
Composite Event Queries for Reactivity on the Web

James Bailey
Dept. of Computer Science

University of Melbourne
Victoria, 3010

Australia

jbailey@cs.mu.oz.au

François Bry
Institute for Informatics
University of Munich

Oettingenstr. 67
D-80538 Munich

Germany

francois.bry@ifi.lmu.de

Paula-Lavinia Pătrânjan
Institute for Informatics
University of Munich

Oettingenstr. 67
D-80538 Munich

Germany

patranja@pms.ifi.lmu.de

ABSTRACT
Reactivity on the Web is an emerging issue. The capability
to automatically react to events (such as updates to Web
resources) is essential for both Web services and Semantic
Web systems. Such systems need to have the capability to
detect and react to complex, real life situations. This paper
introduces the high-level language XChange, for program-
ming reactive behaviour on the Web, emphasising the ca-
pability of the language to express complex situations that
occur on the Web by means of composite event queries.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language
Constructs and Features

Keywords
Web, reactive languages, event-condition-action rules, com-
posite events

1. INTRODUCTION
Reactivity on the Web is gaining importance and is recog-

nised as a solution for many everyday life problems. For
example, a Web Service provided by an airline could report
delays on departures or arrivals, and flight cancellations. A
Web-based personalised organiser might be conceived so as
to automatically react to (possibly combinations of) reports
which affect its owner. Such reports can be sent from differ-
ent Web Services (like a weather forecast service). A delayed
arrival might cause either an email to be sent to some other
person or the cancellation of a hotel reservation.

Reactive languages (such as [12]) formerly developed for
the Web support simple update operations on XML docu-
ments, i.e. there is no support for specifying and executing
(two or more) updates in a desired order and in an all-or-
nothing manner. Moreover, these languages have the ca-
pability to react only to single event instances and do not
provide constructs for querying for complex combinations of
event instances.

0This research has been funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net).

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

The issue of reacting to so-called complex events, i.e. (pos-
sibly time-related) combinations of event instances, has re-
ceived considerable attention in the field of active data-
bases (cf. e.g. [13, 19]). Thus, useful concepts can be “bor-
rowed” from active databases when investigating reactiv-
ity on the Web. However, differences between (generally
centralised) active databases and the Web, where a cen-
tral clock and a central management are missing, necessi-
tate new approaches. In particular, complex events reflect-
ing a user-centered (and not a system-centered) view are
needed for the Web. One such approach is proposed by
the language XChange [5] and is presented in this article.
XChange builds upon the Web query language Xcerpt [15,
3] and provides constructs for detecting complex (or compos-
ite) events on the Web. The principles that led to the design
of these constructs are: i) reflecting the temporal order of
events through syntactical representation, and ii) having a
collection of constructs convenient for a natural expression
of common-sense reasoning with events on the Web.

Preliminary work on XChange is introduced in [5]. As
the development stage of the language was not been ma-
ture enough regarding the issue of composite events on the
Web, just some of the XChange constructs were briefly intro-
duced. This paper explains the XChange composite event
queries for detecting composite events in more detail (intro-
duces also new constructs), discusses the processing of event
queries and examins the notion of answers to an event query.

2. EVENTS AND EVENT QUERIES FOR
REACTIVITY ON THE WEB

2.1 Atomic Events
Informally, an atomic event is a happening (e.g. an up-

date of a possibly remote Web resource) to which each Web
site (through a reactive program) may decide to react in a
particular way or not to react to at all. XChange distin-
guishes between two kinds of atomic events: explicit events
and implicit events. Explicit events are explicitly raised by
a user or by a (predefined) XChange program. They are
raised at a Web site and sent internally or to other Web sites
through event messages. Implicit events are local events not
expressed through event messages (e.g. local updates of data
or system clock events). Events are transmitted from one
Web site to another through event messages. Thus, an event
sent from one Web site to another is necessarily explicit.

The kinds of events considered in XChange are presented

Table 1: XChange Events

local events

explicit events
(event messages)

implicit

updates
queries
transactional events
system events

remote events explicit events
(event messages)

in Table 1. An update executed or a query posed locally
at a Web site are for XChange local events, i.e. raised at
this Web site and processed at this Web site. Transactional
events (transaction commit, transaction abort, transaction
request) are local events needed as XChange supports the
concept of transactions (cf. Section 5). System events (e.g.
system clock events) are events that are coming from the
encompassing “system” and might be useful to handle to-
gether with explicit and/or implicit events. A system event
might be explicit or implicit, depending whether or not it is
transmitted from one Web site to another.

Remote events, i.e. events informing a Web site of queries,
updates, transactional or system events or of any other (ap-
plication specific) matter, are always explicit and are ex-
pressed through event messages.

2.2 Composite Events
XChange’s (occurrences of) composite events are defined

as answers to composite event queries (see Section 3). E.g.
an XChange event query can ask for occurrences of an in-
crease of share values by more than 5 percent for the com-
pany Siemens, followed by an increase of share values for
the company SAP at a particular stock market. An answer
to such an event query contains instances of the two speci-
fied component event queries (i.e. increase of share values).
Another XChange event query can ask for all stock market
reports that have been registered between the occurrences
of an increase of share values for the two mentioned compa-
nies. An answer to such an event query contains, besides the
instances of the events signaling an increase for the shares
of the companies, all reports registered between these two
instances. The capability to query for all events having a
particular pattern that have occurred between the instances
of two specified event queries is one of the novelties of the
language XChange.

2.3 Event Query vs. Web Query
Volatile vs. Persistent Data. An important distinc-

tion is made between persistent data (data of Web resources)
and volatile data (events). To query persistent data, stan-
dard queries are used (expressed using a query language like
XQuery [17], or Xcerpt [15]). To query volatile data, event
queries are used. Standard and event queries can be very
similar. However, event queries are more likely to refer to
time or event sequences.

Incremental Aspects. Event queries need to be eval-
uated in an incremental manner, as data (events) that are
queried are received in a stream-like manner and are not
persistent. For every incoming event that might be relevant
to an XChange-aware Web site and could contribute as a
component to an event query instance specified in the rules

of the Web site’s XChange program(s), a partial instantia-
tion of the involved event queries is realised. An instance
of a specified composite event query is detected when in-
stances for all specified component event queries have been
detected.

2.4 Metaphor: Speech vs. Written Text
The metaphor of XChange for reactivity on the Web is

that of speech for volatile data and written text for persistent
data. Speech cannot be modified. If one has communicated
some information in this way one can correct, complete, or
invalidate what one has told – through further speech. In
contrast, written text can be updated in the usual sense.
Likewise, volatile data (events) is not updatable but per-
sistent data (Web content) is updatable. To inform about,
correct, complete, or invalidate former volatile data, new
event messages (data containing informations about events
that have occurred) are communicated between Web sites.
Since events are volatile, like speech, a Web site cannot pose
event queries against events that have been received by an-
other Web site. Otherwise, events would have to be made
persistent – confusing the clear picture volatile vs. persis-
tent data and thus potentially making programming more
complicated.

2.5 Communication of Events

2.5.1 Event Messages
Event messages communicate events between the same

or different Web sites. An XChange event message is an
XML document with a root element labelled event and the
four parameters (represented as child elements as they may
contain complex content): raising-time (the time of the
event manager of the Web site raising the event), recep-
tion-time (the time at which a site receives the event),
sender (the URI of the site where the event has been raised),
and recipient (the URI of the site where the event has been
received). Note that XChange messages are compatible with
the messages and the “message exchange patterns” of SOAP
[18].

Example 1. Mrs. Smith uses a travel organiser that plans
her trips and reacts to happenings that could influence her
schedule. One of the travel organiser’s tasks is to plan Mrs.
Smith’s vacation in Provence, France. Mrs. Smith wants
to visit Orange, Arles, N̂ımes, and Marseilles. Carrying out
this task presupposes booking a flight from Munich to Lyon
and back, making train reservations and corresponding hotel
reservations, and to notify Mrs. Smith of events of interest
(such as exhibitions). The following XChange event mes-
sage is sent by http://artactif.com informing the travel
organiser of Mrs. Smith about an exhibition of the painter
G. Barthouil.
xchange:event {

xchange:sender {"http://artactif.com"},
xchange:recipient{"organiser://travelorganiser/Smith"},
xchange:raising-time {"2005-05-05T10:15:00"},
exhibition {

painter {"G. Barthouil"}, location {"Marseilles"},
time-interval{"[2005-05-08..2005-05-18]"},
visit-hours { from {"10:00"}, until {"18:00"}}

}
}

Note the use of the xchange namespace for the keyword
event and for the parameters of an XChange event message.

The examples are intended to give flavours of the XChange
constructs and thus abstract away from a particular com-

munication protocol. In the previous example organiser

denotes a communication protocol (e.g. the protocol used
by a mobile personalised organiser).

An event message is an envelope for an arbitrary XML
content. Thus, multiple event messages can (but are not
necessarily) be nested making it possible to create trace his-
tories.

Example 2. Mrs. Smith notifies a friend of her about G.
Barthouil’s exhibition. The following XChange event mes-
sage is sent by Mrs. Smith’s travel organiser and contains
the received event message from Example 1.:

xchange:event {
xchange:sender {"organiser://travelorganiser/Smith"},
xchange:recipient{"organiser://travelorganiser/myFriend"},
xchange:raising-time {"2005-05-06T11:10:20"},
content {

xchange:event {
xchange:sender {"http://artactif.com"},
xchange:recipient{"organiser://travelorganiser/Smith"},
xchange:raising-time {"2005-05-05T10:15:00"},
xchange:reception-time {"2005-05-05T10:21:20"},
exhibition {
painter {"G. Barthouil"}, location {"Marseilles"},
time-interval{"[2005-05-08..2005-05-18]"},
visit-hours { from {"10:00"}, until {"18:00"} }

}
}

}
}

XChange excludes broadcasting of event messages on the
Web (i.e. sending event messages to all sites of a portion of
the Web), since indiscriminate sending of event messages to
all Web sites introduces problems for a non-centrally man-
aged structure such as the Web.

2.5.2 Compact Syntax vs. XML Syntax
The language XChange has i) a compact syntax (which is

a term-based syntax where a term represents an XML doc-
ument, a query pattern, or an update pattern) and ii) an
XML syntax. The compact syntax has been developed for
the programmers, while the XML syntax is for machine pro-
cessing. However, programmers have the freedom to choose
whichever syntax they prefer. Thus, the example given pre-
viously using the XChange’s compact syntax is given next
using the XML syntax.

Example 3. Using the XML syntax of XChange, the event
message given in Example 1. looks like:

<xchange:event>
<xchange:sender>

http://artactif.com
</xchange:sender>
<xchange:recipient>

organiser://travelorganiser/Smith
</xchange:recipient>
<xchange:raising-time>

2005-05-05T10:15:00
</xchange:raising-time>
<exhibition>

<painter>G. Barthouil</painter>
<location>Marseilles</location>
<time-interval>[2005-05-08..2005-05-18]</time-interval>
<visit-hours>

<from>10:00</from> <until>18:00</until>
</visit-hours>

</exhibition>
</xchange:event>

For readability and space reasons, the compact syntax of
XChange is used throughout this paper.

2.5.3 Peer-to-Peer
In XChange, the peer-to-peer communication model is

used for communicating data between Web sites. This means
that all parties have the same capabilities and every party

can initiate a communication session. Event messages are
directly communicated between Web sites without a cen-
tralised processing of events. XChange assumes no instance
controlling (e.g. synchronising) communication on the Web.

2.5.4 Self-Synchronising Reactive Programs
There is no central service on the Web that synchronises

the actions that are to be executed by reactive programs
found at different Web sites. Taking communication un-
reliability into account, rules can be defined locally at an
XChange-aware Web site to synchronise actions with other
XChange programs. For example, one Web site can wait for
another Web site to execute some action (like sending an
email to a person) until a time point; if the action has not
been executed, the first Web site can decide to execute this
(to send an email) on behalf of the second Web site.

2.5.5 Push Strategy
For communicating (propagating) events on the Web, two

strategies are possible: the push strategy, where a Web site
informs possibly interested Web sites about events, and the
pull strategy, where interested Web sites query periodically
(poll) persistent data found at other Web sites in order to
determine changes. Both strategies are useful. The pull
strategy is supported by languages for standard queries like
XQuery or Xcerpt that query persistent data. Therefore, so
as to complement the framework, XChange offers the push
strategy. The push strategy requires event queries to be in-
crementally evaluated by so-called event managers (cf. Sec-
tion 2.3). In the case of XChange, this is done at every
XChange-aware Web site.

2.6 Local Control of Event Memorisation
An essential aspect of XChange is that each Web site con-

trols its own event memory usage. In particular, the size of
the event history kept in memory depends only on the event
queries posed at this Web site. Neither standard queries nor
event queries posed at other Web sites can influence the size
of the event history. This is consistent with the clear distinc-
tion between events as volatile data and standard Web data
as persistent data. The time period for which an atomic
event is kept in memory at a Web site is automatically de-
tected from the event queries already posed at this Web site.
XChange composite event queries are such that no data on
any event can be kept for ever in memory. If this is neces-
sary for some applications, then the applications should turn
events into standard Web data by explicitly saving events
as persistent data, following the metaphor of Section 2.4 for
turning speech into text.

3. COMPOSITE EVENT QUERIES
The capability to detect and react to composite events, e.g.

sequences of event instances that have occurred possibly at
different Web sites within a specified time interval, is needed
for many Web-based reactive applications. However, to the
best of our knowledge, existing languages for reactivity on
the Web do not consider the issues of detecting and reacting
to such composite events1. One of the novelties introduced

1[4] considers “composite events”. However, this notion
refers in [4] to updates of several elements of a single XML
document. The XChange notion of composite events goes
beyond such updates of an XML document.

by XChange is the processing of composite events. To this
aim, XChange offers composite event queries.

An XChange event query may be atomic or composite. An
atomic event query refers to one single event, it represents a
pattern for the single incoming event that is of interest (sim-
ilar to Xcerpt query patterns). A special atomic event query
is any, that “matches” an arbitrary atomic event query in-
stance (i.e. a kind of wildcard for atomic event query in-
stances). Two dimensions are distinguished for composite
event queries: temporal range and event composition.

Note that composite event query instances (detected us-
ing composite event queries) do not have time stamps, like
atomic event query instances do. Instead, a composite event
query instance inherits from its components a beginning
time (the reception time of the first received event query
instance that is part of the composite event query instance)
and an ending time (the reception time of the last received
event query instance that is part of the composite event
query instance).

The following notations are used throughout this section:
AtomicEventQuery is an atomic event query specification,
EventQuery is an (atomic or composite) event query spec-
ification, FiniteTimeSpec is a specification of a finite time
interval (e.g. of the form before TimePoint), and TimeSpec

is a specification of a time interval in which events are to be
monitored.

3.1 Temporal Range
A time interval can be specified for (atomic or compos-

ite) event queries, meaning that event query instances are
considered relevant only if they occur in the given time in-
terval. Such a time interval always has a lower bound (the
time point of event query definition, if not explicitly given)
and might have an upper bound (i.e. the time interval is
finite in the sense that it contains a finite number of refer-
ence granules [6]). Lower and upper bounds are important
for efficiency reasons. They make it possible to release each
event at each Web site after a finite time – thus keeping the
distinction persistent vs. volatile data.

Along the temporal range dimension, XChange composite
event queries can have one of the following forms: Event-

Query within TimeInterval (note that, in this case, the
time interval must not refer to event queries that refer to
EventQuery), EventQuery before TimePoint, EventQuery

after TimePoint, AtomicEventQuery at TimePoint, and E-

ventQuery during Duration (the specified duration is con-
sidered beginning from the reception time of the first re-
ceived event query instance that is part of the instance of
EventQuery).

Example 4. An XChange composite event query that de-
tects new discounts for flights from Munich to Lyon, but
only until a given time point.

xchange:event {{
flight {{

from {"Munich"}, to {"Lyon"},
new-discount { var D }

}}
}} before "2005-04-01T10:00:00"

In principal, XChange can refer to dates in all possible
formats (like the ISO 8601 standard) or to dates/calendars
defined using the calendar and temporal type system CaTTS
[6]. It is intended to combine XChange and CaTTS in the
near future.

3.2 Event Composition

3.2.1 Non-Temporal Event Composition
Conjunctions of event queries are used for detecting in-

stances for each specifed event query. The order in which
these instances occur is not relevant. Thus, only unordered
specifications of conjunctions of event queries (denoted as
and {EQ1, EQ2, ..., EQn} with EQi event query, for i =
1..n) are considered in XChange.

Example 5. Mrs. Smith wants to visit an exhibition of
G. Barthouil on a rainy day. The following XChange event
query is used to detect the conjunction of the exhibition no-
tification and the desired weather forecast notification that
are sent by appropriate Web services.

and {
xchange:event {{

xchange:sender {"http://artactif.com"},
exhibition {{ painter {"G. Barthouil"},

location {"Marseilles"},
time-interval { var TI }

}}
}},

xchange:event {{
xchange:sender {"http://weather.com"},
forecast { date { var D }, city {"Marseilles"},

info {"It’s going to rain."} }
}}

} where var D included-in var TI

Inclusive disjunctions of event queries are used for de-
tecting instances that are answers to one of the specified
event query. An answer to an inclusive disjunction event
query (denoted or {EQ1, EQ2, ..., EQn} (EQi event query,
for i = 1..n) is the first received instance of one of the EQi,
i = 1, ..., n. Note that exclusive disjunctions of event queries
can also be specified (in other way), as XChange offers a
generalised exclusive disjunction by means of the multiple
selection constructs (cf. Section 3.2.2.3).

Example 6. After Orange, Mrs. Smith wants to visit Arles
and N̂ımes. The next city to visit is chosen depending on
the notification of train tickets and hotel reservation made
by appropriate services.

or {
xchange:event {{

xchange:sender {"http://service-nimes.fr"},
service-notification {{
train {{

var D ; date {"2005-05-03"},
var F ;from {"Orange"}, to {"Nimes"}

}},
hotel {{ }}

}}
}},

xchange:event {{
xchange:sender {"http://reservations-arles.fr"},
reservation-notification {{
train {{ var D, var F, to {"Arles"} }},
accomodation {{ }}

}}
}}

} before "2005-05-02T21:30:00"

3.2.2 Temporal Event Composition
Constructs for composite event queries that refer to a tem-

poral order between event instances are introduced next.
The reception time of incoming events is used to determine
the temporal order of events. The possibility to specify that
the temporal order of events should be considered in terms
of raising time and/or reception time of incoming events is
currently investigated in XChange.

3.2.2.1 Orderings.
1. Temporally ordered conjunctions of event queries

are used for detecting successive, in terms of time, occur-
rences of events. The keyword andthen is used to denote
such event queries. Only ordered event query specifications
are allowed for andthen, as the idea is to query occurrences
of events that are ordered on the time axis of the incoming
events.

A total specification (using single square brackets) ex-
presses that only instances of the specified event queries are
of interest and are to be contained in the answer. Instances
of other event queries that have possibly occurred between
the instances of the specified event queries are not of interest
and, thus, are not contained in the answer.

In contrast, a partial specification (using double square
brackets) expresses interest in all incoming events that have
been received between the instances of the specified event
queries. Thus all these instances will be contained in the
event query’s answer. Moreover, one can ask only for in-
stances of events having a given pattern that have occurred
between the instances of two specified event queries.

Example 7. The following XChange event query is used
to detect the notification of a flight cancellation and after-
wards, within two hours from its reception, the detection of a
notification informing that the accomodation is not granted
by the airline.

andthen [
xchange:event {{

xchange:sender {"http://airline.com"},
cancellation-notification {{
flight {{ number { var Number } }} }}

}},
xchange:event {{

xchange:sender {"http://airline.com"},
important {"Accomodation is not granted!"}

}}
] during 2 hour

2. Overlappings of composite event queries are used for
detecting instances of composite event queries that overlap
on the time axis of the incoming events. Two event query
instances eq1 and eq2 overlap if the beginning time of eq1

is before the beginning time of eq2 and the ending time of
eq1 is before the ending time of eq2 on the time axis of the
incoming events, or viceversa.

Ordered and unordered specifications are possible for over-
lappings of composite event queries, i.e. one has the possi-
bility to express that the temporal order is of importance or
not. Only total specifications are allowed for overlappings
of composite event queries.

Example 8. Mrs. Smith would love to meet a friend of
her that lives in Marseilles. Thus, Mrs. Smith’s staying in
Marseilles needs to overlap with the free time of her friend.
An XChange event query that detects such a situation:

overlap [
andthen [[
xchange:event {{ arrival {{ city {"Marseilles"} }} }},
xchange:event {{

departure {{ city {"Marseilles"}, time {var T} }} }}
]],
andthen [[
xchange:event {{

xchange:sender {"organiser://softw/a-friend/"},
info {"I leave off work now!"} }},

optional xchange:event {{
xchange:sender {"organiser://softw/a-friend/"},
important {"Something interced, we’ll meet tommorow."} }}

]] before var T
]

3. Meets for composite event queries are used for detect-
ing event query instances whose components “meet” on the
time axis of the incoming events. Two event query instances
eq1 and eq2 meet if the ending time of eq1 is the same as the
beginning time of eq2, or viceversa. Like for overlappings
of composite event queries, ordered and unordered specifi-
cations are possible and only total specifications are allowed
for meets of composite event queries.

Example 9. An XChange event query that detects situa-
tions where Mrs. Smith’s delayed flight arrives in Lyon at
the time of departure of her train connection to Orange:

meets [
xchange:event {{ arrival {{ delayed-flight {{

from {"Munich"}, to {"Lyon"} }} }}
}},

xchange:event {{ train-departure {{
from {"Lyon"}, to {"Orange"} }}

}}
]

4. Overlappings or meets for composite event queries
are used for detecting event query instances whose com-
ponents overlap or meet on the time axis of the incoming
events. This XChange construct, introduced by keyword
overlap-or-meets, is a kind of mixture between the two
previously introduced language constructs, i.e. overlap and
meets.

5. Inclusions for event queries are used for detecting in-
stances of events that have occurred during the time interval
determined by the beginning time and the ending time of an
instance of a composite event query. The inclusion construct
for event queries is to be understood as the Allen’s during
relation for time intervals [2].

Example 10. The following XChange event query is used
to detect emergencies that occur during Mrs. Smith’s vaca-
tion.

include [
andthen [[
xchange:event {{
begin-vacation {{ arrival {{ country {"France"} }} }} }},

xchange:event {{
end-vacation {{ departure {{ time {var T} }} }} }}

]],
or {
xchange:event {{
xchange:sender {"organiser://institute/secretary/"},
info {"There is a problem in our project!"} }},

xchange:event {{
xchange:sender {"organiser://organiser/myBrother/"},
important {"Emergency in our familiy!"} }}

}
]

One issue that is currently investigated in the XChange
project is the specification of different time granularities that
are to be used instead of time points for deciding whether
event query instances have been received in a particular tem-
poral order or not. For example, using the time granularity
week, one can ask whether or not instances of event queries
of interest meet. In this case, two event query instances meet
if there is no more than a week between the ending time of
the first instance and the beginning time of the second one.

3.2.2.2 Event Exclusions.
Only positive event query specifications (i.e. expressing

event queries whose instances are to be monitored) are al-
lowed in the specifications of XChange composite event que-
ries. Thus, using the above presented constructs for compos-
ite event queries, one cannot specify that one is interested

in occurrences of composite event query instances, but only
if other event query instances have not occurred in a given
time interval. Such kinds of composite event queries can
be specified in XChange by means of the event exclusion

constructs, i.e. CompositeEventQuery without EventQuery

FiniteTimeSpec and without EventQuery FiniteTimeSpec.
Example 11. The following XChange event query detects

if the notification of an online reservation made on 10th of
April 2005 is not received within ten days.

without xchange:event {{
online-reservation-notification {{ }}

}} within [2005-04-10..2005-04-20]

3.2.2.3 Multiple Selections and Exclusions.
Multiple selections and exclusions for event queries,

denoted m of {EQ1, EQ2, ..., EQn} FiniteTimeSpec, with
1 ≤ m ≤ n, are used for detecting instances of m of the
specified event queries and the non-occurrence of instances
of the other n−m event queries, within the given finite time
interval. The multiple selection and exclusions construct has
other two variants, atleast m of {EQ1, EQ2, ..., EQn} Fi-

niteTimeSpec and atmost m of {EQ1, EQ2, ..., EQn} Fi-

niteTimeSpec. Multiple selection and exclusion specifica-
tions for event queries must always be accompanied by spec-
ifications of a finite time interval in which instances of the
specified event queries are to be monitored. Note that if
m = 1, the construct is equivalent to an exclusive disjunc-
tion for event queries.

Example 12. The following XChange event query detects
notifications either of a flight cancellation or of an in-time
departure for a flight:

1 of {
xchange:event {{

xchange:sender {"http://airline.com/"},
cancellation-notification {{

flight {{
number {"AI2021"}, date {"2005-05-15"} }}

}},
xchange:event {{
xchange:sender {"http://airline.com/"},
notification {{

flight {{
number {"AI2021"}, date {"2005-05-15"},
info {"There are no delays or other problems!"}
}} }}

}}
} before "17:00"

3.2.2.4 Branching.
1. An if-then-else composite event query is provided by

XChange for querying different instances depending whether
an instance of a specified event query (the one specified in
the if-part) has occurred or not.

Example 13. The following XChange event query specifies
that after receiving a notification from Mrs. Smith’s secre-
tary saying that a problem occurred, a request for a phone
conference should be queried.

if xchange:event {{
xchange:sender {"organiser://institute/secretary"},
important {"There is a problem in our project!"}

}}
then xchange:event {{

xchange:sender {"organiser://institute/secretary"},
request {{ phone-conference {{ at {var Time} }} }}

}}

2. The case construct for event queries is a generalisation
of the if-then-else construct for event queries. An else-
part (default-like) can be specified for the case construct,

where an event query is given that is to be posed if the
event queries of the case-part could not be answered. In
this situation, a finite time interval needs to be specified for
the event queries in the case-part. This is due to the fact
that the non-occurrence of instances of the specified event
queries can be evaluated only over a finite time interval.

3.2.2.5 Occurrences.
1. Quantifications for event queries specify that event

query instances should occur at least, at most, or exactly
a given number of times in a specified time interval. The
following quantification specifications for event queries can
be used in XChange: n times EventQuery FiniteTimeSpec,
atmost n times EventQuery FiniteTimeSpec, and atleast

n times EventQuery TimeSpec.
Example 14. Mrs. Smith might want to react to situa-

tions like the reception of at least three messages from her
secretary during one hour. Such a situation can be detected
using the XChange event query:

atleast 3 times xchange:event {{
secretary-message {{ important {{ }} }}

}} during 1 hour

2. Ranks are used to detect the instance of a specified
event query that has a given rank in the incoming flow
of events. Such event queries are denoted in XChange as
EventQuery withrank n and last EventQuery FiniteTime-

Spec (the answer to such a composite event query is the last
instance of EventQuery that occurs within the given finite
time interval).

Example 15. As the airline might send several delay noti-
fications for Mrs. Smith’s flight, she is interested in the last
notification received before nine o’clock in the evening:

last xchange:event {{
xchange:sender {"http://airline.com"},
delay-notification {{

flight {{ number {"AI2021"},
espected-arrival-time { var T }, date {"2005-05-15"} }}

}}
}} before "21:00"

3. Repetitions are used for detecting e.g. every second,
forth, sixed, and so on, instances of a specified event query
that occur in a given finite time interval. Such an event
query is denoted as every n EventQuery FiniteTimeSpec.

Example 16. Mrs. Smith wants to quit slowly smoking
so she answers only to every second call from her colleague
suggesting a smoking break:

every 2 xchange:event {{
xchange:sender {organiser://institute/myColleague/},
break-for-a-smoke {{

info {"Join me for a cigarette!"} }}
}} within workday

Note that workday denotes a temporal type defined using
the CaTTS system [6].

3.3 Processing of Event Queries in XChange
XChange assumes no central processing of event queries

as such an approach is not suitable on the Web. Instead,
event queries are processed locally at each XChange-aware
Web site. Each such Web site has its own local event man-
ager for processing incoming events and evaluating event
queries against the incoming event stream (volatile data),
and for releasing event query instances after a finite time
(cf. Section 2.6).

As explained in previous sections, XChange atomic event
queries are patterns for incoming event instances that are of
interest for a Web site. The event manager of an XChange-
aware Web site tries to match each incoming event received
with the currently posed atomic event queries (which them-
selves may be part of composite event queries). The match-
ing of an atomic event query with an incoming event is
based on the simulation unification [14], a novel unification
method developed for matching query terms (i.e. standard
queries) with data or construct terms (i.e. persistent data)
in Xcerpt. The volatile nature of events does not preclude
the usage of the same method for simulating event queries
into incomig events. For determining answers to compos-
ite event queries, matching component atomic event queries
with incoming events is not sufficient, as the relationships
between these events is not captured.

3.4 Event Queries’ Answers
An answer to an XChange event query is an XML docu-

ment. An answer to an atomic event query (i.e. an atomic
event instance) is an XML document containing the infor-
mation of the event message that matched with the specified
event query. An answer to a composite event query (i.e. a
composite event instance) is an XML document containing
answers to the component event queries and the temporal
relations between these answers. For example, an answer
to a composite event query andthen [EQ1, EQ2] is an XML
document with root labelled event-andthen with two or-
dered children, eq1 and eq2 – instances of EQ1 and EQ2,
respectively. A point which, to the knowledge of the au-
thors, is novel is that (atomic and composite) events have
a structure and are represented as XML documents (that
might have a complex structure).

Example 17. An answer to the XChange event query of
Example 7. is:

<xchange:event-andthen ordered="true">
<xchange:event>

<xchange:sender>http://airline.com</xchange:sender>
<xchange:recipient>

organiser://travelorganiser/Smith
</xchange:recipient>
<xchange:raising-time>

2005-05-15T16:05:03
</xchange:raising-time>
<xchange:reception-time>

2005-05-15T16:10:00
</xchange:reception-time>
<cancellation-notification>

<flight>
<number>AI2021</number><date>2005-05-15</date>
<from>Lyon</from><to>Munich</to>

</flight>
</cancellation-notification>

</xchange:event>
<xchange:event>

<xchange:sender>http://airline.com</xchange:sender>
<xchange:recipient>

organiser://travelorganiser/Smith
</xchange:recipient>
<xchange:raising-time>

2005-05-15T17:01:12
</xchange:raising-time>
<xchange:reception-time>

2005-05-15T17:07:20
</xchange:reception-time>
<important>Accomodation is not granted!</important>

</xchange:event>
</xchange:event-andthen>

Answers to XChange composite event queries can be “put
in an envelope” and sent as event messages to one or more
Web sites. Just as it is easy to exchange and query infor-
mation about atomic events, it is also easy to exchange and
query information about composite events. Powerful pattern

matching based on simulation unification can be applied to
event messages.

4. QUERYING WEB RESOURCES

4.1 Relationship Between Reactive and Query
Languages

A working hypothesis of the XChange project is that a
reactive language for the Web should build upon, or more
precisely, embed, a Web query language. There are two rea-
sons for this. First, specifications of reactive behaviour often
refer to actual Web contents - calling for querying Web con-
tents (examples are given in Section 5). Second, reactive
behaviour necessarily refers to (more or less recent) events
- calling for querying events. For reasons of uniformity, it
is highly desirable both for users and for system develop-
ers that the languages used for querying Web contents and
querying events are as close as possible to each other. Note,
however, that querying events calls for constructs not needed
for querying Web contents.

4.2 The Web Query Language Xcerpt
The Web query language Xcerpt is embedded in XChange.

Xcerpt is a pattern and rule-based language for querying
Web contents (i.e. persistent data). Xcerpt uses query pat-
terns for querying Web contents, and construction patterns
for constructing new data items. Terms are used for denot-
ing query patterns (i.e. query terms), construction patterns
(i.e. construct terms) and also for denoting data items of
Web contents (i.e. data terms). Common to all terms is that
they represent tree or graph-like structures. The children of
a node may either be ordered, i.e. the order of occurrence is
relevant, or unordered, i.e. the order of occurrence is irrele-
vant. In the term syntax (used in this article as it is more
readable as the Xcerpt’s XML syntax), an ordered term spec-
ification is denoted by square brackets [], an unordered term
specification by curly braces {}.

4.2.1 Data Terms
Data Terms represent data items (XML documents) that

are found on the Web. In an Xcerpt program, the Web con-
tents to be queried are specified using the keyword resource

followed by the Web address(es) where the data is to be
found.

Example 18. The following two Xcerpt data terms repre-
sent a flight timetable and a hotel reservation offer.

At http://airline.com: At http://hotels.net:
flights {

changed-on {"2004-05-01"},
currency {"EUR"},
flight {
number {"AI2011"},
from {"Munich"},
to {"Lyon"},
date {"2005-05-01"},
departure-time {"10:00"},
arrival-time {"11:25"},
price {"125"}
},
flight {
number {"AI2021"},
from {"Lyon"},
to {"Munich"},
date {"2005-05-15"},
departure-time {"17:20"},
arrival-time {"18:45"},
price {"125"}
}...

}

accomodation {
currency {"EUR"},
hotels {
city {"Orange"},
country {"France"},
hotel {

name {"Ambassade"},
category {"2 stars"},
price-per-room {"62"},
phone {"+3388219213"},
no-pets {}
},

hotel {
name {"Winston"},
category {"3 stars"},
price-per-room {"60"},
phone {"+3388156135"}
},

hotel {
name {"Royale"},
category {"4 stars"},
price-per-room {"120"},
phone {"+3388123414"}
},...

},...
}

4.2.2 Query Terms
Query Terms are (possibly incomplete) patterns that are

matched against Web contents represented by data terms.
Partial (incomplete) or total (complete) query patterns can
be specified. A query term t using a partial specification
(denoted by double square brackets [[]] or curly braces {{}})
for its subterms matches with all such terms that (1) contain
matching subterms for all subterms of t and that (2) might
contain further subterms without corresponding subterms
in t. In contrast, a query term t using a total specification
(denoted by single square brackets [] or curly braces {})
does not match with terms that contain additional subterms
without corresponding subterms in t. Query terms contain
variables for selecting data items (i.e. subterms of data terms
are to be bound to the variables). Variable restrictions can
be specified using the ; construct (read as), which restricts
the bindings of the variables to those terms that are matched
by the restriction pattern.

Example 19. The following Xcerpt query term is used to
query the data at http://airline.com about flights from
Munich to Lyon.

in { resource { "http://airline.com" },
flights {{ var F ; flight {{

from {"Munich"}, to {"Lyon"} }}
}}

}

Xcerpt query terms may be augmented by additional con-
structs like subterm negation (keyword without), optional
subterm specification (keyword optional), and descendant
(keyword desc) [15].

Query terms are “matched” with data or construct terms
by a non-standard unification method called simulation uni-
fication [15] dealing with partial and unordered query spec-
ifications.

4.2.3 Construct Terms
Construct Terms serve to reassemble variables (the bin-

dings of which are specified in query terms) so as to con-
struct new data terms. They are similar to data terms, but
augmented by variables (acting as place holders for data se-
lected in a query) and the grouping construct all (which
serves to collect all instances that result from different vari-
able bindings). Occurrences of all may be accompanied by
an optional sorting specification.

4.2.4 Construct-Query Rules
Construct-Query Rules (short rules) relate a construct

term (introduced by the keyword CONSTRUCT) to a query
(introduced by the keyword FROM) consisting of AND and/or
OR connected query terms. Queries or parts of a query may
be further restricted by arithmetic constraints in a so-called
condition box (introduced by the keyword where).

Example 20. The following Xcerpt rule gathers informa-
tions about the hotels in Orange with a price limit.

CONSTRUCT
answer [all var H ordered by var P ascending]

FROM
in { resource { "http://hotels.net" },

accomodation {{
hotels {{ city {"Orange"},

var H ; hotel {{
price-per-room { var P } }}

}}
}}

} where var P < 100
END

An Xcerpt program consists of one or more rules. Xcerpt
rules may be chained to form complex query programs, i.e.
rules may query the results of other rules. More on Xcerpt
can be found in [15] and at http://xcerpt.org.

4.3 XChange and Xcerpt Syntaxes
The languages XChange and Xcerpt have similar syn-

taxes, but with the following semantical differences:
1. Square brackets in XChange composite event query

specifications express temporal order between incoming in-
stances of event queries, while square brackets in Xcerpt
query term specifications express document order between
specified subterms.

2. Partial specifications in XChange composite event
query specifications express that the answer might include
additional event query instances to those specified in the
event query. The same event query posed at different points
in time might have different answers, depending on the in-
coming events (that are additional to the ones specified).
In Xcerpt query term specifications, partiality means that
the answers are documents with possible additional subele-
ments to those specified in the query term. These additional
subterms exist in the queried documents.

3. The without construct in XChange composite event
query specifications expresses that in a given time inter-
val (possibly determined by occurrences of event query in-
stances) instances of a specified event query should not oc-
cur. In Xcerpt query term specifications without expresses
subterm negation for documents that are queried [15].

4. Temporal constructs are offered by XChange for
posing composite event queries against incoming events (cf.
Section 3). For Xcerpt queries (i.e. queries to Web resources)
such temporal constructs are not required.

The authors believe that such syntax similarities between
XChange and Xcerpt are a convenient means for an easy
programming of reactive applications on the Web.

5. TRANSACTIONS AND REACTIVE
RULES IN XCHANGE

5.1 Complex Updates
An elementary update is a change (i.e. insert, delete, re-

place) to a persistent data item (e.g. XML or RDF data).
Complex updates expressing ordered or unordered conjunc-
tions, or disjunctions of (elementary or complex) updates are
also offered by XChange. Such updates are often required
by real applications. E.g. when booking a trip on the Web,
one might wish to book an early flight and the correspond-
ing hotel reservation, or a late flight and a shorter hotel
reservation. Since it is sometimes necessary to execute such
complex updates in an all-or-nothing manner (e.g. when
booking a trip, a hotel reservation without a flight reserva-
tion is useless), XChange has a concept of transactions.

Example 21. The following XChange complex update
specifies that a flight reservation and a hotel reservation are
to be executed in the specified order.

and [
in { resource {"http://airline.com/reservations"},
flights {{

insert reservation { var Flight,
var Name;name {"Christina Smith"} }

}}
},

in { resource {"http://hotels.net/reservations"},
reservations {{

insert reservation { var Hotel, var Name,
from {"2005-05-10"}, until {"2005-05-15"} }

}}
}

]

5.2 Transactions
An XChange transaction specification is a group of update

specifications and/or explicit event specifications (express-
ing events that are constructed, raised, and sent as event
messages) that are to be executed in an all-or-nothing man-
ner. XChange transactions obey the ACID properties [16]
(Atomicity, Consistency, Isolation, and Durability). Atom-
icity and isolation are considered in XChange, the issues of
consistency and durability for transactions are currently not
investigated in the project. XChange will build on standard
solutions from database systems.

An XChange update specification is a (possibly incom-
plete) pattern for the data to be updated, augmented with
the desired update operations. The notion of update terms
is used to denote patterns which contain update operations
for the data to be modified. An update term may contain
different types of update operations.

Intensional updates are a description of updates in terms
of (standard or event) queries. They can be specified in
XChange, as the language inherits the querying capabilities
of the language Xcerpt. This eases considerably the spec-
ification of updates, e.g. for specifying modification of the
discounts for all flights offered by a specific airline.

5.3 (Re)active Rules
An XChange program is located at one Web site and con-

sists of one or more (re)active rules of the form Event query
– Standard query – Transaction/Raised events. Every oc-
currence of an event is queried using the event query (in-
troduced by keyword ON). If an answer is found and the
standard query (introduced by keyword FROM) also has an
answer, then the action is executed (i.e. a transaction is ex-
ecuted – keyword TRANSACTION, or explicit events are raised
and sent to one or more Web sites – keyword RAISE). There
are two kinds of XChange rules: event-raising rules (spec-
ifying events to be raised) and transaction rules (specify-
ing transactions to be executed). Note that the variable
substitutions found in the ON-part can be used in the FROM

and RAISE- or TRANSACTION-part of an XChange rule. Vari-
able substitutions found in the FROM-part can be used in the
RAISE- or TRANSACTION-part of an XChange rule.

Example 22. The site http://airline.com has been told
to notify Mrs. Smith’s travel organiser of delays or cancel-
lations of flights she travels with.

RAISE
xchange:event {

xchange:recipient {"organiser://travelorganiser/Smith"},
cancellation-notification { var F }

}
ON
xchange:event {{
xchange:sender {"http://airline.com"},
cancellation {{

var F ;flight {{ number {"AI2021"},
date {"2005-05-17"} }} }}

}}
END

Example 23. The travel organiser of Mrs. Smith uses the
following rule: if the return flight of Mrs. Smith is cancelled
then look for and book another suitable flight. The rule is
specified in XChange as:

TRANSACTION
in { resource {"http://airline.com/reservations"},

reservations {{
insert reservation { var F, name {"Christina Smith"} }
}}

}
ON
xchange:event {{

xchange:sender {"http://airline.com"},
cancellation-notification {{
flight {{ number {"AI2021"}, var D ;date {"2005-05-17"} }}
}}

}}
FROM
in { resource {"http://airline.com"},

flights {{
var F ;flight {{

from {"Lyon"}, to {"Munich"},
var D, departure-time { var T }

}}
}}

} where var T after "17:30"
END

Example 24. If no other suitable return flight is found and
the airline does not provide an accomodation, then book for
Mrs. Smith a cheap hotel and inform her secretary about
the changes in her schedule:

TRANSACTION
and [

in { resource {"http://hotels.net/reservations"},
reservations {{

insert reservation { var H, name {"Christina Smith"},
from { var S }, until { var M ;"2005-05-16"} }

}}
},

in { resource {"diary://diary/secretary"},
diary {{ var M,

news {{ insert my-hotel { phone { var Tel },
remark {"My flight has been cancelled!},
request{"Please cancel my appointments for" + var M} }

}} }}
}

]
ON
and {

xchange:event {{ xchange:sender {"http://airline.com"},
cancellation-notification {{

flight {{ number {"AI2021"},
date { var S ;"2005-05-15"} }}

}}
}},
without xchange:event {{

xchange:sender {"http://airline.com"},
accomodation-granted {{ hotel {{ }} }}

}} before "18:00"
}

FROM
in { resource {"http://hotels.net"},

accomodation {{
hotels {{ city {"Lyon"},

var H ;hotel {{ price-per-room { var P },
phone { var Tel } }}

}} }}
}

END

As the paper emphasises the XChange capabilities to de-
tect composite events and the space is limited, the semantics
of rules’ execution is not discussed here.

6. RELATED WORK
Allen’s Temporal Relations. As explained in previous

sections, a composite event query instance has a beginning
time and an ending time (time points that can be seen as
the starting and the ending point of a time interval). Thus,
determining the temporal order of two (or more) compos-
ite event query instances can be reduced to determining the
relationship between the time intervals formed from the be-
ginning and ending time of the these instances. The possible
relationships between time intervals have been described and
represented in a hierarchical manner by James F. Allen [2].
The thirteen possible relationships between time intervals

have provided a basis for the development of the XChange
constructs for detecting composite events.

Active Databases. A number of active database pro-
totypes have been built providing sophisticated event alge-
bras (e.g. SNOOP [8], REACH [7], CHIMERA [10] and
ODEGJS92). Work in [21] provides a meta-model for clas-
sifying a number of properties of complex event formalisms
for active rules. These works are oriented towards a cen-
tralised system, as opposed to a distributed one like the
Web and there is not much work that considers events in
a distributed environment, with [20] being a notable excep-
tion. Two recent works which address complex events are
[4], which does so in the context of updates for XML and [1],
which outlines a situation monitoring system and expands
upon much of the work in the active database literature.

Other related work in the XML context is found in [11].
[11] discusses monitoring and subscription in Xyleme, an
XML warehouse supporting subscription to Web documents.
A set of alerters monitor simple changes to Web documents.
A monitoring query processor then performs more complex
event detection and sends notifications of events to a trig-
ger engine which performs the necessary actions, including
creating new versions of XML documents. The focus of this
reactive functionality is highly tuned to this specific appli-
cation.

Two key features that distinguish our work from those
above are i) events are represented as XML documents and
consequently may have a nested structure to which pattern
matching can be applied within event queries, ii) there is a
clear separation between events as volatile data versus the
persistent data which can be queried by the user. This has
implications for the kinds of rules that can be defined.

7. CONCLUSION AND FUTURE WORK
This paper has introduced constructs for the composition

of events on the Web. Such constructs are needed when re-
alising reactivity on the Web, an essential issue for both
Web services and Semantic Web systems. The work re-
ported about here is part of the XChange project, which
started one year ago. XChange builds upon the Web query
language Xcerpt [15] – cf. Section 4. A first version of
Xcerpt is fully designed and a reference implementation (cf.
http://xcerpt.org) is available. Currently, the design of
an extended core language for XChange is completed and a
first (reference) implementation has begun.

A promising perspective for future work consists in ex-
tending the language XChange with security functionalities
(especially authentication and authorisation). The protocols
of a Grid architecture (such as Globus [9]) would provide
with convenient means for such an extension. Vice versa,
XChange could be seen as a (core of a) high-level reactive
language for advanced services in a Grid architecture.

8. REFERENCES
[1] A. Adi and O. Etzion. Amit – the situation manager.

In Very Large Data Bases Journal, volume 13, pages
177–203, 2004.

[2] J. F. Allen. Maintaining Knowledge about Temporal
Intervals. In Communications of the ACM, volume 26,
pages 832–843, 1983.

[3] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt
and visXcerpt: From Pattern-Based to Visual

Querying of XML and Semistructured Data. In Int.
Conf. on Very Large Databases (VLDB), 2003.

[4] M. Bernauer, G. Kappel, and G. Kramler. Composite
Events for XML. In 13th Int. Conf. on World Wide
Web. ACM, 2004.

[5] F. Bry and P.-L. Pătrânjan. Reactivity on the Web:
Paradigms and Applications of the Language
XChange. In 20th Annual ACM Symposium on
Applied Computing (SAC’2005). ACM Press, 2005.

[6] F. Bry and S. Spranger. Towards a Multi-Calendar
Temporal Type System for (Semantic) Web Query
Languages. In Workshop on Principles and Practice of
Semantic Web Reasoning. Springer, 2004.

[7] A. Buchmann, A. Deutsch, J. Zimmermann, and
M. Higa. The REACH Active OODBMS. In M. Carey
and D. Schneider, editors, ACM SIGMOD Int.
Conference on Management of Data. ACM Press,
1995.

[8] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
and Knowledge Engineering, 14(1), 1994.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid. Enabling Scalable Virtual Organizations.
In Int. Journal of Supercomputer Applications, 2001.

[10] R. Meo, G. Psaila, and S. Ceri. Composite Events in
Chimera. In P. Apers, M. Bouzeghoub, and
G. Gardarin, editors, 5th Int. Conference on
Extending Database Technology. Springer, 1996.

[11] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML Data on the Web. In ACM SIGMOD
Int. Conference on Management of Data. ACM Press,
2001.

[12] G. Papamarkos, A. Poulovassilis, and P. Wood.
Event-Condition-Action Rule Languages for the
Semantic Web. In Workshop on Semantic Web and
Databases, 2003.

[13] N. W. Paton. Active Rules in Database Systems.
Springer, 1999.

[14] S. Schaffert. Xcerpt: A Rule-Based Query and
Transformation Language for the Web. Dissertation,
2004.

[15] S. Schaffert and F. Bry. Querying the Web
Reconsidered: A Practical Introduction to Xcerpt. In
Int. Conf. Extreme Markup Languages, 2004.

[16] J. Ullman. Principles of Database and Knowledge-base
Systems, volume 1. Computer Science Press, 1988.

[17] W3 Consortium. XQuery: A Query Language for
XML, 2001.

[18] W3 Consortium. SOAP Version 1.2 Part 1:
Messaging Framework, 2003.

[19] J. Widom and S. Ceri. Active Database Systems:
Triggers and Rules for Advanced Database Processing.
Morgan Kaufmann, 1996.

[20] S. Yang and S. Chakravarthy. Formal Semantics of
Composite Events for Distributed Environments. In
15th Int. Conference on Data Engineering, Australia,
1999. IEEE Computer Society.

[21] D. Zimmer and R. Unland. On the Semantics of
Complex Events in Active Database Management
Systems. In 15th Int. Conference on Data
Engineering, Australia, 1999. IEEE Computer Society.

