therefore, Simple 2 uses like
Simple 1 the constant

Learned.

The rule for processing the observation that a topic has been learned by a user:

∀Ui∀Tj

(∃Dkkeyword(Dk, Tj) ∧ obs(Dk,Ui,Visited)
=⇒p obs(Tj ,Ui,Learned).

Simple 2: Observations Are the same as in Simple.

Simple 2: Adaptation Component The adaptation component of Simple 2
contains two further constants (im comparison to Simple) representing new values
for the learning state of a document,

Might be understandable, Will become understandable.

and two further constants representing new values for adaptive link annotation:

Orange Icon, Yellow Icon.

The following rules describe the educational state of a document. Rule 1 states that
a document is recommended for learning if all prerequisites for the keywords of this
document are learned

∀Ui∀Dj

∀Tk

(
keyword(Dj , Tk) =⇒

(∀T`depends(Tk, T`) =⇒p obs(T`, Ui,

Learned)
))

=⇒ learning state(Dj , Ui, Recommended for reading).

Rule 2 states that a document might be understandable if at least some of the
prerequisites have already been learned by this user:

∀Ui∀Dj

(∀Tkkeyword(Dj , Tk) =⇒
(∃T`depends(Tk, T`) =⇒p obs(T`,Ui,Learned)))
∧ ¬ learning state(Dj , Ui, Recommended for reading)
=⇒ learning state(Dj , Ui, Might be understandable).

Rule 3 derives that a document will become understandable if the user has some
prerequisite knowledge for at least one of the document’s keywords:

∀Ui∀Dj

∃Tkkeyword(Dj , Tk) =⇒
(∃T`depends(Tk, T`) =⇒p obs(T`,Ui,Learned))
∧ ¬ learning state(Dj , Ui, Might be understandable)
=⇒ learning state(Dj , Ui, Will become understandable).

Four rules describe the adaptive link annotation:

∀Ui∀Dj

learning state(Dj , Ui, Recommended for reading)
=⇒document annotation(Dj ,Ui,Green Icon)

∀Ui∀Dj

learning state(Dj , Ui, Will become understandable)
=⇒document annotation(Dj ,Ui, Orange Icon)

∀Ui∀Dj

learning state(Dj , Ui, Might be understandable)
=⇒document annotation(Dj ,Ui, Yellow Icon)

∀Ui∀Dj

¬ learning state(Dj , Ui, Recommended for reading)
=⇒document annotation(Dj ,Ui, Red Icon)

3.4 Summary of first three examples

We can now easy summarize and compare the above three example systems
Simple, Simple 1 and Simple 2. Table 1 shows which objects are used in the
three example systems (e.g. documents, users, topics), and describes the tax-
onomy of user characteristics (e.g. learned), the taxonomy of observations (e.g.
visited), the taxonomy of adaptive functionality (e.g. recommended for reading,
might become understandable, etc.) and the taxonomy of adaptive functionality
(e.g. green icon, red icon, etc.).

System DOCS UM OBS

Simple D1, D2, . . ., Dn. U1, U2, . . . Um. Visited.

Simple 1 D1, D2, . . ., Dn. U1, U2, . . . Um, Learned. Visited.

Simple 2 D1, D2, . . ., Dn, T1, T2, . . . Ts. U1, U2, . . . , Um. Learned. Visited.

System AC–Learning State AC–Adaptive Link Annotation

Simple Recommended for reading. Green Icon. Red Icon.

Simple 1 Recommended for reading. Green Icon. Red Icon.

Simple 2 Recommended for reading. Green Icon. Red Icon.
Might be understandable. Orange Icon. Yellow Icon.
Will become understandable.

Table 1. Constants used in Simple, Simple 1 and Simple 2.

Table 2 shows the different relations between objects. Table 3 gives an overview
about rules used in Simple, Simple 1 and Simple 2.

System DOCS UM OBS AC

Simple preq(Di, Dj). – obs(Dk, Uj , Visited). –

Simple 1 preq(Di, Dj). – obs(Dk, Uj , Visited). –

Simple 2 keyword(Di,Tj) – obs(Dk, Uj , Visited). –
depends(Tj ,Tk).

Table 2. Predicates used in Simple, Simple 1 and Simple 2.

System DOCS UM OBS

Simple – – –

Simple 1 – p obs(Di,Uj ,Learned) –

Simple 2 – p obs(Di,Uj ,Learned) –

System AC–Learning State AC–Adaptive Link Annotation

Simple learning state(Di,Uj ,X), document annotation(Di,Dj ,Y),
X is a constant from AC Y is an constant of AC

Simple 1 ” ”

Simple 2 ” ”

Table 3. Rules used in Simple, Simple 1 and Simple 2.

4 Logical Characterizations of four exemplary Adaptive
Educational Hypermedia Systems

In this section, we give the logical characterization of four existing adaptive edu-
cational hypermedia systems: NetCoach [26] by Gerhard Weber et. al., AHA!2.0
[2] by Paul de Bra et. al. , Interbook [10] by Peter Brusilovsky et. al., and KBS
Hyperbook [18] by Nicola Henze et. al.

4.1 NetCoach

NetCoach [26] is the successor of ELM-ART II [27] and provides a framework for
building adaptive hypermedia systems. NetCoach uses a knowledge base which con-
sists of concepts. ”These concepts are internal representations of pages that will be
presented to the learner” [26]. This knowledge base is the ”basis for adaptive naviga-
tions support” [26] in NetCoach, and authors ”can create content-specific relations”
between the concepts in the knowledge base [26]. We can formalize NetCoach in the
following way:

NetCoach: DocumentSpace The document space consists of documents, test-
groups and test-items.

D1, . . ., Dn, TG1, . . ., TGk, TI1,. . ., TIl.

NetCoach uses a concept space C for internally representing the documents pre-
sented to the learner. The concept space in NetCoach is isomorphic to the document
space D as there is a one-to-one mapping between C and D . To describe NetCoach,
we will only refer to the objects in the document space D to emphasize that rela-
tions between the concepts / documents are first class relations of the hyperspace,
e.g. they are directly used for adapting the hyperspace to the user.
Documents in NetCoach are structured hierarchically in a section – subsection –
subsection manner. This hierarchical structure provides additional input for adap-
tation, by giving for each concept – or document – a predecessor and successor in the
document space. There are four kinds of relations between documents: ”prerequisite-
relation”, ”infers-relations”, ”successor-relations” and ”part-of-relation”. In addi-
tion, there is a flag ”terminal-page” attached to each document indicating whether
this document is a terminal page, a ”criterion” which defines the number of tests nec-
essary to learn a document, and a ”test assignment” which relates some test items
or test groups to a document.
The prerequisite relation assigns a set of documents to a document Diwhich contains
documents that need to be learned before a student can learn Di, i.e. the prerequisite
relation defines the set of prerequisite documents for a document.

preq(Di, Dj) for certain Di 6= Dj .

An infers-relations assigns a set of documents to a document Dithat can be inferred
to be learned whenever Dihas been learned.

infer(Di, Dj) for certain Di 6= Dj .

The successor-relation and the part-of-relation are given by the hierarchical docu-
ment structure underlying NetCoach (see Figure 1).
The part-of-relation assigns to each document Dithe set of documents which are
sub-documents of Di:

part of(Di, Dj) for certain Di 6= Dj .

1
 1.1
 1.1.1
 1.1.2
 1.2
 1.2.1
 1.2.1.1
 1.2.1.2
 1.2.2
 1.3

part−of−relation
successor−relation

terminal pages

Fig. 1. The hierarchy of documents/concepts in NetCoach

Recursively, all documents that are related via part-of-relations can be calculated
by calculating the transitive closure of the set of part-of-relations.
The successor-relation assigns for each document the next document in sequence.
This is done by following the hierarchical structure step by step.

succ(Di, Dj) for certain Diand one Dj¬ Di.

The terminal-page flag is set whenever a document has no sub-documents at all.

terminal flag(Di) for certain Di

NetCoach uses ”test-groups” which are sets of test-items. Test-groups need not be
disjunct. Test-items and test-groups are used to ”assess the user’s current learning
state of a concept”. NetCoach explicitely distinguishes between documents and test-
items [25].
A test-assignment, which assigns certain test-items (TI) or test-groups (TG) to a
document, is given by:

test assignment(Di, TGj) for certain Diand TGj .
test assignment(Di, TIj) for certain Diand TIj .

In addition to the test-assignment, NetCoach assigns a criterion to each document
Dithat determines how much training with the testitems and testgroups is suffi-
cient to know Di. This criterion is a numerical value indicating how many distinct
testitems need to be successfully mastered for knowing Di.

criterion(Di, value) for certain Di.

NetCoach: Observations Observation in NetCoach are used to develop a multi-
layered overlay model [26] with four different layers. The different layers are com-
piled by making observations about a user (layer 1, layer 2 and layer 4) and by
processing this observations (layer 3). In the proposed formalism, everything that
is a direct observation about the user’s interactions with the system is modeled in
OBS, the observations, and all interpreted or processed observations are collected
in UM, the user model description. In the following, we will therefore separate
observations and processed observations into the components OBS and UM.
The first layer in NetCoach describes whether a user U has already visited the
document page P corresponding to concept C (again, observation) is abbreviated
by obs):

obs(Dj ,Ui, Visited) or certain Dj , Ui.

The second layer contains information on which exercise or test items related to
a document Dithe user has worked, and whether s/he has successfully worked on
the test-items up to a certain criterion.
Thus NetCoach uses two kinds of observation (obs) for this layer: worked testitem
and solved testitem:

obs(TIk, Ui, Worked testitem) for certain TIk, Ui, and
obs(TIk, Ui, Solved testitem) for certain TIk, Ui.

The third layer describes whether a concept could be inferred as known. This is
not directly a observation but an processed observation. Due to our formalism, we
collect all processed observations in UM.
The fourth layer finally describes whether a user has marked a concept as known.
The multi-layered overlay model in NetCoach allows to reset every user model value,
e.g. the user can mark or un-mark concepts to be known as they like, if they pass
testitems for a concept the expectation that this concept is learned rises, etc.

obs(Dj , Ui, Marked) for certain Dj , Ui.

NetCoach: User Model The User Model of NetCoach processes the observations
about the user’s interactions with the system.
The observation that a document Djhas been proven to be known by a user Uiby
solving sufficient test items is calculated in the following way: First, a list of all
solved testitems belonging to Dj is calculated

solved testitems(Ui, Dj) = [].
∀Dj∀Ui

∀TIktest assignment(Dj ,TIk) ∧ obs(TIk, Ui, solved testitem)
=⇒ solved testitems(Ui,Dj) = [solved testitems(Ui,Dj), TIk].

Then these observation are processed in the following way (p obs is an abbreviation
for process observation):

∀Dj∀Ui

criterion(Dj , Value) ∧ length(solved testitems(Ui, Dj)) ≥ Value
=⇒p obs(Dj , Ui, Tested).

The user model infers observations about visited documents to the according prereq-
uisite documents, too. This is described in NetCoach as the third layer of the User
Modeling component. This inference is done on base of the infer-relation connecting
to documents the user has already worked on successfully.

∀Dk∀Ui

∃Dj(infer(Dj ,Dk) ∧ p obs(Dj , Ui, Tested)
=⇒p obs(Dk, Ui, Inferred Known)

The User Model of NetCoach describes whether a document Djhas been learned by
a user Ui. A document has been learned, if it is either tested, inferred from other
learned documents, or marked by the user. If there are no test items assigned to
the document Djor the tests are treated as voluntary exercises (i.e. criterion(Dj ,
Value) for Value=0), then Dj is assumed to be learned if it has been visited, or it
can be inferred from other learned concepts, or marked by the user.

∀Dj∀Ui

p obs(Dj , Ui, Tested)
∨ (criterion(Dj ,0) ∧ (obs(Dj , Ui, Visited) ∨ p obs(Dj , Ui, Inferred Known)

∨ obs(Dj , Ui, Marked))
=⇒p obs(Dj , Ui, Learned).

NetCoach: Adaptation Component

Adaptive link annotation A link to a document Dj is marked with a green ball (a
sign that this document is recommended for reading) for a user Ui, if all prerequisites
of this page haven been learned by this user:

∀Dj∀Ui

∀Dk(preq(Dj ,Dk) =⇒p obs(Dk,Ui,Learned))
=⇒document annotation(Dj , Ui, Green Ball)

A link to a document Dj is marked with a red ball (a sign that this document is
not recommended for reading) for a user Ui, if at least one prerequisite of this page
has not been learned by this user yet:

∀Dj∀Ui

∃Dk(preq(Dj ,Dk) ∧ ¬ p obs(Dk,Ui, Learned))
=⇒document annotation(Dj , Ui, Red Ball)

Which is equivalent to

∀Dj∀Ui

¬ document annotation(Dj , Ui, Green Ball)
=⇒document annotation(Dj , Ui, Red Ball)

A link to a document Dj is marked with a yellow ball (a sign that this document
has been learned already) for a user Ui, if the tests corresponding to this page have
been successfully passed or, if there are no tests corresponding to this page, if the
page has been visited:

∀Dj∀Ui

terminal flag(Dj)
∧

(
p obs(Dj , Ui, Tested) ∨ (criterion(Dj , 0) ∧ obs(Dj , Ui, Visited))

)
=⇒document annotation(Dj , Ui, Yellow Ball)

In case of lessons, sections, or subsection, the yellow ball means that all subordinated
pages have been learned.

∀Dj∀Ui

¬ terminal flag(Dj)
∧ (∀Dkpart of(Dj , Dk) =⇒p obs(Dk, Ui, Learned))
=⇒document annotation(Dj , Ui, Yellow Ball)

A link to a document Dj is marked with an orange ball if Dj is a terminal page and
inferred to be known. Otherwise (if Dj is a lesson, section, subsection, etc.) an orange
ball indicates that this page has already been visited but not all subordinated pages
have been learned or visited so far.

∀Dj∀Ui

terminal flag(Dj) ∧ obs(Dj , Ui, Inferred Known) ∧ ¬ p obs(Dj , Ui,
Learned)
=⇒document annotation(Dj , Ui, Orange Ball)

∀Dj∀Ui

¬ terminal flag(Dj) ∧ (∃Dkpart of(Dj , Dk) ∧ ¬ p obs(Dj , Ui, Learned))
=⇒document annotation(Dj , Ui, Orange Ball)

Adaptive Link Generation: Learning Goals NetCoach defines a learning goal as a
set of documents need to be learned to fulfill the goal. The NetCoach systems recur-
sively computes all prerequisite documents of the learning goal via the prerequisite-
relation between documents. The resulting set of concepts (original goal concepts
plus their prerequisite concepts) is ordered according to the sequential ordering of
the documents (given by the successor-relation).
Learning goals are defined by an author (”Name” is an identifier of the learn-
ing goal):

learning goal(Name) = [D1, . . ., Dg].

The complete set of all learning goal-documents is recursively defined by

learning goal complete(Name) = [].
∀Dk

¬ member(Dk, learning goal complete(Name))
∧ (learning goal(D1, . . ., Dk. . ., Dg)
∨ (∃D`part of(D`, Dk) ∧ learning goal(D1, . . ., D`. . ., Dg)))

=⇒ learning goal complete(Name)= [learning goal complete(Name), Dk].

Finally, the complete set of documents belonging to a document is reordered ac-
cording to the successor-relation.

sequence learning goal(Name) = [].
∀Dk

¬ member(Dk,sequence(Name))
∧ learning goal complete(D1, . . ., Dk. . ., Dn)
∧ ¬ (∃D`learning goal complete(D1, . . ., D`. . ., Dn) ∧ succ(D`, Dk))
=⇒ sequence learning goal(Name) = [sequence learning goal(Name), Dk].

Adaptive Link Generation: Curriculum sequencing If a learning goal has been se-
lected by a user Ui, the next page in the sequence of concepts computed for this
learning goal, which is recommended for reading, is presented to Uias the next best
page.

∀Dj

learning goal complete(D1, . . ., Dj . . ., Dn)
∧ document annotation(Dj , Ui, Green Ball)
∧ (¬ ∃Dklearning goal complete(D1, . . ., Dk. . ., Dn) ∧ succ(Dk,Dj))
=⇒next best page(Dj ,Ui)

If the user Uihas not selected any learning goal, then the next page in the sequence
of all concepts / pages in the document space which is recommended for reading
according to the green ball annotation is presented to Uias the next best page.

∀Dj∀Ui

document annotation(Dj , Ui, Green Ball) ∧ ¬ (∃Dksucc(Dk, Dj)
=⇒next best page(Dj ,Ui)

4.2 AHA!2.0

The AHA!2.0 [2] system is the successor of the AHA! [3] system which started to be
developed in 1996. AHA!2.0 is based on the AHAM reference model [4]. AHA!2.0 is a
framework for authoring adaptive hypermedia applications and provides a runtime-
environment for so authored applications. In the following, we will describe the main
techniques available in AHA!2.0.

AHA!2.0: Document Space In AHA!2.0, domain and adaptation information
are not separated: ”In AHA! the author defines concepts, along with requirements
that determine under which conditions the user is ’ready’ to access the concept, and
generate rules that specify how the browsing behavior of the user translates into
user model updates” ([2], page 2).
AHA!2.0 implements adaptation strategies, access strategies, etc. by means of so-
called concepts. Concepts might be abstract (e.g. coding user characteristics, for
describing knowledge, etc.) or used to describe a certain page. Each page in AHA!2.0
needs to be described with at least one of these concepts.
Thus, the document space in AHA!2.0 consists of documents (identified via the
URI) and concepts:

D1, . . ., Dn, C1, . . ., Cm.

Each concept can have some of the following attributes which further describe the
concept. Here, and in the following, we use as names for the relations the names
given in [2]. A concept can have a name, and a description. In case the concept is
non-abstract, it must be associated with the document D it describes:

resource(C, D)

Each concept C has a requirements expression used to decide on the suitability of the
concept. The expression can be a boolean value, or a complex expression that needs
to be evaluated, e.g. like x > 10. For more information on expressions we refer the
reader to AHA!2.0. For describing purposes, we use the following requirements-flag
which is true whenever for a user U the expression associated with the requirements
of the concept are is evaluated as being true.

req(C, U).

Furthermore, each concept has one or several attributes which indicate whether they
are be persistent (like e.g. in the user model for indicating that a pages has been
visited) or temporary (like e.g. the ”access” attributes which is only evaluates to
true if a user is currently visiting/accessing the page, as described in the adaptation
component of AHA!2.0).

attributes(C, Att).

with Att(has-Name, has-Type, is-Persistent, is-System, is-Changeable), has-Name
∈ {access, suitability, knowledge, visited, interest}, has-Type ∈ {boolean, integer,
string}, is-Persistent ∈ {true, false}, is-System ∈ {true, false}, and is-Changeable
∈ {true, false}. In addition, the concept has one default value for each of these
attributes. The default value is again an AHA!2.0 expression. The values determine
various parameters for the event-condition-action rules that belong to this attribute
(the metadata for the event-condition-action rules will be described later). E.g. the
has-Name part together with the is-System parameter identifies whether the event-
condition-action rules that belong to this attribute should register each access-
event (has-Name=”access”, is-System=”true”), or whether it should register an
access-event permanently (has-Name=”visited”, is-System=”true”). The value has-
Name=”knowledge” identifies that the following rule will update the knowledge a
user has on this concept, etc.
Each attribute can be attached with event-condition-action rules, e.g. to define how
access results in user model updates, or in display characteristics, etc. The different
parts of the rules are coded in AHA!2.0 in so called List-items.
Each event is generated by the runtime-environment of AHA!2.0 and is associated
with the link anchor of a page (see section 4.2 on observations in AHA!2.0).

Each action of these event-condition-action rules belongs to an attribute Att, and
applies some expression expression to a certain attribute attribute of some concept
concept.

action(Att, U, expression, attribute, concept).

N.B.: The action rule may be related to other concepts than the one on which the
access-event has been registered, the binding of the action rule to an attribute of
some concept given in the action-part of the rule makes this possible.
Further, the action might have an execution condition:

req(action(Att, U, expression, attribute, concept))

and a boolean flag isPropagating which indicates whether this action is allowed to
trigger actions to other attributes of this concept:

isPropagating(action(Att, U, expression, attribute, concept)).

In this way, AHA!2.0 defines all the metadata which is used to construct the event-
condition-action rules by means of attributes (to define what kind of event will
trigger the rule), the execution condition (to define the conditions for the rule), the
action (to define what should be executed) and propagation flag to decide whether
the execution of this rule will trigger further rules. The runtime-engine of AHA!2.0
uses this metadata to construct event-condition-action rules and to execute them.

Last, the documents in AHA!2.0 can be structured as fragments, where each frag-
ment is a certain part of the document. These fragments are identified in the doc-
ument via surrounding execution conditions. If a document D consists of of l frag-
ments, D =

⋃l
j=1 Fj , then for all of these l fragments a separate execution condition

is introduced:

execution condition(Fj) ∀j ∈ {1, . . . , l}

AHA!2.0: Observations AHA!2.0 uses as observations whether a user is currently
accessing a page: This is an access-event generated by the runtime-system which is
only temporarily valid and terminates whenever the user accesses another page. All
concepts that describe this page will receive this access-event.

access(D, U)

Further, AHA!2.0 registers all these access-events permanently as observations
whether the user has visited some page.

access(D, U) obs(D, U, Visited).

∀Dj∀Ui

access(Dj , Ui) =⇒ obs(Dj , Ui, Visited).

AHA!2.0: User Model The user model of AHA!2.0 is an overlay model: For
every concept from the document space, an entry is reserved in the user model. For
each attribute of a concept the user model stores the type of the attribute (boolean,
integer, or string), the value, and a flag to indicate whether the attribute value is
persistent or not.
A specific concept called ”personal” is used by the user model to represent informa-
tion about the user independent from any application domain. E.g. in this personal

concept, information about a user Ui’s preferred colors for the adaptive annotation
of links is stored.
The observations made in AHA!2.0 are inferred by firing the event-condition-action-
rules.
In case an access-event has been generated and propagated to be valid for some
concept C1, an action to process this observation to update the user model will be
executed:

access(C, U) ∧ attributes(C, Att) ∧
req(action(Att, U, expression, attribute, concept)) =⇒
execute action(Att, U, expression, attribute, concept).

If the action which is executed allows propagation, actions of other attributes Ãtt
that belong to the same concept C as the attribute that maintains the action will
be executed (in the current AHA!2.0, some propagation constraints are introduced
that guarantee termination) :

execute action(Att, U, expression, attribute, concept) ∧
isPropagating(action(Att, U, expression, attribute, concept)) ∧
attributes(C, Att) ∧ attributes (C, Ãtt) =⇒
execute action(Ãtt, U, expression, attribute, concept).

N.B. the code of the event-condition-action rule is provided by the author of the
system in the definition of a concept – therefore in the document space of AHA!2.0.

AHA!2.0: Adaptation Component The adaptive engine of AHA!2.0 is running
whenever a page has been accessed, this means that the evaluate access becomes
true for some concepts of the document space.

Adaptive link annotation A link to a document D is a recommended for reading (a
goodlink in the terminology of AHA!2.0), if it has not been visited so far, and it is
described by a concept C whose requirements req(C,U) are fulfilled for the user U :

∀U ∀D
∃C resource(C, D) ∧ req(C, U) ∧ ¬ obs(D, U, visited)
=⇒document annotation(U, D, Good link).

A link to a document D is neutral if it has been visited so far, and it is described
by a concept C whose requirements are fulfilled:

∀U ∀D
∃C resource(C, D) ∧ req(C, U) ∧ obs(U, D, visited)
=⇒document annotation(U, D, Neutral link).

A link to a document D is bad if D is described by a concept C whose requirements
are not fulfilled:

∀U ∀D
∃C resource(C, D) ∧ ¬ req(C, U)
=⇒document annotation(U, D, Bad link).

A link to a document D is active if the user U is clicking on the link, e.g. the
access-event access(D, U) is true:

∀U ∀D
∃C resource(C, D) ∧ access(D,U)
=⇒document annotation(U, D, Active link).

A link to a document D is external if there is no concept available which describes
the D:

∀U ∀D
¬ (∃C resource(C, D)) ∧ ¬ obs(D, U, visited)
=⇒document annotation(U, D, External link).

A link to a document D to a page is external, visited if there is no concept available
which describes D, and there is an observation that U has previously visited the
corresponding page:

∀U ∀D
¬ (∃C resource(C, D)) ∧ obs(D, U, visited)
=⇒document annotation(U, D, Externalvisited link).

Adaptive content generation In addition, the AHA!2.0 adaptation engine processes
the XHTML-Code of the resource which a link points to, and evaluates any occurring
<if> tags for allowing the conditional inclusion of fragments.

4.3 Interbook

Interbook [10] allows the creation of adaptive electronic textbooks based on hi-
erarchically structured MS-Word files. Courses compiled with Interbook provide
individual guidance to students by annotating the navigational structure of the
hypertext due to the user’s learning progress, by generating individually learning
paths and by personalized embedding of exercises.
We can formalize Interbook in the following way:

Interbook: Document Space Interbook uses domain concepts which are ”ele-
mentary pieces of knowledge for the given domain” [7]. The documents in Interbook
are units from indexed electronic textbooks.
Interbook uses a knowledge model / concept space which consists of so called domain
concepts. Each concept in the concept space can be used for indexing any number
of documents in the document space, and for each document, there can be more
than one concept that is related to this page.
Thus the document space of Interbook consists of documents, test items, and con-
cepts:

D1, . . ., Dn, TI1,. . ., TIl, C1, . . ., Cs.

Each electronic textbook is assumed to be hierarchically structured into chapters,
sections, and subsections. At the terminal level are atomic presentations, examples,
problems, or tests. A successor-relation and a part-of-relation are given by this
hierarchical document structure.
The part-of-relation assigns to each document Dithe set of documents which are
sub-documents of Di. Dj is part of Di:

part of(Di, Dj) for certain Di 6= Dj .

Recursively, all documents that are related via part-of-relations can be calculated
by calculating the transitive closure of the set of part-of-relations.
The successor-relation assigns for each document the next document in sequence.
This is done by following the hierarchical structure step by step. A predecessor-
relation can be derived from the successor relation by successor (Dj ,Di) =⇒
predecessor(Di,Dj). Dj is the successor of Di:

succ(Di, Dj) for certain Diand one Dj 6= Di.

A further document annotation is used in Interbook: The terminal-page flag is set
whenever a document has no sub-documents at all.

terminal flag(Di) for certain Di.

There are two kinds of relations between documents (or test items) and concepts:
”prerequisite-relation”, and ”outcome-relations”. A prerequisite-relation assigns a
set of concepts to a document Di(test item TIk) that are necessary for learning
Di(TIk), i.e. the prerequisite relation defines the set of prerequisite concepts for
Di(TIk).

preq(Di, Cj) for certain Di, Cj .
preq(TIk, Cj) for certain TIk, Cj .

An outcome-relations assigns a set of concepts to a document Di(test item TIk)
that describe the concepts that should be learned on this document (test item).

out(Di, Cj) for certain Di, Cj .
out(TIk, Cj) for certain TIk, Cj .

Interbook: Observations Interbook distinguishes between different levels of
knowledge a user can have about a domain concept Ci. These levels are no knowledge
if a user has not learned a concept at all, beginner knowledge if a user has read a
page, intermediate knowledge if a user has read about this concept on two different
pages, and expert knowledge if a user has performed a test related to the concept
successfully.
These knowledge grades are calculated in the user model of Interbook on basis of
the following observations: A user can visited a document Di

obs(Dj , Ui, Visited) for certain Dj , Ui.

Furthermore, a user Uican solve a test-item TIk:

obs(TIk, Ui, Solved) for certain TIk, Ui.

Interbook: User Model The user model assigns for each user Uithe grade of
knowledge s/he has for each concept from the concept space.
A user Uihas Beginner knowledge if s/he has a read a page about this concept.

∀Cj∀Ui

∃Dkobs(Dk, Ui, Visited) ∧ out(Dk, Cj)
=⇒p obs(Cj , Ui, Beginner knowledge)

A user Uiis assumed to have Intermediate knowledge if s/he has read about a
concept Cjon two different documents Dk, D`.

∀Cj∀Ui

∃Dk∃D` ¬(Dk= D`) ∧ obs(Dk, Ui, Visited) ∧ obs(D`, Ui, Visited)
=⇒p obs(Cj , Ui, Intermediate knowledge)

The level of Expert knowledge can be reached when a user Uihas solved a test
belonging to a concept Cj .

∀Cj∀Ui

∃TIkout(TIk, Cj) ∧ obs(TIk, Ui, Solved)
=⇒p obs(Cj , Ui, Expert knowledge)

If a user Uihas neither Beginner knowledge nor Intermediate knowledge nor Ex-
pert knowledge about a concept Ci, this user is assumed to have No knowledge
about Ci.

∀Cj∀Ui

¬ p obs(Cj , Ui, Expert knowledge)
∧ ¬ p obs(Cj , Ui, Intermediate knowledge)
∧ ¬ p obs(Cj , Ui, Beginner knowledge)
=⇒p obs(Cj , Ui, No knowledge)

Interbook: Adaptation Component

Adaptive link annotation Interbook uses different checkmarks to indicate a users
knowledge about documents, and coloured balls to give advise to the user which
documents to learn next, etc.
A Big checkmark is used to indicate that a user has expert knowledge on all
outcome concepts of this page:

∀Dj∀Ui

∀Ck(out(Dj , Ck) =⇒p obs(Ck, Ui, Expert knowledge)
=⇒document annotation(Dj , Ui, Big checkmark).

A Normal checkmark is used to indicate that a user has at least intermediate
knowledge on all all outcome concepts of this page:

∀Dj∀Ui

∀Ck(out(Dj , Ck) =⇒p obs(Ck, Ui, Intermediate knowledge)
∧ ¬ document annotation(Dj , Ui, Big checkmark)
=⇒document annotation(Dj , Ui, Normal checkmark).

A Small checkmark is used to indicate that a user has at least Beginner knowledge
on all outcome concepts of this page:

∀Dj∀Ui

∀Ck(out(Dj , Ck) =⇒p obs(Ck, Ui, Beginner knowledge)
∧ ¬ document annotation(Dj , Ui, Normal checkmark)
=⇒document annotation(Dj , Ui, Small checkmark).

A link to a document Dj is marked with a Green ball for a user Uiif it is recom-
mended for reading, e.g. if all its prerequisites are known to Uiwith grade Begin-
ner knowledge:

∀Dj∀Ui

∀Ck(preq(Dj , Ck) =⇒p obs(Ck, Ui, Beginner knowledge)
=⇒document annotation(Dj , Ui, Green ball)

A White ball indicates that a document Djshows nothing new for this user, that
means that all outcome concepts of this page have been read.

∀Dj∀Ui

∀Ck(out(Dj , Ck) =⇒ obs(Ck, Ui, Visited))
=⇒document annotation(Dj , Ui, White ball)

A link to a document Dj is marked with a Red ball if Dj is not recommended for
reading yet, i.e. not all prerequisite concepts have been learned so far:

∀Dj∀Ui

∃Ck(preq(Dj , Ck) ∧ p obs(Ck, Ui, No knowledge)
=⇒document annotation(Dj , Ui, Red ball)

Prerequisite-based help The prerequisite-based-help for a document Dj is a list of all
pages that explain the prerequisites of all concepts that are presented on Dj .

prerequisite based help concepts(Di) = [].
∀Cj

¬ member(Cj , prerequisite based help concepts(Di)) ∧ preq(Di, Cj)
=⇒prerequisite based help concepts(Di) =

[prerequisite based help concepts(Di), Cj].

From this we derive the documents for a prerequisite-based-help by

prerequisite based help documents(Di) = [].
∀Dj∀Ck

¬ member(Dj , prerequisite based help documents(Di))
∧ member(Ck, prerequisite based help concepts(Di))
∧ out(Dj , Ck)
=⇒prerequisite based help documents(Di) =

[prerequisite based help documents(Di), Dj].

This set of help documents can be ordered due to the knowledge of a learner by
sorting pages whose outcome concepts are not known to the user (that means doc-
uments D with p obs(D,Ui,No knowledge)) to the beginning of the list.

Learning Goals Interbook associates learning goals to documents. The concepts for
the learning goal are defined by the transitive closure on the prerequisite-relation
of concepts, the starting concepts are the prerequisite concepts of the document
associated to this learning goal.
We collect all prerequisite concepts of a document Direcursively by

prerequisite concepts(Di) = [].

∀Cj

preq(Di, Cj) =⇒prerequisite concepts(Di) = [prerequisite concepts(Di),
Cj]

∀Cj∀Ck∀D`

member(Cj , prerequisite concepts(Di)) ∧ out(D`, Ck)
∧ preq(D`,Ck) ∧ ¬ member(Ck, prerequisite concepts(Di))
=⇒prerequisite concepts(Di) = [prerequisite concepts(Di), Ck]

A reading sequence is calculated for each learning goal in the following way: First,
a list of all documents that contain the necessary prerequisite knowledge to the goal
concepts itself is generated. As a learning goal is bound to a document Di, this set
of required documents is also binded to this Di:

∀Dj

∃Ck(out(Di,Ck) ∨ member(Ck, prerequisite concepts(Di))) ∧ out(Dj , Ck)
=⇒ required documents(Di, Dj).

Afterwards this sequence is ordered according to the overall sequence of pages in
Interbook.

TeachMe Interbook has a TeachMe-Button that allows a user to ask for a sequence
of documents explaining the current document detailly.
The TeachMe functionality is implemented as a goal whose goal concepts are the
prerequisites and outcomes of the associated document.

4.4 KBS Hyperbook

The KBS hyperbook system [18] is an adaptive hypermedia system which guides
the students through the information space individually by showing next reasonable
learning steps, by selecting projects, generating and proposing reading sequences,
annotating the educational state of information, and by selecting useful information,
based on a user’s actual goal and knowledge [17]. KBS Hyperbook implements the
adaptation component on top of an existing, concept-based hypermedia system.
We can formalize KBS Hyperbook in the following way:

KBS Hyperbook: Document Space KBS hyperbook distinguishes documents
in the document space according to their role in the learning system, e.g. the un-
derlying concept-based hypermedia system: Documents can be exercises, projects,
examples, lecture notes, course notes, glossary entries, or topics.
Thus, the document space consists of documents

D1, . . ., Dn.

Each document has a role which is defined by the concept-based hyperspace:

role(Di, Lecture) for certain Di,
role(Di, Lecture Note) for certain Di,
role(Di, Course) for certain Di,
role(Di, Exercise) for certain Di,
role(Di, Project Description) for certain Di,
role(Di, Example) for certain Di,
etc.

KBS Hyperbook uses a knowledge base or concept space. The knowledge base con-
sists of so called knowledge items:

C1, . . ., Cs.

A knowledge item might represent either an introduction to a concept or the concept
itself:

role(Ci, Introduction) for certain Ci,
role(Ci, Concept) for certain Ci.

Each document from the document space is indexed by some concepts from the
knowledge base which describe the content of the resource. Thus this indexing is
like adding a set of keywords to each resource, where the keywords come from a
controlled vocabulary (the knowledge space).

keyword (Di,Cj) for certain Di, Cj

Documents are related in KBS Hyperbook according to the conceptual model of the
hyperspace. These fixed relations are not used by the adaptation component there-
fore we will omit them. The KBS Hyperbook asks the adaptation component for
annotation of links to document or for additional relations between the documents
that are generated by the adaptation component during runtime.
The knowledge items in KBS Hyperbook are related to each other using a ”learning
dependency” relation which is mainly a prerequisite relation. If a knowledge concept
Cj is required to learn or understand Cithen there is a learning dependency relation
between Ciand Cj :

depends(Ci, Cj) for certain Ci, Cj .

KBS Hyperbook: Observations KBS Hyperbook stresses the importance of
active learning. For this purpose, KBS Hyperbook employs constructivist learning
strategies [14]. Following this teaching approach, observations about the student’s
work with the hyperbook can only be made if a student has worked on a project.
Observations about a student‘s performance are then made by mentors, or are
based on self-judgment of the students. Each observation expresses the grade of
knowledge the user has on a KI . KBS Hyperbook uses four grades of knowledge:
expert knowledge, advanced knowledge, beginner’s knowledge, novice’s knowledge.
The observations about a user’s interaction required for KBS Hyperbooks are:

obs(Cj , Ui, Expert knowledge) for certain Cj , Ui,
obs(Cj , Ui, Advanced knowledge) for certain Cj , Ui,
obs(Cj , Ui, Beginner knowledge) for certain Cj , Ui,
obs(Cj , Ui, Novice knowledge) for certain Cj , Ui.

KBS Hyperbook: User Model KBS Hyperbook constructs a knowledge model
based on the learning-dependency-relation between the concepts in the knowledge
base. On basis of this knowledge model a Bayesian Network is constructed which
calculates estimations on the knowledge of each individual user [18]. The system’s
estimation about the knowledge of a user Uiare stored as ordered pairs

(knowledge concept, w(knowledge concept))

with w is a random variable with four discrete values E (expert), F (advanced), A
(beginner),and N (novice). The probability distribution calculated by the Bayesian
Network is interpreted to five different grades of knowledge in the following way:

∀Cj∀Ui P (Ci = F) + P (Ci = A) > P (Ci = E) + P (Ci = N)
=⇒p obs(Cj ,Ui, Known)

∀Cj∀Ui P (Ci = E) + P (Ci = F) > P (Ci = A) + P (Ci = N)
=⇒p obs(Cj ,Ui, Well known)

∀Cj∀Ui P (Ci = E) > P (Ci = F) + P (Ci = A) + P (Ci = N)
=⇒p obs(Cj ,Ui, Excellently known)

∀Cj∀Ui P (Ci = A) + P (Ci = N) > P (Ci = E) + P (Ci = F)
=⇒p obs(Cj ,Ui, Partly known)

∀Cj∀Ui P (Ci = N) > P (Ci = E) + P (Ci = F) + P (Ci = A)
=⇒p obs(Cj ,Ui, Not known)

KBS Hyperbook calculates further functions, e.g. “Child known” which is the
threshold value denoting that a prerequisite concept Cj is sufficiently known to a
user Uito understand the new concept:

∀Cj∀Ui

p obs(Cj , Ui, Known) ∨ p obs(Cj , Ui, Well known)
∨ p obs(Cj , Ui, Excellently known)
=⇒p obs(Cj , Ui, Child Known)

The “Parent known” function denotes a threshold value for a “good known con-
cept”. It is useful e.g. to infer that the prerequisites of a concept must be known
when the concept itself is parent known:

∀Cj∀Ui

p obs(Cj , Ui, Well known) ∨ p obs(Cj , Ui, Excellently known)
=⇒p obs(Cj , Ui, Parent Known)

KBS Hyperbook: Adaptation Component

Adaptive link annotation A document Dj is recommend for reading (green ball) to
a user Uiif all dependent concepts of the keyword concepts of Djare Child known:

∀Dj∀Ui∀Ck∀C`

(keyword(Dj , Ck) =⇒
(depends(Ck,C`) =⇒p obs(C`, Ui, Child known)))

=⇒document annotation(Dj , Ui, Green ball) .

The content of a document Dj is already known (white ball) to a user Uiif all
keyword concepts of Djare Parent known:

∀Dj∀Ui∀Ck

(keyword(Dj , Ck) =⇒p obs(Ck, Ui, Parent known))
=⇒document annotation(Dj , Ui, White ball) .

A document Dj is not recommended for reading (red ball) if it is neither recom-
mended for reading or already known:

∀Dj∀Ui

¬ (document annotation(Dj , Ui, Green ball))
∧ ¬ (document annotation(Dj , Ui, White ball))
=⇒document annotation(Dj , Ui, Red ball).

Learning Goals For KBS Hyperbook a learning goal is a set of knowledge concepts.
Either a user can define a learning goal on his own by selecting some knowledge
concepts he is interested in, or he can ask the KBS Hyperbook system for the next
reasonable learning goal.

learning goal(Ui) = (C1, . . ., Cs).

The next reasonable learning goal for a user is calculated in the following way: A
Learning Sequence through the entire hypertext is generated in the way described
in the next paragraph. The first concept in the raw sequence which is marked as
recommended for reading is taken as the next learning goal.

Learning Sequence In order to construct a learning sequence we first mark all con-
cepts in the knowledge model which should be contained in the learning sequence.
E.g. if a user defines a learning goal “I want to learn concepts A,B, C and D”, the
nodes in the knowledge model corresponding to A,B,C and D are marked, e.g. the
nodes a, b, c, d, e, f, g and h (N.B. a learning goal or topic may comprise one or more
knowledge concepts). The children (and the children of those children etc.) of the
marked nodes are marked as well. A routine then checks for each marked node c
whether one of the following expressions hold: p obs(Cj , Ui, Known) or p obs(Cj ,
Ui, Well known) or p obs(Cj , Ui, Excellently known). If this function computes true
for a node the marking of this node is deleted. We then make a depth-first traver-
sal through the knowledge model and collect the marked nodes. Thus we obtain a
sequence of knowledge concepts [C1, . . ., Cn].

candidate for sequence(H, (c1, . . . , cn))←−
(cH1 , . . . , cHn

) ⊂ (c1, . . . , cn) ∧ index ((cH1 , . . . , cHn
),H)

∧ ((cH1 , . . . , cHm) ⊂ (c1, . . . , cn) ∧ index ((cH1 , . . . , cHm),H)
⇒ (cH1 , . . . , cHm) ⊂ (cH1 , . . . , cHn))

This set of candidates for the sequence is ordered in the following way:

– H ∈ final list(c1, (c1, . . . , cn))←− index (c1,H)
– ∀(c1, . . . , ci) ⊂ (c1, . . . , cn)

(H ∈ final list((c1, . . . , ci), (c1, . . . , cn))←−
index (ci,H) ∧ ¬ (H ∈ final list((c1, . . . , ci), (c1, . . . , cn))))

On base of this sequence of knowledge concepts we select a set of documents which
match the contained knowledge concepts.

Glossary The glossary contains all concepts from the knowledge space that are ei-
ther introductions to concepts or leaf-concepts concerning the learning-dependency-
relation between concepts.

∀Ci

role(Ci, Introduction) ∨ ¬ (∃Cjdepends(Ci, Cj))
=⇒ in glossary(Ci).

Information Index For each learning goal or abstract: for each set of concepts, an
information index, e.g. a set of documents explaining these concepts, is generated :

information index([C1, . . ., Cg]) = [] .
∀Ci∀Dj

member(Ci, [C1, . . ., Cg]) ∧ keyword(Dj , Ci)
∧ ¬ member(Ci,information index(learning goal(C1, . . ., Cg))
=⇒ information index([C1, . . ., Cg]) = [information index([C1, . . ., Cg]), Dj]

4.5 Synopsis of four exemplary described AEHS

This chapter provides synoptical tables of the logic-based characterization of the
adaptive educational hypermedia systems NetCoach [26], Interbook [7], AHA!2.0 [2],
and KBS hyperbook [18]. The constants used in the four systems in the components
DOCS, UM, OBS, and AC are summarized in table 4. Table 5 shows the used
predicates. An overview on the rules is given in table 6.

System DOCS UM OBS

NetCoach D1, . . ., Dn, U1, . . ., Um, Learned, Visited,
TG1, . . ., TGk, Inferred Known, Tested. Solved Testitem,
TI1, . . ., TI`. Marked.

AHA!2.0 D1, . . ., Dn, U1, . . ., Um. Visited.
C1, . . ., Cs.

InterBook D1, . . ., Dn, U1, . . ., Um, Learned, Visited,
TI1, . . ., TI`, Beginner, Intermediate, Solved.
C1, . . ., Cs. Expert, No knowledge.

KBS Hyperbook D1, . . . Dn, U1, . . ., Um, Learned, Marked,
C1, . . ., Cs. Known, Well known, Expert,

Excellently known, Partly known, Advanced,
Not known, Child known, Beginner,
Parent known. Novice.

System AC–Adaptive Link Annotation AC–Others

NetCoach Green Ball, Red Ball, Yellow Ball, Orange Ball. –

AHA!2.0 Good link, Neutral link, Bad link, Active link, –
External link, Externalvisited link –

Interbook Small Checkmark, Normal Checkmark, Big Checkmark, –
Green Ball, White Ball, Red Ball. –

KBS Hyperbook Green Ball, White Ball, Red Ball. –

Table 4. Constants used in NetCoach, AHA!2.0, Interbook and KBS Hyperbook.

5 Discussion

In this report, we have proposed a component-based definition of adaptive educa-
tional hypermedia systems that uses first-order logic to characterize AEHS. With
this approach

• we can easily compare the adaptive functionality of the AEHS: we can now see
that the above characterized systems are very similar in their way of employing
adaptive functionality - all provide adaptive navigation support (with respect
to Brusilovsky’s taxonomy of adaptive hypermedia technologies [6]));
• we hide a lot of functionality behind the rules, e.g. KBS Hyperbook uses a

Bayesian Network to calculate the Inferred known characteristic. This is com-
pletely different from calculating this characteristic by compiling the transi-
tive closure of prerequisites. However, all the input and output data for the
algorithms are clearly described. Therefor, we can take the algorithms as en-
capsulated building blocks, and the characterization of the interface of these
algorithms is described in the logical formalism;
• we can describe the taxonomy of concepts used by the systems in document

spaces, the user models, the observations, and the adaptation component. E.g.
in case of the document space, we can derive that Interbook uses documents,
testitems and knowledge concepts, NetCoach uses documents, test-groups and
testitems, etc.;
• we can compare how much the adaptation information is coded already in the

document space (like e.g. in NetCoach or AHA!2.0), or whether the document
space does only contain few input information for the adaptation (like e.g. in
KBS Hyperbook);
• the rules in the adaptation component show which data is processed by the

system for making decisions about particular adaptive functionality; decisions;

System DOCS

NetCoach preq(Di, Dj) (prerequisite knowledge)
infer(Di, Dj) (documents inferred to be learned by studying Di)
succ(Di, Dj) (reading order)
part of(Di, Dj) (chapter structure)
terminal flag(Di) (whether a document has no further sub-documents)
criterion(Di, Value) (defines number of testitems

necessary for mastering Di)
test assignment(Di, X), X ∈ {Testgroup, Testitem},

(relates documents with testgroups and testitems)

AHA!2.0 resource(Ci,Dj) (resource Djbelonging to Ci)
req(Ci, Uj) (requirements of Ciwhich Uineeds to fulfill)
attributes(Ci,Attl) (attributes of Ci)
action(Attl, Uj , expression, attribute, concept)

(action part of the rule)
req(Ri, Uj) (requirements of Ri which Uineeds to fulfill)
req(action(Att, U, expression, attribute, concept))

(execution condition of the action)
isPropagating(action(Att, U, expression, attribute, concept))

(flag indicating whether the execution of an action is propagated)
execution condition(Fk) (conditional execution of fragments

of a document Dj)

InterBook preq(Di, Cj) (prerequisite knowledge)
out(Di, Cj) (concepts inferred to be learned by studying Di)
succ(Di, Dj) (reading order)
terminal flag(Di) (whether a document has no further sub-documents)
part of(Di, Dj) (chapter structure)

KBS Hyperbook keyword(Di, Cj) assigns some concepts each document
depends(Ci, Cj) learning dependencies between concepts
role(Di, X), X ∈ {Course, Goal, Lecture, Example, etc.}

role of the document Di

role(Ci, X), X ∈ {Introduction, Concept}
role of the concept Ci

System UM OBS AC

NetCoach – obs(Di, Uj , X), X ∈ {Visited, Solved Testitem, Marked} –

AHA!2.0 – access(Di, Uj)
obs(Di, Uj , X), X ∈ {Visited} –

InterBook – obs(Di, Uj , X), X ∈ {Visited, Solved} –

KBS Hyperbook – obs(Ci, Uj , Marked, Value), –
Value ∈ {Expert, Advanced, Beginner, Novice}

Table 5. Predicates used in NetCoach, AHA!2.0, Interbook and KBS Hyperbook.

System DOCS UM OBS

NetCoach – Rules to infer p obs(Di, Uj , X), X ∈ –
{Inferred Known, Learned, Tested}

AHA!2.0 – Event-condition-action rules to update the user model with –
the values/expressions given in the action-part of the rule

InterBook – Rules to infer p obs(Ci, Uj , Learned, X), X ∈ –
{Expert, Intermediate, Beginner, No knowledge}.

KBS Hyperbook – Rules to infer p obs(Ci, Uj , Learned, X), X ∈ –
{Known, Well known, Excellently known, Partly known,
Not known, Child known, Parent known}.

System AC - Adaptive Link Annotation

NetCoach Rules to infer document annotation(Di, Uj , X),
X ∈ {Green Ball, Red Ball, Yellow Ball, Orange Ball}.

AHA!2.0 Rules to infer document annotation(Di, Uj , X),
X ∈ {Good link, Neutral link, Bad link, Active link,
External link, Externalvisited link}.

InterBook Rules to infer document annotation(Di, Uj , X),
X ∈ {Green Ball, White Ball, Red Ball,
Small Checkmark, Normal Checkmark, Big Checkmark}.

KBS Hyperbook Rules to infer document annotation(Di, Uj , X),
X ∈ {Green Ball, White Ball, Red Ball}.

System AC-Adaptive Link Generation

NetCoach Rules to infer next best page(Di, Uj), learning goal(X),
curriculum sequencing(D1, . . ., D`)

AHA!2.0 –

InterBook Rules to infer prerequisite based help(Di, Uj), learning goal(Di),
reading sequence(Di, Uj), teach me(Di).

KBS Hyperbook Rules to infer learning sequence([C1 . . ., Cn], Uj), glossary(Di)
learning goal([C1 . . ., Cn]), next reasonable goal(Uj)
information index([C1 . . ., Cn])

System AC-Adaptive Content Selection

NetCoach –

AHA!2.0 Rules to evaluate the execution condition(Fj)
for each fragment Fj of a document D

InterBook –

KBS Hyperbook –

Table 6. Rules used in NetCoach, AHA!2.0, Interbook and KBS Hyperbook.

• thus we can encapsulate adaptive functionality in order to support transfer of
functionality between AEHS,
• and to support the more wide-spread use of adaptation in web-based educational

systems.

During the application of the proposed characterization of AEHS, it turned out that
the documents and their relations play a decisive role for the way how adaptation
components draw conclusions: The document space codes in most cases the way how
the adaptation is realized. This observation can be directly related to the so-called
open corpus problem in adaptive hypermedia [19, 6]. So far, adaptive hypermedia
systems have been working on a closed set of documents (closed corpus); the doc-
uments are fixed at the design time of the system, alterations or modifications are
hardly to process. This widely-used closed-corpus explains why the document space
can carry all this adaptation-related information. On the other hand, this approach

cannot allow to open up the document space or even working in open environments
like the Web.
We have seen that the observations used by the chosen adaptive educational hy-
permedia systems are very similar. They monitor whenever a user accesses some
document - the ”visited observation”. If the systems also have an assessment of
learners, other observations like ”solved-test” are required, which are attached to
some specific subset of the document space. This means that the systems do not
differ so much in the way they monitor the runtime-interaction of the user, and we
can conjecture that some ”standard observations” can be introduced and used by
adaptive educational hypermedia systems.
The user modeling components describe only the user characteristics and some up-
date rules. More sophisticated user modeling approaches like e.g. fuzzy methods,
or probabilistic reasoning cannot be described in FOL. The definition of the user
model component provides a description on the characteristics the adaptive sys-
tems maintain, and which information is required to trigger an update of the user
model. The way how this update is realized is not visible in this description - and
is not required as the user modeling component does not interact with the other
components of the systems directly.
We have seen, that, in contrary to our intentions motivated by the transfer of Re-
iter’s approach [22] to educational hypermedia, we were not able to generalize the
diversity of rules for adaptation for a meta-description of adaptation. However, a
logical characterization of adaptive educational hypermedia is a way to find solu-
tions of current open questions in this area. E.g. currently, there is no catalogue
of ”metadata for adaptation” which could be used in LOM [21], SCORM [24] or
other catalogues of metadata for education. The main objection is that adaptive
educational hypermedia systems are ”too different” to generalize for a meta-data
driven description. From the above characterizations we can derive which meta-data
is needed by the characterized AEHS: We can derive which sources for input data
are used in the different systems in the document space, the observation component,
and for a user’s characteristics in the user model. These sources can now be used
as a candidate set for meta-data for adaptation.
With our approach, we have described adaptive functionality in a re-usable way: if
e.g. the ”traffic light annotation” of documents should be implemented, the cata-
logue of described AEHS can be used to check the requirements for meta-information
in the document space, observation information, and user model characteristics. The
decision on which adaptive functionality to implemented can be made on estima-
tions on the required overhead in these three parts.
With the emerging semantic web, there is even more the need for comparable, re-
usable adaptive functionality. If we consider adaptive functionality as a service on
the semantic web, we need re-usable adaptive functionality, able to operate on an
open corpus - which the web is. Some first approaches to bring adaptive functionality
to the semantic web are considered e.g. in [9, 11, 13, 15].

6 Conclusion and Outlook

This paper proposes a component-based definition of adaptive educational hyper-
media based on first-order logic. We have shown the applicability of such a formal
description language for adaptive educational hypermedia in various examples. We
claim that this logical characterization of adaptive educational hypermedia enables
comparison of adaptive functionality in a well-grounded way, promotes the transfer
of adaptive functionality to other educational hypermedia and web-based systems,
defines rule-based descriptions of adaptivity, and supports the understanding of the
role of metadata for adaptation.

In current work, we are applying adaptation functionality as described in this paper
to semantic web applications. An demonstrator implementation using the TRIPLE
language has been provided in [12], and currently we are developing a personalized
search tool in e-Learning [13] and a personal reader tool which demonstrates re-
usable adaptive functionality in Semantic Web services.

Acknowledgment
We would like to thank Peter Brusilovsky, Gerhard Weber, and Paul de Bra for the
discussions on their adaptive educational hypermedia systems, and the anonymous
reviewers for their comments on the draft version of this paper.

References

1. Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific
American (May 2001).

2. Bra, P. D., Aerts, A., Smits, D., and Stash, N. AHA! version 2.0: More adaptation
flexibility for authors. In Proceedings of the AACE ELearn’2002 conference (Oct.
2002), pp. 240–246.

3. Bra, P. D., and Calvi, L. Aha! an open adaptive hypermedia architecture. New
Review of Hypermedia and Multimedia 4 (1998), 115–139.

4. Bra, P. D., Houben, G.-J., and Wu, H. AHAM: A dexter-based reference model for
adaptive hypermedia. In ACM Conference on Hypertext and Hypermedia (Darmstadt,
Germany, 1999), pp. 147–156.

5. Brusilovsky, P. Methods and techniques of adaptive hypermedia. User Modeling
and User Adapted Interaction 6, 2-3 (1996), 87–129.

6. Brusilovsky, P. Adaptive hypermedia. User Modeling and User-Adapted Interaction
11 (2001), 87–110.

7. Brusilovsky, P., Eklund, J., and Schwarz, E. Web-based Educations for All: A
Tool for Development Adaptive Courseware. In Proceedings of the Sevenths Interna-
tional World Wide Web Conference, WWW’98 (1998).

8. Brusilovsky, P., and Maybury, M. The Adaptive Web. Communications of the
ACM, 2002.

9. Brusilovsky, P., and Nijhawan, H. A framework for adaptive e-learning based on
distributed re-usable learning activities. In In: M. Driscoll and T. C. Reeves (eds.)
Proceedings of World Conference on E-Learning, E-Learn 2002 (Montreal, Canada,
2002).

10. Brusilovsky, P., Schwarz, E., and Weber, G. A tool for developing adaptive
electronic textbooks on WWW. In Proceedings of WebNet’96 - World Conference of
the Web Society (Boston, MA, USA, June 1996).

11. Conlan, O., Lewis, D., Higel, S., O’Sullivan, D., and Wade, V. Applying adap-
tive hypermedia techniques to semantic web service composition. In International
Workshop on Adaptive Hypermedia and Adaptive Web-based Systems (AH 2003) (Bu-
dapest, Hungary, 2003).

12. Dolog, P., Henze, N., Nejdl, W., and Sintek, M. Towards an adaptive semantic
web. In Principles and Practive of Semantic Web Reasoning (PPSWR’03) (Mumbay,
India, December 2003).

13. Dolog, P., Henze, N., Nejdl, W., and Sintek, M. Personalization in distributed
e-learning environments. In International World Wide Web Conference (New York,
USA, May 2004).

14. Duffy, T., and Jonassen, D., Eds. Constructivism and the Technology of Instruc-
tion. Lawrence Erlbaum Associates, 1992.

15. Frasincar, F., and Houben, G. Hypermedia presentation adaptation on the seman-
tic web. In Proccedings of the 2nd International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems (AH 2002) (Malaga, Spain, 2002).

16. Halasz, F., and Schwartz, M. The Dexter hypertext reference model. Communi-
cations of the ACM 37, 2 (1994), 30–39.

17. Henze, N., and Nejdl, W. Extendible adaptive hypermedia courseware: Integrating
different courses and web material. In Proccedings of the International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2000) (Trento, Italy,
2000).

18. Henze, N., and Nejdl, W. Adaptation in open corpus hypermedia. IJAIED Special
Issue on Adaptive and Intelligent Web-Based Systems 12 (2001).

19. Henze, N., and Nejdl, W. Knowledge modeling for open adaptive hypermedia. In
Proccedings of the 2nd International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH 2002) (Malaga, Spain, 2002).

20. Koch, N. Software Engineering for Adaptive Hypermedia Systems: Reference Model,
Modeling Techniques and Development Process. PhD thesis, Ludwig-Maximilians-
Universitt Mnchen, 2001.

21. LOM: Draft Standard for Learning Object Metadata, 2002.
http://ltsc.ieee.org/wg12/index.html.

22. Reiter, R. A theory of diagnosis from first principles. Artifical Intelligence 32 (1987).
23. Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.
24. SCORM: The sharable content object reference model, 2001.

http://www.adlnet.org/Scorm/scorm.cfm.
25. Weber, G., and Brusilovsky, P. ELM-ART: An Adaptive Versatile System for

Web-based Instruction. IJAIED Special Issue on Adaptive and Intelligent Web-Based
Systems 12 (2001).

26. Weber, G., Kuhl, H.-C., and Weibelzahl, S. Developing adaptive internet based
courses with the authoring system NetCoach. In Proceedings of the Third Workshop
on Adaptive Hypermedia, AH2001 (2001).

27. Weber, G., and Specht, M. User modeling and adaptive navigation support in
WWW-based tutoring systems. In Proceedings of the Sixth International Conference
on User Modeling, UM97 (Sardinia, Italy, 1997).

