
Reactivity on the Web: Paradigms and Applications of the
Language XChange

François Bry
Institute for Informatics
University of Munich

Oettingenstr. 67
D-80538 Munich, Germany

francois.bry@ifi.lmu.de

Paula-Lavinia Pătrânjan
Institute for Informatics
University of Munich

Oettingenstr. 67
D-80538 Munich, Germany

paula.patranjan@ifi.lmu.de

ABSTRACT
Reactivity on the Web is an emerging issue. It is essen-
tial for upcoming Web systems such as online marketplaces,
adaptive, Semantic Web systems as well as Web services
and Grids. This article first introduces the paradigms upon
which the high-level language XChange for programming
reactive behaviour and distributed applications on the Web
relies. Then, it briefly presents the main syntactical con-
structs of XChange. Finally, it sketches the implementation
in XChange of a reactive Web-based application.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language
Constructs and Features

Keywords
Web, reactive languages, event-condition-action rules

1. MOTIVATION
Many resources on the Web and the Semantic Web are dy-

namic in the sense that they can change their content over
time. E.g. a Web-based information system on flights could
report delays on departures or arrivals, and flight cancella-
tions. A Web-based personalised organiser might be con-
ceived so as to automatically react to such changes affecting
its owner. A delayed arrival might result in issuing an email
to some other person or in cancelling a hotel reservation.
Thus, a strong motivation exists for having means to specify
and/or request updates to (local or remote) Web sites and
to propagate the updates over related Web resources. Ex-
isting update languages (like XML-RL Update Language [5]

0This research has been funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

and XPathLog [6]) and reactive languages [7] developed for
XML data support simple update operations. However, im-
portant features needed for propagation of more complex up-
dates on the Web are still missing. The language XChange
presented in this article aims at filling this gap. It builds
upon the query language Xcerpt [8] and provides advanced,
Web-specific capabilities, such as propagation of changes on
the Web (change) and event-based communication between
Web sites (exchange).

2. XCHANGE: PARADIGMS

2.1 Events and Event Queries
An event is a happening (e.g. update of a Web resource)

on which each Web site (through a reactive program) may
decide to react in a particular way or not to react to at all.
An important distinction is made between persistent data
(i.e data of Web resources) and volatile data (i.e. events).
To query persistent data standard queries are used (e.g. ex-
pressed using a query language like XQuery [10], or Xcerpt
[8]), to query volatile data event queries are used. Stan-
dard and event queries might well be very similar. However,
event queries are likely to refer to time or event sequences,
while standard queries, related to persistent data, are likely
not to refer to such notions. Based on this distinction, the
metaphor of XChange for reactivity on the Web is that of
speech for volatile data, i.e. events, and written text for per-
sistent data, i.e. Web content retrieved via standard queries.
Speech cannot be modified. If one has communicated some
information in this way he/she can correct, complete, or in-
validate what he/she has told – through further speech. In
contrast, written text can be updated in the usual sense.
Likewise, volatile data (i.e. events) is not updatable but
persistent data (i.e. Web content) is updatable. To inform
about, correct, complete, or invalidate former volatile data,
new event messages (i.e. data containing informations about
events that have occurred) are communicated between Web
sites. Since events are volatile (like speech), event queries
cannot be posed by remote Web sites (but only by a Web
site referring to the events it receives). Otherwise, events
would have to be made persistent – confusing the clear pic-
ture volatile vs. persistent data thus making programming
much more complicated.

2.2 Communication Paradigms
Peer-to-Peer. With XChange, the communication be-

tween Web sites is based on a peer-to-peer communication
model, i.e. all parties have the same capabilities and every
party can initiate a communication session. Event messages
are directly communicated between Web sites without a cen-
tralised processing of events. XChange assumes no instance
controlling (e.g. synchronising) communication on the Web,
even though such instance can be realised using XChange.

Self-Synchronising Reactive Programs. In the ab-
sence of central synchronisation on the Web and faced with
communication unreliability, XChange programs have the
capability to synchronise themselves with other XChange
programs on the Web.

Push Strategy. For communicating events on the Web
two strategies are possible: the push strategy, i.e. a Web site
informs (possibly) interested Web sites about events, and
the pull strategy, i.e. interested Web sites query periodically
(poll) persistent data found at other Web sites in order to de-
termine changes. Both strategies are meaningful. The pull
strategy is supported by languages for standard queries (e.g.
XQuery or Xcerpt), i.e. queries to persistent data. There-
fore, so as to complement the framework, XChange offers the
push strategy. The push strategy requires event queries to
be incrementally evaluated (by so-called event managers).
In the case of XChange, this is done at every (XChange-
aware) Web site.

2.3 Transactional Reactivity
Complex Updates. An elementary update is a change

(i.e. insert, delete, replace) within a persistent data item
(e.g. XML or RDF data). Complex updates expressing or-
dered or unordered conjunctions, or disjunctions of (elemen-
tary or complex) updates are offered by XChange. Such up-
dates are required by real applications. E.g. when booking a
trip on the Web one might wish to book an early flight and
of course the corresponding hotel reservation, or a late flight
and a shorter hotel reservation. Since it is sometimes nec-
essary to execute such complex updates in an all-or-nothing
manner (e.g. when booking a trip, a hotel reservation with-
out a flight reservation is useless), XChange has a concept
of transactions [9].

Transactions and ACID Properties. XChange trans-
actions obey the ACID properties [9] (Atomicity, Consis-
tency, Isolation, and Durability). Atomicity and isolation
are considered in XChange, the issues of consistency and
durability for transactions are currently not investigated in
the project. XChange will build on standard solutions from
database systems.

Transactional Events. Transactional events (i.e. com-
mit, abort, request) are offered by XChange. They are
needed for supporting transactions.

2.4 Authentication, Authorisation, and
Accounting

XChange in its present stage of development does not of-
fer specific means for security (especially authentication and
authorisation). However, such extensions are neither incom-
patible with the current version of XChange nor precluded
in future versions of the language. The protocols of a Grid
architecture (such as Globus [4]) would provide with con-
venient means for such an extension. Extending XChange
with accounting functionalities is a promising perspective
for future research. Vice versa, XChange could be seen as a
(core of a) high-level reactive language for Grids.

2.5 Relationship Between Reactive and Query
Languages

A working hypothesis of the XChange project is that a
reactive language for the Web should build upon, more pre-
cisely embed, a Web query language. There are two reasons
for this. First, specifications of reactive behaviour often re-
fer to actual Web contents - calling for querying Web con-
tents. Second, reactive behaviour necessarily refers to (more
or less recent) events - calling for querying events. For rea-
sons of uniformity, it is highly desirable both for users and
for system developers that the languages used for querying
Web contents and querying events are as close as possible
to each other. Note, however, that querying events calls for
constructs not needed for querying Web contents.

3. THEWEB QUERY LANGUAGE XCERPT
The Web query language Xcerpt is embedded in XChange.

Xcerpt is a pattern and rule-based language for querying
Web contents (i.e. persistent data). Xcerpt uses (query)
patterns for querying Web contents, and (construction) pat-
terns for constructing new data items. Terms are used for
denoting query patterns (i.e. query terms), construction pat-
terns (i.e. construct terms) and also for denoting data items
of Web contents (i.e. data terms). Common to all terms
is that they represent tree or graph-like structures. The
children of a node may either be ordered, i.e. the order of
occurrence is relevant, or unordered, i.e. the order of occur-
rence is irrelevant. In the term syntax (used in this article
as it is more readable as the Xcerpt’s XML syntax), an or-
dered term specification is denoted by square brackets [], an
unordered term specification by curly braces {}.

Data Terms represent data items (i.e. XML documents)
that are found on the Web. In an Xcerpt program the
Web contents to be queried are specified using the keyword
resource followed by the Web address(es) where the data
is to be found.

Example 1. The following two Xcerpt data terms repre-
sent a flight timetable and a hotel reservation offer.

At http://airline.com: At http://hotels.net:
flights { accomodation {
last-changes{"2004-08-20"}, currency{"EUR"},
currency{"EUR"}, hotels {
flight { city{"Paris"},
number{"AI2011"}, country{"France"},
from{"Paris"}, hotel {
to{"Munich"}, name{"Ambassade"},
date{"2004-08-23"}, category{"2 stars"},
departure-time{"10:30"}, room-price{"62"},
arrival-time{"12:00"}, phone{"+331888219"},
class{"economy"}, no-pets {}
price{"75"} },
}, hotel {
flight { name{"Winston"},
number{"AI2021"}, category{"3 stars"},
from{"Paris"}, room-price{"60"},
to{"Munich"}, phone{"+331828156"}
date{"2004-08-23"}, },
departure-time{"17:30"}, hotel {
arrival-time{"19:00"}, name{"Royale"},
class{"economy"}, category{"4 stars"},
price{"80"} room-price{"120"},
}, phone{"+331778123"}
... },
} ... },

... }

Query Terms are (possibly incomplete) patterns that are

matched against Web contents represented by data terms.
Partial (incomplete) or total (complete) query patterns can
be specified. A query term t using a partial specification
(denoted by double square brackets [[]] or curly braces {{}})
for its subterms matches with all such terms that (1) contain
matching subterms for all subterms of t and that (2) might
contain further subterms without corresponding subterms
in t. In contrast, a query term t using a total specification
(denoted by single square brackets [] or curly braces {})
does not match with terms that contain additional subterms
without corresponding subterms in t. Query terms contain
variables for selecting data items (i.e. subterms of data terms
are to be bound to the variables). Variable restrictions can
be specified using the ; construct (read as), which restricts
the bindings of the variables to those terms that are matched
by the restriction pattern.

Example 2. The following Xcerpt query term is used to
query the data at http://airline.com about flights from
Paris to Munich.

in { resource {"http://airline.com"},
flights {{ var F ; flight {{

from{"Paris"},to{"Munich"} }}

}} }

Query terms are “matched” with data or construct terms
by a non-standard unification method called simulation uni-
fication [8] dealing with partial and unordered query speci-
fications.

Construct Terms serve to reassemble variables (the bin-
dings of which are specified in query terms) so as to con-
struct new data terms. They are similar to data terms, but
augmented by variables (acting as place holders for data se-
lected in a query) and the grouping construct all (which
serves to collect all instances that result from different vari-
able bindings).

Construct-Query Rules (short rules) relate a construct
term (introduced by the keyword CONSTRUCT) to a query
(introduced by the keyword FROM) consisting of AND and/or
OR connected query terms. Queries or parts of a query may
be further restricted by arithmetic constraints in a so-called
condition box (introduced by the keyword where).

Example 3. The following Xcerpt rule gathers informa-
tions about the hotels in Paris with a price limit.

CONSTRUCT
answer [all var H]

FROM
in { resource {"http://hotels.net"},
accomodation {{
hotels {{ city {"Paris"},

var H;hotel {{ room-price{var P} }} }}
}} } where var P < 90

END

An Xcerpt program consists of one or more rules. Xcerpt
rules may be chained to form complex query programs, i.e.
rules may query the results of other rules. More on Xcerpt
can be found in [8] and at http://xcerpt.org.

4. XCHANGE: LANGUAGE CONSTRUCTS

4.1 Events and Event Messages
XChange offers explicit events, implicit events, and sys-

tem events. Explicit events are explicitly raised by a user or
by a (predefined) XChange program. They are raised at a
Web site and sent to one or more (same or other) Web sites
through event messages. Implicit events are local events not

expressed through event messages (e.g. local updates of per-
sistent data or system clock events). Events are transmitted
from a Web site to another through event messages. Thus,
such events are necessarily explicit. System events (e.g. sys-
tem clock events) are events that are coming from the en-
compassing “system” and might be useful to handle together
with explicit and/or implicit events. A system event might
be explicit or implicit depending whether it is transmitted
from a Web site to another or not.

Event messages communicate events between (same or
different) Web sites. An XChange event message is an XML
document with a root element labelled event and the four
parameters (represented as child elements as they may con-
tain complex content): raising-time (i.e. the time of the
event manager of the Web site raising the event), reception
-time (i.e. the time at which a site receives the event),
sender (i.e. the URI of the site where the event has been
raised), and recipient (i.e. the URI of the site where the
event has been received). An event message is an envelope
for an arbitrary XML content. Thus, multiple event mes-
sages can (but not necessarily) be nested making it possible
to create trace histories. Note that XChange messages are
compatible with the messages and the “message exchange
patterns” of SOAP [11].

Example 4. Assume that a flight has been cancelled. The
control point that has observed this event raises it and sends
to http://airline.com the following event message:

event {
sender {"control://controlpoint-A20"},
recipient {"http://airline.com"},
raising-time {"2004-08-23T12:00:25"},
cancellation {
flight {number{"AI2021"},date{"2004-08-23"} } }

}

XChange excludes broadcasting of event messages on the
Web (i.e. sending event messages to all sites of a portion of
the Web), since indiscriminate sending of event messages to
many Web sites is not adequate for a non-centrally managed
structure such as the Web.

4.2 Event Queries
The capability to detect and react to composite events,

e.g. sequences of event instances that have occurred possi-
bly at different Web sites within a specified time interval, is
needed for many Web-based reactive applications. However,
(to the best of our knowledge) existing languages for reac-
tivity on the Web do not consider the issues of detecting and
reacting to such composite events1. One of the novelties in-
troduced by XChange is the processing of composite events.
To this aim, XChange offers composite event queries. An
XChange event query may be atomic, i.e. one event query
term (similar to an Xcerpt query term), or composite. An
atomic event query refers to one single event. Three dimen-
sions are distinguished for composite event queries: temporal
range, event composition, and occurrence.

Note that composite event instances (detected using com-
posite event queries) do not have time stamps, like atomic
event instances do. Instead, a composite event instance in-
herits from its components a beginning time (i.e. the recep-
tion time of the first received event instance that is part of

1[1] considers “composite events”. However, this notion
refers in [1] to updates of several elements of a single XML
document. The XChange notion of composite events goes
beyond such updates of an XML document.

the composite event instance) and an ending time (i.e. the
reception time of the last received event instance that is part
of the composite event instance).

Temporal Range. A time interval can be specified for
(atomic or composite) event queries meaning that event in-
stances are considered relevant only if they occur in the given
time interval. Such a time interval has always a lower bound
(the time point of event query definition, if not explicitly
given) and might have an upper bound (i.e. the time in-
terval is finite in the sense that it contains a finite number
of reference granules [3]). Lower bounds are indispensable
for efficiency reasons. They make it possible to release each
event at each Web site after a finite time – thus keeping the
distinction persistent vs. volatile data. Time intervals for
event queries can be specified using the constructs: within

TimeInterval, before TimePoint, after TimePoint, and
during Duration.

Example 5. An XChange composite event query that de-
tects insertion of discounts for flights from Paris to Munich,
but only before 20th of August 2004:

event {{
flight {{ from {"Paris"}, to {"Munich"},

new-discount { var D } }}

}} before "2004-08-20T10:00:00"

The temporal range constructs of XChange are aligned to
the temporal and calendar type system currently developed
for Xcerpt and XChange [3].

Event Composition. XChange has constructs for:
1. temporally ordered conjunctions of event queries (i.e.

querying for successive, in terms of time, occurrences of
events) – keyword andthen. A total specification (i.e. single
square brackets) expresses that between any two component
instances of a detected composite instance no other event
instance occurred. In contrast, a partial specification (i.e.
double square brackets) expresses that between two such
component instances other events have (possibly) occurred.

2. conjunctions of event queries (i.e. querying for occur-
rences of events where the order in which event instances
occur is not important) – keyword and.

3. disjunctions of event queries (i.e. querying for event
instances - answers to one of the event queries) – keyword
or, and exclusive disjunctions of event queries within a finite
time interval – keyword xor.

4. negations of event queries within a finite time interval
(i.e. querying for non-occurrence of event instances in the
given finite time interval) – keyword not.

5. overlapping for composite event queries (i.e. querying
for overlapping of composite event instances on the time axis
of the incoming events) – keyword overlap.

6. meet for composite event queries (i.e. for an answer,
the ending time of each component event instance is the be-
ginning time of the successive component) – keyword meets.

7. if-then-else for event queries (i.e. if querying for an
event A detects an instance of it, then query for an event B,
else query for an event C). A generalisation of this control
construct (i.e. a case construct) is also offered by XChange.

8. arbitrary event queries (i.e. each event instance would
be an answer to such a query) – keyword any.

Example 6. An XChange composite event query for de-
tecting the occurrence of a flight cancellation event and (as
successive event) the non-occurrence (during two hours from
the cancellation notification) of a notification of an accomo-
dation granted by the airline:

andthen [

event {{ cancellation {{
flight {{var Number}} }} }},

not event {{ sender {"http://airline.com"},
accomodation-granted {{}} }}

] during "2 hours"

Occurrence. XChange event queries can query for mul-
tiplicities, e.g. to detect event istances that occur at least
or at most a number of times in a given time interval, for
repetitions, i.e. to detect every n-th event instance in a given
time interval, and for rankings, i.e. to detect event instances
having a given rank, or position, in the incoming “flow” of
events.

Example 7. Mrs. Smith is on a business trip in Paris.
She uses a travel organiser that plans her trips and reacts to
happenings that might influence her schedule. The following
travel organiser’s event query is used to detect if she receives
at least three important messages from her secretary.

event {{ secretary-message {{ important {{ }} }}

}} at least "3" times

4.3 Transactions
An XChange transaction specification is a group of update

specifications and/or explicit event specifications (express-
ing events that are constructed, raised, and sent as event
messages) that are to be executed in an all-or-nothing man-
ner. An XChange update specification is a (possibly incom-
plete) pattern for the data to be updated, augmented with
the desired update operations. The notion of update terms
is used to denote such patterns containing update operations
for the data to be modified. An update term may contain
different types of update operations.

Example 8. At http://airline.com the flight timetable
needs to be updated as reaction to the event given in Ex-
ample 4:

in { resource {"http://airline.com"},
flights {{
last-changes {var L replaceby "2004-08-23"},
flight {{ number{"AI2021"}, date{"2004-08-23"},

delete departure-time {{}},
delete arrival-time {{}},
insert news{"Flight has been cancelled!!"} }}

}} }

Intensional updates, i.e. a description of updates in terms
of (standard or event) queries, can be specified in XChange
as the language inherits the querying capabilities of the lan-
guage Xcerpt. This eases considerably the specification of
updates, e.g. for specifying modification of the discounts for
all flights offered by a specific airline.

As mentioned in Section 2.3 XChange supports complex
updates (e.g. ordered conjunction of atomic or complex up-
dates, meaning that all specified updates are to be executed
and in the specified order). In XChange, the keywords and

and or denote conjunction and disjunction of updates, re-
spectively. Like Xcerpt, XChange uses square brackets and
curly braces for expressing that the order of evaluation is of
importance and of no importance, respectively.

4.4 (Re)Active Rules
An XChange program is located at one Web site and con-

sists of one or more (re)active rules of the form Event query
– Standard query – Transaction/Raised events. Every oc-
currence of an event is queried using the event query (in-
troduced by keyword ON). If an answer is found and the
standard query (introduced by keyword FROM) has also an
answer, then the action is executed (i.e. a transaction is ex-

ecuted – keyword TRANSACTION, or explicit events are raised
and sent to one or more Web sites – keyword RAISE). There
are two kinds of XChange rules: event-raising rules (i.e. the
head of the rules specifies explicit events) and transaction
rules (i.e. the head of the rules specifies transactions).

Example 9. The site http://airline.com has been told
to notify Mrs. Smith’s travel organiser of delays or cancel-
lations of flights she travels with:

RAISE
event {
recipient{"http://travelorganiser.com/Smith"},
cancellation-notification { var F } }

ON
event {{
sender{"http://airline.com"},
cancellation {{
var F;flight {{ number{"AI2021"},

date {"2004-08-23"} }} }}
}}
END

Example 10. The travel organiser of Mrs. Smith uses the
following rule: if the return flight of Mrs. Smith is cancelled
then look for and book another suitable flight. The rule is
specified in XChange as:

TRANSACTION
in { resource {"http://airline.com/reservations/"},
reservations {{
insert reservation{var F,name{"Christina Smith"} }

}}
}

ON
event {{ sender {"http://airline.com"},
cancellation-notification {{
flight {{ number{"AI2021"},date {"2004-08-23"} }}
}} }}

FROM
in { resource {"http://airline.com"},
flights {{
var F ; flight {{

from {"Paris"}, to {"Munich"},
date{"2004-08-23"}, departure-time{var T} }}

}} } where var T after "14:00"

END

Example 11. If no other suitable return flight is found and
the airline does not provide an accomodation, then book for
Mrs. Smith a cheap hotel and inform her husband about
the changes in her schedule:

TRANSACTION
and [
in {resource{"http://hotels.net/reservations/"},
reservations {{
insert reservation{var H,name{"Christina Smith"},

from{"2004-08-23"}, until{"2004-08-24"} }
}} } },

in {resource{"address-book://addresses/my-husband"},
addresses {{
insert my-hotel { phone { var Tel },

remark {"I’m staying in Paris over night!"}}
}} } }

]
ON
andthen [
event {{ sender {"http://airline.com"},

cancellation-notification {{
flight {{ number {"AI2021"},

date {"2004-08-23"} }} }}
}},
not event {{
sender {"http://airline.com"},
accomodation-granted {{ hotel {{}} }}

}}

] during "2 hours"
FROM
in { resource {"http://hotels.net"},
accomodation {{
hotels {{ city {"Paris"},

var H;hotel {{ room-price{var P},
phone{var Tel} }} }}

}} } where var P < 90

END

5. XCHANGE: PROJECT STATUS
The XChange project has started ten months ago. As ex-

plained in Section 2.5 XChange builds upon the Web query
language Xcerpt [8]. A first version of Xcerpt is fully de-
signed and a reference implementation is available (cf. http:
//xcerpt.org). Currently, the design of an extended core
language for XChange is completed and a first (reference)
implementation extending that of Xcerpt has begun.

6. CONCLUSION
XChange has been conceived not only for standard Web

but also for Semantic Web applications. Such applications
of XChange are presented and discussed in [2]. Reactivity
on the Web is an emerging issue essential for Semantic Web,
Web services, Grids as well as many other Web-based sys-
tems. The XChange project aims at contributing to this
issue with a high-level programming language.

7. REFERENCES
[1] M. Bernauer, G. Kappel, and G. Kramler, Composite

Events for XML, Int. Conf. on World Wide Web, 2004.

[2] F. Bry, T. Furche, P.-L. Pătrânjan, and S. Schaffert,
Data Retrieval and Evolution on the (Semantic) Web:
A Deductive Approach, Workshop on Principles and
Practice of Semantic Web Reasoning, Springer, 2004.

[3] F. Bry and S. Spranger, Towards a Multi-Calendar
Temporal Type System for (Semantic) Web Query
Languages, Workshop on Principles and Practice of
Semantic Web Reasoning, Springer, 2004.

[4] I. Foster, C. Kesselman, and S. Tuecke, The Anatomy
of the Grid. Enabling Scalable Virtual Organizations,
Int. Journal of Supercomputer Applications, 2001.

[5] M. Liu, L. Lu, and G. Wang, A Declarative XML-RL
Update Language, Int. Conf. on Conceptual Modeling
(ER 2003), Springer, 2003.

[6] W. May and E. Behrends, On an XML Data Model
for Data Integration, Workshop on Foundations of
Models and Languages for Data and Objects, 2001.

[7] G. Papamarkos, A. Poulovassilis, and P.T. Wood,
Event-Condition-Action Rule Languages for the
Semantic Web, Workshop on Semantic Web and
Databases, 2003.

[8] S. Schaffert and F. Bry, Querying the Web
Reconsidered: A Practical Introduction to Xcerpt, Int.
Conf. Extreme Markup Languages, 2004.

[9] J.D. Ullman, Principles of Database and
Knowledge-base Systems, vol. 1, Computer Science
Press, 1988.

[10] W3 Consortium, XQuery: A Query Language for
XML, 2001.

[11] W3 Consortium, SOAP Version 1.2 Part 1:
Messaging Framework, 2003.

