
The Language XChange: A Declarative Approach
to Reactivity on the Web

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften

an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universität München

von

Paula-Lavinia Pătrânjan

28. Juli 2005

Erstgutachter: Prof. Dr. François Bry (Universität München)
Zweitgutachter: Prof. Dr. Sara Comai (Politecnico di Milano)
Tag der mündlichen Prüfung: 23. September 2005

Abstract

The research topic investigated by this thesis is reactivity on the Web. Reactivity on the
Web is an emerging research issue covering: updating data on the Web, exchanging informa-
tion about events (such as executed updates) between Web sites, and reacting to combinations
of such events. Following a declarative approach to reactivity on the Web, a novel reactive lan-
guage called XChange is proposed. Novelties of the language are represented by the proposed
data metaphor intended to ease the language understanding and the supported reactive features
tailored to the characteristics of the Web. Realising this pressuposed refining, extending, and
adapting to a new medium some of the concepts on which active database systems are built
upon.

Reactivity is specified in XChange by means of reactive rules (or event-condition-action
rules) having the following components: the event part is a query against events that occurred
on the Web, the condition part is a query against Web resources (expressed in the Web query
language Xcerpt), and the action part is a transaction specification (specifying updates to be
executed and events to be raised in an all-or-nothing manner). Novel in XChange is its ability
to detect composite events on the Web, i.e. possibly time related combinations of events that
have occurred at (same or different) Web sites.

XChange introduces a novel view over the Web data by stressing a clear separation between
persistent data (data of Web resources, such as XML or HTML documents) and volatile data
(event data communicated on the Web between XChange programs). Based on the differences
between these kinds of data, the data metaphor is that of written text vs. speech. XChange’s
language design enforces this clear separation and entails new characteristics of event process-
ing on the Web.

After motivating the need for a solution to reactivity on the Web, this thesis introduces the
design principles and syntax of the language XChange accompanied by use cases for demon-
strating the practical applicability of its constructs. Important contributions of the thesis are
the specification of the language semantics and the description of an algortihm for evaluating
XChange programs.

Paula-Lavinia Pătrânjan III

Zusammenfassung

Diese Dissertation untersucht das Forschungsthema Reaktivität im Web, ein neu entstehen-
des Forschungsgebiet, das Änderungen von Daten im Web, Austausch von Ereignisdaten zwis-
chen Websites, sowie Reaktion auf (atomare und zusammengesetzte) Ereignissen einbezieht.
Einem deklarativen Ansatz folgend, schlägt diese Dissertation die neuartige reaktive Sprache
XChange vor. Neuerungen der Sprache sind eine neue Datenmetapher, die das Verständnis von
XChange erleichtern soll, und die Features der Sprache, die auf das Web zugeschnitten sind.
Konzepte der aktiven Datenbanken wurden verfeinert, erweitert und angepasst um dem neuen
Medium (das Web) gerecht zu werden.

Reaktivität ist in XChange durch reaktive Regeln, so genannte Ereignis-Bedingung-Aktion
Regeln, spezifiziert: Der Ereignisteil ist eine Anfrage bzgl. Ereignissen die im Web auftreten.
Eine Neuerung in XChange ist die Fähigkeit zusammengesetzte Ereignisse (eventuell zeitbezo-
gene Kombinationen von Ereignissen, die an den gleichen oder verschiedenen Websites aufge-
treten sind) im Web zu erkennen. Der Bedingungsteil ist eine Anfrage an Web-Dokumente (die
in der Web-Anfragesprache Xcerpt spezifiziert ist). Der Aktionsteil spezifiziert Transaktionen
(Änderungen die durchgefürt werden sollen und Ereignisse die gesendet werden sollen).

Durch die hervorgehobene Trennung zwischen persistenten Daten (Web-Dokumente wie
zum Beispiel XML oder HTML Dokumente) und flüchtigen Daten (Ereignisdaten die im Web
zwischen XChange Programmen ausgetauscht werden), führt XChange eine neuartige Sicht
auf die Daten im Web ein. Eine Metapher für die strenge Unterscheidung zwischen persisten-
ten und flüchtigen Daten findet sich in der natürlichen Sprache wieder: die Unterscheidung
zwischen geschriebenem und gesprochenem Wort. Das Sprachdesign erzwingt diese klare
Trennung und verursacht neue Charakteristika der Ereignisverarbeitung im Web.

Diese Dissertation führt nach der Begründung der Erfordernisse für Reaktivität im Web
die Designprinzipien und die Syntax der Sprache XChange ein. Es werden Anwendungsfälle,
die die Benutzung und Relevanz der Sprachkonstrukte zeigen, vorgestellt. Wichtige Beiträge
dieser Dissertation sind die Spezifikation der Semantik von XChange und die Beschreibung
der zur Auswertung von XChange Programmen nötigen Algorithmen.

IV Paula-Lavinia Pătrânjan

Acknowledgements

I have been fortunate enough to have had the support of many people during the time spent at the Institute
for Informatics, University of Munich. Many of them have contributed directly to the reactive language
XChange presented in this thesis, and everyone has helped me to get where I am today.

It is a pleasure to express my gratitude to my supervisor, Prof. Dr. François Bry (Universität München),
who has guided my path towards this thesis; owing to his advice and warnings I haven’t followed dead-end
paths and managed to complete this thesis in less than three years. I also thank him for the countless hours
we have spent discussing research issues related to the work presented in this thesis.

I would like to thank Prof. Dr. Sara Comai (Politecnico di Milano), the second reviewer of this thesis,
for her time and dedication to reading my thesis, her comments and suggestions for improvements. I am
also grateful for her collaboration in organising the Workshop ’Reactivity on the Web’, to be held at the
International Conference on Extending Database Technology (EDBT 2006) in Munich.

I am obliged to Prof. Dr. Helmut Schwichtenberg (Universität München) and the other professors of the
PhD programme “Logic in Computer Science” (Graduiertenkolleg Logik in der Informatik) I am part of
for giving me the possibility to investigate interesting research issues and to work in the PhD programme’s
team.

During the last (almost) three years I have enjoyed many interesting discussions and the excellent work-
ing environment at the Research and Teaching Unit ’Programming and Modelling Languages’, Institute for
Informatics, University of Munich. I would like to thank our technical and administrative staff for provid-
ing me with help during this thesis. I would also like to stress the contributions made by some of the fellow
researchers and students.

Dr. Norbert Eisinger, senior researcher in our group, has supported me during the time spent in Munich.
I thank him for many helpful discussions.

Dr. Sebastian Schaffert, now a researcher at Salzburg Research, Austria, has developed the (Semantic)
Web query language Xcerpt that is integrated into XChange. Without his work and collaboration, the
language XChange wouldn’t be that mature today. I also thank him for his help in typesetting this thesis.

Michael Eckert, now a fellow researcher, has written his master’s thesis under the supervision of
Prof. Dr. François Bry and myself. I thank him for fruitful discussions that helped improving this the-
sis and his collaboration on refining and implementing the XChange event query language. I also thank
him for the careful reading of the most important chapters of this thesis and for its constructive criticism.

The time spent on writing this thesis would not have been so valuable without knowing Sacha Berger,
who has worked with me on the visual counterpart of XChange. I thank him for his help and practical
advice.

I have been fortunate to have Tim Furche as fellow researcher. With his broad spectrum and many inter-
esting research ideas, he has provided me with many helpful discussions. I thank him for his collaboration
on writing a scientific article on XChange.

Inna Romanenko, a graduate student working on her master’s thesis under the supervision of Prof. Dr.
François Bry and myself, investigates the use of XChange rules for business process modelling. I thank
her for the good work on the EU-Rent case study.

Oliver Friedmann, student assistant in our group, has worked with me on the XChange prototype
implementation. I thank him for integrating Xcerpt and XChange implementations and for his patience to
restructure and comment the whole source code.

I would also like to acknowledge the support of Sebastian Kraus and Bernhard Lorenz. Both of them
have shared an office with me, and I thank them for tolerating my stressed out phases.

Being member of the Network of Excellence “Reasoning on the Web with Rules and Semantics” (REW-
ERSE) I have had the chance to work with researchers from different universities. I thank Prof. Dr. José
Júlio Alferes (Universidade Nova de Lisboa), Prof. Dr. James Bailey (University of Melbourne), and
Prof. Dr. Wolfgang May (Universität Göttingen) for their collaboration on project deliverables, scientific
articles, and on organising the Workshop ’Reactivity on the Web’.

Paula-Lavinia Pătrânjan V

During my travels for attending conferences and workshops I have met a number of great people who
have been cordially and helpful. I would like to especially thank Andreas Doms (Technische Universität
Dresden), Michael Kinateder (Universität Stuttgart), Prof. Dr. Christoph Koch (Universität des Saarlan-
des), Steffen Mazanek (Universität der Bundeswehr München), Thorsten Staake (Universität St.Gallen),
Ioan Toma (Digital Enterprise Research Institute Innsbruck), and Dr. Laurenţiu Vasiliu (Digital Enterprise
Research Institute Galway). They have given me advice and encouraged me to go for what I want.

My parents, Giorgeta and Mircea Pătrânjan, deserve special thanks as they have supported and en-
couraged me during the last 27 years. They have always shown me the right way in life, even if this has
implied to leave Romania for doing my PhD. I also thank my brother, Cosmin, and all my friends for being
always there when I needed someone to talk to.

Last but not least, I would like to thank Hans J. Kroner for sustaining me patiently during the last two
and a half years and for tolerating my workaholic lifestyle during the last six months. He has given me the
energy I needed for completing this thesis; I couldn’t have made it without him.

I have been very lucky to be founded for the last three years by the German Foundation for Research
(Deutsche Forschungsgemeinschaft, DFG, http://www.dfg.de). The received grant has given me the
possibility to investigate interesting research issues within the PhD programme “Logic in Computer Sci-
ence” (Graduiertenkolleg Logik in der Informatik, http://www.math.lmu.de/˜gkli/).

Also, as member of the 6th Framework Programme project “Reasoning on the Web with Rules and
Semantics” (REWERSE, http://rewerse.net), project number 506779, I have received additional fi-
nancial support from the European Commission and the Swiss Federal Office for Education and Science.

Paula-Lavinia Pătrânjan
Munich, 28th July 2005

VI Paula-Lavinia Pătrânjan

http://www.dfg.de
http://www.math.lmu.de/~gkli/
http://rewerse.net

CONTENTS

I Introduction 1

1 Motivation and Outline 3
1.1 Context . 3
1.2 Motivating Application Scenarios . 4

1.2.1 Travel Organisation . 5
1.3 Concepts . 7

1.3.1 Events . 8
1.3.2 Communication Strategies: Push and Pull . 8
1.3.3 Volatile vs. Persistent Data . 8
1.3.4 Event Queries . 9
1.3.5 Raising Events . 10
1.3.6 Updates and Transactions . 10
1.3.7 Reactive Rules . 11

1.4 Outline . 11

2 Preliminaries 13
2.1 World Wide Web . 13
2.2 Data on the Web . 14

2.2.1 Extensible Markup Language (XML) . 14
2.2.2 XML Ancestors . 19
2.2.3 XML Friends . 22

2.3 Communicating Data on the Web . 24
2.3.1 Peer-to-Peer Model . 24
2.3.2 Communication Protocol . 25
2.3.3 XML Exchange Units . 26

2.4 Querying Web Data . 27
2.4.1 Web Query Languages: An Overview . 27
2.4.2 The Web Query Language Xcerpt . 29

3 Related Work 41
3.1 Active Database Systems . 41

3.1.1 Rule Components . 42
3.1.2 Semantics of Rule Execution . 44

3.2 Update Languages . 45
3.2.1 Update Languages for the Web . 45
3.2.2 Special Purpose Tools for Ontology Evolution . 47

3.3 Reactive Languages . 48
3.3.1 Reactive Languages for the Web . 49
3.3.2 Reactive Languages for the Semantic Web . 53

VII

CONTENTS

II The Language XChange 55

4 Paradigms. Concepts. Syntax 57
4.1 Paradigms . 58

4.1.1 Event vs. Event Query . 58
4.1.2 Volatile vs. Persistent Data . 58
4.1.3 Rule-Based Language . 58
4.1.4 Pattern-Based Approach . 59
4.1.5 Transactional Reactivity . 59
4.1.6 Communication Paradigms . 59
4.1.7 Composite Events Defined through Event Queries 60
4.1.8 Processing of Events . 60
4.1.9 Relationship Between Reactive and Query Languages 61
4.1.10 Language Syntax . 61

4.2 Events . 62
4.2.1 Atomic Events . 62
4.2.2 Composite Events . 63
4.2.3 Events’ Occurrence Time . 63

4.3 Event Messages . 64
4.3.1 Event Messages’ Parameters . 65
4.3.2 Implicit Events’ Representation . 67

4.4 Event Queries . 68
4.4.1 Essential Traits . 68
4.4.2 Atomic Event Queries . 69
4.4.3 Composite Event Queries . 73
4.4.4 Legal Event Queries . 89
4.4.5 Answers to Event Queries . 91

4.5 Web Queries . 93
4.6 Update Patterns . 94

4.6.1 Update Terms . 95
4.6.2 Insertion Specification . 96
4.6.3 Deletion Specification . 100
4.6.4 Replacement Specification . 102
4.6.5 Special Case – Updating the Root . 105

4.7 Complex Updates as Transactions . 108
4.7.1 Elementary Updates . 108
4.7.2 Complex Updates . 109
4.7.3 Transactions . 112

4.8 Rules . 114
4.8.1 Event-Raising Rules . 114
4.8.2 Transaction Rules . 115
4.8.3 Deductive Rules . 118
4.8.4 Range Restriction . 119

5 Semantics 125
5.1 Declarative Semantics . 125

5.1.1 Semantics of Event Queries . 126
5.1.2 Semantics of Web Queries: Underlying Ideas . 136
5.1.3 Semantics of Updates . 138

5.2 Operational Semantics . 140
5.2.1 Evaluation of Event Queries . 141
5.2.2 Evaluation of Web Queries: Basic Ideas . 146
5.2.3 Execution of Updates . 147

VIII Paula-Lavinia Pătrânjan

CONTENTS

6 Use Cases 153
6.1 Travel Organisation . 153

6.1.1 Initial Planning Scenario . 154
6.1.2 Adapting to Changes Scenario . 160

6.2 Flavour of Further Use Cases . 164
6.2.1 E-Book Store – A Simple Semantic Web Scenario 164
6.2.2 EU-Rent – Business Rules for Reactivity on the Web 166

III Conclusion 169

7 Conclusion 171
7.1 Contributions . 171
7.2 Perspectives . 173

7.2.1 Transaction Management on the Web . 173
7.2.2 Generation of XChange Rules . 173
7.2.3 Efficiency Issues . 173
7.2.4 Type System for Semistructured Data . 174
7.2.5 Visual Rendering of XChange Programs . 174
7.2.6 Authentication, Authorisation, and Accounting 176
7.2.7 Integration with Location and Temporal Reasoning Languages 176

7.3 Concluding Remarks . 176

IV Appendix 177

A A Prototypical Runtime System 179
A.1 Overview. Source Code Structure . 179
A.2 XChange Parser . 181
A.3 XChange Data Structures . 181
A.4 XChange Event Handler . 183
A.5 XChange Condition Handler . 184
A.6 XChange Action Handler . 185
A.7 Building and Running XChange . 186

B Updates through Construction: Rewriting Rules 189

List of Examples 193

Index 196

Bibliography 198

About the Author 208

Paula-Lavinia Pătrânjan IX

CONTENTS

X Paula-Lavinia Pătrânjan

Part I

Introduction

1

CHAPTER

ONE

Motivation and Outline

1.1 Context

The work presented in this thesis has as context the World Wide Web (or simply, the Web) as it is today,

• a distributed system that builds upon the Internet, a network of different kinds of computer systems,
nodes (like personal computers with or without server abilities or powerful computers acting as
servers);

• a set of technologies implementing the model of interconnected pieces of information;

• a huge amount of data found on these computer systems, part of it available for reading or modifying
by other nodes, and data that is communicated between nodes (a node’s data may depend on the data
found at other nodes).

Web technologies have been developed with different goals and tailored to different application areas,
from security of data transmission to e-commerce. Thus, Web applications help already humans in resolv-
ing everyday life problems like managing appointments or booking flights and hotels. However, current
Web technologies do have limitations that preclude an easier, less time consuming, less human interaction-
based realisation of tasks. There are several research directions that are being or need to be investigated
in order to bridge the existing recognised gaps. Having the same goal of easing people’s life, the work of
the thesis focuses on a single research direction. Before describing this research work, some of the notions
used throughout this thesis are introduced here, as their comprehension provides a basis for understand-
ing the contributions of this thesis and their practicability. Note that some of the notions have a slightly
different meaning in the literature.

Notion of Web Resource. Web resource denotes data at a Web node that can be addressed through a URI
(Uniform Resource Identifier [145]) or in the future through a IRI (Internationalised Resource Identifier
[89]). This thesis assumes that the data found at a particular Web resource is in an XML-like format [159].
This is not to be understood as a restriction of the thesis’ approach, even if some Web resources’ data are
represented using the relational model.

• Many Web-based applications use XML as data storage and data exchange format, as

- XML has been recognised as a suitable format for data with no regular structure. Most data on
the Web do not necessarily have a schema to which to conform to. However, data having a fixed
structure can be also easily represented in XML.

- the XML format has been established as the data interchange format.

3

1.2. MOTIVATING APPLICATION SCENARIOS

• Future Web applications will surely be based on a combination of XML and ontology description
languages. The later are intended to be used by computer systems to understand the meaning of
data. The future Web – the Semantic Web – has already began to be “built” by developing ontology
description languages and systems working with them, but there is still much work to be done in this
respect.

• Ontology description languages do have XML serialisations and thus can be processed in the same
manner as XML data can. For example, for RDF [148] data many XML serialisations have been
proposed (such as RDF/XML [163]).

Notion of Web Site. Usually, a Web site is a set of interlinked Web pages (e.g. written in HTML [147])
that are available on the Web. Web sites offering services (such as an airline’s Web site with online booking
abilities) have underlying programs that implement these services and database(s) containing the needed
information (like flight timetables and reservation data). Database can be for example a Tamino [1] database
or one or more XML documents. The notion of Web site is used here to denote actually the reactive
program(s) (i.e. capable to detect and automatically react to happenings) that underly a Web site. Web sites
without reactive abilities are not of interest in this context and thus the discussion does not refer to them.

Notion of Evolution. Many resources on the Web are dynamic, i.e. they can change their content over
time. The need for changing (updating) data on the Web has several reasons: New information comes
in calling for insertion operation of new data. Information is out-of-date calling for deletion and replace
operations on data. Such changes on Web resources’ data need to be mirrored in changes to Web resources
whose data depends on the initial changes (in other words, updates need to be propagated over related Web
resources). Evolution of data on the Web comprises updating Web resources’ data and propagating updates
on the Web. Thus, one can differentiate between

• local evolution that refers to updating data (inserting new data, deleting data, or replacing data) of a
Web resource, and

• global evolution that refers to updating data of Web resources as consequence to remote updates
(updates performed at other Web sites). Note that global evolution subsumes local evolution.

Notion of Reactivity. Reactivity on the Web is the ability of Web sites to detect happenings of interest
that have occurred on the Web and to automatically react to them. Happenings of interest can be delays
or cancellations of flights, or new discounts for flights offered by an airline. Example of reactions to such
happenings are notifying colleagues about delays, looking for and booking another flight, or booking flights
from a particular airline. In this thesis it is considered that reactivity subsumes evolution. Local evolution
can be realised to some extent without reactive capabilities. But, global evolution needs reactivity in order
to propagate updates over related Web resources. Moreover, reactions like booking of flights call for local
and/or global evolution (see Section 1.2.1).

This thesis proposes a novel solution to reactivity on the Web. The need for finding such a solution has
been already recognised (e.g. in [12, 102, 11]) as a must-have ability of the actual Web. The next section
motivates the practicability of reactive capabilities through application scenarios. These scenarios reveal a
set of basic concepts (Section 1.3) that are needed for understanding the proposed solution for reactivity on
the Web.

1.2 Motivating Application Scenarios
This section describes the Travel Organisation use case, the intention being that of determining through
simple life examples the current stage of Web technologies and the exigency of new technologies or better
solutions to some of them.

4 Paula-Lavinia Pătrânjan

CHAPTER 1. MOTIVATION AND OUTLINE

1.2.1 Travel Organisation

Planning and booking travels, staying up to date with changes in the plan (e.g. due cancellations of flights
or overbooking of hotels), and (if necessary) adapting to such changes is a time consuming task. E-business
has made planning and booking of travels, e.g. a researcher’s trip to a conference, a lot easier. One can
now search for flight or train connections, for suitable hotels, can also compare offers on the Web and book
with his or her credit card.

Informally, it is clear what under booking (a hotel, a flight, etc.) everyone understands. But, let’s look
behind the curtain to understand what booking on the Web involves: booking means changes of (i.e. updates
to) one or more Web resources. For example, booking a flight on the Web represents inserting into the
airline’s documents the information regarding the desired flight (number, date, departure city, arrival city)
and the person who is going to travel (name, dietary requirements, credit card information). Moreover, the
number of free seats for the respective flight needs to be changed. In the case that the booking of flight has
been done through a travel agency, changes need to be realised on some of the travel agency’s documents,
but they also need to be propagated to the airline offering the flight.

The task of organising travels implies two subtasks to be accomplished: initial planning and adapting
plans to changes, which are detailed in the following sections. Existing Web-based applications support
the subtask of initial planning but this still requires a lot of human interaction. However, reasoning-capable
applications do not have the capability to detect situations requiring an adaptation of the initial plan.

Initial Planning

The initial planning subtask of organising travels consists of two phases:

1. gathering the information about transportation, overnight stays etc. required for the travel, and de-
veloping itineraries (a travel plan) based on this information, and

2. arranging (booking) the travel according to this plan.

1. Gathering Information and Plan Trip Generally, when planning a travel one knows the location(s)
he/she wants to visit and a time period for doing this. In most cases the time period is not fixed at time
points level, i.e. one might return late in the evening or next day in the morning, but it is likely to be
constrained by working hours or appointments. Thus, the gathering of information for planning a travel
involves finding flights and train connections, finding suitable hotels, considering weather forecast, and/or
planning entertainment.

Another issue that plays a role in planning a travel is the amount of money that one is willing to pay for
all the arrangements. This presupposes searching for cheapest accommodation and transportation means
that conforms one’s expectation. Moreover, limited time discounts can also be taken into consideration.
Note that such discounts might not be always stored as Web resources; instead, they can be sent as notifi-
cations by Web-based information services.

2. Arranging the Travel According to Plan Gathering all the needed information on e.g. flights, train
connections, hotels, and prices, represents the premises for planning a travel. After settling for a plan
by choosing transportation means, accommodation, and (perhaps) entertainment, one needs to arrange the
travel according to the plan, i.e. book flights, reserve seats in trains, make hotel reservations, buy tickets.

Booking a flight on the Web, for example, does not necessarily entail a successful execution of the
desired reservation. Possible reasons for failures include system down-times, network communication
problems, or problems caused by concurrency and time-delays, e.g. if the last seat on a flight was sold
while one is still planning. As a consequence, reservations that are ’related’ should be executed in an all-
or-nothing manner. E.g. a hotel reservation without a flight reservation is useless. Note that the order in
which such reservations are realised needs also to be taken into consideration; usually one might want to
realise the flight reservation before the hotel reservation.

Paula-Lavinia Pătrânjan 5

1.2. MOTIVATING APPLICATION SCENARIOS

Scenario Mrs. Smith uses a travel organiser that plans her trips and reacts to happenings that could
influence her schedule. One of the travel organiser’s tasks is to plan Mrs. Smith’s vacation in Provence,
France. Mrs. Smith wants to visit Orange, Arles, Nı̂mes, and Marseilles. The trip should begin on 5th
of March 2005 and end on 20th of March 2005. Carrying out the task of initial planning for this trip
presupposes:

1. Gathering of and reasoning with information

• Searching for suitable flights from Munich to Lyon and back. Schedules and price tables of several
airlines have to be queried and compared. Only flights departing on 5th of March 2005 and arriving
on 20th of March 2005 before 21:30 o’clock are of interest. Moreover, the search is constrained by
a price limit of EUR 400.

• Querying schedules and prices for train or flight connections for Lyon – Orange – Arles – Nı̂mes –
Marseilles – Lyon. Like searching for flights between Munich and Lyon, queries need to have time
and price constraints.

• Querying hotel reservation services’ data to find suitable hotels in the cities Mrs. Smith wants to
visit. Suitable refers to the quality of services (e.g. at least 2 stars), the prices (e.g. price per night
should be cheaper than EUR 70), the time period for which single rooms are available for booking
(e.g. Mrs. Smith wants to book a hotel in Lyon from 5th of March 2005 until 8th of March 2005),
and the location of the hotels (e.g. a quiet area near to a metro station).

• Receiving notifications from different kind of information systems, like weather forecast services,
or services announcing exhibitions. Reasoning with notifications’ data and data of Web resources is
needed for planning departures and arrivals but also for planning entertainment. For example,

– if a notification is received informing that between 11st and 14th of March 2005 in Arles is
going to rain, the vacation could be planned so as to leave for Arles on 15th of March 2005;

– weather forecast information can be used together with exhibition notifications in order to plan
visiting an exhibition on a rainy day.

2. Arranging the trip

• Booking a flight from Munich to Lyon and back and a suitable hotel in Lyon. (These reservations are,
as already explained above, updates to some Web resources that need to be executed in all-or-nothing
manner.)

• Making train reservations and corresponding hotel reservations in order to visit also Orange, Arles,
Nı̂mes, and Marseilles.

Adapting Plans to Changes

The adapting plans to changes subtask of organising travels consists of two phases:
1. recognise changes that might affect already made plans, and
2. react to these changes by adapting plans.

1. Recognise Changes Affecting the Plan Events such as changes of weather conditions, delays of
flights or trains, and cancellations of flights can affect the arrangements made in the initial planning phase
of organising a travel. Recognising such changes in very short time is the premise for adapting the initial
plan, e.g. by booking another flight. Recognising changes involves communication of change notifications
and detection of situations of interest.

Consider a personal travel organiser that plans travels for its owner and has also the capability to react
to changes that might influence arranged plans. (A personal travel organiser is an example of a system for
travel planning and support.) There are two possible strategies for making the travel organiser aware of
changes:

6 Paula-Lavinia Pătrânjan

CHAPTER 1. MOTIVATION AND OUTLINE

• pull strategy, meaning that the travel organiser periodically queries the data from remote Web sites
(e.g. flights schedule) in order to determine whether simple changes of interest have occurred;

• push strategy, i.e. the Web-based information systems inform the travel organiser about changes that
have taken place either locally or remote (case in which the systems have been notified about these
changes).

After receiving notifications about changes that might affect already made arrangements, the personal
travel organiser needs to detect situations of interest, i.e. possibly time related combinations of simple
happenings that might have an impact on already made plans.

2. React to Changes Of great importance in developing travel planning and support systems is the capa-
bility to automatically react to changes (to situations of interest). Based on the events that have occurred,
on the detected situations of interest, actions need to be executed in order to adapt plans to these changes.
Example of actions are reordering travel destinations, notifying affected friends and colleagues, finding
and booking other flights, or booking overnight stays.

Scenario Consider again the scenario previously introduced; after carrying out the presented tasks, the
necessary arrangements for a vacation’s initial plan have been realised.

Mrs. Smith’s travel organiser has the capability to detect changes that might affect the initial plan.
Examples of such changes are:

(a.) The flight booked for Mrs. Smith from Lyon to Munich on 20th of March 2005 has a delay. In
such a case, the new arrival time and Mrs. Smith appointments need to be taken into consideration, before
deciding how to react to such a happening.

(b.) The flight booked for Mrs. Smith from Lyon to Munich on 20th of March 2005 has been cancelled.
In such a case, there are two possibilities:

(b.1) the airline provides an accommodation for the night of 20th to 21st of March 2005, or
(b.2) the airline does not provide such an accommodation.
The possibilities require different reactions. In the case of flight cancellation, the travel organiser could

wait for a notification regarding accommodation only a fixed amount of time (e.g. it waits 2 hours from the
reception time of the notification regarding the flight cancellation).

(c.) A train, for which Mrs. Smith has a reservation, has a delay.
For detecting changes like the ones presented above, the travel organiser needs to have the capability to
- detect notifications;
- detect (possibly) time-related combinations of notifications. For example, notification regarding (b.)

followed by a notification regarding (b.2).
- detect combinations of notifications that have been received in a specified time interval (note that such

a time interval could also be given as a duration, e.g. 2 hours);
- compare time notions (e.g. in case of a notification regarding (a.), the arrival time should be before

5:00h on 21st of March 2005).

The scenarios introduced here are, of course, simplified. A corresponding real life application would
probably require more details, more features, and therefore more complex reactions. Nonetheless, the use
case Travel organisation stresses salient aspects of reactivity on the Web. The scenarios are specific to a
class of applications. Arguably, many other different application classes, such as Web service deployment,
Web-based workflows, e-commerce, e-learning, share “reactivity traits” with the scenarios presented here.

1.3 Concepts
This section informally introduces the concepts that are needed for discussing the thesis’ solution for reac-
tivity on the Web. More formal definitions of the concepts can be found in Chapter 4.

For realising systems having the ability to accomplish tasks like the ones presented in the application
scenarios of Section 1.2.1, the following are required:

Paula-Lavinia Pătrânjan 7

1.3. CONCEPTS

- querying Web resources’ data and reasoning with these data, e.g. for searching for the cheapest suit-
able hotel;

- communicating notifications between systems that (in some sense) cooperate to realise tasks;
- querying and reasoning with notifications’ data;
- updates to (local and remote) Web resources;
- support for executing updates in an all-or-nothing manner;
- detecting situations of interest;
- reaction capabilities, e.g. to look for and book another flight as reaction to flight cancellation.
The above mentioned requirements are not tailored to the application scenarios, examples of reactive

Web applications, that have been introduced in the previous sections. Instead, these are general require-
ments that need to be met when proposing solutions for realising reactivity on the Web. Other application
scenarios have also been explored but no other requirements have been recognised.

1.3.1 Events
Informally, an event is a happening to which each Web site (through a reactive program) may decide to
react in a particular way or not to react to at all. For example, an update to a Web resource, a query posed
to Web resources, or just “8 o’clock every morning” are events.

One might argue that defining an event in such a way is too vague. But, the intention here is to empha-
sise that one can conceive every kind of changes on the Web as events. However, each Web-based reactive
system can be interested in different types of events or in different combinations of (like a given temporal
order between) such events. Thus, the large spectrum of possible events is always filtered relatively to one’s
interests (e.g. the owner of a personal travel organiser). Thus, the events a Web-based reactive system is
interested in are in a sense subjective.

A situation is a combination (like conjunctions or disjunctions) of more than one events. For example,
a sequence of events that have occurred in a specified time interval is a situation. A concrete example of
such a situation has been given in Section 1.2.1, consisting in a flight cancellation notification followed by
a notification saying that the airline does not provide an accommodation.

1.3.2 Communication Strategies: Push and Pull
The need and importance of making Web sites aware of events that have occurred on the Web, through no-
tifications (i.e. data about events) that are communicated between Web sites, has been made clear through
the motivating application scenarios. As exemplified in Section 1.2.1, two strategies are possible for com-
municating notifications:

• a push strategy, where a Web site informs possibly interested Web sites about events, and

• a pull strategy, where interested Web sites query periodically (poll) data found at other Web sites in
order to determine changes.

Both strategies are useful. The pull strategy is supported by Web query languages like XQuery [158]
or Xcerpt [53]. For propagating events (i.e. communicating data about events), a push strategy has several
advantages over a strategy of periodical polling: It allows faster reaction to events, as a notification is
communicated as soon as possible as opposed to a detection at the next periodical pull. It saves resources,
both locally and on the network. Locally, a client interested in some change of Web data does not have
to store the old Web page to detect differences (changes) from the new version. On the network, a push
strategy can reduce network traffic, since communication only takes place when a change has happened,
and only the changes in information have to be communicated.

1.3.3 Volatile vs. Persistent Data
For detecting situations of interest, incoming events need to be queried. In order to determine what abilities
such queries need to have and thus to determine if existing Web query languages can also be used for

8 Paula-Lavinia Pătrânjan

CHAPTER 1. MOTIVATION AND OUTLINE

querying events, the differences between Web resources and incoming events (if they exist) need to be
revealed.

Data of incoming events and data of Web resources are indeed different. To better understand the
differences one should imagine data of incoming events like speech and data of Web resources like written
text.

(a.) Speech is like a stream of words or propositions (some phonology works refer to the notion of
stream of speech [94]). Considering two particular moments in time, for example during a researcher’s
presentation, the information “received” through speech differ in the sense that at the most recent moment
one has more information as before. Still, one can not predict what information he/she will receive by the
end of the presentation. Likewise, events are received in a stream-like manner. If one is interested in a
particular sequence of events and such a sequence has not been entirely received until the present moment,
one needs to wait to see whether other events of interest will also occur. The article the researcher is
explaining in its presentation is written text, thus reading it for selecting (querying) information of interest
would give the same information independent from the time point of reading.

(b.) Speech cannot be modified. If one has communicated some information in this way one can correct,
complete, or invalidate what one has told – through further speech. In contrast, written text can be updated
in the usual sense. Likewise, data of incoming events is not updatable, but data of Web resources is updat-
able. To inform about, correct, complete, or invalidate former events, new notifications are communicated
between Web sites.

Thus, an important distinction is made between volatile data (data of events) and persistent data (data
of Web resources). This distinction not only reflects the differences noted above, but, through the analogy
with speech and written text, it is intended to lighten the understanding of and thus programming with a
reactive language for the Web.

1.3.4 Event Queries
To query persistent data, Web queries are used (expressed using a query language, such as XQuery [158]
or Xcerpt [126]). There are a couple of arguments showing that Web query languages are not suitable for
querying volatile data.

• Query languages can be used for detecting the occurrence of single events, combinations of events
that have (possibly) occurred during the time interval determined by other events, can not be easily
expressed.

• Making all incoming events persistent would be a premise for using Web query languages for “de-
tecting” situations of interest. However,

– This is not a realistic approach to reactivity on the Web, as the amount of incoming events could
be tremendous and thus very expensive regarding system resources. The application scenarios
presented in Section 1.2.1 have shown that an approach to reactivity on the Web is desired that
can be used by almost every person and on “small” computer systems like a personal travel
organiser.

– Detecting complex situations that are of interest is not an easy task when working only with a
query language. For example, time related combinations of situations require reasoning with
temporal information (based on raising or reception time of events) and combining event data.
A simple event language capable of detecting situations of interest is needed in order to ease
the use of it by novice practitioners.

– The reaction to incoming events of interest would be slower as in the case of querying directly
volatile data.

• Streamed implementation of query languages are not what is really needed for querying events. The
streamed evaluation is intended for querying large amount of data that may be unbounded in depth
and breath, i.e. for querying data streams. However, this thesis considers the scenario where a large
number of events are received by a Web site, but the size of an event’s data is not too big.

Paula-Lavinia Pătrânjan 9

1.3. CONCEPTS

Thus, another kind of queries are needed for querying volatile data in order to detect situations of
interest. Such queries against volatile data are called event queries in this thesis. Web queries and event
queries can be very similar. However, event queries are more likely to refer to event sequences or time, as
many Web-based applications require reasoning about events that have a temporal extent.

An event query may be atomic or composite. An atomic event query refers to one single event, it
represents a pattern for the single incoming event that is of interest. A composite event query refers to one
or more incoming events and queries for combinations of these, imposing also temporal restrictions on the
constituent events, e.g. only events that have occurred in a specified time interval are of interest. Such a
time interval can also be given by the occurrence time of other events. Note that composite event queries
refer to an event when specifying its exclusion (they specify event negation). Composite event queries are
intended to detect situations, cf. Section 1.3.1.

1.3.5 Raising Events

Events occur on the Web at different Web sites. From the perspective of a particular Web site, events that
occur at this Web sites are local and events that occur at other Web sites (remote Web sites) are remote.
Without communicating events’ data between Web sites, a Web site can not be made aware of events that
have occurred at remote Web sites. Thus, there is a need for propagating events on the Web in order to be
able to react to events of interest that do not necessarily happen locally at a Web site.

For propagating events on the Web, Web sites need to have the ability
- to detect events that have occurred either locally or have been received as notifications from other

Web sites,
- to raise notifications containing data about these events as reaction to them, and
- to send notifications to Web sites that are (possibly) interested in these notifications.
Raising events calls for constructing new notifications containing data of events that have occurred, in

the sense that the data can be restructured and new data (like the URI [145] or IRI [89] address of the Web
sites to be sent to, i.e. a recipient Web site or more) can be added. If no recipient Web site is added, the
notification is to be sent to the Web site raising it.

1.3.6 Updates and Transactions

Updates are changes to Web resources, like insertions, deletions or replacements of parts of information
found on the Web. The work presented in this thesis considers data of Web resources in XML (eXtensible
Markup Language) [159] format. Thus, when discussing about updates to Web resources updates to (local
or remote) XML documents are meant.

Updates can be elementary or complex. Elementary updates are insertions, deletions and/or replace-
ments of parts of a single XML document that are specified through a pattern for the data to be updated
augmented with the desired update constructs (insertion, deletion, replacement). Complex updates are
combinations of more than one simple update that are, in general, to be performed on more than one (local
or remote) XML documents. Such combinations of simple updates forming a complex update can be con-
junctions or disjunctions. For example booking a flight and a suitable hotel represents a complex update.
Two kind of conjunctions of updates are needed:

• ordered conjunctions, meaning that all the specified updates are to be executed and in the specified
order, and

• unordered conjunctions, meaning that all the specified updates are to be executed, but the order of
execution is not of importance.

In this thesis, an action denotes an elementary or complex update that is to be performed, raising and
sending a notification, or a combination of updates that are to be executed and notifications that are to be
raised and sent. Like for updates, (ordered or unordered) conjunctions or disjunctions of actions need to be
considered.

10 Paula-Lavinia Pătrânjan

CHAPTER 1. MOTIVATION AND OUTLINE

Transactions are actions that are to be executed in an all-or-nothing manner. The concept of transac-
tions is a well established and understood concept in the field of database systems. Transactions obey the
ACID properties [136]:

• Atomicity: operations of transactions are executed in an all-or-nothing manner, that is they are never
left “half-done” (as a consequence of this property, if an error occurs during a transaction partial
effects must be undone),

• Consistency: assuming that all constraints (like conformance of an XML document to a particular
schema) are true before executing a transaction, they should remain true after its execution,

• Isolation: transactions must behave as they were executed in isolation from each other (that is, exe-
cution of transactions must be equivalent to some serial order), and

• Durability: after the successful execution of a transaction, all effects must be durable (for example,
after executing an update all modifications should remain in the respective XML document).

1.3.7 Reactive Rules
Reactivity presupposes the ability to automatically react to previously defined situations with specified
actions. This can be specified and realised by means of reactive rules (also known in the literature as active
rules [74] or event-condition-action, short ECA, rules [119, 141]). The general form of these rules is on
event if condition do action that specify the desired reactive behaviour. At every occurrence of the event,
the rule is triggered and the corresponding action is executed if the specified condition is satisfied. (The
execution of a rule’s action is referred to as firing of the respective rule.) In this thesis, the components of
reactive rules are tailored to the context in which reactivity is to be realised, namely the Web. Thus,

• the ’event part’ specifies an event query, i.e. a query against volatile data,

• the ’condition part’ specifies a Web query, i.e. a query against persistent data, and

• the ’action part’ specifies a transaction or notifications to be raised.

The concepts introduced in this section are explained in more detail in Chapter 4. Other concepts are
introduced throughout this thesis so as to complete the whole picture describing the proposal of this thesis
– a novel programming language for reactivity on the Web.

1.4 Outline
The remainder of this thesis is structured as follows:

• Chapter 2 gives a short introduction into Web technologies that are required for understanding the
proposal of this thesis. After a few words on the World Wide Web and its Consortium (Section 2.1),
Section 2.2 discusses Web data representation formalisms that are relevant for the work presented in
this thesis. Models, protocols, and units for communicating data between applications on the Web
are introduced in Section 2.3. The chapter ends with an overview on some of the established query
languages for the Web (Section 2.4.1), offering a detailed introduction into Xcerpt (Section 2.4.2), as
it represents the (Semantic) Web query language chosen to be embedded into the language proposed
by this work.

• Chapter 3 begins with a compact introduction into the concepts on which active databases build
upon (Section 3.1) and continues with discussions based on existing concrete proposals for update
languages for the (Semantic) Web (Section 3.2), and reactive languages for the (Semantic) Web
(Section 3.3).

Paula-Lavinia Pătrânjan 11

1.4. OUTLINE

• Chapter 4 represents the first chapter of the part dedicated to the language XChange, the reactive
language proposed by this thesis, and discusses the language paradigms, concepts, constructs, and
syntax. The chapter begins by presenting the paradigms upon which the language XChange relies
(Section 4.1). Section 4.2 introduces the concept of event and discusses the kinds of events XChange
supports. Section 4.3 introduces event messages as means for representing event data. Section
4.4 discusses means for specifying (classes of) events of interest that might require a reaction; it
introduces event queries – queries against event data. Section 4.5 offers a short discussion on Web
queries in XChange. Section 4.6 introduces means for updating data with XChange. Section 4.7
offers a discussion on complex updates in XChange and the concept of transactions comprising
updates. The chapter ends with Section 4.8, an introduction into XChange rules that puts together
the puzzle pieces discussed throughout the chapter.

• Chapter 5 turns to defining the declarative semantics (Section 5.1) of the three parts of an XChange
reactive rule: event query part (Section 5.1.1), Web query part (Section 5.1.2), and update part (Sec-
tion 5.1.3). The chapter discusses also the evaluation of XChange event queries (Section 5.2.1),
the underlying ideas of evaluating Web queries (Section 5.2.2), and of executing XChange updates
(Section 5.2.3).

• Chapter 6 gives (part of) the implementation in XChange of some of the use cases that have been
developed for the language. Section 6.1 presents the use case Travel organisation whose explanation
has been given in Section 1.2.1. Section 6.2 gives flavour of two XChange use cases, one aiming at
showing that XChange can also be employed for Semantic Web applications and one at showing that
XChange is suitable for implementing business rules.

• Chapter 7 begins with explicitly stating the main contributions of the thesis to the research work on
(Semantic) Web reactivity (Section 7.1). It continues with a discussion on some of the perspectives
for further work in XChange (Section 7.2). Section 7.3 concludes this thesis.

Remark. Parts of the thesis that are explicitly marked as Discussion motivate some of the design
decisions made (respond to questions like Why not introduce other constructs in the language? or Why
take one particular approach to modelling answers to queries against incoming events?) or offer some
ideas for further extensions of the language. Discussions can be skipped at first reading the thesis by
programmers wanting to get fast to programming applications in XChange.

12 Paula-Lavinia Pătrânjan

CHAPTER

TWO

Preliminaries

2.1 World Wide Web
Following the conviction that “in an extreme view, the world can be seen as only connections, nothing
else” (Tim Berners-Lee, [31]), the hypertext and the Internet have been assembled by Tim Berners-Lee into
the World Wide Web (or simply Web). The exponential growth of the Web is reflected in the difference
between one single Web site in 1991 (the first Web site was built in 1990 and put online in 1991 by Tim
Berners-Lee) and, according to a study made, more then 550 billion documents on the Web1 ten years later.
Thus, the Web started a new communication era that had a major impact on the speed with which people
communicate and on the amount of data available for retrieving from all corners of the world.

“The Web provides a simple and universal standard for the exchange of information.” [6]

In order to “lead the Web to its full potential” [31], to develop common protocols for the evolution of
the Web, the World Wide Web Consortium (W3C) [3] has been founded in 1994 as a non-profit organisation.
W3C is an international association of industrial companies, research centres, educational institutions, and
other organisations. One of the activities of the consortium is to set standards for the Web area. W3C
standards are called W3C recommendations as no standards can be enforced in an environment without
a central authority. For example, XPath (XML Path Language) [149] is a W3C recommendation for a
language for selecting parts of XML documents.

The Web can be considered as a success, but its inventor, and not only, strongly believes in a “better”
Web where the information systems have advanced features that mirror some more abilities of the human
brain. Thus, the Semantic Web vision was born, an endeavour aiming at enriching the existing Web with
meta-data and data and meta-data processing to allow information systems to actually reason with the
data instead of merely rendering it. Tim Berners-Lee, James Handler, and Ora Lassila have introduced in
[32] the idea of Semantic Web as the future of the existing Web, coming with important improvements in
Web’s usage. The Semantic Web “will not be a new global information highway parallel to the existing
World Wide Web; instead it will gradually evolve out of the existing Web” [15]. Industry, governments
(e.g. the U.S. government through the DAML Project, the European Union through its Sixth Framework
Programme2) are interested in and support research work in this direction. As a consequence of this strong
interest in bringing more semantics on the Web, a variety of technologies have been proposed that are
generally intended for machine usage and are not so easy to use by humans. However, of crucial importance
for the further development of the Web is the lightness of technologies’ usage (in particular the languages’
usage).

This thesis proposes a novel reactive language for the Web; its design has been carefully developed so
as to be easily understood and used also by novice practitioners. To some extent, the Web is regarded here
from the data and technology perspectives as the thesis introduces a novel (abstract) view over the Web

1Wikipedia Web Statistics, http://en.wikipedia.org/wiki/World_wide_web
2European Union’s FP6, http://www.cordis.lu/fp6/

13

http://en.wikipedia.org/wiki/World_wide_web
http://www.cordis.lu/fp6/

2.2. DATA ON THE WEB

data and a novel reactive technology (cf. Section 7.1). The research work builds upon existing foundations
of the Web such as existing communication protocols, an overview of which is given in this chapter. An
extensive discussion of the technical foundations of the Web can be found in Erik Wilde’s book Wilde’s
WWW - Technical Foundations of the World Wide Web [142].

2.2 Data on the Web
This section introduces into representation formalisms for data on the Web that are relevant for the research
work presented in the next sections of the thesis. This perspective is reflected also in the order in which
data representations are shortly described; the section does not mirror the temporal order of representations’
creation. The central point of the section is the Extensible Markup Language [159] whose design goals and
features are introduced in Section 2.2.1 followed by a short introduction of some of its ancestors (Section
2.2.2) and friends (Section 2.2.3).

2.2.1 Extensible Markup Language (XML)
The Extensible Markup Language (XML) [159] has been developed by the W3C in 1996 with the intention
to provide a platform for defining user-specific document types. Existing markup languages at that time,
SGML and HTML (see Section 2.2.2), have had some deficiencies that motivated the development of XML,
i.e. the inflexibility of HTML and the complexity of SGML (note that XML is a subset of SGML). SGML,
HTML, and XML are all markup languages for representing Web data but they have different design goals.

“XML was designed to describe data and to focus on what data is.”3

Markup

Markup is information about the logical structure of a document and it is mixed with the actual content
of the document. The idea of using markup for structuring content was to allow humans and software to
interpret a document unambiguously.

Structural information is defined in terms of elements that have a name (label) and content. The content
of an XML element may consist in other XML elements, character data, or an element may have no content
(the element is empty). For distinguishing between markup and content, special character(s) are used for
the beginning and ending of the element markup (called markup delimiters). An element name together
with markup delimiters is called tag. Note that element names are case sensitive in XML.

Developing applications where the data is to be stored and exchanged as XML implies in a sense
creativity, as the name of XML elements are not predefined. Users define XML tags using a vocabulary
specific for the application.

Example 2.1 (XML Elements)
An example of an XML element labelled accommodation containing other XML elements that carry in-
formation about two hotels in Paris.

<accommodation>
<currency>EUR</currency>
<city>Paris</city>
<country>France</country>
<hotel>

<name>Princesse Isabelle</name>
<category>3 stars</category>
<price-per-room>112</price-per-room>

</hotel>
<hotel>

<name>Corail</name>

3XML Tutorial, http://www.w3schools.com/xml/

14 Paula-Lavinia Pătrânjan

http://www.w3schools.com/xml/

CHAPTER 2. PRELIMINARIES

<category>2 stars</category>
<price-per-room>65</price-per-room>
<no-pets/>

</hotel>
</accommodation>

Note that elements have different structure: hotel elements contain other elements (like name and
category elements) called subelements, name elements contain character data (their content), and the
no-pets element is an empty element (without content).

An opening tag is a tag that begins an element, like <currency> or <hotel> in the example given
above, an ending tag is a tag that ends an element, like </currency> or </hotel> in the example. An
opening tag has the form <label attributes>, where the attributes are optional (see Section 2.2.1),
an ending tag the form </label>. Omitting some ending tags is not allowed in XML, but in HTML (see
Section 2.2.2).

To some extent, relations or properties are defined in XML through the nesting structure. For example,
the currency subelement in the example given above specifies that the prices for the hotel rooms are given
in Euro. But, beware that this is not always enough for machine processing, because the nesting does not
specify the semantics (meaning) of data. This is one of the reasons why new languages, such as RDF (see
Section 2.2.3) are developed for realising a “more intelligent” Web.

Attributes

Sometimes it is necessary to include information about elements. As a consequence, the concept of at-
tributes has been introduced in XML. Attributes are included in the opening tags of elements and are
represented by key/value pairs of the form name = ”value”.

Example 2.2 (XML Attributes)
The following example is a slight modification of the XML fragment given in Example 2.1. The currency
information is given here as an attribute of the accommodation element and not as its subelement.

<accommodation currency="EUR">
<city>Paris</city>
<country>France</country>
<hotel>

<name>Princesse Isabelle</name>
<category>3 stars</category>
<price-per-room>112</price-per-room>

</hotel>
...

</accommodation>

The above given example shows also the freedom users have in describing the data needed for XML-
based applications. Note that white space inside attributes’ values is significant.

There are also reserved attributes in XML, such as xml:lang for defining the language of the element’s
content and xml:space for defining whitespace as significant.

XML Documents

An XML document consists of a document prologue followed by a document tree of elements, character
data, and attributes. Document tree because the structure of an XML document is a strictly hierarchical
topology (e.g. the hotel element must be ended before opening another hotel element). If this is the
case and all entities referenced by the document have been properly declared (see Section 2.2.1), the XML
document is called well-formed.

Paula-Lavinia Pătrânjan 15

2.2. DATA ON THE WEB

Document Prologue The document prologue contains information about properties that the XML doc-
ument whose beginning it is has. Such properties can be the XML version, processing instructions or
schema declaration (see Section 2.2.1). The document declaration (part of the prologue) is the first line
in an XML document and defines the XML version (mandatory) and the character encoding used in the
document (optional).

Example 2.3 (XML Document Declaration)
The document declaration of the example specifies that the XML version used is 1.0 and the encoding is
ISO-8859-15.

<?xml version="1.0" encoding="ISO-8859-15"?>
<accommodation>

<currency>EUR</currency>
<city>Paris</city>
<country>France</country>
<hotel>
...

</hotel>
...

</accommodation>

Note that the root element of the XML document in the above example is called accommodation. Each
XML document has one single root element.

One of the main strengths of XML consists in separating content from formatting. An XML document
can be displayed in different ways without multiple copies of the same document. XML documents do not
contain instructions for how the content is to be displayed. Such instructions are contained in style sheets
that can be included in XML documents. The declaration of what style sheet is to be used and where this
is to be found is part of the document’s prologue. Style sheets can be written in languages like Cascading
Style Sheets (CSS) [146] or Extensible Stylesheet Language (XSL) [154]. XSL is discussed in Section
2.4.1.

Encodings XML documents can contain “foreign” characters like the Romanian ă and â needed for
writing e.g. the last name of the author of this thesis or the French ç for writing e.g. the first name of
the author’s supervisor. To support such kind of characters a variety of encodings can be specified in the
document declaration. A list of frequently used encodings follow:

ASCII (American Standard for Character Information Interchange), 7-bit binary version of letters, nu-
merals, and other symbols

ISO-8859-1 (Latin, Western European without Euro), 8-bit
ISO-8859-2 (Latin, Eastern European without Euro), 8-bit
ISO-8859-15 (Latin, Western European with Euro), 8-bit
Big5 (Traditional Chinese, Hong-Kong, and Taiwan), 2 bytes
KOI8-R (Cyrillic, Russian), 8-bit
UTF-8 (Unicode), 1-4 bytes variable length
UTF-16 (Unicode), 2 bytes.
For example, for writing the name of the thesis’ author (specific romanian last name) in XML docu-

ments to be used in data interchange systems, the ISO-8859-2 (cited more formally as ISO/IEC 8859-2,
or less formally as Latin-2) encoding would do. This encoding can be used to communicate information
in languages like Bosnian, Croatian, Czech, Hungarian, Polish, Romanian, Slovenian, and other Eastern
European languages.

XML offers more language constructs (e.g. comments or entities) which are not discussed here. For a
detailed introduction into all XML constructs one can refer to [159] or [88].

16 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

XML Schema

A document type or schema for XML documents declares the element types available and constraints
on their content, the occurrence of elements, or other details of the document structure. XML schemas
are intended to ease the automated processing of XML documents. More reliable code for XML-based
applications can be obtained if the parser checks for structural validity or performs also format-checking.
A well-formed XML document that also has been validated against a document type definition is called a
valid XML document. However, specifying schemas for XML documents is optional, i.e. unlike SGML,
XML does not require a schema.

Document Type Definitions (DTD) [88] are part of the XML language and specify grammars for XML
documents. To some extent a DTD can also be used as a type specification for XML documents. In order
to win more freedom in specifying types (schemas) for XML documents, other XML schema formalisms
have been introduced: XML Schema [156, 157] (a richer language than DTDs for specifying structure and
having an XML syntax), RelaxNG [68] (an easy to understand and use grammar-like rule-based language),
Schematron [92].

Document Type Definitions A DTD for an XML document can be defined in a separate file (external
DTD) or within the document (internal DTD). External DTDs can be used for several documents and allow
also an easier maintenance. In the case of an internal DTD, its declaration is introduced after the document
declaration and before the first element of an XML document.

Example 2.4 (XML DTD)
A document type definition for the XML document used in the previous examples given as DTD could
look like this:

<!DOCTYPE accommodation [
<!ELEMENT accommodation (currency,city*,country*,hotel*)>
<!ELEMENT currency (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT hotel (name,category,price-per-room,no-pets?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT price-per-room (#PCDATA)>
<!ELEMENT no-pets EMPTY>

]>

The above given DTD specifies: The root element is labelled accommodation and contains subelements
labelled currency (one single subelement, required), city, country, hotel (zero or many occurrences,
denoted by *). Elements labelled hotel have subelements labelled name, category, and price-per-room
(single occurrences, required), and optional subelements (denoted by ?) labelled no-pets. Elements
labelled currency, city, country, name, price-per-room have as content character data (PCDATA), and
no-pets elements have no content (EMPTY).

XML References

XML offers different types of reference mechanisms, i.e. to reference parts of an XML document within
the same document (using the ID/IDREF mechanism), and to link XML documents on the Web (using
XLink [155]). XLink, a W3C recommendation for an XML linking language, is not introduced here as the
research work of this thesis does not refer to or use it.

The XML ID/IDREF is a structural reference mechanism that supports cross references within an XML
document, by means of two special types of attributes: identifiers (ID) and identifier references (IDREF).
ID and IDREF types require a schema definition (given for example as DTD) that specifies the attributes to
which these reference types are associated. The ID/IDREF mechanism is very simple:

Paula-Lavinia Pătrânjan 17

2.2. DATA ON THE WEB

- identifiers are used to uniquely identify elements (meaning that the value of identifier attributes need
to be unique), and

- identifier references are used to reference an element inside an XML document having a unique
identifier.

Example 2.5 (XML ID/IDREF)
The following example contains information about hotels. To specify the cities where the hotels are located,
identifiers are used for city elements that are further referenced by hotel elements.

<?xml version="1.0" encoding="ISO-8859-15"?>

<!DOCTYPE accommodation [
<!ELEMENT accommodation (currency,city*,country*,hotel*)>
<!ELEMENT currency (#PCDATA)>
<!ELEMENT city (#PCDATA)>
...
<!ATTLIST city id ID # REQUIRED >
<!ATTLIST hotel incity IDREF # IMPLIED >

]>

<accommodation>
<currency>EUR</currency>
<city id="par-fr">Paris</city>
<city id="orn-fr">Orange</city>
<country>France</country>
<hotel incity="par-fr">

<name>Princesse Isabelle</name>
<category>3 stars</category>
<price-per-room>112</price-per-room>

</hotel>
<hotel incity="orn-fr">

<name>Royale</name>
<category>2 stars</category>
<price-per-room>50</price-per-room>

</hotel>
</accommodation>

XML Namespaces

Sometimes it is necessary to combine (parts of) XML documents to form other XML documents. If ele-
ments have same names in XML documents conforming to different schemas, by combining them conflict
names appear. For disambiguation, XML namespaces [160] are used to qualify unique names in XML
documents.

The idea is to use a different prefix for each schema (or DTD). Such a prefix is declared as an attribute,
the namespace attribute, of the form xmlns:namespace-prefix="namespace". The W3C namespace
specification requires namespace to be specified through a Uniform Resource Identifier (URI) [145].

Example 2.6 (XML Namespaces)
The example gives a part of an XML representation of a notification that is communicated between two
programs written in the XChange language. For a language processor to distinguish between language
keywords (event) and the actual content of the notification (an XML element labelled event), namespaces
are used (xc for the language XChange and art for the content of notification announcing an exhibition in
Marseilles).

<xc:event xmlns:xc="http://www.xcerpt.org/xchange/"
xmlns:art="http://www.artactif.com">

18 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

<xc:sender>http://www.artactif.com</xc:sender>
...
<art:event>

<art:exhibition>
<art:painter>G. Barthouil</art:painter>
<art:location>Marseilles</art:location>
...

</art:exhibition>
</art:event>

</xc:event>

Default namespaces are namespaces specified for an element that precludes a prefix to be written to its
child elements as the namespace is inherited by the element’s children.

XML Tree Representation

An XML document induces a tree comprising the data of the document basically by labelling nodes or
edges with tag names and by mirroring the element/subelement relationship through graph edges. Small
differences between representations of XML documents have led to different data models for XML used
for example in querying XML data (such as OEM [114] in XML-QL [73]).

This thesis uses node-labelled trees for representing XML documents, i.e.
(a) element names are labels of nodes and character data content of elements are labels of leaf nodes,

and
(b) element/subelement relationships are represented by edges between the nodes labelled with the

respective elements’ tag names.
A similar representation is used in the Document Object Model (DOM), a programming interface for

HTML and XML documents. The DOM defines the way a document can be accessed and manipulated.

Example 2.7 (XML Tree Representation)
The node-labelled tree induced by the XML fragment given in Example 2.1 (note that just one hotel
element is represented in the figure):

accommodation

currency city country hotel …..

category price-per-roomname"EUR" "France""Paris"

"112""3 stars""Princess Isabelle"

2.2.2 XML Ancestors

As already explained in the introductory part of the previous section, the Extensible Markup Language has
been developed to overcome the shortcomings of its ancestors. This section takes a short but closer look at
semistructured data, SGML, and HTML as XML ancestors.

Paula-Lavinia Pătrânjan 19

2.2. DATA ON THE WEB

Semistructured Data

Semistructured data [6] is explained as data without a given fixed structure or schema. In contrast, for
example, data of a relational database have always a fixed schema. Semistructured data is called self-
describing as it contains data (e.g. Corail) and the description of the data (e.g. name). This idea is encoun-
tered also in the design of the XML language.

Semistructured data can be syntactically represented by so-called semistructured expressions, which
are expressions similar to terms in logic or functional languages. The representation is very similar to the
one used throughout this thesis to exemplify the constructs of the proposed reactive language; the proposed
language offers a term-based syntax as a more compact representation than an XML one.

Example 2.8 (Semistructured Expressions)
The data represented as XML in Example 2.1 is given here using semistructured expressions as represen-
tation formalism.

{ accommodation:
{ currency: "EUR",

city: "Paris",
country: "France",
hotel:
{ name: "Princesse Isabelle",

category: "3 stars",
price-per-room: "112" },

hotel:
{ name: "Corail",

category: "2 stars",
price-per-room: "65",
no-pets: "" }

}
}

After discussing XML and having seen the same data represented both as XML and as semistructured
expressions, it is rather straightforward to understand the latter representation format. Note that semistruc-
tured expressions are not limited to representing tree structures, using object identifiers and references
graph structures can also be represented.

Numerous representation formats for semistructured data have been developed, some of them being
domain specific. OEM/Lore [114] and ACeDB [134, 52] are examples of languages for representing
semistructured data. OEM, the Object Exchange Model, has been developed at Stanford as part of the
Tsimmis [65] project for integrating heterogeneous data sources. (Lore [7] is a variant of OEM.) AceDB4,
A c. elegans Database, is a genome database developed primarily for storing bioinformatics data. The
main challenge of the project was to deal with the flexibility of such data. As the data model used is quite
general, AceDB is used also in other application areas.

Standard Generalised Markup Language

Standard Generalised Markup Language (SGML) [4] has been defined and standardised (ISO international
standard 8879) in 1986. The design goal of SGML was to have “a method for describing documents in a
way that makes it easy to move them from one platform to another” [56]. SGML can be considered as the
base for HTML and XML, statement enforced by the fact that XML and HTML are SGML applications.

The basic idea for the development of SGML was the separation of content and presentation. The
presentation lies outside the scope of SGML, the language defines only the framework for structuring
content (also an abstract syntax, i.e. markup, for doing this).

In comparison to XML, SGML is more flexible and more powerful, e.g. it offers much more constructs
than XML does, but at the expense of being much more expensive to implement. However, the SGML

4AceDB, http://www.acedb.org

20 Paula-Lavinia Pătrânjan

http://www.acedb.org

CHAPTER 2. PRELIMINARIES

community argue that by adding up all of the related XML standards (e.g. XLink, XML Schema) the
result is not less complex than SGML. Clearly one chooses between SGML and XML depending on the
requirements of its applications. A W3C note [67] of James Clark contains a detailed comparison of SGML
and XML.

Hypertext Markup Language

Hypertext Markup Language (HTML) [147, 153] has been created in 1990 and has become the most pop-
ular Web standard. The reasons for its “world-wide” usage are its design goal – writing Web pages – and
its simplicity. The first HTML browser (for retrieving and displaying data of Web resources) was created
by Tim Berners-Lee as a researcher at CERN (Conseil Européen pour la Recherche Nucléare), Geneva.

The main use of HTML is to display information and to link documents on the Web. How the infor-
mation is to be displayed, the formatting of data, is mixed with the actual information. HTML documents
do not contain structural information, thus, the rendering is human-readable, but is not easy for software to
“understand” the structure and content of data. Unlike XML, HTML has predefined tags, the set of tags is
fixed and they are used to define the formatting (for example for defining lists, bold, italics, and colour).

“HTML was designed to display data and to focus on how data looks.”5

One may think of HTML as a markup language defining only one document class. In contrast, SGML
is more general and introduces the concept of document classes to describe different “classes” to which
SGML documents belong to.

Example 2.9 (HTML)
The example contains the information of Example 2.1 but instead of the description of data found in XML
(using XML tags) the formatting of data is given. The information about hotels are displayed in a table
(introduced by the tag <table>), a hotel per row (introduced by the tag <tr>), and the name of the hotels
are displayed in bold (using the tag).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.org/TR/REC-html40/strict.dtd">

<html>
<head>
<title>Accommodation information</title>

</head>
<body>
<h1>Hotels in <i>Paris, France</i></h1>
<table>
<tbody>
<tr>

<td>Name</td>
<td>Category</td>
<td>Price</td>
<td>Observations</td>

</tr>
<tr>

<td>Hotel Princesse Isabelle</td>
<td>Category 3 stars</td>
<td>Price per room 112 Euro</td>

</tr>
<tr>

<td>Hotel Corail</td>
<td>Category 2 stars</td>

5XML Tutorial, http://www.w3schools.com/xml/

Paula-Lavinia Pătrânjan 21

http://www.w3schools.com/xml/

2.2. DATA ON THE WEB

<td>Price per room 65 Euro</td>
<td>Pets are not allowed!</td>

</tr>
</tbody>
</table>

</body>
</html>

In contrast to XML, HTML permits some ending tags to be omitted in cases where the formatting is
clear even with missing tags. For example, in the following HTML fragment

<p>Many pages on the Web are written in so-called "bad" HTML. <p>Omitting
some tags is considered to be one of the reasons for this.

the tags denoting the ending of the paragraphs have been omitted, but HTML browsers do understand the
“intended” formatting and two paragraphs are displayed. Also, HTML permits improperly nested elements
within each other, like

<i>Corail</i>

and displaying Corail, i.e. in bold and italics.
As not all information systems (e.g. handhelds) have the ability to interpret such “bad” markup, the

Extensible Hypertext Markup Language (XHTML) [153] was born with the aim to replace HTML. Being a
combination of HTML 4.01 elements and XML syntax (any valid XHTML document is also a valid XML
document), XHTML is a “stricter and cleaner version of HTML”6.

2.2.3 XML Friends
XML does not fulfil all requirements for a meta-data framework needed for making the meaning of data
more sensed on the Web. Still, XML is a necessary part for the solutions towards the Semantic Web vision
as it offers an exchange format for data and meta-data on the Web.

This section provides a brief introduction to the Resource Description Framework (RDF), as one of the
XML friends, which provides a model for meta-data and a syntax for using and interchanging meta-data by
Web-based applications of all kinds. On top of the data layer provided by the data model of RDF, a schema
layer can be defined by using RDF Schema, but the need for a logical layer, i.e. for formal semantics and
reasoning support, has been recognised (e.g. in [40]). Thus, the Web Ontology Language (OWL) [161]
has been developed to fill the logical layer of the Semantic Web (layered) architecture. This thesis does
not place emphasis on reasoning with meta-data on the Web and thus the Web Ontology Language is not
introduced here.

Resource Description Framework

Resource Description Framework (RDF) [148, 15] is a W3C recommendation for a language for rep-
resenting meta-data about Web resources. The concept of Web resource is more general than the one
introduced in Section 1.1 and used in the thesis’ work, a resource in RDF is something identifiable in
the Web context. Note that this does not imply that the resource is directly retrievable, for example
the thesis’ author is a person that can be identified in RDF documents by a fragment of its home page,
http://www.pms.ifi.lmu.de/mitarbeiter/patranjan/#About_me .

RDF statements RDF provides a framework for expressing statements about Web resources, i.e. to ex-
press properties and their values that resources have.

Resources are identified by Uniform Resource Identifiers (URIs) [145], more precisely by URI ref-
erences, i.e. URIs together with an optional fragment identifier at the end (in the example given above,

6XHTML Tutorial, http://www.w3schools.com/xhtml/

22 Paula-Lavinia Pătrânjan

http://www.pms.ifi.lmu.de/mitarbeiter/patranjan/#About_me
http://www.w3schools.com/xhtml/

CHAPTER 2. PRELIMINARIES

About me is the fragment identifier). For example, a Web page, a part of a Web page, a Web site, or a book,
a car are resources.

Properties describe relations between resources, but they are also resources and thus identifiable through
URIs. A Web page can have, for example, a property called creator whose value indicates who is the
author of the page, or a property called date whose value indicates the creation date or the date of last
modifications.

Statements are (resource, property, value) triples, where a value can be a resource or a literal (string).
Note that RDF properties are only binary predicates that relate subjects to objects (each RDF triple is of
the form (subject, predicate, object)).

Example 2.10 (RDF Statements)
The following example contains two RDF triples: the first one states that the organiser of the thesis’ author
has reserved for its owner the hotel identified by http://www.hotel-princesse-isabelle.fr , whose
phone number is given by the second triple.

(http://www.pms.ifi.lmu.de/mitarbeiter/patranjan/#About_me,
http://www.myorganiser.de/has-reserved,
http://www.hotel-princesse-isabelle.fr)

(http://www.hotel-princesse-isabelle.fr,
http://www.hotel-service.org/has-phone,
"00 33 123 456 789"ˆˆhttp://www.w3.org/2001/XMLSchema#integer)

Note the usage of a typed literal to denote that the phone number of the hotel is to be interpreted as an
integer. RDF data types are based on the XML Schema framework for defining data types [157].

RDF Graph Model An RDF expression is a collection of (subject, predicate, object) triples that
induces a graph, as each triple is represented by two nodes (labelled subject and object, respectively)
connected by an arc labelled predicate directed towards the object node. The graph representation of
RDF expressions is clearly more easy to read by humans than the XML serialisation.

XML Serialisation of RDF One possible serial representation of graphs induced by RDF statements is
XML-based. The XML-based syntax is not human-friendly, but the intended “audience” are the machines
as it offers a machine-processable way to represent RDF statements. At present, the arena of possible
XML-based serialisations for RDF statements is rather crowded, RDF/XML [163] (W3C recommenda-
tion), Unstriped Syntax [30], RxML [131] being a few examples of existing serialisations.

Example 2.11 (RDF/XML)
The RDF statements of Example 2.10 are serialised in XML and given in the following using RDF/XML.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:organise="http://www.myorganiser.de/"
xmlns:hotel="http://www.hotel-service.org">

<rdf:Description
rdf:about="http://www.pms.ifi.lmu.de/mitarbeiter/patranjan/#About_me">

<organise:has-reserved rdf:resource="http://www.hotel-princesse-isabelle.fr"/>
</rdf:Description>
<rdf:Description rdf:about="http://www.hotel-princesse-isabelle.fr">

<hotel:has-phone
rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">00 33 123 456 789

<hotel:has-phone/>
</rdf:Description>

</rdf:RDF>

Paula-Lavinia Pătrânjan 23

http://www.hotel-princesse-isabelle.fr

2.3. COMMUNICATING DATA ON THE WEB

RDF Schema RDF Schema (RDFS) [162] provides extensions to RDF for defining the vocabulary of
and constraints on data of RDF statements. This does not imply that using RDFS one vocabulary per
domain is to be defined and used on the Web. Lacking of a central authority, the Web gives its users the
freedom to define their own RDF vocabularies if this is considered useful. However, only the best (or
perhaps best-marketed) ones will be used by communities and thus survive.

RDFS provides a type system for RDF supporting the description of application specific classes and
properties and the specification of which properties are used within the classes. Note that, in contrast
to XML Schema, RDF Schema does not impose syntactical constraints on the data, instead it provides
information about how the data is to be interpreted. Thus, through RDFS semantic information can be
made machine-accessible [15].

2.3 Communicating Data on the Web
An important issue in Web application development is to support Internet-based communication of data be-
tween different applications distributed over the network. Communication of data follows a model suitable
for the application domain and it is based on network protocols (that specify a set of rules for a particular
type of communication). Moreover, existing standards for specifying the communication units ensure their
understanding by applications running on different platforms.

This section introduces concrete technologies that implement the issues discussed above, namely the
peer-to-peer model, the Hypertext Transfer Protocol, and XML exchange units. The choice of describing
these is motivated by their use or important role in developing the solution to reactivity proposed in this
thesis.

2.3.1 Peer-to-Peer Model
Peer-to-Peer Technology

Peer-to-peer (P2P) is an emerging paradigm that might have a great impact on distributed architectures
(e.g. the Internet). The peer-to-peer model is the model of a network architecture in which participating
nodes, termed peers, have the same capabilities and responsibilities. Some characteristics of peer-to-peer
infrastructures:

- No central coordination, i.e. there is no central instance that coordinates the actions to be taken by
peers (consequence of the fact that all peers have the same capabilities).

- Peers are autonomous, i.e. no peer can decide for other peers e.g. what actions should they execute,
or what data should they make available for others. E.g. if a peer A sends a transaction request to a peer B,
the peer B may decide to execute the transaction or not to do this voluntary work for A.

- No peer has global view of the system. However, a peer can retrieve some information from other
peers by querying the data of these peers, but only if the data have been made available for others. Note
that no peer has the capability to modify the data of other peer.

- Global behaviour is the result of local actions. Local actions are executed by applying local decisions
or as requests from other peers. The peers of a network do not have a single, common goal for which they
work as a group, thus one can not speak about global actions.

A kind of mixture of centralised and decentralised model is also possible within a peer-to-peer model.
Such a model is termed as a hierarchical model where special peers, so-called super peers, are used to store
information about a group of peers and to do a lightweight coordination of the group. The hierarchical
model has been used e.g. in [115], work described shortly in Section 3.3.

The peer-to-peer technology provides support for direct exchange of data and services between peers.
Thus, the need of centralised servers is eliminated.

Peer-to-peer communication

Peer-to-peer communication is a communication model used in decentralised environments where each
party (i.e. peer) has the same capabilities and each party can initiate a communication session.

24 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

An example of a model that contrasts the peer-to-peer model is the client/server model. In the clien-
t/server model requests and answers to these requests are communicated as in the following scenario:

- clients send requests to a central server, and
- server sends answers to requests to the clients.
In contrast, in the peer-to-peer model peers have the capability to send requests to other peers, and also

the capability to answer requests of other peers. Thus, a peer has to fulfill the role of a client and that of a
server. The client/server model might be, to some extent, seen as a special case of the peer-to-peer model.

2.3.2 Communication Protocol

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) [142] is the Web’s protocol for transferring information and, hence, is
implemented by all browsers. Other protocols, e.g. File Transfer Protocol (FTP) [122], are in some cases
also integrated into the browser.

HTTP is a request/response protocol based on a connection-oriented transport service. It uses two
basic roles: client (basically sending requests) and server (sending responses). In addition, intermediaries
(proxies) may be used in the request/response chain.

The design goals of the first version of the HTTP protocol (now referred to as HTTP 0.9) have been:
light protocol (i.e. easy to implement servers and clients) and fast protocol (i.e. to facilitate fast retrieval of
information). Using HTTP 0.9 clients could only request and retrieve data from servers, but could not send
data to servers. Moreover, only text documents could be transmitted.

HTTP 1.0 [99] has been developed to overcome the limitations of HTTP 0.9. In this sense, HTTP 1.0
provides support for different media types, information about the transferred entity could be transmitted,
and, by supporting new methods, clients could transmit data to servers. However, HTTP 1.0 used the same
communication model as HTTP 0.9: the client establishes a TCP connection to the server, issues a request
and reads back the server’s response, and then the connection is closed. This led to serious performance
problems (because of the use of one TCP connection per file).

HTTP 1.1 [100], the latest version of HTTP, brings improvements over HTTP 1.0 like persistent con-
nections, i.e. after a request/response interaction the connection between the client and the server is not
closed, instead the server waits for other requests from the respective client. If a client or a server does not
want to keep the connection open after a request/response interaction, this option can still be specified.

HTTP Extensions

Extensions to the HTTP protocol have been proposed in order to enhance the communication with features
that are desirable or even required for Web-based applications. In the following, the Secure HTTP, the
HTTP Next Generation, and the Protocol Extension Protocol are shortly discussed.

Secure HTTP Secure HTTP is a secure message-oriented protocol designed to coexist with HTTP. The
protocol provides a variety of security mechanisms to HTTP clients and servers, i.e. includes encryption,
user authentication, and certification. These mechanisms can also be combined. Moreover, negotiation
can be used in order to allow clients and servers to agree on e.g. cryptographic algorithms or certificate
selection.

HTTP Next Generation HTTP Next Generation7 (HTTP-NG) preceded actually the development of
HTTP 1.1 as it supposed to be an enhanced replacement for HTTP 1.0. Extensions that were proposed in
HTTP-NG regard modularisation, scalability, and extensibility. One of the ideas was to enable the sending
of many different requests over a single (persistent) connection. As these requests may be asynchronous,
support for asynchronicity was recognised as a requirement.

At present, the W3C does not plan to further develop the work on HTTP-NG.

7HTTP-NG, http://www.w3.org/Protocols/HTTP-NG/

Paula-Lavinia Pătrânjan 25

http://www.w3.org/Protocols/HTTP-NG/

2.3. COMMUNICATING DATA ON THE WEB

Protocol Extension Protocol Protocol Extension Protocol (PEP) describes how HTTP messages can be
extended with header fields extensions and new content formats. With PEP, HTTP agents can interoperate
correctly with known and unknown protocol extensions, select protocol extensions available to both sides,
and query partners for specific capabilities.

PEP represents one approach for an extension mechanism for HTTP. This work might be important for
the future version of HTTP, as the World Wide Web Consortium is comitted to including extensibility in
HTTP 1.2.

2.3.3 XML Exchange Units
As already explained in previous sections, the goal of developing XML was to have a data format for easily
exchanging information between applications. The structure and meaning of data interchanged is domain
and application specific. For applications running on different platforms to cooperate (in a sense) and
understand the data received, simple rules defining the messaging framework are needed. Thus, the Simple
Object Access Protocol [152] has born and has become a W3C recommendation.

Simple Object Access Protocol

Simple Object Access Protocol (SOAP) [152] is a lightweight XML-based protocol for exchanging in-
formation in a distributed environment. SOAP has a one-way message exchange paradigm (i.e. a SOAP
message is transmitted between nodes, from a sender to a receiver), but more complex interaction patterns
(e.g. request/response or multiple conversational exchanges) can be created by applications.

SOAP is not committed to a single underlying protocol, nor to a particular operating system or pro-
gramming language. General rules are stated for the specification of protocol bindings, i.e. the formal set
of rules for exchanging SOAP messages on top of a protocol (e.g. the HTTP binding in SOAP 1.28). Not
being tied to an operating system or programming languages, clients and service providers can communi-
cate and exchange information (for example by requesting a method and receiving a response to it) as long
as they can formulate and understand SOAP messages. Let’s take now a closer look at SOAP messages.

SOAP Messages SOAP messages are used to exchange structured and typed information between sys-
tems in a decentralised environment. A SOAP message is a well-formed XML document containing an
optional XML declaration and a SOAP envelope.

The SOAP envelope is introduced by the tag name Soap-Namespace:Envelope and represents the root
of the XML document. The envelope is made of an optional SOAP header and a SOAP body.

The SOAP header is introduced by the tag name Soap-Namespace:Header and contains informations
about how the body of the message is to be treated. For example, a SOAP header may contain a role
attribute information item saying that the message is targeted only to nodes operating in the specified role.

The SOAP body is introduced by the tag name Soap-Namespace:Body and encapsulates e.g. method
requests and their parameters or responses to such requests. Parameters can have primitive types (like string
or integer), but complex parameters can also be handled by the SOAP messaging protocol.

There are many SOAP packages available for different programming languages (for example, the
Apache SOAP for Java). Such packages take also care of the syntax details in using SOAP messages.

Example 2.12 (SOAP Messages)
A fragment of a SOAP message containing a request for a hotel reservation is given in the following. Note
that the method requested is named makeHotelReservation taking parameters like the name of the person
for which the reservation is to be made or the number of nights for which an accommodation is needed.

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

8SOAP HTTP binding, http://www.w3.org/TR/2003/REC-soap12-part2-20030624/soapinhttp

26 Paula-Lavinia Pătrânjan

http://www.w3.org/TR/2003/REC-soap12-part2-20030624/soapinhttp

CHAPTER 2. PRELIMINARIES

<soap:Body>
<service:makeHotelReservation
xmlns:service="urn:HotelReservationService">

<parameter1 xsi:type="xsd:string">Paula-Lavinia Patranjan</parameter1>
<parameter2 xsi:type="xsd:int">5</parameter2>
...

</service:makeHotelReservation>
</soap:Body>

</soap:Envelope>

How SOAP messages are to be processed is specified by the SOAP processing model, which describes:
- rules for constructing messages,
- rules by which messages are processed when received at an intermediary node or ultimate destination

node, and
- rules by which portions of the message can be inserted, deleted or modified by the actions of an

intermediary node. The W3C specification of the SOAP messaging framework [152] offers a more detailed
discussion on SOAP processing model.

One may argue that all the issues addressed and made possible through SOAP have had already a
counterpart in the CORBA framework. Different advantages are gained by using one framework or another.
Still, “where SOAP really shines is as the message protocol for web services”9.

2.4 Querying Web Data
As already pointed out through the application scenarios of Section 1.2, gathering informations from Web
resources plays an essential role in realising reactivity on the Web. Accomplishing this task presupposes
the existence of means for querying Web data, i.e. general purpose programming languages or Web query
languages. Being focused only on the querying of data, Web query languages offer constructs tailored to
the querying ability and thus are easier to understand and use by the practitioners.

An overview of Web query languages is given next followed by short introductions to some of the
established query languages (Section 2.4.1). The Web query language Xcerpt is discussed in more detail
(Section 2.4.2), as it represents the query language chosen to be embedded in the solution proposed in this
thesis.

2.4.1 Web Query Languages: An Overview
This section is not intended to be a survey on existing Web query languages, as the focus of the thesis is not
on querying Web resources. (A survey on textual Web query languages can be found in [78].) The topic
of querying data on the Web has received a considerable attention; thus, the arena of existing Web query
languages is rather crowded. Taking also into consideration that data is found in different formats (such as
HTML, XML, or RDF), a considerable number of special purpose query languages have been developed.
Though, an ideal query language should go beyond different data representation formalisms and offer an
intuitive and uniform way of querying and reasoning with Web data, regardless of their representation.

Based on the selection mechanism used for retrieving parts of Web documents, two categories of Web
query languages can be recognised:

(a.) path-based query languages that use location path specifications to address and select portions of
Web documents. Such a location path consists mainly of element names or attribute qualifiers separated by
forward slashes (/), very similar to a file system path.

(b.) pattern-based query languages that use pattern (or template) specifications for the data to be
queried. Such patterns are possibly incomplete (some parts are left out and others are represented by
variables) models for Web documents. In order to retrieve data from these documents they need to exhibit
the query pattern used.

9SOAP Basics, http://www.soapuser.com/

Paula-Lavinia Pătrânjan 27

http://www.soapuser.com/

2.4. QUERYING WEB DATA

This section continues with short introductions to established Web query languages as instances of the
two language classes explained above. Query languages for meta data are not really established yet, i.e.
proposals exist but there isn’t a large community that uses one of them. Thus, the discussion here deals
only with query languages for Web data. Still, in some cases extensions exist for working also with meta
data (XQuery) or the language is generic enough to deal with both kinds of data (Xcerpt).

XPath

The XML Path Language (XPath) [149] is a language for selecting parts of an XML document. Considering
query language a language capable of querying data and transforming data or constructing new data, XPath
is not a query language as it lacks construction abilities. Still, XPath offers a powerful selection mechanism
upon which other query languages are built (for example, XQuery and XSL).

XPath expressions specify navigation steps that operate on the tree data model of an XML document.
These navigation steps are considered relative to a context node which initially is the root of the document.

Example 2.13 (XPath Expressions)
The following XPath expression specifies that the tree representation of an XML document is to be navi-
gated from the root which should be labelled accommodation to the hotel elements that have a subele-
ment price-per-room with content less than 100. From the hotel elements satisfying this constraint, the
subelements labelled name are to be retrieved (or selected).

/accommodation/hotel[price-per-room < 100]/name

Considering the above given XPath expression posed to the XML document of Example 2.1, the ele-
ment

<name>Corail</name>

is selected. As easily recognisable from the given example, XPath does not have an XML syntax.

XSL

The Extensible Stylesheet Language (XSL) [154] is a formatting and transformation language used to
transform XML documents in other documents, e.g. XML or HTML documents. The transformation is
specified by means of XSL Transformation (XSLT) [150] rules, called templates, that are recursively ap-
plied to the nodes of a single XML document. Transformation rules use guards given by patterns to restrict
the nodes to which they are to be applied to. Patterns are specified in terms of XPath expressions.

XSLT has been primarily developed as a style sheet language, but it can be used also as a query lan-
guage. Note that XSLT is a rule-based language (having an XML syntax), but the querying and constructing
are intertwined.

Example 2.14 (XSLT)
The following example uses XSLT rules (introduced by xsl:template) to select the names of all hotels
where a room costs less than 100 Euro and return them in a result element.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/accommodation">

<result>
<xsl:apply-templates/>

</result>
</xsl:template>
<xsl:template match="hotel[price-per-room < 100]">

<xsl:apply-templates select="name"/>
</xsl:template>
<xsl:template match="name">

28 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

<xsl:copy-of select="."/>
<xsl:template/>
</xsl:stylesheet>

Three transformation rules are specified in the above given example:
1. the first rule applies for the root of the transformed document if its label is accommodation and

constructs a result element that will contain the outcome of applying the example’s rules;
2. the second rule applies for hotel elements with a price-per-room child having a content less than

100 (the set of nodes to which a rule is to be applied to contains the elements that match the specified XPath
expression), the rule selects the name elements of the selected hotels;

3. the third rule applies for name labelled elements and selects the content of them.

XQuery

XQuery [158] is the current W3C recommendation for an XML query language. XQuery uses paths for
selecting data from XML documents and patterns for constructing new data. Paths and patterns are inter-
mixed, i.e. there is no clear separation of query and construction parts. This represents a drawback, as the
structure of complex programs (that usually are needed in practice) is not so easy to grasp.

An XQuery query is a so-called FLWR (pronounced “flower”) expression that returns a value, i.e.
an expression of the form For-Let-Where-Order-Return that generalises the SELECT-FROM-HAVING-
WHERE expressions from SQL. The query parts are shortly explained in the light of the next example.

Example 2.15 (XQuery)
The following XQuery query constructs a result element containing the name of all hotels found in the
XML document named hotels.xml where the price per room costs less than 100 Euro. Note that the same
query is specified in Example 2.14 using XSLT.

FOR $hotel in document("hotels.xml")//accomodation/hotel
LET $price:=$hotel/price-per-room
WHERE $price < 100
ORDER BY $price
RETURN

<result>
{$hotel/name}

</result>

The FOR iterates through each of the nodes resulting from the path expression that follows it, i.e. the
variable named hotel will be bound to each of these nodes. The LET picks up price-per-room subnodes
in a variable named price. The value of this variable is used then in the WHERE and ORDER BY parts to
restrict the set of possible candidate nodes and to order the nodes of the result, respectively. The RETURN
clause constructs the result of the query.

XQuery has been developed for querying XML data and there is no support for querying and reasoning
with data and meta data. The language needs to be extended in order to be able to work also with meta
data. One such extension, MetaXQuery [93], has already been proposed for querying XML and RDF data.

2.4.2 The Web Query Language Xcerpt
Xcerpt10 is a Web query language developed as a research project at the Institute for Informatics, University
of Munich. Xcerpt has been the subject of the Ph.D. project of Dr. Sebastian Schaffert, whose Ph.D. thesis
[125] written under the supervision of Prof. Dr. François Bry contains a more detailed discussion on Xcerpt.
This section introduces the Web query language Xcerpt, as it is part of the reactive language presented in
this thesis. There are a couple of reasons why Xcerpt and not another Web query language has been chosen:
Both languages – Xcerpt and XChange, the reactive language proposed in this thesis – intend to prove that

10Xcerpt Project, http://www.xcerpt.org

Paula-Lavinia Pătrânjan 29

http://www.xcerpt.org

2.4. QUERYING WEB DATA

a pattern-based approach is amenable not only for querying Web data but also for specifying reactivity on
the Web. Being in the Munich group the author had the chance to directly work with Prof. Dr. François
Bry and Dr. Sebastian Schaffert, the main contributors to the Xcerpt project. Last but not least, Simulation
Unification – a novel unification method developed as part of the Xcerpt project for querying Web data –
plays an essential role for querying events.

This section discusses the following: The design principles of the Web query language Xcerpt are
shortly explained. The informal semantics of language constructs is given through simple examples; the
underlying ideas of the declarative semantics of Xcerpt queries are postponed to Section 5.1.2. The basic
ideas of Simulation Unification are also touched on. The section ends with a discussion on visual rendering
of Xcerpt programs and research efforts towards verbalising Xcerpt.

Design Principles

The development of the Xcerpt language followed the design principles listed and shortly explained next.
A more detailed discussion of them is to be found in [125] and a gentle one in [54, 42].

Pattern-Based Queries. In contrast to the approach taken in most of existing XML query languages
(where paths are used for selecting data), Xcerpt uses patterns for both selecting data items and construct-
ing new data. An Xcerpt pattern is like a form that gives an example of the data that is to be queried or to
be constructed, like query atoms in logic programming.

Incomplete Patterns. As data on the Web (see Section 2.2) have different and irregular structure and a
schema is not always accessible, a query language for the Web needs to be tailored to these features. Thus,
Xcerpt has the ability to specify incompleteness in breadth (not all subelements of an element need to be
specified) as well as in depth (the path between elements in the data tree is not completely specified). Also,
Xcerpt supports ordered and unordered pattern specifications to express that the order of subelements is of
importance or not.

Rules. Xcerpt is a rule-based language, i.e. an Xcerpt program consists of deduction rules that may
interact via (possibly recursive) rule chaining. Rules are a suitable and easy to comprehend mechanism
for inferring new data from existing data (data of Web resources and views’ data), very much like rules in
logic programming.

Backward Chaining. In the Web context, a data driven approach to rules’ evaluation is not suitable
as one might need to consider as the initial point for evaluation the whole Web. In contrast to such an
approach, known as forward chaining, a goal driven evaluation of rules is needed where only data of such
resources are retrieved that are necessary to answer the query. Such an approach is known as backward
chaining and is used in Xcerpt.

Separation of Querying and Construction. One of the drawbacks of other existing query languages for
the Web (such as XQuery or XSLT) is that the query and construction parts are mixed and thus the overall
structure of complex programs is not evident anymore. Thus, one of Xcerpt’s design principles is the strict
separation of querying and construction.

Reasoning Capabilities. Xcerpt has been primarily developed to query and reason with XML data, but
due to its generality data and meta-data (for example given in RDF) can be queried in an uniform man-
ner. Moreover, special reasoning capabilities (e.g. location or temporal reasoning) can be either directly
implemented or plugged in (like a library that is used only when needed) the language.

30 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

Language Constructs

The language Xcerpt offers programmers the freedom to choose between two syntaxes for writing query
programs, an XML syntax and a compact syntax where the building blocks are terms. The latter is used in
this introduction to Xcerpt for readability and space reasons. Terms denote query patterns (query terms),
construction patterns (construct terms), and also data items of Web contents (data terms). Common to all
terms is that they represent tree or graph-like structures. The children of a node – subterms of a term –
may either be ordered, i.e. the order of occurrence is relevant, or unordered, i.e. the order of occurrence is
irrelevant. In the term syntax, an ordered term specification is denoted by square brackets [], an unordered
term specification by curly braces {}.

Data Terms Data terms represent data items (e.g. HTML or XML documents) that are found on the Web.
In an Xcerpt program the Web resources to be queried are specified using the keyword resource followed
by the Web address(es) where the data is to be found.

Example 2.16 (Xcerpt Data Terms)
The fragment of an XML document containing information about hotels that has been given in Example
2.1 is given in the following using the Xcerpt term syntax.

accommodation {
currency {"EUR"},
city {"Paris"},
country {"France"},
hotel {
name {"Princesse Isabelle"},
category {"3 stars"},
price-per-room {"112"}
},
hotel {
name {"Corail"},
category {"2 stars"},
price-per-room {"65"},
no-pets { }

}
}

It is rather straightforward to understand the term syntax used by Xcerpt (and also for exemplifying
the reactive language proposed in this thesis) after having seen the same fragment of data in its XML
representation (Example 2.1) and also in its tree representation (Example 2.7).

Query Terms. Query terms are (possibly incomplete) patterns for the Web data that is to be queried and
from which parts (subterms of data terms) are to be retrieved.

Total (complete) or partial (incomplete) query patterns can be specified. Partial query specifications
are useful when the structure of the queried documents is not completely known, but also for minimising
the terms that need to be written for meeting users query requests. Single square brackets [] or curly braces
{ } denote total specifications and double square brackets [[]] or curly braces {{ }} denote partial query
specifications. The syntax mirrors semantical differences between the two query specifications that are
explained in the following by examples.

Example 2.17 (Total vs. Partial Query Specifications)
The example contains two Xcerpt query terms that specify patterns matching with data terms having a root
labelled accommodation with a subterm labelled hotel.

accommodation {
hotel { }
}

accommodation {{
hotel {{ }}
}}

Paula-Lavinia Pătrânjan 31

2.4. QUERYING WEB DATA

The left query term is a total pattern specification that matches only data terms having a single hotel
subterm that is empty. In contrast, the right query term is a partial pattern specification that matches data
terms where the root may contain other subterms than the hotel subterm (note that it is possible to have
more than one hotel subterm), and no constraints are imposed on the content of hotel subterms (i.e. may
have empty content or arbitrary content).

Considering the above given query terms and the data term of the Example 2.16, only the query term
on the right matches the data term (one of the reasons is that the root element contains also other subterms
than hotel subterms).

Example 2.18 (Ordered vs. Unordered Query Specifications)
Two Xcerpt query terms that specify patterns matching with data terms having a root labelled accommodation
with a subterm labelled hotel are given in this example too. By using square brackets instead of curly
braces in the query term on the left, this query term matches only data terms with ordered subterms of the
root. The query term on the right specifies that the order is of no importance.

accommodation [[
hotel {{ }}
]]

accommodation {{
hotel {{ }}
}}

Because the data term of the Example 2.16 has unordered subterms, only the query term on the right
matches the data term. Note that unordered subterm specifications match with unordered or ordered sub-
terms of a data term (clearly, in the case that the labels and the structure is preserved).

Using the language constructs introduced previously, one can specify queries for determining if the
specified patterns match with data terms found at different Web resources or not. Mechanisms are needed
for selecting parts of Web documents and to use them in constructing new data items. Variables used in
query and construction patterns serve this purpose and therefore are introduced next.

Variables in Query Terms Query terms contain variables for retrieving data items, i.e. for selecting sub-
terms of queried data terms. Xcerpt variables are place holders for data, like logic programming variables
are. In Xcerpt, variables are preceded by the keyword var.

Example 2.19 (Xcerpt Variables)
The following Xcerpt query term specifies a pattern for data terms with root labelled accommodation and
having at least two subterms, one of which labelled city with character data content Paris.

accommodation {{
city {"Paris"},
var V

}}

Posing such a query against a data term would entail the variable named V to be bound to each subterm
of the root excepting the given city subterm. Considering again the data term of Example 2.16, the variable
V could be bound to each of the following four subterms:

V 7→ currency {"EUR"}
OR

V 7→ country {"France"}
OR

V 7→ hotel {
name {"Princesse Isabelle"},
category {"3 stars"},
price-per-room {"112"}
}

OR
V 7→ hotel {

name {"Corail"},
category {"2 stars"},

32 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

price-per-room {"65"},
no-pets { }
}

Variable restrictions can be specified using the → construct (read as), which restricts the bindings of
the variables to those terms that are matched by the restriction pattern.

Example 2.20 (Xcerpt Variable Restrictions)
Assume one is interested in retrieving only information about hotels in Paris. The next query term is a
slight modification of the Example 2.19, where the variable V is restricted to hotel subterms.

accommodation {{
city {"Paris"},
var V -> hotel {{ }}

}}

Posing such a query against the data term of Example 2.16 leads to the following bindings for the
variable V (note that only hotel subterms are possible bindings):

V 7→ hotel {
name {"Princesse Isabelle"},
category {"3 stars"},
price-per-room {"112"}
}

OR V 7→ hotel {
name {"Corail"},
category {"2 stars"},
price-per-room {"65"},
no-pets { }
}

Construct Descendant As already seen, partial specifications in Xcerpt query terms express incomplete-
ness in breadth. For expressing incompleteness in depth, Xcerpt offers a special construct – the descendant
construct (denoted by the keyword desc). The informal meaning of an expression desc subterm inside a
query term is that the given subterm is to be found in the queried document(s) but its depth in the document
tree is unknown. The following example explains the informal meaning of the desc(endant) construct,
its practicability, though, is better motivated by querying documents with a more complex structure.

Example 2.21 (Xcerpt Descendant Construct)
The next query term specifies a pattern for data terms with root labelled accommodation having a city
subterm (whose content is to be bound to the variable City) and containing at some depth name subterms
(whose content is to be bound to the variable Hotel).

accommodation {{
city { var City },
desc name { var Hotel }

}}

Again, posing the above query against the data term of Example 2.16, the following variable bindings
are obtained:

City 7→ "Paris" AND Hotel 7→ "Princesse Isabelle" OR
City 7→ "Paris" AND Hotel 7→ "Corail".

Construct Without In order to pose queries expressing that a certain subterm should not be found in the
queried data term, Xcerpt supports subterm negation (introduced by the keyword without). An Xcerpt
query term of the form

Label {{ without Subterm }}

matches only data terms labelled Label that do not have subterms matching Subterm.

Example 2.22 (Xcerpt Without Construct)
Assume that Mrs. Smith is interested in information about hotels in Paris where pets are allowed.

Paula-Lavinia Pătrânjan 33

2.4. QUERYING WEB DATA

accommodation {{
city {"Paris"},
var H -> hotel {{

without no-pets {}
}}

}}

Querying the data term of Example 2.16 using the above given query term, Mrs. Smith retrieves the
following data item as binding for the variable

H 7→ hotel {
name {"Princesse Isabelle"},
category {"3 stars"},
price-per-room {"112"}
}

Construct Except The Xcerpt construct except represents a comfortable means for retrieving subterms
of data terms and in the same time leaving some of the subterms of the variable bindings out. But, except
does not specify subterm negation, as without does! The informal semantics of the construct will be
clearer after an example.

Example 2.23 (Xcerpt Except Construct)
In order to understand the except construct, the query term of Example 2.22 is explained next but using
except instead of without. Here, hotels where no pets are allowed are of interest, but this information is
not to be part of the binding for the variable H.

accommodation {{
city {"Paris"},
var H -> hotel {{

except no-pets {}
}}

}}

As for the without example, the above given query term is used to query the data term of Example 2.16.
The following binding is obtained:

H 7→ hotel {
name {"Corail"},
category {"2 stars"},
price-per-room {"65"}
}

Construct Optional For specifying optional patterns inside query terms, Xcerpt offers the optional
construct. An Xcerpt query term of the form

Label {{ optional Subterm }}

matches data terms labelled Label that might have subterms matching Subterm.

Example 2.24 (Xcerpt Optional Construct)
The following query term specifies, by means of optional, that if a county subterm is found in the queried
data term then this subterm should be bound to the variable C. In the case that no county subterms exist
in a data term labelled accommodation, the query term still matches the data term but the variable has no
binding.

accommodation {{
optional var C -> county {{ }}

}}

34 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

The above given query term posed against the data term of Example 2.16 retrieves no binding for the
variable C, as no county subterm is found.

Query terms are “matched” with data or construct terms by a non-standard unification method called
Simulation Unification [55] dealing with partial and unordered query specifications. The underlying ideas
of this unification method used in Xcerpt are explained later in this section after introducing other important
language constructs.

Construct Terms Construct terms are patterns that make use of variables (the bindings of which are
specified in query terms) so as to construct new data terms. Being templates for new data, incomplete spec-
ifications do not make sense and thus are not allowed in construct terms. They are similar to data terms,
but augmented by variables playing the role of place holders for data retrieved in a query. Also, con-
struct terms may contain grouping constructs for collecting some or all instances that result from different
variable bindings.

Example 2.25 (Xcerpt Construct Some)
Assume that the variable Hotel is to be bound to subterms containing information about hotels by querying
data of one or more Web resources. The following construct term is used to construct a new data term with
root labelled result and containing two subterms (nondeterministically chosen from the bindings for
Hotel).

result {
some 2 var Hotel
}

Example 2.26 (Xcerpt Construct All)
This example makes the same assumption as the previous one, namely that the variable Hotel is bound to
subterms containing information about hotels, but here the variable Price is bound to the price per room
of the selected hotels. The following construct term is used for constructing a new data term containing all
bindings for the variable Hotel ordered ascending by the price per room.

result [
all var Hotel order by ascending [var Price]
]

Xcerpt grouping constructs, in particular the all construct, are very useful in easily implementing real
life problems where querying Web resources play an important role.

Construct-Query Rules Construct-query rules (short rules) relate a construct term (introduced by the
keyword CONSTRUCT) to a query (introduced by the keyword FROM) consisting of AND and/or OR connected
query terms. Queries or parts of a query may be further restricted by constraints (e.g. arithmetic constraints)
in a so-called condition box (introduced by the keyword where). The where clause has been introduced
to source out all restrictions that are not pattern-based and, thus, to keep patterns for the queried data as
“clean” as possible.

Resource specifications, introduced by the keyword in, accompany Xcerpt queries to denote the Web
resources that are to be queried. If no resource specification is given, the result of the rules of the program
are to be queried. A resource specification may be atomic or compound. Atomic resource specifications
comprise a URI and optionally a format for the data at the given URI. Compound resource specifications
assert that multiple resources are queried. A compound resource specification is a combination of and or
or connectives and atomic resource specifications.

Example 2.27 (Xcerpt Construct-Query Rules)
The data found at http://www.hotels.net and http://www.hrs.fr are queried for gathering informa-
tion about hotels cheaper than 100 Euro. The bindings for the variables are then gathered in the construct
part of the following rule so as to construct a view over hotel data.

Paula-Lavinia Pătrânjan 35

2.4. QUERYING WEB DATA

CONSTRUCT
result {
all hotels {

city { var City },
list [

all hotel {
name { var Name },
phone { var Phone },
price { var Price },
all optional var OtherInfo

} order by ascending [var Price]
]

}
}

FROM
or {
in { resource {"http://www.hotels.fr"},

hotels {{
hotel {{

city { var City},
name { var Name },
phone { var Phone },
price-per-room { var Price },
optional var OtherInfo

}}
}}

},
in { resource {"http://www.hrs.fr"},

logement {{
hotel {{

ville { var {City}},
nom { var Name },
telephone { var Phone },
prix { var Price },
optional var OtherInfo

}}
}}

}
} where var Price < 100
END

Note that
(a.) the where clause restricts the variable Price and thus only hotels where the price per room is less

than 100 Euro (in this case) are retrieved;
(b.) by using the grouping construct all, the rule gathers all hotels for each city found in the data of

the two Web resources;
(c.) the variable OtherInfo is used for gathering all existing information about hotels the two Web

resources have; the optional construct is used because there is no knowledge whether the data at the Web
resources have more than three terms or not.

A slight modification (from the syntax point of view) of construct-query rules called goals in Xcerpt
are used to output the result of a rule in a specified document and using a given format. The difference in
evaluating Xcerpt rules is that the result of construct-query rules can be further queried by other rules while
the result of goals can not feed further processing.

36 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

Rule Chaining Complex querying problems can be elegantly solved by using Xcerpt: rules are means
for structuring complex programs (keeping a clear overall structure of programs) and the chaining of rules
(i.e. rules can query the result of other program rules) is the mechanism through which complex programs
can be realised. Xcerpt rules can be evaluated in two directions: Forward chaining is data driven and is
useful e.g. “when creating a static Web site (consisting of one or more Web pages) from an input document
and an Xcerpt program”[126]. Backward chaining is goal driven and is necessary when querying large
amount of data, such as the Web itself.

Example 2.28 (Xcerpt Rule Chaining)
The rule of Example 2.27 (above) constructs a list of hotels. Now assume that Mrs. Smith’s secretary needs
the phone numbers of hotels in Paris. By querying the result of the previous example, the following Xcerpt
rule constructs a list containing the desired information.

CONSTRUCT
info [
all hotel { var Name, var Phone }
]

FROM
result {{
hotels {{

city { "Paris" },
desc hotel {{

var Name → name {{ }},
var Phone → phone {{ }}

}}
}}

}}
END

Note that the scope of an Xcerpt variable is the entire rule which uses it. Moreover, a (same) variable
used in the query terms of an Xcerpt query needs to be bound to the same data terms, i.e. Xcerpt uses
logical variables.

A more comprehensive explanation of Xcerpt constructs accompanied by intuitive examples can be
found in [126, 125].

Simulation Unification: Basic Ideas

Simulation Unification [55] is a non-standard unification method developed for matching query terms with
data or construct terms. It has been developed so as to cope with partial specifications, variable (not fixed)
arity, and order in query terms.

Simulation Unification is based on a graph relation and tries to match the graph induced by a query
term with the one induced by a data or construct term. An informal introduction to Simulation Unification
is offered here by means of simple examples; for a more detailed discussion on graphs induced by Xcerpt
terms see [125].

Example 2.29 (Graph Induced by Query Term)
Consider the following Xcerpt query term

a {{ b {c}, d {{}} }}

The graph induced by a query term offers another representation of the query term, a graph-based one.
Thus, the induced graph contains information about the structure of the query term, the kind of specifica-
tions used (partial or total, ordered or unordered), the labels of terms, and other language constructs used.
The query term given above induces the following graph:

Paula-Lavinia Pătrânjan 37

2.4. QUERYING WEB DATA

a {{ }}

b { } d {{ }}

c

When matching, or simulation unifying, query terms with data or construct terms one tries to find for
each subterm of the query term a “suitable”, matching subterm in the data or construct term. Considering
their induced graphs, each part of the graph induced by the query term needs to have a matching part in
the graph induced by the data or construct term. Clearly, the semantics of language constructs needs to be
taken into account when looking for suitable matches.

Example 2.30 (Rooted Graph Simulation)
Assume that the query term of Example 2.29 is to be matched against the data term

a { b { c }, d { d, e }, f { g }}

The following figure illustrates the rooted graph simulations between the graphs induced by the two Xcerpt
terms:

a {{ }}

b { } d {{ }}

c

a { }

b { } d { }

c

f { }

d e g

Applying Simulation Unification to a query term and a data or construct term results in a set of substi-
tutions (for the variables occurring in the query term) called simulation unifiers. Simulation of query term
q in a (data or construct) term t is denoted q � t. Applying a simulation unifier to the query term yields
a ground query term (where the variables are substituted with their bindings) that simulates into the data
term.

Visual and Verbal Rendering of Xcerpt Programs

Visual and verbal renderings of programming languages play an important role not only in easing the
use of languages by programmers and novice practitioners, but also in accepting and wide-spreading the
languages within different kinds of communities. The need for at least one of the two rendering possibilities
(visual or verbal) is accentuated for (Semantic) Web languages, as the whole idea of the Web was to be
usable by anyone. The Web’s “usage” can mean more if the available technologies are easier to use, for
example by non-programmers (cf. [46]).

Visual Rendering A visual rendering of Xcerpt programs called visXcerpt [23, 26, 27] has been devel-
oped in the framework of the Xcerpt project. The visual counterpart of Xcerpt is shortly introduced here,
as it might represent the building block of visualising the reactive language proposed later in this thesis
(this issue is touched on later, in Section 7.2, when discussing perspectives for future research). Devel-
oping visXcerpt bears evidence that pattern-based languages are very suitable for visualising their textual

38 Paula-Lavinia Pătrânjan

CHAPTER 2. PRELIMINARIES

version and that just rendering the pattern specifications suffices (no fully new language as visual language
is needed).

Example 2.31 (Rule Rendering in visXcerpt)
The following visXcerpt example gives the visual representation of the Xcerpt rule of Example 2.28:

Xcerpt terms are visualised as boxes where the term label is attached as a tab on top of it and nested
boxes denote term-subterm relationships. The counterpart of Xcerpt’s parentheses are different kind of
box borders; dotted lines express partial specifications and closed lines express total specifications. Textual
adornment (corresponding to keywords) accompanied by reserved colours (black, gray, and white) are used
for rendering Xcerpt constructs such as descendant, or the grouping constructs all and some. For example,
variables are visualised as black boxes with the name of the variable as white label. How the example
above shows, an arrow is used to connect the query with the construct part of an Xcerpt rule, the query is
visualised on the right side and the construct part on the left.

Verbal Rendering The project VOXX [25] investigates means to verbalise Web queries and Web data,
that is to express queries and data in a controlled language, i.e. a non-ambiguous language that resembles
natural language. More concrete, VOXX aims at expressing Xcerpt rules and XML data by using (an
adaptation of) Attempto Controlled English (ACE) [81] developed at the University of Zurich. VOXX’s
goal is to bridge the formal gap between ACE vs. Xcerpt and XML by defining a common underlying
formal language from which ACE, Xcerpt, and XML can be unambiguously mapped.

Paula-Lavinia Pătrânjan 39

2.4. QUERYING WEB DATA

40 Paula-Lavinia Pătrânjan

CHAPTER

THREE

Related Work

Chapter 1 has motivated the need for solutions to reactivity on the Web especially through the applica-
tion scenarios of Section 1.2, which pose requirements that proposals for realising reactivity should fulfil.
Chapter 2 has addressed the characteristics of the Web as framework of these proposals by explaining the
present stage of data representation formalisms, as well as existing technologies for retrieving data on the
Web (i.e. communication protocols and units, and query languages). Taking into account the recognised
requirements and based on the existing technologies, this chapter demonstrates that no existing solution to
reactivity on the Web do fulfils the requirements. For this, research efforts related to the topic of reactivity
on the Web are introduced here by following actually the chronological evolution of reactive technologies.

The issue of automatic reaction in response to happenings of interest has its roots in the field of artificial
intelligence (production systems) and active databases. In particular, the ability to react to composite
events, i.e. (possibly time-related) combinations of event instances, has received considerable attention
(cf. [74, 119, 141]). Thus, useful concepts can be “borrowed” from active databases when investigating
reactivity on the Web. However, differences between (generally centralised) active databases and the Web,
where a central clock and a central management are missing, necessitate new approaches. Also, complex
events reflecting a user-centered (e.g. travel planning related situations) and not a system-centered view are
needed on the Web. Another important issue is that the concepts used have not always clear definitions and
semantics (e.g. most of the proposals do not make a difference between the notion of event and the notion of
event query – the query against events), strongly motivating one of the contributions of this thesis discussed
in Section 7.1 (showing that the thesis’ proposal is not just an adaption of active database technology to a
new medium, the Web).

As the research on (centralised) active database systems is, to some extent, saturated and has already
entailed a number of commercial systems, recent research on this topic has moved its attention to other
frameworks (distributed ones), such as the (Semantic) Web. One recent proposal is found in [8], where a
situation monitoring system for distributed event sources is outlined. The need for taking such kind of steps
forward has been motivated in Chapter 1. Thus, new languages have been proposed first just for updating
data on the Web (realised by means of update languages) and then also for propagating and reacting to
such updates (realised by means of reactive languages). Most of them have been primarily developed for
the Web but the research community considers now finding solutions to the new problems that arise with
the Semantic Web endeavour.

The chapter begins with a compact introduction into the concepts on which active databases build upon
(Section 3.1) and continues with discussions based on existing concrete proposals for update languages for
the (Semantic) Web (Section 3.2), and reactive languages for the (Semantic) Web (Section 3.3).

3.1 Active Database Systems
Active database systems are (relational or object-oriented) database management systems that exhibit active
behaviour, i.e. they “extend their passive predecessors with rules that describe how the database should

41

3.1. ACTIVE DATABASE SYSTEMS

respond to events as they take place”(Norman W. Paton, in the preface of [119]). Reactive rules (also called
event-condition-action rules) are the kind of rules used for bringing reactivity into database management
systems. Triggers are a special kind of reactive rules where the condition part is missing (if the condition
is complicated or it asks for evaluating joins, its evaluation is quite expensive).

A considerable number of active database system prototypes and event languages have been proposed
(e.g. Chimera [61, 60], COMPOSE [87, 85], HiPAC [110, 124], Ode [86, 9], REACH [165, 57], SAMOS
[82, 84], Snoop [64, 63], Starburst [139, 140], the SQL3 standard [2], and commercial systems supporting
triggers such as Oracle1, Informix2, Ingres3, InterBase4) that bear evidence for the intensity of work done
in the past in the active database field (an annotated bibliography on active databases can be found in [91]).
Thus, in order to save space and to focus on concepts that are relevant to this thesis’ proposal, the section
does not represent an exhaustive introduction into existing active database systems. Instead, this section
discusses the components of reactive rules (Section 3.1.1) and issues related to the rule execution semantics
(Section 3.1.2).

3.1.1 Rule Components
This section takes a closer look at the components of reactive rules used in existing active database sys-
tems from the language design point of view, as this has a great impact on the expressive power and the
complexity of the active rule language. Naturally, the design decisions mirror the application domains that
the developed active systems needed to address, thus no system exists that realises all the issues discussed
next.

Event Part Events are happenings (e.g. changes in the database or method invocations) that are of interest
for a particular application. The set of all events that a database management system is notified about forms
the so-called event history. One common trait of existing active database systems is their ability to query
events that have been received in the past, this requiring the event history to be stored completely. This
approach is suitable for centralised systems with no huge amount of event occurrences, but is not amenable
to distributed systems with different kinds of component systems.

Events considered in active database systems are of the following types: data modification (e.g. an
insert, delete or update on a particular table of a relational database), data retrieval (e.g. a SQL select
operation), temporal (i.e. specify time point(s) at which a rule is to be fired), transaction-related (e.g.
beginning or ending of a transaction), and external (not defined in the event language, just registered in the
system).

Events may be atomic (also called primitive or simple in the literature) or composite (also called com-
plex), i.e. combinations of atomic or composite events specified by means of operators:

• logical operators that combine events using Boolean connectives (e.g. and, or, not). Not all systems
support the negation of (atomic or composite) events. Some of the existing systems offer generalised
versions of these logical operators, e.g. the Any operator in Snoop having the semantics of an n-ary
exclusive disjunction and selection (not to be confused with the any operator of COMPOSE denoting
the disjunction of all atomic events);

• sequence operator supported by most of existing active systems;

• aperiodic operators for expressing aperiodic events bounded by the occurrence of two other events
(supported e.g. by Snoop);

• periodic operators for specifying events that repeat themselves within a finite amount of time (sup-
ported e.g. by Snoop and HiPAC, where the default interval is the transaction in which the events
occur);

1Oracle, http://www.oracle.com/database/index.html
2IBM’s Informix, http://www.informix.com
3Ingres, http://www3.ca.com/Solutions/Product.asp?ID=1013
4Borland’s InterBase, http://www.borland.de/interbase/

42 Paula-Lavinia Pătrânjan

http://www.oracle.com/database/index.html
http://www.informix.com
http://www3.ca.com/Solutions/Product.asp?ID=1013
http://www.borland.de/interbase/

CHAPTER 3. RELATED WORK

• selection operators for detecting e.g. the first event instance in a history, the n-th occurrence of an
event, or every n-th occurrence of an event (operators supported e.g. by Ode and COMPOSE);

• other operators tailored to specific applications.

Some systems, such as SQL3, consider after and before kind of events where an event specifica-
tion after Event (or before Event) has the meaning of firing the rule containing it after (or before,
respectively) an Event instance has occurred. Note that before event specifications are not realistic in a
decentralised framework, such as the Web.

For specifying the semantics of composite event selection [164] when the event part is not satisfied by
unique composition of events, language constructs for expressing event consumption are introduced. Such
modes of event consumption are needed for offering a precise semantics for different kinds of applica-
tions (these modes can usually be specified by the other event constructs offered, if the event language has
enough expressive power). For example, Snoop [64] uses so-called parameter contexts for this purpose and
defines the recent (takes only the most recent occurrences of event instances into account), chronicle (uses
the chronological order of the notified events), continuous (each occurrence of an event is considered as
possible component candidate), and the cumulative context (detected composite events include all occur-
rences of instances of component events). [8] shows how Snoop’s operators in the recent, chronicle, and
continuous contexts can be expressed in Amit, a situation manager proposed recently. Composite event
specifications of most systems are not easy to write and understand (partly because they lack a precise or
good explanation of the constructs supported), thus when combined with event consumption specifications
the behaviour of the specified rules is not so easy to grasp.

Event consumption policies are employed also for analysing expressiveness and decision problems for
active database event queries (i.e. queries to events); [20] introduces a formal procedure for the specification
of event consumption that is the base for comparing consumption policies. A temporal logic approach
for defining the semantics of composite events is used. Results on decidability and undecidability for
implication and equivalence of event queries are also given.

Conditions Conditions specified in a reactive rule are checked after an event of interest occurred and
before the action’s execution. Such conditions (called masks in [85]) are given by database predicates
(e.g. corresponding to a where clause in SQL), database queries, or application procedures (that do not
necessarily access the database). The condition part of a reactive rule can be omitted (in most active
database systems), in which case the condition is considered true.

The old state of the database (i.e. before the modification) and the new state of the database (i.e. after the
modification) can be used in specifying conditions of some active database systems (for example in SQL3
or HiPAC, where the default interval is a transaction). Again, this approach is adequate for centralised
systems and can not be used in distributed systems of large scale.

Actions Actions are executed when events have been received that instantiate the event part, provided
that the condition specified in the condition part holds. Usually, there is a mechanism for passing data
from the event part to the condition and action part, and/or from the condition part to the action part, and
to reference these data in the respective parts. However, tailoring the language to the application scenarios
considered, most common is the passing of data only between the condition and action part (like e.g. in
Chimera).

As actions, existing active database systems consider data modifications (SQL insert, delete, or update
operations in relational systems, or object creation, deletion, or modification through method calls in object-
oriented systems), data retrieval, data definition (e.g. for creating a new table or modifying the set of
existing rules by deleting, modifying, activating or deactivating a rule, modification actions are supported
e.g. by Starburst), transaction control (e.g. commit or rollback), application procedures implementing the
desired action to be taken. Many active database systems support not just simple actions like the ones
noted previously, but also the specification and execution of a sequence of multiple actions (e.g. Chimera
supports sequence of queries, updates, and operation invocations).

Paula-Lavinia Pătrânjan 43

3.1. ACTIVE DATABASE SYSTEMS

3.1.2 Semantics of Rule Execution

The previous section has introduced the language constructs that can be used in specifying the desired
active behaviour of an active database system. To be sure that the desired behaviour is the same as the real
behaviour of a set of defined reactive rules, the semantics of rule execution needs to be clear. Usually this
implies that a formal semantics of the active language is available. A number of alternatives exist for the
rule execution semantics, possibilities determined by the taken decisions relating e.g. coupling modes, rule
prioritisation. A proposal for a formalism that makes all semantical choices apparent is presented in [80].

Coupling Modes “Coupling modes give the rule definer fine control over how a rule is to be processed
relative to the transaction that triggered the rule.”[141] The following coupling modes (also found in the
literature as execution modes) are possible: immediate, i.e. directly after the event has been detected, de-
ferred, i.e. at the end of the triggering transaction, and independent (or decoupled, or detached), i.e. in an
independent and separate transaction. For example, Chimera supports the immediate and deferred modes,
SAMOS and REACH support all three coupling modes, but REACH implements also different variants for
the independent mode.

Rule Prioritisation The occurrence of an event might determine the event part of more than one rule
to be instantiated. This implies that at a particular time point a set of conditions and actions waits to be
evaluated. An order of rules’ evaluation can be determined when priorities for rules have been specified.
For example, in SAMOS one can specify that a rule should be evaluated before or after another given
rule.

Rule prioritisation has been employed also for determining sufficient conditions for termination (i.e.
the execution of the rules on any initial database state does not continue indefinitely) and confluence (i.e.
for any initial database state, the order of rule execution does not influence the final state of the database)
of a set of active rules. Such a method has been introduced in [69], where different policies for assigning
priorities to active rules are given so as to guarantee both termination and confluence of set of rules.

Evaluation Algorithms for Composite Event Detection The issue of composite event detection has
received considerable attention in the field of active database systems; the most popular approaches to
composite event detection are touched on shortly. Based on the representation of the partial evaluations of
composite events, evaluation algorithms are based upon:

• Petri Nets. A partial evaluation of a composite event is represented as a Petri net. This approach
is used in the active object-oriented database system SAMOS [83], where detection of composite
events is based on coloured Petri-nets. Here, input places correspond to successful evaluation of
parts of composite events, output places to successful evaluation of whole composite events; auxiliary
places, transitions, and arcs are employed for determining relations (such as temporal dependencies)
between constituent events.

• Finite State Automata. A partial evaluation of a composite event is represented as an automaton.
Occurrence of events trigger state transitions, reaching another state corresponds to a more ’richer’
partial evaluation, and reaching an end state means detection of a composite event. This approach is
used for the event language of COMPOSE [87, 85].

• Trees and Bottom-Up Flow of Events. This is the most widely used approach for detecting composite
events; it has been first employed for composite event detection in Snoop [64]. The main idea is
to construct an operator tree for each composite event (or more exactly of a class of composite
events) that mirrors its structure; leaf nodes are atomic events and inner nodes are composition
operators. Leaf nodes are fed in with atomic events that have occurred and partial evaluations are
pushed towards the root of the tree. Reaching the root node in the tree means detection of a composite
event.

44 Paula-Lavinia Pătrânjan

CHAPTER 3. RELATED WORK

3.2 Update Languages
As the research community has focused its work on the development of query languages for the (Semantic)
Web, the development of update languages for the (Semantic) Web has not received much attention so far.
Most probably this is the reason why no update language has become a World Wide Web Consortium’s
recommendation until now. A W3C working draft on update facility requirements for XQuery5 has been
just recently published.

The distinction between a transformation language and an update language needs to be made here clear.
Transformation languages are not update languages, transformation refers to structuring the answers to a
query (i.e. newly generated data), not to modifying the structure of stored data. XSLT and Xcerpt (already
discussed in Section 2.4) are examples of languages developed for querying and transforming Web data.
Examples of update languages developed for the Web and special purpose tools for evolution of Semantic
Web data are given in the following two subsections.

3.2.1 Update Languages for the Web
Most existing proposals for update languages for Web data expressed as XML have a common feature:
path-expressions are used to select nodes within the input XML document; the selected nodes are then
considered as target of the update operations. This is not surprising: an update language represents an
extension of a query language with update capabilities or at least needs a mechanism for selecting parts of
XML documents that are to be modified. As XPath [149] (path-oriented language for addressing parts of
XML documents) and XQuery [158] (query and transformation language for XML data based on XPath)
are World Wide Web Consortium’s recommendations, most update proposals are built upon these standards.

This section discusses existing update languages for the Web by using the following criteria: underlying
query language, update capabilities, implementation, and experimental results. The proposals that do not
have a name will be referred as update language or work followed by the scientific article where they have
been proposed.

Update Capabilities for XQuery

A proposal to extend XQuery [158] with update capabilities is presented in [133].
Underlying Query Language. A set of primitive update operations are proposed and then incorporated

into the XML query language XQuery [158].
Update Capabilities. The underlying query language is extended with a FOR LET WHERE UPDATE struc-

ture for specifying updates. The UPDATE part contains specifications of update operations (i.e. delete, insert,
rename, replace) that are to be executed in sequence. For ordered XML documents two insertion operations
are considered: insertion before a child element, and insertion after a child element.

Using a FOR WHERE clause in the UPDATE part, one can specify an iterative execution of updates for nodes
selected using an XPath expression. Moreover, by nesting update operations, updates can be expressed at
multiple levels within the XML structure.

The above presented update extensions to XQuery are presented in [101], but with slight modifications
and some extended constructs (e.g. means to specify conditional updates).

Transactions. The concept of transactions (i.e. complex updates treated as one unit and executed in an
all-or-nothing manner) is not investigated.

Implementation. Alternative techniques for implementing the update operations are presented in [133]
for the case when XML data is stored in a relational database (i.e. XML update statements are translated
into SQL [97] statements). The authors of this work believe in the importance of having techniques for
updating XML data mapped to relational data. An implementation of update capabilities for XQuery that
works directly with the XQuery update statements without any use of SQL statements is under development
in the Galax6 project.

Experimental Results. This is the only work on update languages for the Web that reports on imple-
mentation performance; however, the results are for the implementation using SQL statements. Using three

5XQuery Update Facility Requirements, http://www.w3.org/TR/2005/WD-xquery-update-requirements-20050211/
6Galax, http://www.cise.ufl.edu/research/mobility/

Paula-Lavinia Pătrânjan 45

http://www.w3.org/TR/2005/WD-xquery-update-requirements-20050211/
http://www.cise.ufl.edu/research/mobility/

3.2. UPDATE LANGUAGES

sets of test data (i.e. synthesised data with fixed structure, synthesised data with random structure, and real
life data from the DBLP [138] bibliography database) experimental results were done in order to compare
the techniques proposed for the core update operations (here, insert and delete).

XUpdate

XUpdate is an update language developed by the XML:DB group7, its latest language specification was
released in year 2000 as a working draft.

Underlying Query Language. XUpdate makes use of XPath [149] expressions for selecting nodes for
processing afterwards.

Update Capabilities. Simple update operations to XML documents are possible with XUpdate. This
simplicity regards not the kind of operations that are supported, but the lack of capabilities to express and
synchronise complex updates, i.e. to specify updates and relations between them and execute the updates
conformly. An XUpdate update is represented as a well-formed XML document. The XML syntax of the
language makes the programming and the understanding of complex update programs very hard.

Transactions. The concept of transactions is not investigated.
Implementation. Lexus8 is a Java implementation of the XUpdate language, its development started

at the Infozone group [90] and was continued at the XML:DB group. Another processor for XUpdate,
the OXF XUpdate Engine [113] implements besides the XUpdate specification a set of extensions to the
language, like iteration over a node set, and function declarations.

Experimental Results. Not available.

XPathLog

XPathLog [109, 108] is a rule-based XML data manipulation language. Its primarily goal was to offer
suitable means for integrating data from multiple, heterogeneous data sources.

Underlying Query Language. XPathLog uses XPath [149] as the underlying selection mechanism and
extends it with the Datalog-style variable concept.

Update Capabilities. XPathLog uses rules to specify the manipulation or integration of data from XML
resources. The rule body specifies bindings for variables to parts of XML documents selected using XPath.
The rule head specifies the desired update operations using the bindings gathered in the rule body. The
types of update operations considered in XPathLog are insertions and replacements. There is no explicit
deletion operation, design decision motivated by the intended application scenarios that rely on integrating
data. Using XPathLog, one can not specify and execute complex updates, such as ordered or unordered
conjunctions or disjunctions of updates.

Transactions. The concept of transactions is not investigated.
Implementation. The LoPiX [144] system, which implements the XPathLog language, is based on the

Florid [137] system.
Experimental Results. Not available.

XML-RL Update Language

XML-RL Update Language [105] is an update language for XML data that incorporates some features
of object oriented databases and logic programming and is thus easy to use by the practitioners.

Underlying Query Language. XML-RL Update Language extends the rule-based query language
XML-RL [103, 104] with update capabilities. As a design principle of the language XML-RL, the query
and construction parts are strictly separated. The rule body specifies queries to XML documents and the
rule head specifies the XML data to be constructed.

Update Capabilities. Five kinds of update operations are supported by the XML-RL Update Language,
i.e. insert before, insert after, insert into, delete, and replace with. Using the built-in posi-
tion function, new elements can be inserted at a given position in the XML document (e.g. for specifying

7XML:DB, http://www.xmldb.org
8XUpdate Processor, http://xmldb-org.sourceforge.net/xupdate/

46 Paula-Lavinia Pătrânjan

http://www.xmldb.org
http://xmldb-org.sourceforge.net/xupdate/

CHAPTER 3. RELATED WORK

insertion of an element as first child of a given parent element). Also, complex updates at multiple levels
in the document structure can be easily expressed.

However, the language does not support the specification of relations between complex updates that are
to be executed synchronously. Moreover, support for propagation of updates on the Web is not provided.

Transactions. The concept of transactions is not investigated.
Implementation. An implementation is not available yet. The authors of the XML-RL project are

working on an implementation of the XML-RL system, which includes the query and update capabilities.
Experimental Results. Not available, as the system is not yet implemented.

Lorel

The Lorel [7] query language offers simple update capabilities for semistructured data.
Underlying Query Language. Lorel is the query language from Stanford’s Lore [111] semistructured

database system.
Update Capabilities. The Lorel query language supports just simple updates (i.e. create and delete

object names, create a new object, and modify the value of an object) of nodes into the Lore data graph
(the Object Exchange Model is used). There is no explicit deletion operation for objects, instead a garbage
collection approach is taken. The Lorel query language has migrated to XML data, but the update features
were not ported in the process.

Transactions. The concept of transactions is not investigated.
Implementation. Lorel is implemented as the query language of the Lore prototype database manage-

ment system at Stanford University [132].
Experimental Results. Not available.

3.2.2 Special Purpose Tools for Ontology Evolution
Some of the existing tools for ontology evolution and works on updates in Description Logics [16] are
described next. This section is not an exhaustive survey on existing tools for ontology evolution; instead,
it presents a couple of approaches followed in Semantic Web projects. Some ideas and results might prove
useful when porting update languages developed for the Web to the Semantic Web.

Work Proposed in [130]

This work discusses change operations on knowledge bases having ALC [127] as a base description logic.
In ALC only concepts and relations (roles) between concepts are specified. The objects (i.e. instances of
specified concepts) and their relations are neglected. A more detailed description of ALC can be found in
[127].

In order to have an explicit semantics for each operation that changes the knowledge base, the author
focused his work on formalising change operations on ontologies. Thus, a system KB is defined, which
represents a knowledge base using ALC, and a set of operations (e.g. for deriving new concepts, or for
adding new roles) working on KB. For each such operation, a precondition and a postcondition are formally
specified. Actually, the author wants to give flavours of a technique for formal definition of operations,
thus the set of proposed operations can be changed or extended to cope with the actual requirements of the
concrete applications.

It is also discussed how the proposed system can be used to model the ontology life-cycle management,
i.e. the approaches to ontology version management.

In this work, issues like ontology mapping, ontology merging are neglected but mentioned as future
work. Also, multi-user management and transaction management are currently missing.

Work Proposed in [96]

A framework is proposed in [96] that integrates several sources of information about ontology evolution.
The ontology change information can be represented in different formalisms. For a new version of an
ontology the changes can be represented as e.g. a log of changes applied to the old version of the ontology

Paula-Lavinia Pătrânjan 47

3.3. REACTIVE LANGUAGES

that result in the new version of the ontology, or just as the old and new versions of the ontology. The
proposed framework relates the change information that is available in different formalisms, and provides
mechanisms to derive new change information from existing information gathered from different sources.

In this work, an ontology of change operations for the OWL [161] knowledge model is used as a com-
mon language for the interaction of framework tools and components. This ontology of change operations
is to be found also in the OntoView [95] system, which is described later in this section. The ontology
of change contains basic change operations and an extension that defines complex change operations. A
number of rules and heuristics are proposed for obtaining complex change operations from a set of basic
operations. The authors want to experiment with these heuristics in order to test their effectiveness and to
determine the optimal values for the parameters.

OntoView

OntoView [95] is a Web-based system that provides capabilities like finding, specifying, and storing the
relations between ontology versions. The system is under development and currently supports RDF-based
ontology languages, such as DAML+OIL [72].

The main function of OntoView is to provide a transparent interface to versions of ontologies. There-
fore, the system maintains information about relations between different versions of an ontology: the
descriptive meta-data (e.g. the date of a change), the conceptual relations (i.e. the logical relations between
constructs in two versions of the ontology), and the transformations between the ontology specifications
(i.e. a list of change operations).

The OntoView system has been inspired by the Concurrent Versioning System (CVS) [28], which is
used in software development. The implementation of the OntoView system has initially been based on
CVS, but the authors want to shift to a new implementation that will be build on a solid storage system for
ontologies, such as Sesame [129].

Work Proposed in [123]

An interesting proposal is found in [123], which introduces update semantics into a Description Logics sys-
tem. The authors argue that this problem is strongly related to the view management problem in databases.

Two kinds of assignments are considered in this work: concept assignment (i.e. expressing properties
of the form a specified object is an instance of a concept), and attribute value assignments. An important
contribution of this proposal is the use of the transaction concept. A transaction may (and generally does)
contain two parts: the first part specifies elementary updates, and the second part specifies constraints,
i.e. concept assignments. (A transaction is a sequence of elementary updates that are constrained through
axioms of the form object∈ concept.)

Two types of transactions are considered: update transactions, i.e. the standard transactions in databases,
and completion transactions, i.e. transactions that “revise” the existing information and do not update
the information. A revision is a situation where new information is available about a world that has not
changed; thus, the constraints associated with the transaction need to be checked.

Implementation issues and optimisation proposals are also discussed in [123].

Some of the query languages proposed for RDF data provide also simple update operations. For ex-
ample, iTQL9 offers not only queries to RDF data, but also updates and transaction management for the
Kowari Metastore, an open source database for the storage of meta-data. iTQL has a syntax similar to SQL
and supports insertions and deletions of data, and commit and rollback for the transactions in the Kowari
Metastore database.

3.3 Reactive Languages
Reactive languages for the (Semantic) Web have beside an update language component also an event lan-
guage component (for specifying events and situations of interest) and an action language component (for

9iTQL, http://www.kowari.org

48 Paula-Lavinia Pătrânjan

http://www.kowari.org

CHAPTER 3. RELATED WORK

specifying the action to be executed as reaction to detected events). These language components mirror
actually the components of rules in active database systems. This section discusses existing reactive lan-
guages for the Web and the Semantic Web by using the following criteria: underlying query language,
underlying update capabilities, reactive capabilities, formal semantics, implementation, and experimental
results. The proposals that do not have a name will be referred as work or reactive language followed by
the scientific article they have been proposed in.

3.3.1 Reactive Languages for the Web
Reactive languages formerly developed for the Web support simple update operations on XML documents,
i.e. there is no support for specifying and executing (two or more) updates in a desired order and in an all-
or-nothing manner. Moreover, these languages have the capability to react only to single event instances
and do not provide constructs for querying for complex combinations of event instances (i.e. composite
events can not be detected).

There is a single proposal for composite event detection for XML documents [29], but the kind of
composite events considered are rather simple ones and the approach is not scaled to the Web. This proposal
does not represent a full reactive language for the Web (thus, the criteria used for introducing reactive
languages do not apply here), but it is discussed at the end of this section as such kind of work could be
extended and integrated into a reactive language.

Reactive Language Proposed in [115]

In [115] Event-Condition-Action rule languages are proposed for XML and RDF [148]. The ECA rule
language dealing with RDF data is described in Section 3.3.2.

Underlying Query Capabilities. The ECA language for XML uses XPath and XQuery to specify events,
conditions and actions.

Underlying Update Capabilities. Assumes the existence of an update language for XML.
Reactive Capabilities. The components of an ECA rule of the language are:

event part INSERT e or DELETE e, where e is an XPath expression that evaluates to a set of nodes. The
replace operation is missing.

condition part TRUE or XPath expressions connected using the boolean connectives (i.e. expressing con-
junction, disjunction, and negation).

action part sequence of actions, i.e. action1;action2; ...;actionn where each action represents an insertion
or a deletion. For insertion operations, one can specify the position where the new elements are to
be inserted using the BELOW, BEFORE, and AFTER constructs.

The communication between ECA components is realised through a system defined variable delta
(available for use in condition and action parts) representing the set of new or deleted nodes returned
by the XPath expression of the event part.

Regarding the semantics of the language, an immediate scheduling of rules that have been fired is used.
Updates are not immediately executed, the inserted or deleted nodes are annotated, the triggered active
rules are evaluated and at the end of the evaluation, the updates are really executed.

Distributed Environment. Just some ideas are presented for the case when ECA rules are distributed
on the Web. The events and actions are considered to occur at the same local peer; the coordination of
conditions’ evaluation is touched on.

Formal Semantics. Not provided.
Implementation. A prototype implementation for the centralised case is outlined in [115].
Experimental Results. Not available.
The Event-Condition-Action language described above is to be found also in [21]. The authors of this

paper have investigated techniques for determining triggering and activation relationships between rules.
These techniques can be used for analysing and optimising the behaviour of the Event-Condition-Action
rules of the language.

Paula-Lavinia Pătrânjan 49

3.3. REACTIVE LANGUAGES

Active XQuery

Active XQuery [34] proposes active extensions to the query language XQuery.
Underlying Query Language. The query capabilities of the language XQuery are used in order to realise

the (re)active behaviour.
Underlying Update Capabilities. Active XQuery uses the update extensions to XQuery that have been

proposed in [133]. These update capabilities have been described in Section 3.2.1.
XQuery updates are seen as bulk update statements because they may involve insertion or deletion of

fragments of XML documents, updates specified by means of a single update specification. Bulk update
statements are transformed (i.e. expanded) into equivalent collections of simple update operations. An
algorithm for update expansion is outlined.

Reactive Capabilities. As update statements are expanded, triggers are activated by update operations
relative to internal portions of fragments of data. In Active XQuery, priorities for triggers may be specified
in the trigger definitions. At execution time, if more than one rule is triggered at the same time, the priorities
are used for choosing the trigger that is to be executed next.

Syntax and semantics of the language adapts the trigger definition and the execution model of SQL3 to
the XML context. The SQL3 standard specifies a syntax and execution model for ECA rules in relational
databases. Two kinds of ECA rules (or triggers) are considered: before triggers, which conceptually
execute the condition and action before the triggering event is executed, and after triggers, which execute
the condition and action after the triggering event is executed. Thus, Active XQuery adapts the SQL3
notions of before vs. after triggers and, moreover, the row vs. statement granularity levels to the
hierarchical nature of XML data.

Distributed Environment. Distribution of triggers on the Web is not discussed.
Formal Semantics. Not provided.
Implementation. The authors of Active XQuery plan to develop a prototype if and when XQuery

updates will become a World Wide Web Consortium’s recommendation.
Experimental Results. Not available, as Active XQuery is not implemented yet.

Work Proposed in [36]

Event-Condition-Action rules play an essential role in the realisation of Web-based systems that require a
push technology, i.e. the capability of pushing relevant information to clients, by matching new event oc-
curences with predefined user interests. Event-Condition-Action rules are used in [36] for pushing reactive
services to XML repositories.

Underlying Query Language. The query language XQuery is used.
Underlying Update Capabilities. Updating data on the Web is not supported, as the focus is just on

notifying users of changes of interest that have occurred (and not on performing such changes).
Reactive Capabilities. The components of an ECA rule are:

event part simple update operations, i.e. simple insertions, deletions, or updates to XML documents.

condition part an XQuery query that is interpreted as a truth value if it returns a nonempty answer. The
condition part may refer to the nodes on which the events have occurred. This is realised through the
predefined variables old and new that represent the nodes on which the events have occurred with
their past and current values.

action part a SOAP [152] method, but restricted to implement the call to a message delivery system that
transfers information to specified recipients. It is assumed that complex parameters can be passed to
the SOAP method that is invoked.

Thus, the ECA rules are used only to notify remote users and therefore, can not trigger each other.
This means that the termination of execution is guaranteed, but no means are provided for updating
data from resources.

Formal Semantics. Not provided.

50 Paula-Lavinia Pătrânjan

CHAPTER 3. RELATED WORK

Implementation. The main ideas that can be used to implement the proposed system are presented. Of
importance here is the reuse of several current Web standards and of their implementations. The DOM
Event Model [151], an XQuery engine, and a generator of SOAP calls are needed.

Experimental Results. Not available.

Work Proposed in [35]

Event-Condition-Action rules are investigated in [35] as means to realise active document management sys-
tems, i.e. XML repositories with reactive capabilities. The authors argue that such systems will constitute
a natural framework for the integration of services.

Underlying Query Language. Reactive capabilities are investigated in the context of XSL [154] and of
Lorel. A language extension has been designed to cover the event specification, which is absent from both
languages.

Underlying Update Capabilities. Simple update extensions are proposed for XSL and Lorel, respec-
tively. The authors discuss also the problem of detecting these changes.

Reactive Capabilities. An ECA rule consists here of an event part and a condition-action part. Events
are considered insertion and deletion of elements, and insertion, deletion, and update of attribute values
and of CDATA and PCDATA contents. An arbitrary change of an element’s content at an arbitrary level or
depth is considered a composite event.

Conditions are (XSL or Lorel) queries to XML documents, and actions consist of constructing new
documents and/or modifying existing documents in the document base, and then placing them into folders,
publishing them on the Web, or sending them by e-mail. Thus, in the condition-action part of rules queries
and actions are mixed. The functions old and new are supported to denote the values of the node before
and after, respectively, the update execution.

Formal Semantics. Not provided.
Implementation. The main guidelines of the implementation of active document systems based on XSL

and Lorel, respectively, are discussed.
Experimental Results. Not available.

Active View

Event-Condition-Action rules are used in the realisation of a novel view specification language, the Active
View language [5]. The language is used to describe views of the repository data and activities of actors
that participate in an electronic commerce aplication. The Active View system, which uses the specification
language, acts as an application generator and generates a Web application allowing actors to perform
controlled activities and to work interactively in a distributed environment.

Underlying Query Language. At the time this work was reported, there was no standard query language
for XML. The authors used instead a simple query language inspired by Lorel [7].

Underlying Update Capabilities. Updates to XML data can be realised as reactions to events, and
notifications can be sent to different actors as response to changes, but the issue of updating data is not
explicitly described.

Reactive Capabilities. Enhanced mechanisms for notification, access control, and logging/tracing of
user activities are provided. In order to realise this, Event-Condition-Action rules are used. The compo-
nents of an ECA rule:

event part (remote) method calls (e.g. switch of activity), operations like write, read, append, or detection
of changes.

condition part XML queries returning a boolean value.

action part (remote) method calls, operations like the ones encountered in the event part, notifications, or
traces.

Regarding the propagation of changes from the view to the repository, simple updates are supported;
the incremental maintenance of the view definitions is not considered yet. The propagation of changes
from the repository to the view is supported in the Active View system.

Paula-Lavinia Pătrânjan 51

3.3. REACTIVE LANGUAGES

Means to customize the application and its interface, not only at server side, but also on the end-user
side are supported by the system.

Formal Semantics. Not provided.
Implementation. The Active View system is developed at INRIA10 using Java11 and the ArdentSoft-

ware’s12 XML repository.
Experimental Results. Not available.

WebVigiL

WebVigiL [62] is a system for monitoring changes of HTML/XML documents that are part of a Web
repository and for notifying users of changes of interest.

Underlying Update Capabilities. The system does not support execution of updates to HTML/XML
data; changes to documents are only monitored.

Reactive Capabilities. ECA rules are used to notify users of changes of HTML/XML documents,
based on user-defined sentinels, i.e. specification of changes of interests with respect to a document. E.g.
one might want to be notified of changes of links or images in a Web page. With WebVigiL, notification
options can also be specified, e.g. the time point at which the sentinel is to be initiated, or (for a periodic
notification) the time interval after which a new notification is to be sent.

Detection algorithms have been developed for detecting changes between two versions of a document
of interest. Different change detection approaches are applied for the two types of documents (HTML and
XML) the system is working on. For reducing computational time for change detection in XML documents
an optimisation technique is proposed.

Different methods to present the change information to the users are investigated in this project (e.g.
displaying only the changes to the document, or highlighting the differences between the new and old
versions of the document).

Formal Semantics. Not provided.
Implementation. A WebVigiL prototype has been implemented.
Experimental Results. The authors are currently working on evaluating the performance of change

detection algorithms.

Work Proposed in [38]

A quite recent work proposed in [38] employs triggering mechanisms for exception handling in workflow-
driven Web applications; here, the notion of “exceptions” is used for representing punctual situations (i.e.
events) that occur during workflow processes. The work does not propose a new reactive language; thus,
the criteria used in this section are restricted here to reactive capabilities and implementation.

Reactive Capabilities. A proposal for managing exceptions is presented; it can be employed for
workflow-driven Web applications where different exception handling policies are possible. The approach
relies on a data model for application data and workflow, and exception meta-data.

Two classifications for exceptions are given: One classifies exceptions in behavioural (use-generated),
semantical (generated by applications), and system exception. The other classifies exceptions depending on
the application unit where they occur in synchronous (exceptions that occur within an activity of a process)
and asynchronous (exceptions that occur at any time during the process execution).

Exceptions (events) that occur on the Web can be detected, users can be notified about them; though,
combinations of exceptions can not be detected. The approach is suitable for the intended application
domain, i.e. detecting exceptions inside hypertext activities that are part of workflow processes.

Implementation. The exception handling approach has been specified using the WebML13 (Web Mod-
elling) language; a prototype implementation exists that extends the CASE tool WebRatio14.

10INRIA, http://www.inria.fr
11Java Technology, http://java.sun.com
12ArdentSoftware, http://www.ardentsoftware.fr
13WebML, http://webml.org
14WebRatio, http://webratio.com

52 Paula-Lavinia Pătrânjan

http://www.inria.fr
http://java.sun.com
http://www.ardentsoftware.fr
http://webml.org
http://webratio.com

CHAPTER 3. RELATED WORK

Work on Composite Events Proposed in [29]

A recent work on composite event detection for XML documents has been proposed in [29] by refining
the event algebra of Snoop [64, 63] and introducing a new kind of context, the hierarchical one, in order to
relate e.g. insertions of new elements as sublements of a same XML element.

Reactive Capabilities. The types of events considered are insertions, deletions, and modifications of
element, attribute, or text nodes in an XML document. For relating occurrences of events, path types are
defined as restricted XPath expressions. A path instance is a path type that identifies a node of the tree
representation of an XML document. For every path type, three primitive event types are distinguished re-
flecting manipulations on the given path. Thus, a primitive event occurs when a single node is manipulated.

Composite events are combinations (conjunctions, disjunctions, and sequences) of primitive and/or
other composite events. An important issue to note here is that each composite event has a given path type
restricting this way the possible situations (composite events) a user might be interested in. Moreover, one
can not relate (primitive or composite) events that have occurred in XML documents distributed on the
Web, as the communication of event data is not covered.

For detecting such composite events, the hierarchical position of the manipulated nodes are taken into
account. Thus, the hierarchical context is introduced, a context in which raised composite events have only
hierarchical related constituents.

Implementation. A prototype implementation of the work exists; [29] briefly describes its execution
model.

3.3.2 Reactive Languages for the Semantic Web
Reactivity plays an important role in realising the Semantic Web vision. The research on Semantic Web
reactivity can profit from research results on Web reactivity that need to be adapted or extended. Moreover,
approaches that cope with existing and upcoming Semantic Web technologies (by gradually evolving to-
gether with these technologies) are more likely to leverage the Semantic Web endeavour. Along this line, of
crucial importance for the Web and the Semantic Web is the lightness of technologies’ usage (in particular
the languages’ usage) that should be approachable also by non-programmers.

The topic of reactivity on the Semantic Web has just begun to be investigated and, hence, leaves room
for interesting research issues; some languages with reactive capabilities for the Semantic Web are touched
on in the following.

RDFTL

RDFTL (RDF Triggering Language) [117, 118, 116] is an Event-Condition-Action rule language for RDF
repositories that has evolved from the proposal introduced in [115], where it is shown how an Event-
Condition-Action language for XML data can also be used for RDF data by making use of the XML
serialisation of RDF. RDFTL operates on the RDF triples/graphs; it is a path-based language using path
functions and expressions á la XPath adapted to the RDF data representation formalism.

Reactive Capabilities. The components of an ECA rule of the language:

event part insertions and deletions of resources (as instances of a given class) or of arcs specified by
a triple. Instead of detecting replace operations, RDFTL has the ability to detect changes of arc
targets.

condition part query consisting of conjunctions, disjunctions, and/or negations of path expressions; it
represents a boolean-valued expression that can make use of a $delta variable having as set of in-
stantiations the values that have triggered the rule.

action part sequence of one or more actions, where each action represents an insertion or deletion of a
resource given by its URI, or an insertion, deletion, or update of an arc. The parts of RDFTL rules
communicate just through the instantiations of variable $delta.

Arguably, because of its syntax, the structure of complex RDFTL programs is not easy to grasp. Also,
detection of temporal combinations of events (composite events) is not supported.

Paula-Lavinia Pătrânjan 53

3.3. REACTIVE LANGUAGES

Distributed Environment. A distributed version supporting ECA rules on distributed RDF repositories
is under development as part of the SeLeNe project15. The project investigates self e-learning networks,
where such a network is a distributed repository of meta-data related to learning objects. The proposed
architecture contains peers and super-peers, which coordinate a group of peers. However, the accent is on
infrastructure issues and not e.g. on means for communication between the peers of the network.

Formal Semantics. Declarative semantics of language or language components is not provided. Though,
the rule execution semantics of RDFTL is described. For this, a recursive function is used that takes as input
an RDF graph and a sequence of updates to be performed. The function gives as output the final, updated
graph (the sequence of updates is empty). The immediate coupling mode and rule prioritisation are used in
RDFTL.

Implementation. The architecture of a system working on centralised systems and one on decentralised
systems is proposed. Their implementation is ongoing work based on the ICS-FORTH RDFSuite repository
[10].

Experimental Results. Not available yet, as the language is not fully implemented. The authors intend
to experiment with the language using as testbed SeLeNe’s educational meta-data.

The RDFTL event-condition-action language for RDF data is a quite recent work towards a reactive
Semantic Web; however, first results on RDFTL are promising.

Algae

Algae16 is proposed by the W3C as a general-purpose RDF query language. Beside the querying capabili-
ties, Algae supports production rules that insert data into the RDF graph.

Reactive Capabilities. The concept of action is used in Algae for the directives ask, assert, and
fwrule; they determine the use of an expression specification for querying RDF data, for insertions into
the data graph, or for specifying simple ECA rules. The first directive is mandatory for an Algae processor,
the other two are defined in an extension module17. Besides insertions of RDF data, no other update
capabilities (deletions, replacements) are supported. More complex updates (e.g. ordered conjunction of
updates) are not provided. The rule extension to Algae supports just production rules (as simple form of
ECA rules).

Algae is based on N-triples18 for representing and querying RDF triples; the syntax is extended with
the mentioned directives and constraints’ specifications (e.g. arithmetic or string based).

Formal Semantics. No formal semantics is provided.
Implementation. Algae has been implemented as part of the Annotea Project19; the project provides a

research platform for collaborative applications based on meta-data.
Experimental Results. Such results have not been published so far.

15SeLeNe project, http://www.dcs.bbk.ac.uk/selene/
16Algae, http://www.w3.org/2004/05/06-Algae/
17Algae Extension for Rules, http://www.w3.org/2004/06/20-rules/
18N-triples, http://www.w3.org/TR/rdf-testcases/
19Annotea Project, http://www.w3.org/2001/Annotea/

54 Paula-Lavinia Pătrânjan

http://www.dcs.bbk.ac.uk/selene/
http://www.w3.org/2004/05/06-Algae/
http://www.w3.org/2004/06/20-rules/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/2001/Annotea/

Part II

The Language XChange

55

CHAPTER

FOUR

Paradigms. Concepts. Syntax

Reactivity on the Web is the ability to detect simple and composite events that occur on the Web and
respond in a timely manner. It is an emerging research issue promising useful technologies for upcoming
Web systems. Many Web-based systems need to have the capability to update data found at (local or
remote) Web resources, to exchange information about events (such as executed updates), and to detect and
react not only to simple events but also to complex, real-life situations. The issue of updating data plays
an important role, for example, in e-commerce systems receiving and processing buying or reservation
orders. The issues of notifying, detecting, and reacting upon events of interest begin to play an increasingly
important role within business strategy on the Web, and event-driven applications are being more widely
deployed: terms such as zero latency enterprise, the real-time enterprise, and on-demand computing are
being used to describe a vision in which events recognised anywhere within a business can immediately
activate appropriate actions across the entire enterprise and beyond.

In order to meet (most of) the requirements for realising reactivity on the Web, which have been re-
vealed by developing use cases such as the one presented in Section 1.2, the novel language XChange
[50, 49, 43, 25, 47, 19, 18, 48, 24, 17] for programming reactive behaviour and distributed applications on
the Web has been developed. XChange is a high-level programming language; its name mirrors (some of)
the main features an approach to reactivity on the Web should have: exchange of information about events
and change (or update) of data as reaction to (local or remote) events. The language XChange has been
carefully designed so as to mirror clear design principles by the syntax of the language.

Event-Condition-Action (ECA) rules are a natural candidate to implement reactive functionality. An
XChange program consists of one or more ECA rules of the form Event Query – Web Query – Action.
They specify to execute the Action as an automatic response to the occurrence of a situation specified by
an Event Query, provided the Web Query can be evaluated successfully. This chapter provides a detailed
discussion on each of the three components of an XChange reactive rule. An XChange program runs
locally at some Web site — called XChange-aware Web site. It can access and modify local and remote
data (Web resources) as reaction to events. Typical events include updates of data, timer events, but can
also be high-level, application-dependent events, e.g. the cancellation of a flight. Programs exhibit global
behaviour by reacting to changes at (remote) Web sites. In turn, these reactions can trigger further reactions
at other Web sites.

The structure of this chapter is as follows: Section 4.1 presents the paradigms upon which the language
XChange is built. Section 4.2 introduces the concept of event and discusses the kinds of events XChange
supports. Section 4.3 introduces event messages as means for representing event data. Section 4.4 discusses
means for specifying (classes of) events of interest that might require a reaction; it introduces event queries
– queries against event data – by discussing their essential traits, their kinds, and also the notion of answer
to an event query in XChange. Section 4.5 offers a short discussion on Web queries in XChange. Section
4.6 introduces means for updating data with XChange, it discusses XChange’s update patterns and their
constructs for specifying insertions, deletions, and replacements of data. Section 4.7 offers a discussion on
complex updates in XChange and the concept of transactions comprising updates. The chapter ends with
Section 4.8, an introduction into XChange rules that puts together the puzzle pieces discussed throughout

57

4.1. PARADIGMS

the chapter.

4.1 Paradigms
Clear paradigms that a programming language follows provide a better language understanding and ease
programming. Moreover, explicitly stated paradigms are essential for Web languages, since these lan-
guages should be easy to understand and use also by novice practitioners. This section introduces the
paradigms upon which the language XChange relies.

4.1.1 Event vs. Event Query
An event is a happening to which each Web site may decide to react in a particular way or not to react to at
all (cf. Section 1.3.1). In order to notify Web sites about events and to process event data, events need to
have a data representation.

Event queries are queries against event data. Event query specifications differ considerably from event
representations (e.g. event queries may contain variables for selecting parts of the events’ representation).
Most proposals dealing with reactivity do not differentiate between event and event query. Overloading the
notion of event precludes a clear language semantics and thus, makes the implementation of the language
and its usage much more difficult. Event queries in XChange serve a double purpose: detecting events of
interest and temporal combinations of them, and selecting data items from events’ representation. Variables
are used in event queries as place holders for data items that are to be used in the other parts of XChange
rules. This double purpose is novel in the field of reactivity.

To reiterate, events should not be confused with event queries. Events are changes in the state of the
world and event queries are queries against their representation.

4.1.2 Volatile vs. Persistent Data
The development of the XChange language – its design and its implementation – reflects the novel view
over the Web data that differentiates between volatile data (event data communicated on the Web between
XChange programs) and persistent data (data of Web resources, such as XML or HTML documents).
Section 1.3.3 has offered a detailed explanation of the traits of the two kinds of data by means of the
metaphor speech vs. written text.

XChange’s language design enforces this clear separation (that represents one of the contributions of
this proposal, cf. Section 7.1) and entails new characteristics of event processing on the Web (discussed
later in Section 5.2.1). However, in applications where a part of the volatile data received by Web sites needs
to be stored for a long time or forever, the data of interest can be easily made persistent. Moreover, the
language XChange is flexible enough (in terms of language design and programs’ evaluation) for adapting
it to other kinds of application domains as the ones intended to be primarily solved by this proposal.

4.1.3 Rule-Based Language
Reactivity can be specified and realised by means of reactive rules [74, 119, 141]. XChange is a rule-
based language that uses reactive rules for specifying the desired reactive behaviour (cf. Section 1.3.7) and
deductive rules for constructing views over Web resources’ data.

An XChange program is located at one Web site and contains one or more reactive rules of the form
Event query – Web query – Action. Every incoming event is queried using the event query (query against
volatile data). If an answer is found and the Web query (query to persistent data) has also an answer,
then the Action is executed. The fact that the event query and the Web query have answers (i.e. evaluate
successfully) determines the rule to be fired; the answers influence the action to be executed, as information
contained in the answers are generally used in the action part.

XChange embeds the Web query language Xcerpt (introduced in Section 2.4.2) for expressing the Web
query part of reactive rules and for specifying deductive rules in XChange programs. Note that Xcerpt
is deployed also for querying single occurrences of incoming events. Xcerpt (deductive) rules allow for

58 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

constructing views over (possibly heterogeneous) Web resources that can be further queried in the Web
query part of XChange reactive rules. Not only integration and restructuring of persistent data is possible
with Xcerpt, but also reasoning with persistent data (given e.g. in XML or RDF format).

Complex reactive applications can be elegantly implemented in XChange, as rules are means for struc-
turing complex programs. (This statement is sustained by the use cases implemented in XChange and
presented in Chapter 6.)

4.1.4 Pattern-Based Approach

XChange is a pattern-based language: event queries, Web queries, event raising specifications, and updates
describe patterns for events requiring a reaction, Web data, raising event messages, and updating Web data,
respectively. Patterns are templates that closely resemble the structure of the data to be queried, constructed,
or modified.

Patterns for data to be constructed, e.g. for insertion in a given document, are not mixed with paths for
selecting data items or for specifying e.g. where new data is to be inserted. Thus, the programmer needs
to understand and use one single concept — that of data pattern. This uniform specification allows for an
easier programming, also because the overall structure of XChange programs is easy to grasp.

4.1.5 Transactional Reactivity

Complex Updates XChange supports the specification and execution of simple updates, i.e. insertions,
deletions, and replacements of persistent data items, such as XML or RDF data. Complex updates express-
ing ordered or unordered conjunctions, or disjunctions of (simple or complex) updates are also offered by
XChange. Such updates are required by real applications. E.g. when booking a trip on the Web one might
wish to book an early flight and of course the corresponding hotel reservation, or else a late flight and a
shorter hotel reservation. The application scenarios of Section 1.2 have motivated the need for executing
such complex updates in an all-or-nothing manner. Thus, XChange has a concept of transactions [136].

Transactions and ACID Properties XChange transactions obey the ACID properties, i.e. Atomicity,
Consistency, Isolation, and Durability, briefly explained in Section 1.3.6. Atomicity and isolation are con-
sidered in XChange, the issues of consistency and durability for transactions are currently not investigated
in the project. XChange will build on standard solutions from database systems that need to be adapted to
the Web.

4.1.6 Communication Paradigms

Peer-to-Peer In XChange, the peer-to-peer communication model (introduced in Section 2.3) is used for
communicating event data between Web sites. This means that all parties have the same capabilities and
every party can initiate a communication session. Event data are directly communicated between Web sites
without a centralised processing of events. XChange assumes no instance controlling (e.g. synchronising)
communication on the Web.

Push Strategy For communicating (propagating) events on the Web, two strategies are possible: the push
strategy, where a Web site informs possibly interested Web sites about events, and the pull strategy, where
interested Web sites query periodically (poll) persistent data found at other Web sites in order to determine
changes. Both strategies are useful; Section 1.3.2 has pointed out advantages that a push strategy has over
a strategy of periodical polling. The pull strategy is supported by languages such as XQuery or Xcerpt that
query persistent data. Therefore, so as to complement the framework, XChange offers the push strategy.
The push strategy requires event queries to be incrementally evaluated by so-called event managers (cf.
Section 5.2.1). In the case of XChange, this is done at every XChange-aware Web site.

Paula-Lavinia Pătrânjan 59

4.1. PARADIGMS

Communication Protocol The language XChange is not dedicated to a particular communication pro-
tocol, instead its high-level nature allows for implementing distributed, reactive applications following
different rules for communicating data. However, its goal is to realise reactivity on the Web and Semantic
Web and, thus, event data is communicated over the HTTP protocol (shortly discussed in Section 2.3.2).
The fact that HTTP is the protocol used for transferring information on the Web is also reflected by the
prototype implementation of the language XChange.

4.1.7 Composite Events Defined through Event Queries

Composite event queries allow to recognise temporal patterns over incoming events – to recognise com-
posite events. The notion of composite events has no precise definition in the literature. XChange’s (oc-
currences of) composite events are defined through composite event queries (see Section 4.4.3) – they are
answers to composite event queries. This is a novel way of defining composite events, but the author con-
siders it the only intuitive one. E.g. an XChange event query can ask for occurrences of an increase of
share values by more than 5 percent for the company Siemens, followed by an increase of share values
for the company SAP on the stock market. An answer to such an event query contains instances of the
two specified component event queries (i.e. increase of share values). Another XChange event query can
ask for all stock market reports that have been registered between the occurrences of an increase of share
values for the two mentioned companies. An answer to such an event query contains, besides the instances
of the events signaling an increase for the shares of the companies, all reports registered between these two
instances. The capability to query for all events having a particular pattern that have occurred between the
instances of two specified event queries is one of the novelties of the language XChange.

4.1.8 Processing of Events

Local Processing No central processing of event queries is assumed as such an approach is not suitable
on the Web. Instead, event queries are processed locally at each Web site. Each such Web site has its own
local event manager for processing incoming events and evaluating event queries against the incoming
event stream (volatile data), and for releasing event query instances after a finite time.

Incremental Evaluation Event queries need to be evaluated in an incremental manner, as data (events)
that are queried are received in a stream-like manner and are not persistent. For every incoming event that
might be relevant to a reactive Web site and could contribute as a component to an event query instance
specified in the rules of the Web site’s reactive program(s), a partial instantiation of the involved event
queries is realised. An instance of a specified composite event query is detected when instances for all
specified component event queries have been detected.

Bounded Event Lifespan An essential aspect for event processing is that each reactive Web site controls
its own event memory usage. In particular, which events and for how long they are kept in memory depends
only on the event queries posed at a Web site. Neither Web queries nor event queries posed at other Web
sites can influence the event lifespan (i.e. the time period an event is kept in memory). Event lifespans are
automatically detected from the event queries already registered at a Web site.

Event queries need to be in such a way that no data on any event can be kept forever in memory, i.e.
the event lifespan should be bounded. Keeping all events in memory is not a suitable approach to reactivity
on the Web; the amount of events a Web site receives might be huge, causing a continual grow in storage
requirements. By language design, XChange event queries are such that volatile data remains volatile. This
is consistent with the clear distinction between events as volatile data and Web resources’ data as persistent
data. However, making part of the incoming event stream persistent is application dependent (for example
applications where statistics over data of incoming stream play a role). The work presented in this thesis
has been developed primarily for applications like the ones presented in Section 1.2.1 but does not preclude
its usage for developing applications where some of the event stream’s data need to be made persistent.

60 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

4.1.9 Relationship Between Reactive and Query Languages

A working hypothesis of the XChange project is that a reactive language for the Web should build upon,
or more precisely embed, a Web query language. There are two reasons for this. First, specifications of
reactive behaviour often refer to actual Web contents - calling for querying Web contents. Second, reactive
behaviour necessarily refers to (more or less recent) events - calling for querying events. For reasons
of uniformity, it is highly desirable both for users and for system developers that the languages used for
querying Web contents and querying events are as close as possible to each other. Note, however, that
querying events calls for constructs not needed for querying Web contents. For example, the interest in
a conjunction of events that occur in a given time interval can not be easily specified by means of a Web
query language; on the other hand, for querying data of Web resources temporal relations between parts of
the data are not needed.

The query language embedded in XChange is the Web query language Xcerpt [126, 125]. In the
framework of XChange, Xcerpt’s capabilities are deployed for querying and reasoning with Web resources’
data, and for querying (single) occurrences of events. Xcerpt’s design principles and language constructs
have been introduced in Section 2.4.2. Recall that the reasons for choosing Xcerpt against other existing
query languages for embedding it into XChange include the pattern-based approach followed in querying
and constructing Web data, and the fact that Simulation Unification can be deployed not only for querying
persistent data but also for querying single occurrences of events.

4.1.10 Language Syntax

The development of the XChange project followed the conviction that a language for the Web should have
three syntaxes: a compact human-readable syntax, a machine-processable (XML) syntax, and a visual
syntax. The compact human-readable syntax should be as compendious as possible and easy to use by
programmers. The XML syntax is desirable for interchanging programs and manipulate them with XML-
based tools and languages (e.g. to query an update them). A visual language “can greatly increase the
accessibility of the language, in particular for non-experts”[42]. However, programmers have the freedom
to choose whichever syntax they prefer.

At present, the language XChange has a compact human-readable syntax (which is a term-based syntax
where a term represents a Web document, a query pattern, an event pattern, or an update pattern) and an
XML syntax. The development of a visual counterpart of XChange’s textual language is sought for. Along
this line, the visual rendering of Xcerpt programs – visXcerpt [27] – is to be extended. The underlying
ideas for visualising XChange are postponed to Section 7.2.5.

Notes Along this thesis, the introduction of language constructs will be accompanied by the correspond-
ing syntax rules. They explicitly state the valid combinations of XChange language constructs. Thus, the
grammar for the language XChange is constructed in a stepwise manner. One of the most commonly used
meta-syntactic notations for specifying the syntax of programming languages is the Backus-Naur Form
(BNF) [112]. The BNF notation is a formal metasyntax used to express context-free grammars. There are
many extensions to the BNF notation, one of them is the Extended Backus-Naur Form (EBNF) [143] no-
tation. The EBNF notation used for defining the grammar of the XChange language follows the XML 1.1
Recommendation [39]. A short explanation of the EBNF notation follows. For a more detailed introduction
into the EBNF notation, see [143, 39]. Terminals are symbols or words in the language, nonterminals are
units representing a grammatically correct sequence of terminals. Productions are defined that specify the
valid ways nonterminals can be replaced by terminals and other nonterminals. Extensions to BNF include:
| denotes disjunction, * denotes that the preceding symbol or parenthesised expression may occur zero
or more times, + denotes that the preceding symbol or parenthesised expression may occur one or more
times, [] denotes optionality (note that instead square brackets, the symbol ? is used so as not to confuse
the optionality with the total specifications). (These extensions can be expressed in BNF by using extra
productions.) Note that keywords are shown as quoted strings of characters (like "and").

Paula-Lavinia Pătrânjan 61

4.2. EVENTS

4.2 Events
The notion of event is defined as “something that happens at a given place and time”1; this explanation
adapted from the WordNet 2.02 lexical database for the English language has (slight) variations that are
used in different domains. In physics, an event is a change in the state of the world; in relativity theory,
the fundamental observational entity is the event, i.e. a phenomenon located at a single point in space-time.
In event-driven programming, “an event is a software message that indicates something has happened”3.
For example, graphical user interface programs follow this programming paradigm, where small programs
called event handlers are to be called in response to external events. Considering the public relations
domain, an event is a tool for establishing and promoting a favourable relationship with the public; it can
be organised as workshops, exhibitions, or panels that, in general, have a particular topic.

Section 1.3.1 already introduced the notion of event in an informal manner; it has also stressed the
fact that one can conceive any kind of events in XChange. The above discussion on events does not
offer a precise definition either, as might have been expected. It just states that a large number of events
are conceivable and they correspond to many application domains. Thus, the (very general and abstract)
definition of event fits perfectly into a reactive language for the Web. However, for realising reactivity
on the Web, events require some representation for communicating their data between reactive programs
on the Web and for processing their data by (local) event managers. In XChange, events are represented
as XML documents. The language XChange has the ability to send, receive, and query events that are
represented as XChange event messages (discussed in Section 4.3), i.e. messages containing any kind of
event data represented as XML.

A situation is a combination of circumstances, that is a combination of events and other situations.
Situations reflect particular states of the world, from low-level (such as ordered conjunctions of update
operations on XML documents) to high-level ones (such as flight cancellations for which the airline does
not grant an accommodation). Section 1.2 motivated the need for detecting situations that occur on the
Web and recognised the ability to detect them as a requirement for Web reactive languages.

Not all events that have occurred on the Web, not all possible combinations of them (forming situations)
are of interest for a Web site. Of interest are events and situations whose detection require an action to be
automatically executed. At a moment in time, each Web site is interested in some classes of events and
situations; these classes are determined by the rules of the Web site’s reactive program (cf. Section 4.1.3).
Modifying, deleting, or specifying new rules in a reactive program might entail other classes of events or
situations to be of interest.

This section continues with presenting the two kinds of events supported by XChange, namely XChange
atomic events, which reflect events (Section 4.2.1) and XChange composite events, which reflect situations
(Section 4.2.2). Subsequently, Section 4.2.3 discusses the occurrence time for atomic events and composite
events, respectively.

4.2.1 Atomic Events
An XChange atomic event is an event as it has been introduced in the previous section. XChange dis-
tinguishes between two kinds of atomic events: explicit events and implicit events. Explicit events are
explicitly raised by a user or by a (predefined) XChange program at a Web site and sent to other Web sites
through event messages (see Section 4.3). Implicit events are events that occur locally at a Web site (e.g.
local updates of data or system clock events). Implicit events have also a representation as event messages,
but (in general) a more simplified one than for explicit events. Implicit (or explicit) events raised and sent
from a Web site to another become explicit.

The kinds of atomic events considered in XChange are presented in Table 4.1. An update executed or
a query posed locally at a Web site are for XChange local events, i.e. raised at this Web site and processed
at this Web site. Transactional events (transaction commit, transaction abort, transaction request) are local
events needed as XChange supports the concept of transactions (cf. Section 4.1.5). System events (e.g.
system clock events) are events that are coming from the encompassing “system” and might be useful to

1Word Reference, http://www.wordreference.com/definition/event
2WordNet 2.0, http://wordnet.princeton.edu/
3Labor Law Encyclopedia, http://encyclopedia.laborlawtalk.com/Event

62 Paula-Lavinia Pătrânjan

http://www.wordreference.com/definition/event
http://wordnet.princeton.edu/
http://encyclopedia.laborlawtalk.com/Event

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Table 4.1: XChange Atomic Events

atomic events

explicit events
(event messages)

implicit

updates
queries
transactional events
system events

handle together with explicit and/or implicit events. A system event might be explicit or implicit, depending
whether or not it is transmitted from one Web site to another.

Remote events, i.e. events informing a Web site of queries, updates, transactional or system events, or
of any other (application specific) matter, are always explicit and are expressed through event messages.

4.2.2 Composite Events
XChange composite events reflect situations (introduced in Section 4.2). Composite events express tem-
poral relationships between atomic events that have occurred on the Web. Also, they can express non-
occurrence of some events while other events have occurred. XChange’s (occurrences of) composite events
are defined as answers to composite event queries (see Section 4.4.3). For understanding XChange’s com-
posite events and their representation, an elaborate discussion on XChange’s event queries is needed. Sec-
tion 4.4 elaborates on event queries in XChange. Thus, a more detailed discussion on XChange’s composite
events is postponed to Section 4.4.5.

4.2.3 Events’ Occurrence Time
The occurrence time of (atomic or composite) events plays an essential role in determining whether to react
or not to incoming events. For example, one might want to react to a certain class of atomic events but only
if they are received before a given time point. For composite events, the occurrence time of atomic events
is used in determining if a certain temporal order between them is met or not. Moreover, based on the
occurrence time of events, atomic and semi-composed composite events can be released after a bounded
time (see Section 4.4.3).

Atomic Events An XChange atomic event occurs at a point in time. The occurrence time of an atomic
event is the time point at which its representation has been received by a Web site. The occurrence time of
an explicit event can not be considered the time point at which its representation has been sent, as the Web
lacks a global time and the processing of events is done locally at each Web site. Note that the same atomic
event sent to different Web sites may have different occurrence time at its recipients.

Composite Events In general, more than one atomic event are used to answer an XChange composite
event query. Thus, XChange composite events have (in general) more than one constituent (atomic) events
(each of them having its own occurrence time).

The work done in the active database field considers that each composite event has an occurrence time
point, like atomic events do. The occurrence time of a composite event is the occurrence time point of the
last received constituent atomic event. Queries against incoming events specifying e.g. that a particular
event should occur twice during the occurrence of a composite event do not express the programmer’s
intuition. Thus, XChange follows another approach: XChange composite events do not have an occurrence
time point, instead they stretch over time (they have a duration). Each XChange composite event has a
beginning time and an ending time. In general, a composite event inherits from its components a beginning
time (i.e. the reception time of the first received constituent event that is part of the composite event) and
an ending time (i.e. the reception time of the last received constituent event that is part of the composite
event). This is not the case for all composite events. Recall that composite events are defined as answers to
composite event queries. Consider now a composite event query asking for non-occurrences of instances

Paula-Lavinia Pătrânjan 63

4.3. EVENT MESSAGES

of event query EQ during a given time interval. Answers to such a composite event query do not have any
constituent atomic events (as it is asked for non-occurrence); they have just a beginning and an ending time,
time points determined by the given time interval. For each kind of XChange composite event queries, the
beginning and ending time of their instances are explicitly specified in Section 4.4.3.

4.3 Event Messages
Web sites are interested not only in events that have occurred locally but also in events that have occurred at
other Web sites (remote events). Data about events that have occurred on the Web need to be communicated
to possibly interested Web sites.

Event messages communicate event data between (same or different) Web sites. More concrete, XChange
programs found at different Web sites raise events (cf. Section 1.3.5) and send their representations (i.e.
event messages) to one or more XChange programs. For gaining the flexibility needed for implementing
different kind of applications and for coping with event data having a complex and irregular structure, the
XML format has been chosen for representing event messages. Section 2.2.1 has introduced the XML
format and revealed the advantages of using it as a data interchange format.

Communication of event messages follows a push strategy (cf. Section 4.1.6), i.e. Web sites inform
other Web sites about (implicit or explicit) events that have occurred on the Web. XChange excludes
broadcasting of event messages on the Web (i.e. sending event messages to all sites of a portion of the
Web), since indiscriminate sending of event messages to all Web sites introduces problems for a non-
centrally managed structure such as the Web. Thus, in XChange each event message has a determined
recipient Web site.

A question arises: How does a Web site know which Web sites are interested in which kind of events?
This work assumes that a (kind of) subscription mechanism exists, a procedure through which Web sites
are made aware of correspondences between Web sites and classes of events to be notified of. Note that
Web sites do not always need to explicitly subscribe to (classes of) events of interest. Instead, subscription
knowledge might be implicit. For example, reservations made for a particular flight contain implicitly
the interest in notifying the passengers (perhaps by sending notifications to their personalised organisers)
about delays or cancellations of the respective flight. Subscribing to (classes of) events is not a complex
mechanism; different applications might use different subscription mechanisms. Thus, the rest of the thesis
abstracts away from a particular subscription mechanism by assuming that Web sites do have the necessary
subscription information.

An XChange event message contains information about its sender Web site. This piece of information
might be important for the recipient Web sites. Assume that Mrs. Smith is on vacation. Though, she would
like her personalised organiser to be notified by her secretary if important problems occur in one of Mrs.
Smith’s projects. In such cases, not only the content of the event message but also the sender plays an
important role in detecting the desired situation. However, applications not always need to make use of
the sender address. Thus, the event language component of a reactive language should offer the ability
to express partiality in queries to event data (i.e. to leave out parts of the event messages that are not of
interest when specifying patterns to them). Section 4.4 shows that this language requirement is fulfilled by
XChange.

XChange event messages have two time stamps: one denoting the time point at which the sender has
raised the event whose representation the message is, and one denoting the time point at which the recipient
has received the event message. Time stamps play an essential role in determining temporal combinations
of events and in filtering out event messages that have not been received in a time interval of interest. Thus,
(reception) time stamps allow for detecting complex situations of interest.

Discussion. The time stamp an event message gets at sender might be the raising time or the sending
time of the event message. XChange event messages use the raising time, i.e. the time at which the con-
struction of the event message has been finalised, the event message being now ready for sending. The
sending time of an event message might be also useful to applications, case in which a slight modification
of the XChange prototype should be used.

The sender and recipient Web sites’ addresses, the two time stamps of event messages are parameters
included in the representation of XChange event messages. The next section discusses event messages’

64 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

parameters in more detail.

4.3.1 Event Messages’ Parameters
An XChange event message is an XML document with a root element labelled event and at least five child
elements labelled raising-time, reception-time, sender, recipient, and id. The design decision of
representing event messages’ parameters as child elements and not as attributes of the event message’s root
is that they may contain complex content. For example, the time point of raising an event message at a
Web site might be represented as a time point accompanied by a specification of the calendar used in the
respective country. Thus, an event message wraps the event data like in the following:

<?xml version=""1.0?>
<xchange:event xmlns:xchange="http://xcerpt.org/xchange">

<xchange:sender> sender </xchange:sender>
<xchange:recipient> recipient </xchange:recipient>
<xchange:raising-time> raising-time </xchange:raising-time>
<xchange:reception-time> reception-time </xchange:reception-time>
<xchange:id> id </xchange:id>
event data

</xchange:event>

where

• sender is the URI of the Web site where the event has been raised, that is its representation as
event message has been constructed and sent to one or more Web sites. The URI of the sender is
determined and inserted into the event message by the Web site’s event manager before sending it.

• recipient is the URI of the Web site that received the event message. As already explained,
XChange excludes broadcasting of event data, implying that the recipient Web site(s) of an event
message must be known before sending it. For an event message, at least one recipient needs to be
given in the event message specification used to raise the event.

• raising-time is the time of the event manager of the Web site raising the event. This is the local
raising time of the event message on the machine on which the event manager is running on.

• reception-time is the time at which the event manager of the recipient Web site receives the
event message. This is the local reception time of the event message on the machine on which the
event manager is running on. Note that the reception time of an event message might be before its
raising time as no global time exists on the Web (proposals exist, such as [128], for models of an
approximated global time base for distributed systems; however, this is not realistic in the largest
distributed system – the Web).

Event messages’ time stamps (raising time and reception time) are given in XChange by using the
ISO 8601 standard format for the representation of dates and times4.

• id is an event message identifier given at the recipient Web site. Each event message gets at its
reception such an identifier for uniquely identifying it in querying. The format and the method (e.g.
counting received event messages each day and identifying them with the temporal specification of
the actual day followed by the counter) used for event messages’ identifiers are application specific.
The current implementation of the XChange event manager uses positive integers for identifying
event messages.

• event data is an XML element (having possibly complex structure) containing information about
an event that has occurred. How the data about the event is represented is application specific.
Reactive applications communicating through XChange event messages are not restricted to XML-
based applications. For example, XML serialised RDF data can be also communicated between and
processed by XChange programs.

4ISO 8601, http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

Paula-Lavinia Pătrânjan 65

http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

4.3. EVENT MESSAGES

XChange assumes that each event message has a distinctive reception time, that is at each point in
time a single event message is retrieved. However, for extensions or future versions of the language where
this assumption is lifted, the event id parameter uniquely identifying event messages has been introduced.
Whether this assumption is lifted or not depends on the time granularity used for event reception.

A DTD for the XML representation of event messages is given next. The namespace prefix chosen for
the DTD is the one used throughout this thesis (prefix xchange for namespace http://xcerpt.org/xchange).
A parameter entity is used in place of the content of an event messages; the content (event data) is applica-
tion specific and thus has to be defined depending on the application.

<!DOCTYPE xchange:event [
<!ELEMENT xchange:event (

xchange:sender, xchange:recipient,
xchange:raising-time, xchange:reception-time,
xchange:id,
%event-data)>

<!ATTLIST xchange:event xmlns:xchange CDATA #FIXED
"http://xcerpt.org/xchange">

<!ELEMENT xchange:sender (#PCDATA)>
<!ELEMENT xchange:recipient (#PCDATA)>
<!ELEMENT xchange:raising-time (#PCDATA)>
<!ELEMENT xchange:reception-time (#PCDATA)>
<!ELEMENT xchange:id (#PCDATA)>

]>

Being XML documents, XChange event messages represent Xcerpt data terms (discussed already in
Section 2.4.2) and thus, methods developed for querying persistent data can be also applied for querying
incoming event messages. The importance of this note will be made clear in Section 4.4. The examples
given in this section use the term syntax to represent event messages, but the reader should keep in mind
that XChange programs communicate through XML documents that represent event messages.

Example 4.1 (XChange Event Message Notifying an Exhibition)
The following XChange event message is sent by http://artactif.com informing the travel organiser
of Mrs. Smith about an exhibition of the painter G. Barthouil. Note the use of the xchange namespace
for the keyword event and for the parameters of an XChange event message. Note also that the examples
abstract away from a particular communication protocol. Here, organiser denotes the communication
protocol used by a personalised organiser.

xchange:event {
xchange:sender {"http://artactif.com"},
xchange:recipient{"organiser://travelorganiser/Smith"},
xchange:raising-time {"2005-05-05T10:15:00"},
xchange:reception-time {"2005-05-05T10:17:00"},
xchange:id {"5517"},
exhibition {
painter {"G. Barthouil"}, location {"Marseilles"},
time-interval{"[2005-05-08..2005-05-18]"},
visit-hours { from {"10:00"}, until {"18:00"}}
}

}

An event message is an envelope for an arbitrary XML content. Thus, multiple event messages can (but
not necessarily) be nested making it possible to create trace histories.

66 Paula-Lavinia Pătrânjan

http://xcerpt.org/xchange

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Example 4.2 (Nesting XChange Event Messages)
Mrs. Smith notifies a friend of her about G. Barthouil’s exhibition. The following XChange event message
is sent by Mrs. Smith’s travel organiser and contains the received event message from the previous example:

xchange:event {
xchange:sender {"organiser://travelorganiser/Smith"},
xchange:recipient{"organiser://travelorganiser/myFriend"},
xchange:raising-time {"2005-05-06T11:10:20"},
xchange:reception-time {"2005-05-06T11:11:20"},
xchange:id {"5611"},
content {
xchange:event {

xchange:sender {"http://artactif.com"},
xchange:recipient{"organiser://travelorganiser/Smith"},
xchange:raising-time {"2005-05-05T10:15:00"},
xchange:reception-time {"2005-05-05T10:21:20"},
xchange:id {"1234"},
exhibition {

painter {"G. Barthouil"}, location {"Marseilles"},
time-interval{"[2005-05-08..2005-05-18]"},
visit-hours { from {"10:00"}, until {"18:00"} }

}
}

}
}

Note that XChange messages are compatible with the messages and the “message exchange patterns”
of SOAP (discussed in Section 2.3.3). XChange event messages can be seen as a very simplified form
of SOAP messages, as only the minimum information is required (time stamps, sender, recipient, and id).
However, XChange does not preclude the usage of more complex event messages’ parameters. XChange
applications can be implemented in such a way to construct such event messages and to understand their
meaning properly.

4.3.2 Implicit Events’ Representation
As explained in Section 4.2.1, implicit events are events that occur locally at an (XChange-aware) Web
site. They become explicit if their representation is sent as event message to other Web sites. However, at
the level of event representation no differentiated treatment should be applied for the two kinds of events.
A uniform way of representing events is a premise for using the same event query language for querying
them. Thus, XChange uses event messages for representing not only explicit events but also implicit events.

An event message representing an implicit event needs to reflect the type of change in the state of the
world (e.g. timer events, updates, transaction-related events) the event represents. Clearly, the content of
the event message is tailored to the event type it represents. Different approaches are conceivable for event
messages to carry this information, for example

(a) the event type is represented as label of the root (e.g. xchange:timer-event for timer events)
and the content represents other relevant information (e.g. time{"2005-06-12T11:15"} for reacting on
2005-06-12T11:15),

(b) the event type is represented as an event message parameter (e.g. xchange:type{"timer-event"})
and the content representation is like for the case above.

On the other hand, some of the event messages’ parameters can be suppressed – the sender and the
recipient are the same Web site, i.e. the Web site where the event occurred and where it is first processed.
Thus, there is no single possible representation of implicit events as event messages. One needs to decide
which representation is better suited for the intended applications and to modify the XChange runtime
system accordingly.

Paula-Lavinia Pătrânjan 67

4.4. EVENT QUERIES

Example 4.3 (XChange Implicit Event Representation)
The following XChange event message gives a representation of an implicit event representing a modifi-
cation of a Web resource; the event has occurred at Web site http://xcerpt.org/xchange/. The sender
and recipient of the event message are not contained in the representation; the parameter xchange:type
denotes the type of the implicit event, here an update.

xchange:event {
xchange:reception-time {"2005-05-05T10:15:00"},
xchange:type { "update" },
insertion {
resource { "http://xcerpt.org/xchange/news.xml" },
term {

article{
title { "Reactivity on the Web" },
subtitle { "Paradigms and Applications of the Language XChange" },
proceedings-of { "SAC’2005" }

}
},
parent { news {} }

}
}

The above given event message notifies about an insertion of a new scientific article on XChange; the
term representing data about the article has been inserted as subterm of the news term.

4.4 Event Queries
For detecting situations that have occurred on the Web and require a reaction to be automatically executed,
incoming event messages (i.e. representations of events that have occurred on the Web) need to be queried.
Section 1.3.3 pointed out differences that exist between data of incoming events and data of Web resources,
recognising that Web query languages are not suitable for querying event data. For this reasons, XChange
offers event queries – queries against event data.

Real life situations, like the ones exemplified by the application scenarios of Section 1.2, need for
their detection not just one event to occur, but (more often) more than one events to occur. Moreover, the
temporal order of these (component) events and the specified temporal restrictions on their occurrence time
points need also to be taken into account in detecting situations. Mirroring these practical requirements,
XChange offers not only atomic event queries but also composite event queries. Thus, an XChange event
query (symbol EvQ) is either an atomic event query (symbol At EvQ) or a composite event query (symbol
Comp EvQ):

EvQ ::= At_EvQ | Comp_EvQ

where atomic and composite event queries are defined in the following sections.

This section is structured as follows: Section 4.4.1 states explicitly essential traits of XChange event
queries; their introduction intends to ease the understanding of most of the design decisions of the XChange
event query language. Subsequently, Section 4.4.2 and Section 4.4.3 elaborate on atomic event queries and
composite event queries, respectively. Language constructs are introduced for both kinds of event queries.
The notion of answer to an event query is introduced in Section 4.4.5.

4.4.1 Essential Traits
For gaining a clear picture of querying event data before going into details regarding XChange event queries
as means for querying incoming events, let’s take a look at essential traits that event queries have. These
traits set XChange event queries apart from Web queries and other existing work on querying events (or

68 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

event detection). Thus, their brief explanation here is intended to exclude confusions and misunderstanding
of event query language constructs.

Event Query vs. Web Query Event queries and Web queries serve different purposes – querying an
incoming stream of events vs. querying Web resources; thus, they differ considerably in the communication
strategy used, the querying capabilities, and the query processing. Event queries are fed with event data (to
be queried) in a push manner, while querying Web resources is done using a pull strategy. Event queries
query not only for single events but also for temporal combinations of incoming events, while Web queries
lack constructs for dealing with temporal patterns over events. Event queries need to be evaluated in an
incremental manner as events come in an stream-like manner and are not persistent. As Web resources’
data are persistent, such requirements are not posed on the evaluation of Web queries. (Section 1.3.3 and
Section 1.3.4 have offered a more elaborated discussion on differences between event queries and Web
queries.)

Double Purpose XChange event queries have a double purpose: they are aimed for event detection and
event data extraction. Event queries detect atomic and composite events (Section 4.2) that have occurred
on the Web. XChange offers a considerable number of high-level constructs for expressing different kinds
of event combinations (see Section 4.4.3). For extracting pieces of information from incoming events,
variables are specified in event queries. Data items bound to the variables are to be subsequently used for
raising events or executing updates.

Logical Variables Variables are place holders for the data, in the fashion of logic programming variables
are. They require equality when occurring more than ones in an event query. Note that variables can be
also bound to composite events’ representations, not just to parts of atomic events. This ability is useful
when e.g. a detected composite event needs to be sent to other interested Web sites (see Section 4.4.3).

Bounded Event Lifespan For processing XChange event queries (i.e. for detecting atomic or composite
events as answers to them), events do not need to be kept forever in memory. Instead, event data are stored
as long as they are needed for answering the event queries posed at a Web site. Moreover, the time for
which data on any received event is kept in memory is bounded, i.e. the event lifespan is bounded. The
notion of event history used in the literature [119, 141, 64] would be misleading in the context of XChange,
as event data is not kept forever in memory and event queries do not query events received in the past.

Forward-Looking XChange event queries are forward-looking, i.e. they do not have the ability to look
(to query events received) in the past. XChange event queries are capable of querying only events whose
representation have been received after the event query has been posed (or registered) at a Web site. This is
consistent with the clear cut between volatile data (events) and persistent data (Web resources). If querying
events that have been received in the past is needed by an application, then this application should turn
events into persistent data.

Language Constructs The language XChange is rich in constructs for expressing different combinations
of events to react upon. Their understanding requires some amount of time, though their usage eases
considerably the programming task. During the design phase of XChange, a trade-of has been sought for
between offering more language constructs and keeping their number as small as possible. Core language
constructs (relative to the intended applications) can be used if they meet all application requirements.

4.4.2 Atomic Event Queries

An atomic event query is a query against the representation of a single event. It describes a pattern for
a single, incoming event message. An atomic event query specification is an Xcerpt query term with an
(optional) absolute temporal restriction specification.

Paula-Lavinia Pătrânjan 69

4.4. EVENT QUERIES

Query Terms

The “simplest” XChange event query and, at the same time, the building block for more “complex” event
queries (for detecting temporal combinations of events) is an Xcerpt query term. Its purpose, when posed
against incoming events, is to detect single occurrences of events. Recall that Xcerpt query terms can be
used for querying event data, as event data (i.e. event messages) represent data terms. Section 2.4.2 has
introduced Xcerpt query terms and exemplified their core constructs on simple examples. A short recap of
term specifications and query terms follows.

An ordered term specification (denoted by square brackets []) expresses that the order of subterms is
relevant, an unordered term specification (denoted by curly braces {}) expresses that the order of subterms
is irrelevant and must not be kept. Ordered subterms are needed e.g. with texts like books. Unordered
subterms are convenient with database-like data items. Total or partial (event and Web) query patterns can
be specified. A query term q using a partial specification (denoted by double brackets [[]] or braces {{}})
for its subterms matches with all such terms that (1) contain matching subterms for all subterms of q and
that (2) might contain further subterms without corresponding subterms in q. In contrast, a query term
q using a total specification (denoted by single brackets [] or braces {}) does not match with terms that
contain additional subterms without corresponding subterms in q.

Example 4.4 (Simple XChange Atomic Event Query)
The following XChange atomic event query is a pattern that matches with all incoming events that a Web
site receives (recall from Section 4.3 that XChange event messages have a root labelled event belonging
to the xchange namespace).

xchange:event {{
}}

Query terms are (possibly incomplete) patterns for the data to be queried. Query patterns can contain
variables for extracting pieces of information from data terms (representing event data or Web resources’
data). Variables (preceded by the keyword var) are place holders for data. Variable restrictions can also
be specified, by writing var X −> p (read as), which restrict the bindings of the variables to those terms
that are matched by the restriction pattern p. Query terms may contain querying constructs – comfortable
means for query specification – such as:

• descendant, for expressing incompleteness in breadth (see Example 2.21);

• without, for expressing subterm negation (see Example 2.22);

• except, for leaving out certain subterms from a variable binding (see Example 2.23);

• optional, for specifying optional patterns inside query terms (see Example 2.24);

• other constructs whose explanation is found in [125].

Example 4.5 (Variables Inside XChange Atomic Event Queries)
The following XChange atomic event query detects event messages notifying a phone conference. The
subject to be discussed and the time at which the phone conference should be held are of interest and thus
are to be bound to the variables S and T, respectively.

xchange:event {{
xchange:sender {"http://organiser.de/secretary/"},
phone-conference {{

subject { var S },
time { var T }

}}
}}

70 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

For determining answers to atomic event queries and thus bindings for the variables, the event manager
of an XChange-aware Web site attempts to match each incoming event received with the currently posed
atomic event queries (which themselves may be part of composite event queries). Query terms are matched
against event data (or Web resources’ data) by means of a novel unification method called Simulation Uni-
fication [126, 125], which can handle querying constructs such as partial specifications, optional subterms,
or negation of subterms. Informally, a query term q simulation unifies (or simply matches) a data term d
if q’s structure can be found in d. The outcome of simulation unifying q and d is a set of substitutions
for the variables in q. XChange event queries (’event part’) and Web queries (’condition part’) are based
on query terms and find substitutions for the variables that are then subsequently used in the ’action part’
(event raising or transaction specification) of a rule.

Example 4.6 (XChange Event Message Notifying a Phone Conference)
Assume that the organiser of Mrs. Smith uses a rule containing the atomic event query of the previous
example. An excerpt of an event message the organiser receives is given in the following using the term
syntax:

xchange:event {
xchange:sender { "http://organiser.de/secretary/" },
xchange:recipient { "http://organiser.de/Smith/" },
xchange:raising-time { "2005-04-11T10:05:32" },
xchange:reception-time { "2005-04-11T10:07:02" },
xchange:id { "1235" },
phone-conference {

subject { "Deliverable D5" },
time { "2005-04-25T14:00" },
participants {... },
...

}
}

The atomic event query of Example 4.5 detects the above phone conference notification; the evaluation
of the atomic event query against the event message results in the following assignments for the variables:
S 7→ "Deliverable D5" and T 7→ "2005-04-25T14:00". Upon reception of other phone conference
announcements having the specified pattern, the variables S and T will be bound to other data items.

Variables can be used not only inside event queries (e.g. variables S, T in Example 4.5), but also
outside event queries. In the latter case, variables are to be bound to the whole event message that matches
the atomic event query.

Example 4.7 (Variables Outside XChange Atomic Event Queries)
The following XChange atomic event query is a slight modification of the event query of Example 4.5.
Both event queries detect phone conference announcements; the following one binds the variable Msg to
the data term matching the given event pattern.

var Msg -> xchange:event {{
xchange:sender {"http://organiser.de/secretary/"},
phone-conference {{ }}

}}

Upon reception of the event message of Example 4.6, the above atomic event query evaluates success-
fully and binds the variable Msg to the received event message (i.e. the substitution for variable Msg is
exactly the data term of Example 4.6).

Posing Conditions on Atomic Event Queries As discussed already in Section 2.4.2, Xcerpt query terms
may be further restricted by constraints (e.g. arithmetic expressions on variables occurring in the query
term) in a so-called condition box, which has been introduced to source out all restrictions that are not

Paula-Lavinia Pătrânjan 71

4.4. EVENT QUERIES

pattern-based. Being Xcerpt query terms, atomic event queries inherit the condition box specification. The
keyword where (as in Xcerpt) introduces such conditions on atomic event queries.

Example 4.8 (Conditions on XChange Atomic Event Queries)
The following XChange atomic event query detects event messages notifying a flight delay of more than
forty five minutes.

xchange:event {{
xchange:sender {"http://airline.com"},
delay-notification {{

flight-number { var N },
minutes-delay { var D }

}}
}} where { var D > 45}

Only events are detected that satisfy the given time constraint. More than one constraints on the vari-
ables occurring in the event query can be specified in the where clause. For a more detailed discussion on
condition box specification, see Chapter 4.5.4 of [125].

Absolute Temporal Restrictions

Absolute temporal restrictions are used to restrict the events that are considered relevant for an event query
to those that have occurred in the specified time interval. An event occurs in a time interval if the time point
at which its representation has been received lies inside the time interval.

XChange absolute time restrictions can be specified by means of a fixed starting and ending point (i.e.
a finite time interval) following the keyword in. The starting point of such a restricting interval can be
implicit (i.e. the time point at which the event query has been registered), in which case it follows the
keyword before. Thus, an XChange atomic event query specification is defined as:

At_EvQ ::= Query_Term
| At_EvQ "in" Finite_Time_Interval
| At_EvQ "before" Time_Point

Note that the production rules defining the nonterminal Query Term are not given here; they are found
in [125].

Finite_Time_Interval ::= "[" Time_Point ".." Time_Point "]"
Time_Point ::= ISO_8601_format

Time points in XChange are given using the ISO 8601 standard format for representing dates and times.
“ISO 8601 advises numeric representation of dates and times on an internationally agreed basis.”5 Calendar
date, week date, time of the day, and date and time can be represented using the standard. Representations
begin with the largest element (e.g. year) followed by smaller elements (e.g. month followed by day). Note
that years represent the Gregorian calendar’s years. When a calendar date is followed by the time of the
day in the ISO 8601 representation, the capital letter T is used to separate the date and time components.
For example, 2005-07-07T14:05:00 represents five minutes after two o’clock in the afternoon of July 7,
2005.

By using the ISO 8601 format for specifying dates and times, it is assumed that all parties use the
same calendar – the Gregorian one. In order to facilitate communication between personalised reactive
systems whose owners use different calendars, means for defining calendars and reasoning with calendar
data are needed. Richer temporal specifications are conceivable in XChange. This can be achieved e.g.
by integrating into XChange a calendar and temporal type system such as CaTTS (Calendar and Temporal
Type System) [51].

5ISO 8601, http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

72 Paula-Lavinia Pătrânjan

http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Example 4.9 (XChange Atomic Event Query Specifying Temporal Restriction)
The following XChange atomic event query detects only such events whose representation has been re-
ceived before 2005-07-07T14:00:00 and, of course, matches the given pattern.

xchange:event {{
content {{ }}

}} before 2005-07-07T14:00:00

Note that no event is to be detected if the time interval or the time point specified as temporal restriction
for an event query is in the past. The situation is encountered either because of a human error in program-
ming (e.g. writing as year 1005 instead of 2005), or because the time interval for which an event query
supposed to detect events has passed. This is consistent with the clear separation of volatile data (events)
and persistent data (data of Web resources).

Example 4.10 (XChange Atomic Event Query Detecting Discounts)
An XChange atomic event query that detects insertion of discounts for flights from Munich to Paris that
are received as notifications before July 7, 2005 is given next.

xchange:event {{
flight {{
from {"Munich"}, to {"Paris"},
new-discount { var D }
}}

}} before 2005-07-07T10:00:00

Note that insertions can be notified by using other structure for event messages. However, the update
specification that has been used to perform the insertion can not be sent as content of event messages as
update specifications are not data terms. A detailed introduction into XChange update specifications is
given in Section 4.6.

4.4.3 Composite Event Queries
The capability to detect and react to composite events, e.g. sequences of events that have occurred possibly
at different Web sites within a specified time interval, is needed for many Web-based reactive applications.
However, (to the best of our knowledge) existing languages for reactivity on the Web do not consider the
issues of detecting and reacting to such composite events ([29] considers detecting composite events, but
XChange’s notion of composite events goes beyond their notion, cf. Section 3.2.1). One of the novelties
introduced by XChange is the processing of composite events. To this aim, XChange offers composite
event queries.

Composite event queries are specified by means of atomic event queries combined using XChange
composite event query constructs. XChange offers a considerable number of such constructs along two
dimensions: temporal restrictions and event compositions. This section gives an introduction into XChange
constructs for composite event queries; their syntax and informal semantics are given here, the formal
definition of the semantics is postponed to Section 5.1.1.

Temporal Restrictions

The role of temporal restrictions on composite event queries is twofold: they specify interest in events that
occur in a given time interval or have a given duration, and ensure that event data can be released after a
bounded time (this is realised by using legal composite event queries, notion introduced in Section 4.4.4).

Note that temporal restrictions do not affect the time point of answer (instance of event query) detection,
they only restrict the events that are answer components. Temporal restrictions determine if a rule is fired
or not (depending whether the events contained in a candidate answer fulfil the specified time constraint or
not) but when the rule is fired depends only on the events received.

Paula-Lavinia Pătrânjan 73

4.4. EVENT QUERIES

Absolute Temporal Restrictions Like for atomic event queries, temporal restrictions can be specified
also for composite event queries, posing temporal restrictions on the answers’ constituent events.

Comp_EvQ ::= Comp_EvQ "in" Finite_Time_Interval
| Comp_EvQ "before" Time_Point

Recall that composite events (detected using composite event queries) do not have an occurrence time,
like atomic events do. Instead, they have a duration determined by their beginning and ending time, re-
spectively. A composite event c is a candidate answer to a composite event query of the form

• CEQ in [Time Point1 .. Time Point2] if the beginning time of c is greater than or equal to
Time Point1 and the ending time of c is less than or equal to Time Point2;

• CEQ before Time Point if the ending time of c is less than or equal to Time Point.

Clearly the above stated temporal conditions on c are not enough for detecting c as an answer to the
composite event query CEQ.

Relative Temporal Restrictions Besides absolute temporal restrictions, also relative temporal restric-
tions, given by a duration, can be specified for composite event queries. This decision is rather straightfor-
ward considering that each composite event has a length of time and restricting it may be very useful in
practice. For an instance of such a composite event query (i.e. a composite event), the difference between
the ending time and the beginning time of the instance needs to be less than or equal to the given duration.
Relative temporal restrictions can be given as positive numbers of years, days, hours, minutes, or seconds
and their specification follows the keyword within.

Comp_EvQ ::= Comp_EvQ "within" Duration

Duration ::= Nr DTime
DTime ::= "second" | "minute" | "hour" | "day" | "month" | "year"

XChange requires every composite event query to be accompanied by a temporal restriction specifi-
cation. This makes it possible to release each (atomic or semi-composed composite) event (i.e. to release
event queries’ answers or partial instantiations of them) at each Web site after a finite time. A detailed dis-
cussion on the temporal restrictions that should accompany event query specifications for releasing event
data is postponed to Section 4.4.4. Thus, language design enforces the requirement of a bounded event
lifespan and the clear distinction persistent vs. volatile data.

Event Composition

This section introduces into XChange’s constructs for specifying (temporal) patterns over more than one
incoming events. With XChange, one can specify conjunctions, temporally ordered conjunctions, inclusive
disjunctions, exclusions, occurrences, and multiple inclusions and exclusions of event queries. A discussion
on other constructs for event composition that might be useful in practice is given at the end of this section.

Notation. For simplifying the reading and understanding of examples for composite event queries, a
short notation for events’ representations is used in this section. Thus, the event messages and the queries
against them are ’lifted’ by leaving the envelope of event representation out. This means that only the
content is specified in event queries and incoming events. Consider the following XChange event query
and incoming event message (they give actually a shape for event queries and event messages in XChange):

xchange:event {{
xchange:sender {...},
content {{ }}

}}

xchange:event {
xchange:sender {...},
xchange:recipient {...},
xchange:raising-time {...},
xchange:reception-time {...},
xchange:id {...},
content { ... }

}

74 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

In the remainder of this section, they are written like:

content {{ }} content { ... }
The role of event messages’ identifier is taken by a subscript for the content of the event message;

however, subscripts are used only when they are needed for differentiating between event messages having
the same content. The incoming event stream is a sequence of event messages given in short notation and
separated by ’,’; the direction in which the incoming event stream grows is from left to right (denoted by
−− ... −−>).

Also, beginning time(comp event) and ending time(comp event) are used for denoting the beginning
and ending time, respectively, of composite event comp event.

Conjunctions Conjunctions specify that instances of each of the specified event queries need to be de-
tected in order to detect the conjunction event query. That is, an answer to each of the component event
queries needs to be found in order to find an answer to the conjunction event query. The order in which
events occur is not of importance. This is reflected also in the specification of such an event query – by
using curly braces.

A conjunction event query has arity n and at least one event query needs to be specified (1 ≤ n).
Keyword and introduces such a composite event query in XChange. The grammar rule defining conjunction
event queries in XChange is the following:

Comp_EvQ ::= "and" "{" EvQ ("," EvQ)* "}"

Example 4.11 (XChange Event Query Specifying Conjunction (1))
The following event query specifies interest in the occurrence of pairs of events whose contents match the
atomic event queries a{{}} and b{{}}, respectively:

and {
a {{ }},
b {{ }}

}

Assume that the following excerpt of the incoming event stream is received by a Web site after the
above event query has been registered:

-- b {c}, g {a,b}, a {d}, a {e}, b {e} -->

After receiving b{c} one of the atomic event queries has a match and thus a partial instantiation of the
whole event query exists. Upon reception of a{d} an instance of the event query is detected (i.e. an answer
to the event query has been found); the answer has b{c} and a{d} as components. The beginning time of
the answer is the occurrence time of b{c}, its ending time is the occurrence time of a{d}.

Upon reception of a{e}, another answer to the event query is detected having as components b{c} and
a{e}. Upon reception of b{e}, the event query has other two answers, one made of a{d} and b{e}, and
one of a{e} and b{e}.

Example 4.12 (XChange Event Query Specifying Conjunction (2))
The following event query is a slight modification of the Example 4.11 (above), where the variable X is to
be bound to the content of the incoming event messages that match the two atomic event queries.

and {
a {{ var X }},
b {{ var X }}

}

Assume that the event stream of the previous example is received by the Web site where the event query
is registered. Recall that variables require equality when occurring more than ones in an event query (like
logic programming variables). Thus, upon reception of b{c} the event query is partial instantiated and the

Paula-Lavinia Pătrânjan 75

4.4. EVENT QUERIES

variable X is bound to c. The reception of a{d} offers a match for the atomic event query a{{ var X}} and
the assignment X 7→ d for the variable, but no instance of the whole event query is detected at this point.
An answer to the conjunction event query is detected upon reception of b{e}; the answer components are
a{e} and b{e}, and the variable X is bound to e.

Example 4.13 (XChange Event Query Specifying Conjunction)
Mrs. Smith wants to visit an exhibition of G. Barthouil on a rainy day. The next XChange event query is
used to detect the conjunction of the exhibition notification and the desired weather forecast notification
that are sent by appropriate Web services.

and {
xchange:event {{
xchange:sender {"http://artactif.com"},
exhibition {{ painter {"G. Barthouil"},

location {"Marseilles"},
time-interval { var TI }

}}
}},
xchange:event {{
xchange:sender {"http://weather.com"},
forecast { date { var D }, city {"Marseilles"},

info {"It’s going to rain."} }
}}

} before 2005-08-16T11:15:00
where var D included-in var TI

Temporally Ordered Conjunctions Temporally ordered conjunctions specify that the occurrences of
component event queries’ instances need to be successive in terms of time (i.e. query for sequences of
events).

The keyword andthen introduces such an event query whose component event queries are enclosed in
square brackets (for denoting that the order in which events occur is of importance). A temporally ordered
conjunction event query has arity n and at least two event queries need to be specified (2≤ n).

A total specification (i.e. single square brackets) expresses that the answer to such a composite event
query contains only the instances of the component event queries. Between the instances of the specified
event queries other events might occur; they neither influence the successful evaluation of the event query,
nor are part of the answer.

A partial specification (i.e. double square brackets) for a temporally ordered conjunction event query
expresses that the answer contains besides the events that answer the component event queries also all
events that have occurred in-between. The practical need for total and partial specifications for such event
queries has been already motivated by the examples of Section 4.1.7.

The grammar rule for the temporally ordered conjunction event queries are given next:

Comp_EvQ ::= "andthen" "[" EvQ ("," EvQ)+ "]"
| "andthen" "[[" EvQ ("," EvQ)+ "]]"
| "andthen" "[[" EvQ ("," "collect" Query_Term "," EvQ)+ "]

For determining answers to temporally ordered conjunction event queries, the temporal order between
incoming events needs to be taken into account. An atomic event occurs before an (atomic or composite)
event if and only if its occurrence time is before the occurrence or the beginning time of the second event
on the time axis of the incoming events. A composite event ce1 occurs before another composite event ce2
(i.e. they are successive in terms of time) if and only if the ending time of ce1 is less than the beginning
time of ce2.

Example 4.14 (XChange Event Query Specifying Temporally Ordered Conjunction (1))
The following event query specifies interest in the occurrence of sequences of events having content with
label a and b, respectively.

76 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

andthen [
a {{ }},
b {{ }}

]

Consider (again) the excerpt of the incoming event stream received by a Web site where the above event
query has been registered:

-- b {c}, g {a,b}, a {d}, a {e}, b {e} -->

The above event query gets a partial instantiation only upon reception of a{d}, as the event query
looks for sequences of events that begin with a-labelled events (or more precisely event contents). Upon
reception of a{e} another partial instantiation of the event query is realised. Upon reception of b{e}, two
answers to the event query are detected, one represents the sequence a{d}, b{e}, and one the sequence
a{e}, b{e}. The fact that other events have been received between the reception of a{d} and b{e} does not
affect answering the event query with the sequence of these two events.

Note the difference to the answers of the event query of Example 4.11: sequences b{c}, a{d} and b{c},
a{e} are not answers to the event query as the temporal order between these events is not the desired one.

Example 4.15 (XChange Event Query Specifying Temporally Ordered Conjunction (2))
The following event query specifies interest not only in sequences of events having content with label a
and b, respectively, but also in all events that have occurred in-between.

andthen [[
a {{ }},
b {{ }}

]]

Assume that the above given event query is registered at a Web site that receives the excerpt of the event
stream used in the previous examples. Upon reception of b{e} two answers to the event query are detected,
one represents the sequence a{d}, a{e}, b{e} and one the sequence a{e}, b{e}. The first sequence that is
detected as answer to the event query collects the event a{e} because it is received between the answers to
the two component, atomic event queries.

Example 4.16 (XChange Event Query Specifying Temporally Ordered Conjunction (3))
An example of an andthen event query that collects only events with a particular pattern:

andthen [[
a {{ }},
collect b {{ var X }},
c {{ }}

]]

The following excerpt of the event stream received by a Web site where the above event query is posed
is used to explain the outcome of such an event query:

-- a {e}, b {e}, b {f}, d {}, c {e} -->

Upon reception of c{e} an answer to the event query is detected, it represents the sequence a{e}, b{e},
b{ f}, c{e}. The bindings obtained for the variable X are X 7→ e∨X 7→ f . Note that the occurrence of
event d{} does not affect the successful evaluation of the event query and is not part of the answer as only
non-empty b-labelled events are to be collected.

Example 4.17 (XChange Event Query Specifying Temporally Ordered Conjunction)
The next XChange event query is used to detect the notification of a flight cancellation and afterwards,
within two hours from its reception, the detection of a notification informing that the accomodation is not
granted by the airline.

Paula-Lavinia Pătrânjan 77

4.4. EVENT QUERIES

andthen [
xchange:event {{
xchange:sender {"http://airline.com"},
cancellation-notification {{
flight {{ number { var Number } }} }}

}},
xchange:event {{
xchange:sender {"http://airline.com"},
important {"Accomodation is not granted!"}
}}

] within 2 hour

Inclusive Disjunctions Inclusive disjunctions specify that the occurrence of an instance of any of the
specified event queries suffices for detecting the disjunction event query. A reactive rule having as event part
an inclusive disjunction event query is fired each time an answer to the specified, component event queries
is found. If the component event queries are atomic then the rule is fired each time an event matching one
of the atomic event queries is received. Even if a temporal restriction specification accompanies such an
event query, the time point of answer detection is not influenced.

The inclusive disjunction event query has arity n and at least one event query needs to be specified
(1≤ n). The keyword or denotes an inclusive disjunction in XChange and the event queries are enclosed
in curly braces.

Comp_EvQ ::= "or" "{" EvQ ("," EvQ)* "}"

Note that exclusive disjunctions of event queries can also be specified in XChange by means of the
multiple inclusions and exclusions event queries. They specify a generalised exclusive disjunctions of
event queries and are discussed later in this section.

Example 4.18 (XChange Event Query Specifying Inclusive Disjunction (1))
The following event query specifies interest in the occurrence of events having content with label a or b.

or {
a {{ var X }},
b {{ var X }}

}

Consider the following excerpt of the event stream received by a Web site where the event query is
registered:

-- b {c}, g {a,b}, a {d} -->

Upon reception of b{c} an answer to the event query is detected. The variable X gets a binding, X 7→ c.
Upon reception of g{a,b} nothing happens as none of the specified atomic event queries matches it. The
reception of a{d} leads to a new answer for the inclusive disjunction event query and a new binding for the
variable, X 7→ d. Thus, each time an event matching one of the two atomic event queries is received a new
answer to the inclusive disjunction event query is detected and a new binding for the variable is found.

Example 4.19 (XChange Event Query Specifying Inclusive Disjunction)
After Orange, Mrs. Smith wants to visit Arles and Nı̂mes. The next city to visit is chosen depending on the
notification of train tickets and hotel reservation made by appropriate services.

or {
xchange:event {{
xchange:sender {"http://service-nimes.fr"},
service-notification {{

train {{ date {"2005-08-10"},

78 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

from {"Orange"}, to {"Nimes"} }},
hotel {{ }}

}}
}},
xchange:event {{
xchange:sender {"http://reservations-arles.fr"},
reservation-notification {{

train {{ date {"2005-08-10"},
from {"Orange"}, to {"Arles"} }},

accomodation {{ }}
}}

}}
} before 2005-05-02T21:30:00

Exclusions Exclusions (event negation) specify that no instance of the given event query should have
occurred in a finite time interval in order to detect the exclusion event query.

A finite time interval acting as a monitoring window over the incoming event stream is necessary for
the detection of non-occurrence of an event. After an exclusion event query is posed at a Web site the
incoming events are queried for determining whether an instance of the specified event query occurred or
not. If an instance of the event query occurs then the exclusion event query has no successful evaluation.
At a point in time, it can be determined whether an event query instance has occurred or not, but one can
not predict what kind of events the future will bring. Thus, the event manager needs to know the time point
until non-occurrence (or occurrence) of event query instances is to be monitored. A (monitoring) time
interval for exclusion event queries is given by a finite time interval or by a composite event query (recall
that their instances have a beginning and an ending time and thus determine a time interval).

The keyword without introduces exclusion event queries in XChange and the finite time interval spec-
ification or the composite event query follows the keyword during. The following grammar rules define
the exclusion event queries:

Comp_EvQ ::= "without" "{" EvQ "}" "during" "{" Comp_EvQ "}"
| "without" "{" EvQ "}" "during" Finite_Time_Interval

An XChange exclusion event query is evaluated at the end of the monitoring time interval. That is, the
non-occurrence of an event query instance is evaluated at each successful evaluation of the composite event
query or at the end of the given finite time interval. The firing time point of a reactive rule having as event
part an exclusion event query is the ending time of an instance of the composite event query or the ending
time of the finite time interval. Recall that the firing time point of a reactive rule having as event part an
event query of the form Comp EvQ in Finite Time Interval (absolute temporal restriction on a composite
event query) is the ending time of a detected instance of the composite event query Comp EvQ. To reflect
the difference between the time point of evaluation and thus the firing time point of an associated rule, the
keyword during is used instead of in for exclusion event queries.

Example 4.20 (XChange Event Query Specifying Exclusion (1))
The following event query specifies interest in the non-occurrence of c-labelled events during occurrence
of sequences of events labelled a and b, respectively.

without {
c {{ }}

} during {
andthen [a {{ }}, b {{ }}]
}

Assume that the Web site where the above given exclusion event query is registered receives the fol-
lowing excerpt of the incoming event stream:

-- a {e}, e {f}, a {d}, c {e, f{g} }, b {f} -->

Paula-Lavinia Pătrânjan 79

4.4. EVENT QUERIES

After receiving the event a{e} occurrences of events matching c{{}} or b{{}} are monitored. Upon
reception of b{ f} the andthen event query is successfully evaluated with two sequences as answers, one
made of a{e} and b{ f}, and one of a{d} and b{ f}. Though, the evaluation of the whole event query is not
successful (i.e. the event query has no answer) as the event c{e, f{g}} has occurred during both answers to
the andthen event query (c{{}} � c{e, f{g}} and an answer is found to the event query whose exclusion
is of interest).

Example 4.21 (XChange Event Query Specifying Exclusion (2))
The following exclusion event query is a slight modification of the previous example where some of the
component atomic event queries are augmented with variables.

without {
c {{ var X }}

} during {
andthen [a {{ var X }}, b {{ }}]
}

Consider that the above given event query is to be evaluated against the excerpt of the incoming
event stream given in the previous example. Upon reception of a{e} the andthen event query is par-
tially evaluated and the variable gets a binding, the substitution σ1 = {X 7→ e} is obtained. The reception
of e{ f} does not influence the evaluation of the event query. Upon reception of a{d} another instance
of the andthen event query is partially evaluated and a possible binding for the variable is found, the
substitution σ2 = {X 7→ d} is obtained. The event c{e, f{g}} matches the event query whose exclu-
sion is of interest; the result of c{{var X}} � c{e, f{g}} gives two possible bindings for the variable,
Σ3 = {{X 7→ e},{X 7→ f{g}}}. Receiving b{ f} determines two answers to be found for the andthen
event query. Now, the exclusion event query can be evaluated. Recall that variables used in event queries
require equality when occurring more than ones in a query. Thus, the whole event query is evaluated suc-
cessfully only once against the given incoming event stream, with the sequence a{d}, b{ f} (no c-labelled
events having a child d are received, thus the event query is successful). The variable substitution obtained
is σ = {X 7→ d} (σ2∧¬Σ3).

Example 4.22 (XChange Event Query Specifying Exclusion (3))
The following exclusion event query detects non-occurrence of c-labelled events within the given time
interval.

without {
c {{ var X }}

} during [2005-05-22T14:00:00 .. 2005-05-22T20:00:00]

Assume that no c-labelled events have occurred within the specified finite time interval; at time point
2005-05-22T20:00:00 the exclusion event query evaluates successfully. As no c-labelled events are re-
ceived, no binding for the variable X is found. Thus, the variable X can not be further used in the reactive
rules having as event part the above given exclusion event query.

Variables occurring in the event queries whose exclusion is of interest (i.e. event queries specified
after the keyword without) need to have at least one defining occurrence in the (whole) event query in
order to be further used in an event query or other parts of XChange rules. Each variable occurrence in
XChange rules is associated with a polarity for determining whether a variable occurring in the event part
(or condition part) of the rule can be used in the condition and action part (or, just in the action part,
respectively) of the rule or not (i.e. determining rules’ range restriction). A negative polarity of a variable
occurrence expresses a defining occurrence of the variable. A positive polarity expresses a non-defining
variable occurrence. The polarity of Xcerpt query terms (defined in [125]) is extended for XChange event
queries. The polarity of event queries and the range restriction of XChange rules are postponed to Section
4.8.4. In Example 4.21 the first occurrence of the variable X has positive polarity as it occurs inside the
event query whose exclusion is of interest, the second occurrence of X has a negative polarity. Thus, the
variable can be used outside the event query (e.g. in complex event queries having as one of the components

80 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

the exclusion event query). In Example 4.22 the variable X occurs ones with positive polarity, meaning
that the variable can not be used outside the given exclusion event query.

Example 4.23 (XChange Event Query Specifying Event Exclusion)
The following XChange event query detects if the notifications of two online reservations made on 10th of
July 2005 are not received within ten days.

without {
and {

xchange:event {{
flight-reservation-notification {{ }}

}},
xchange:event {{

hotel-reservation-notification {{ }}
}}

}
} during [2005-07-10..2005-07-20]

Occurrences Occurrences constructs for event queries refer to the number of times an event query in-
stance should occur or should be repeated to be of interest, or to the position that events of interest should
have in the incoming event stream. The occurrences constructs supported by XChange (and explained in
the following) are (1) quantifications, (2) repetitions, and (3) ranks.

1. Quantifications in event queries are used to detect instances that occur (at least, at most, or exactly) a
number of times in a given time interval or between occurrences of other event query instances.

The keyword times introduces such quantification event queries in XChange. The occurrences of
instances of a given event query (EvQ) are to be counted within a time interval, which is either determined
by instances of a given composite event query (Comp EvQ) or is directly given as a finite time interval
specification (Finite Time Interval). The following grammar rules define such composite event queries in
XChange:

Comp_EvQ ::= "times" M ("any" Vars)? "{" EvQ "}" "during" "{" Comp_EvQ "}"
| "times" M ("any" Vars)? "{" EvQ "}" "during" Finite_Time_Interval

M ::= ("atleast" | "atmost")? Nr
Nr ::= [1-9][0-9]*
Vars ::= "var" Var_Name ("," "var" Var_Name)*

Example 4.24 (XChange Event Query Specifying Quantification (1))
The following event query specifies interest in the reception of at least three messages from the secretary
within the specified time interval. Also, the subject of the messages are of interest (e.g. for using them in
the action part of the rule having the following event part).

times atleast 3 {
secretary-message {{

subject { var S },
content {{ }}

}}
} during [2005-05-23T08:00..2005-05-23T18:00]

The event query evaluates successfully if between 2005-05-23T08:00 and 2005-05-23T18:00 at least
three messages are received having the same subject. Being a logical variable, the variable S requires
equality. By leaving the variable S out (i.e. specifying just sub ject{{}} instead of sub ject{var S}) the
event query detects the reception of at least three messages with possibly different subjects, but these
subjects can not be further used, as no variable is bound to these data.

Paula-Lavinia Pătrânjan 81

4.4. EVENT QUERIES

By means of the constructs introduced so far, one can detect situations like the reception of three
messages with different subjects, but one can not react upon them by e.g. sending a response message con-
taining a list of all three messages’ subjects. To overcome this, the approach taken consists in introducing
existential quantified variables, i.e. variables that do not require equality of bindings in selecting data items.
Informally, existential quantification expresses that at least one binding for the given variable exists.

The existential quantified variables’ specification follows the occurrence specification (times M). The
keyword any precedes the list of the existential variables used in an event query. Variables not declared
as existential quantified do require equality when occurring more than ones in an event query. Declaring
a variable as existential quantified in an event query applies to all its occurrences in the component event
queries (the property of being existential quantified for a variable is inherited in a top down manner to
component event queries).

Example 4.25 (XChange Event Query Specifying Quantification (2))
The following event query specifies interest in the reception of at least three messages from the secretary
within the specified time interval.

times atleast 3 any var S {
secretary-message {{

subject { var S },
content {{ }}

}}
} during [2005-05-23T08:00..2005-05-23T18:00]

Assume that the following three messages are received within the given time interval (other kinds of
events might have also been received, but their occurrence does not influence the evaluation of the above
given event query):

secretary-message {
subject {"WG I1"},
content {...},...

}

secretary-message {
subject {"WG I5"},
content {...},...

}

secretary-message {
subject {"TTA"},
content {...},...

}
The quantification event query evaluates successfully against an incoming event stream containing the

above messages (whose reception times lie inside the given time interval) and the variable S has three
possible bindings; the substitution set Σ = {{S 7→ ”WG I1”},{S 7→ ”WG I5”},{S 7→ ”T TA”}} is obtained.

2. Repetitions are used for detecting e.g. every second, forth, sixth, and so on, instances of a specified
event query in a given time interval or between occurrences of other event query instances.

The keyword every introduces such event queries in XChange. The following grammar rules define
repetition event queries:

Comp_EvQ ::= "every" Nr ("any" Vars)? "{" EvQ "}"

Example 4.26 (XChange Event Query Specifying Repetition (1))
The following event query detects every second instance of the specified atomic event query a{{var X}}.

every 2 {
a {{ var X }}

}

Assume that the Web site where the above given repetition event query is registered receives the fol-
lowing excerpt of the incoming event stream:

-- a {b,c}, b {e}, g{h}, a {c,d}, a {f}, a {d,e} -->

The event a{b,c} matches the atomic event query a{{var X}}, thus a first instance of it is found; the
result of simulating the atomic event query into the event (a{{var X}} � a{b,c}) is the substitution set

82 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Σ1 = {{X 7→ b},{X 7→ c}}. The events b{e}, g{h} do not influence the answer to the event query. Upon
reception of a{c,d} the repetition event query has a first answer (i.e. reactive rules having as event part
the given event query fire); the event a{c,d} matches the atomic event query and the result of a{{var
X}} � a{c,d} is the substitution set Σ2 = {{X 7→ c},{X 7→ d}}. Thus, the whole event query evaluates
successfully with substitution σanswer1 = σ1∩σ2 = {X 7→ c}.

The event a{ f} matches the atomic event query and a new substitution for the variable is found, σ3 =
{X 7→ f}. If an a-labelled event with a child f is received at some point in the future, then the repetition
event query would evaluate successfully with substitution σ3.

Upon reception of a{d,e} the repetition event query is evaluated successfully for the second time
against the given event stream (the two answers of the event query are written in red, the events matching
the atomic event query but being no answers to the whole event query are written in blue). a{{var X}} �
a{d,e}) resulted in the substitution set Σ4 = {{X 7→ d},{X 7→ e}}. The event represents the second instance
of the repetition event query having as substitution σanswer2 = Σ2∩Σ4 = {X 7→ d} (the first corresponding
instance was a{c,d}).

Example 4.27 (XChange Event Query Specifying Repetition)
Mrs. Smith wants to quit slowly smoking so she answers only to every second call from her colleague
suggesting a smoking break. Such an event query can be specified in XChange and is given next.

every 2 {
xchange:event {{

xchange:sender {organiser://institute/myColleague/},
break-for-a-smoke {{

info {"Join me for a cigarette!"} }}
}}

} in [2005-03-01..2005-04-01]

3. Ranks are used to detect instances of a specified event query having a given rank (or position) in the
incoming stream of events. For determining the position of an event query instance, the instances that
are found for the event query are counted either until the desired position is reached or until the given
monitoring time interval ends (for determining the last instance of the event query). For this, the reception
time point of atomic event query instances and/or the beginning and ending time points of composite event
query instances are used.

The position of each of the instances of an atomic event query in an incoming event stream is rather
easy to determine. The first answer to the atomic event query (i.e. the first event received after event
query registration that matches the atomic event query) gets position 1 in the event stream. Assume that
at a moment in time t the position of the last received instance of the atomic event query is p. The next
received event e (reception time of e is greater than t) matching the atomic event query gets position p+1.
Considering two events ep and ep+i having positions p and p+ i (1≤ p, 1≤ i), respectively, it holds that
reception time(ep) < reception time(ep+i).

Different approaches are conceivable for determining the position of composite event query instances
in an incoming event stream. This is illustrated by means of a simple example.

Example 4.28 (Position of Composite Events in an Incoming Event Stream)
Recall the event query of Example 4.11:

and {
a {{ }},
b {{ }}

}

Assume that after registering the event query at a Web site the following events are received (events
are indexed by positive numbers representing an abstraction of the reception time points, a short notation
intended to simplify the example)

a1{1}, b2{1}, a3{2}, a4{3}, b5{2} −−>

Paula-Lavinia Pătrânjan 83

4.4. EVENT QUERIES

Posing the above given event query against the excerpt of the incoming event stream entails six answers
to be obtained. The first instance of the event query has as components the events a1{1} and b2{1}; it gets
position 1. The second instance has as components b2{1} and a3{2}; it gets position 2. The third instance
is composed of b2{1} and a4{3}; it gets position 3.

Upon reception of b5{2} the event query has other three answers, as the event completes the sequences
formed of a1{1}, a3{2}, and a4{3}, respectively. Because the ending time of these three answers is the
(same) time point t = 5, the beginning time points of the answers need to be used for determining the
position of the instances in the event stream. Thus, the answer composed of a1{1} and b5{2} gets position
4, the one composed of a3{2} and b5{2} gets position 5, the answer composed of a4{3} and b5{2} gets
position 6. But why not use just the ending time of the composite event query instances in determining their
position in the event stream? This would mean that the last three answers to the event query get position 4.
Both approaches are conceivable. The most suitable one should be chosen depending on the applications
to be developed.

The example given above shows that composite event query instances (i.e. composite events) may
be ordered in different ways based on their beginning and/or reception time points. Thus, for keeping
the language as clear and simple as possible, XChange is not committed to a single approach to ordering
composite events on the time axis of incoming events. Instead, XChange event queries specifying ranks are
restricted only to atomic event queries. Though, the language covers a large range of application domains
and scenarios and does not preclude its extension to detecting composite events having a given rank.

The keywords withrank and last introduce such event queries in XChange. The last instance of
an event query can be determined either at the end of a time interval or at a successful evaluation of a
composite event query. Thus, for offering a uniform syntax and semantics of language constructs, the
keyword during introduces such a time interval or composite event query. The following grammar rules
define ranks event queries in XChange:

Comp_EvQ ::= "withrank" Nr ("any" Vars)? "{" At_EvQ "}"
| "last" "{" At_EvQ "}" "during" "{" Comp_EvQ "}"
| "last" "{" At_EvQ "}" "during" Finite_Time_Interval

Example 4.29 (XChange Event Query Specifying Ranks (1))
The following event query detects non-empty, f -labelled events that represent the last ones received during
instances of a temporally ordered conjunction event query.

last {
f {{ var X }}

} during {
andthen [

a {{ }},
b {{ }}
c {{ }}

] }

Assume that after registering the event query at a Web site the following events are received:

-- c {e}, a {g,h}, f {i}, b {h}, a {d}, f {h},
f {d,e}, f {}, c{d} -->

Posed against the above given excerpt of an event stream, the event query evaluates successfully; the
answer to the event query is composed of a{g,h}, b{h}, f{d,e}, and c{d} (the atomic event queries and
their instances that are part of the answer to the whole event query are written using the same colours).
The substitution set for the variable used is Σ = {{X 7→ d},{X 7→ e}}. Note that the last instance of the
desired event query is not f{}, as f -labelled events are sought for that have at least one child element
(f{var X} � f{} fails).

84 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Example 4.30 (XChange Event Query Specifying Ranks)
As the airline might send several delay notifications for a flight, the following event query can be used
for detecting the last notification that occurred during the first signalling of delays and the notifications
announcing the boarding time.

last {
xchange:event {{

delay-notification {{
var F,
expected-departure-time { var DT }

}}
}}

} during {
andthen [

withrank 1 {
xchange:event {{

xchange:sender { "http://airline.com" },
delay {{ var F -> flight-number {{ }} }}

}}
},
xchange:event {{

boarding-time {{ var F, begin { var BT } }}
}}

] }

Multiple Inclusions and Exclusions Multiple inclusions and exclusions detect occurrences of a given
number of event query instances and the non-occurrence of instances of the other specified event queries.
It expresses a generalised exclusive disjunction of event queries.

The keyword of preceded by an occurrence specification (e.g. atleast 2) introduces such event
queries in XChange. The occurrence specification expresses how many of the specified event queries
need to have instances; the whole event query evaluates successfully if instances of the others event queries
do not occur during a finite time interval. Again, such a time interval can be given through a composite
event query or directly by giving its begin and end time points. The multiple inclusions and exclusions
event query is used for detecting occurrences of some event queries and non-occurrences (exclusion) of
others; thus, it can be evaluated just at the end of evaluation of the given composite event query or at the
end of the time interval (the keyword during is used). Existential quantified variables (i.e. variables that
do not require equality when occurring more than once in an event query) can be used also in multiple
inclusions and exclusions event queries. At least one event query needs to be specified after the occurrence
specification. The following grammar rules define such event queries in XChange:

Comp_EvQ ::= M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}" "during" "{" Comp_EvQ "}"
| M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}"

"during" Finite_Time_Interval

Recall that M is of the form atleast Nr, atmost Nr, or just Nr (it has been introduced at the times
construct for event queries). Nr is a positive integer greater than 0 and less than to the number of event
queries specified after keyword of. An event query of the form 1 o f {EvQ1,EvQ2, ...,EvQn} (where
Nr = 1) expresses exclusive disjunction of the instances of the specified event queries.

Example 4.31 (XChange Event Query Specifying Multiple Inclusions and Exclusions (1))
The following event query specifies an exclusive disjunction of a-labelled and b-labelled events. The
occurrence of such events is of interest during instances of a conjunction event query.

1 of {
a {{ var X }},

Paula-Lavinia Pătrânjan 85

4.4. EVENT QUERIES

b {{ var Y }}
} during {

and {
c {{ }},
d {{ var Y }} }

}

Assume that after registering the event query at a Web site the following excerpt of the event stream is
received:

-- d {g,h}, e {d}, a {k,f}, c{e}, c{f,g}, b{f}, d{e} -->

The event query evaluates successfully two times on the above given stream of events; the instances of
the event query are composed of d{g,h}, a{k, f}, and c{e} (for the first answer), and d{g,h}, a{k, f}, and
c{ f ,g} (for the second answer). The sequences composed of c{e}, b{ f}, and d{e}, and c{ f ,g}, b{ f},
and d{e}, respectively, do not represent answers to the whole event query as the variable Y is a logical one
and requires equality.

Multiple inclusions and exclusions event queries specify interest in occurrence of event query instances
and non-occurrence (event exclusion) of other event query instances; one does not know beforehand which
event queries will be answered and which not. Thus, it might be the case that not all variables used in the
event queries will have bindings. Recall the discussion on variable substitutions for the case of exclusion
event queries. Similar, variables occurring in the event queries whose inclusion or exclusion is of interest
(i.e. event queries specified after the keyword of) need to have at least one defining occurrence in the
(whole) event query in order to be further used in an event query or other parts of XChange rules. In
Example 4.31 the variable Y has a defining occurrence as it will be bound when evaluating the conjunction
event query (which determines the monitoring time interval). The occurrence of variable X is non-defining
and thus it can not be further used in the rule having as event part the example event query. (Though, if
the event query is part of a more complex event query, the variable X might have a defining occurrence in
other parts of the complex event query.)

One might argue that the language is too restrictive because of the requirement of at least one defining
occurrence for the variables that need to be used in other parts of an XChange rule. Another approach
would consist in introducing a kind of optionality specification for the variables that do not have a defining
occurrence in the event query; the specification accompanies these variables in the condition and action
part of XChange rules. A default value for the variable marked “optional” needs also be specified; this
value is to be used when no binding for the variables resulted from a successful evaluation of the event
query.

Variables Inside and Outside XChange Event Queries. As the examples introduced until now have
shown, variables can be bound to data items of events received (by using variables inside atomic event
queries), or to atomic events that have occurred on the Web (by using variables outside atomic event
queries). Variables can also be bound to composite events, i.e. to answers to composite event queries.
This is achieved by using variables outside composite event queries, like

var CE → Comp_EvQ

The variable CE is to be bound to the answers found for Comp EvQ. Answers to composite event queries
contain all atomic events that are used for answering the event query, they are sequences of atomic events
whose representation is an XML document. (A more detailed discussion on answers to XChange event
queries and their representations is given in Section 4.4.5.) Thus, variables occurring in (more precisely,
inside or outside) XChange event queries are bound to data terms.

Nesting XChange Event Queries XChange constructs for composite event queries can be nested arbi-
trarily; thus, complex reactive applications can be easily and elegantly implemented in XChange.

86 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Example 4.32 (Nesting XChange Event Queries)
The following example gives a composite event query for detecting occurrences of a flight cancellation,
where the airline does not grant an accommodation. For this purpose, a temporal ordered conjunction
construct, the exclusion construct, and temporal restrictions are combined.

andthen [
xchange:event {{

xchange:sender { "http://airline.com" },
cancellation-notification {{

flight {{ number { "AI2021" }, date { "2005-08-21" } }}
}}

}},
without { xchange:event {{

xchange:sender { "http://airline.com" },
accomodation-granted {{ hotel {{ }} }} }}

} during [2005-08-21T17:00..2005-08-21T19:00]
] within 2 hour

Posing Conditions on Composite Event Queries As for atomic event queries, variables occurring in
composite event queries can also be constrained with conditions specified in a where clause. (Recall
that only non-structural conditions are to be specified, structural conditions are given through event query
patterns.) The following grammar rule defines composite event queries with condition box specification
(for a detailed explanation of Condition, see Chapter 4.5.4 of [125]):

Comp_EvQ ::= Comp_EvQ "where" "{" Condition ("," Condition)* "}"

Example 4.33 (Conditions on XChange Composite Event Queries)
Consider the simple composite event query:

without {
a { var X }

} during {
and {

b { var X },
c { var Y } }

} where { var X < var Y }

The event query detects conjunctions of b-labelled and c-labelled events with no a-labelled event in-
between whose content is the same as for the b event and less than the content of the c event.

On Introducing Other Constructs for Composite Event Queries (Discussion) Composite event queries
specify temporal relationships between classes of events; composite event query instances (composite
events) have a beginning and an ending time (time points that can be seen as the starting and the end-
ing point of a time interval). Thus, determining the temporal order of two (or more) composite event query
instances can be reduced to determining the relationship between the time intervals formed from the be-
ginning and ending time of the these instances. The possible relationships between time intervals have
been described and represented in a hierarchical manner by James F. Allen [13]. The thirteen possible rela-
tionships between time intervals have provided a basis for the development of the XChange constructs for
detecting composite events. Let’s look at these temporal relationships between time intervals to determine
which of them are and which are not covered by the constructs offered by XChange.

Let E1 and E2 be two finite time intervals. For expressing the temporal relationships the notation
introduced in [14] is used.

• The relationship E1 : be f ore E2 is mirrored by the temporally ordered conjunction event queries
(introduced by the keyword andthen).

Paula-Lavinia Pătrânjan 87

4.4. EVENT QUERIES

• The relationships E1 : starts E2 and E1 : f inishes E2 can be expressed in XChange by using the
temporally ordered conjunction event queries with constraints on the beginning and ending times of
the instances, or by requiring equality between first component atomic events. Note that for two
composite event query instances to have the same beginning time (meaning of : starts), either the
first component atomic event is the same for both instances (in the setting of XChange one single
event is received at a point in time) or the beginning time of the first component atomic event of an
instance is the start time of the finite time interval in the during specification of the other instance
(for event exclusion). Similar, : f inishes of XChange composite events can be explained.

• An approach similar to that discussed previously can be applied for E1 : equals E2.

• The relationship E1 : during E2 is mirrored by the times construct for event queries where one
occurrence (Nr = 1) of a composite event (corresponding to E1) is detected during occurrences of
other composite events (corresponding to E2):

Comp_EvQ ::= "times" 1 "{" EvQ "}" "during" "{" Comp_EvQ "}"

• The counterpart of the temporal relationship E1 : overlaps E2 is represented by querying for over-
lapping of composite event query instances on the time axis of the incoming events. It can be ex-
pressed in XChange but not that simple as e.g. expressing : be f ore, as no construct for overlapping
of composite event query instances exists in XChange (clearly, the binary case is more simpler than
detecting the overlapping of n composite events, n > 2). Use cases developed for XChange do not
bear evidence for the exigency of such a construct. However, for applications where such a con-
struct would ease considerably the programming task, the event query language of XChange could
be extended with:

Comp_EvQ ::= "overlap" "[" Comp_EvQ ("," Comp_EvQ)+ "]"
| "overlap" "{" Comp_EvQ ("," Comp_EvQ)+ "}"

Total specifications denote that besides overlapping of composite event query instances, the order of
their occurrence need to conform to the event queries’ specification.

• The temporal relationship E1 : meets E2 does not have a corresponding construct for event queries in
XChange; the discussion on : overlap also applies to : meets for event queries. However, a construct
like meets would be more interesting when considering different time granularity for the “meeting
point” on the time axis. For example, one could be interested in sequences of composite events
Comp EvQ1 and Comp EvQ2 that meet with time granularity week; the informal semantics of such
an event query is that ending time(comp ev2)−ending time(comp ev1)≤ week, where comp evi is
instance of Comp EvQi, i = 1,2 and week is defined as a duration of 7 days (defined by means of
a temporal system integrated into XChange). Different approaches to the semantics of such event
queries are conceivable. For extending XChange event queries with a construct mirroring : meets,
the grammar rules could look like:

Comp_EvQ ::= "meets" "[" Comp_EvQ ("," Comp_EvQ)+ "]" Time_Spec
| "meets" "{" Comp_EvQ ("," Comp_EvQ)+ "}" Time_Spec

where Time Spec is the time granularity specification and depends on the temporal system used.

One of the ideas during the development of XChange that never got materialised was to introduce a
branching construct – an if-then-else for event queries. The informal semantics of such a construct is: if
querying for a class of events A detects an instance of it, then query for events B, else query for events C.
Such an event query can be expressed by means of two rules in XChange (one querying for conjunctions
of A and B, and one for conjunctions of without A and C). For application scenarios where the number of
alternatives to be queried is small and the event queries shared by more than one rules are not complex, the
existing language constructs would do with no considerable programming effort. However, applications
can be found where an if-then-else construct for event queries might be very useful. If considered necessary

88 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

XChange could be extended for offering such a construct for event queries. A generalisation of this control
construct (i.e. a case construct) can also be conceivable for further extensions of the language. Here are the
grammar rules defining the extensions to the language syntax:

Comp_EvQ ::= "if" "{" EvQ "}" "then" "{" EvQ "}" ("else" "{" EvQ "}")?
| "case" "{" EvQ "}" "then" "{" EvQ "}"

("," "{" EvQ "}" "then" "{" EvQ "}")*
("," "else" "{" EvQ "}")?

It is not that clear which kind of constructs should necessarily be included into a reactive language
developed not only for a single kind of applications, but trying to cover different classes of applications.
Developing use cases for a language entails introduction of new language constructs and (perhaps) remov-
ing others; it also reveals the limits of a language. Moreover, a tradeoff between the expressive power of
the language and the ease of its usage needs to be found in designing a language. The design of XChange
event queries (and in fact of the whole language XChange) has aimed at introducing powerful constructs
that ease the programming task; though, efforts have been put in to avoid XChange to become a giant-size
language that can everything but nobody is going to use it.

4.4.4 Legal Event Queries
Recall the statement “XChange event queries are such that volatile data remains volatile” given in Section
4.1.8. An essential trait of event queries (cf. Section 4.4.1) is that they ensure that data of no event is kept
forever in memory; that is, the event lifespan is bounded. Though, (composite) event queries as introduced
in the previous section can need an unbounded lifespan for events.

Example 4.34 (“Illegal” XChange Composite Event Query)
The following composite event query specifies interest in a-labelled events followed by b-labelled events.

andthen [
a {{ }},
b {{ }}

]

Consider the excerpt of the incoming stream received at a Web site where the above given event query
is registered:

-- a {e}, b {f}, c {g}, b {h}, a {k} -->

XChange assumes no consumption of events, thus the same event may be part of more than one instance
of a composite event query. After detecting the instance of the above andthen event query composed of
a{e} and b{ f}, the atomic event a{e} needs to be kept in memory for waiting to other b events to occur.
Upon reception of b{h}, using the events kept in memory, another instance of the event query is detected
(the instance composed of a{e} and b{ f}). The next event received matches the atomic event query a{{}},
thus needs to be kept in memory for b-labelled events that will possibly be received in the future. (If instead
of an andthen event query an and event query is used, besides a-labelled events also b-labelled events need
to be kept in memory.) As the event manager can not predict which kind of events will be received, event
data needs to be kept forever in memory. For avoiding this, restrictions on composite event queries are
posed.

XChange (composite) event queries are restricted to so-called legal event queries that can be evaluated
with bounded event lifespan. A formal proof of this statement is given in Section 5.1.1. Legal event queries
have the promised trait of keeping the clear cut between persistent and volatile data.

XChange atomic event queries (with or without temporal restrictions) do not require events to be kept
in memory; thus, each atomic event query is considered legal. Restrictions are posed only on composite

Paula-Lavinia Pătrânjan 89

4.4. EVENT QUERIES

event queries whose answer detection requires semi-composed instances to be kept in memory. The main
idea is to restrict the time period of monitoring events (which are possible candidates to answering an event
query) to a finite time interval (the programmer should specify). The following composite event queries
are legal:

• composite event queries with absolute or relative temporal restriction;

• composite event queries specifying exclusions, quantifications, last instance, and multiple inclusions
and exclusions of event queries where the monitoring time period is given by a finite time interval (a
during Finite Time Interval specification).

Legal_EvQ ::= At_EvQ
| LC_EvQ

LC_EvQ ::= Comp_EvQ "in" Finite_Time_Interval
| Comp_EvQ "before" Time_Point
| Comp_EvQ "within" Duration
| "without" "{" EvQ "}" "during" Finite_Time_Interval
| "times" M ("any" Vars)? "{" EvQ "}" "during" Finite_Time_Interval
| "last" "{" EvQ "}" "during" Finite_Time_Interval
| M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}" "during" Finite_Time_Interval

The above mentioned kinds of legal composite event queries are very restrictive; there are other com-
posite event queries that do not belong to the classes mentioned but need only events of bounded lifespan for
their evaluation. However, the restrictions offer a set of simple and clear rules to follow for programming
legal event queries.

Example 4.35 (XChange Composite Event Query)
The following composite event query is not legal with respect to the definition above. (T 2 represents a time
point.)

andthen [
a {{ }},
b {{ }} before T2

]

Though, it can be rewritten as a legal (cf. supra) composite event query:

andthen [
a {{ }},
b {{ }} before T2

] before T2

Based on the semantics of the event query and the “legality” of its component event queries, one can
infer whether the whole composite event query is legal or not. The rules for legal composite event queries
need to be extended with the following ones defining (inferred) legal event queries (the first rule needs to
be added to the definition of legal composite event queries given above):

LC_EvQ ::= Inf_EvQ

Inf_EvQ ::= "or" "{" Legal_EvQ ("," Legal_EvQ)* "}"
| "without" "{" EvQ "}" "during" LC_EvQ
| "times" M ("any" Vars)? "{" EvQ "}" "during" LC_EvQ
| "last" "{" EvQ "}" "during" LC_EvQ
| M "of" ("any" Vars)? "{" EvQ ("," EvQ)* "}" "during" LC_EvQ

90 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

On Restricting Composite Event Queries (Discussion) Other approaches for ensuring a bounded event
lifespan are also conceivable. One can think of using a system timeout for events meaning that all events
older than a duration d are to be deleted. However, system timeouts do not always express users’ require-
ments, as event lifespans are application dependent. However, the restrictions posed on event queries in
XChange may be lifted for applications where other kind of restrictions are more suitable. For example,
predicting classes of events that will be received based on those received so far is an interesting research
issue whose investigation would probably lead to another solution for keeping the event lifespan bounded.

4.4.5 Answers to Event Queries
An answer to an XChange (atomic or composite) event query is made of an (atomic or composite) event
and a substitution set. Answering an XChange event query results in all atomic events that have been
used for this purpose and the set of substitutions for the variables occurring in the event query. One of
the recognised design principles for Web query languages is the answer closedness, meaning that answers
to Web queries can be further queried with the Web query language. Considering (sequences of) atomic
events answering event queries is rather natural having this principle in mind – answers to event queries
can be further queried by event queries.

Considering just the atomic events answering event queries is not enough, the substitution sets of an-
swers to event queries play an important role – they represent communication means between the compo-
nents of XChange reactive rules: The substitutions for the variables occurring in an event query restrict
the possible substitutions for the variables occurring in the Web query and action specification of the same
XChange reactive rule. The substitutions provide data for performing the desired actions, for constructing
notifications to be sent to other Web sites and for constructing new data to be inserted into (local or remote)
Web resources’ data. The maximal substitution set for all variables having at least one defining occurrence
in the event query is considered for the answer to an XChange event query. Substitutions for all variables
are of interest so as to be able to group (e.g. by using the grouping construct all) the substitutions when
used in the action part of XChange rules. Intuitively, a substitution set Σ answering the event query EvQ is
maximal, if there exists no substitution set ϒ answering EvQ such that Σ is a proper subset of ϒ. A more
general and formal definition of maximal substitution sets can be found in [125] (Section 7.3, Definition
7.1 on page 147).

Answers to Atomic Event Queries An answer to an atomic event query is made of
(i) the atomic event whose representation (as event message) matched the event query (and occurred

in the given time interval, if a temporal restriction has been specified). Atomic events, are represented as
XML documents – they are XChange event messages. A DTD for the representation is given in Section
4.3.

(ii) the (maximal) substitution set for all variables with at least one defining occurrence in the event
query; the substitutions are the result of matching (simulation unifying) the atomic event query with the
atomic event the answer contains.

Answers to Composite Event Queries An answer to a composite event query is made of
(i) a sequence of atomic events that have occurred and have been used to answer the composite event

query; it contains all atomic events that participated to answering the event query.
(ii) the (maximal) substitution set for all variables with at least one defining occurrence in the event

query; the substitutions are the result of matching the component atomic event queries with the atomic
events the answer contains. Clearly, the component atomic events satisfy the temporal pattern given by the
composite event query they answer.

An XChange composite event is a sequence of atomic events that altogether are used for answering a
composite event query. Thus, an answer to a composite event query is made of a composite event and a
substitution set (for the variables occurring in the composite event query the composite event answered).
Composite events should also be representable as XML documents, just like atomic events; this allows
further processing of composite events at local and remote Web sites. A composite event is represented as a
(flat) sequence (with an artificial root to make valid XML) of all atomic events that were used for answering

Paula-Lavinia Pătrânjan 91

4.4. EVENT QUERIES

the composite event query. The atomic events are ordered by their reception times. The first and last child
elements of a composite event’s representation are its beginning time and ending time, respectively. A
DTD for the representation of XChange composite events is given next. xchange:event represents an
XChange event message; a DTD for it is given in Section 4.3.

<!DOCTYPE xchange:event-seq [
<!ELEMENT xchange:event-seq (

xchange:beginning-time,
(xchange:event)*,
xchange:ending-time)>

<!ATTLIST xchange:event xmlns:xchange CDATA #FIXED
"http://xcerpt.org/xchange">

<!ELEMENT xchange:beginning-time (#PCDATA)>
<!ELEMENT xchange:ending-time (#PCDATA)>

]>

Variables can be bound to composite events, or more exactly to their representation as XML documents.
This can be achieved by restricting a variable to the answers to a composite event query – by writing var
A→ Comp EvQ. The bindings for variable A are the composite events answering the composite event
query Comp EvQ; an example of such a binding is given in the next example, which shows an answer to a
quantification event query.

Example 4.36 (XML Representation of a Composite Event)
The example shows an answer to the composite event query specifying quantifications; the event query has
been given as Example 4.25.

<xchange:event-seq>
<xchange:beginning-time> 2005-05-23T13:01 </xchange:beginning-time>
<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>
<xchange:recipient> http://lmu.de/smith </xchange:recipient>
<xchange:raising-time> 2005-05-23T13:00 </xchange:reception-time>
<xchange:reception-time> 2005-05-23T13:01 </xchange:reception-time>
<xchange:reception-id> 42 </xchange:reception-id>
<secretary-message>

<subject> Urgent call</subject>
<content> Werner called regarding ...</text>

</secretary-message>
</xchange:event>
<xchange:event>

<xchange:sender> http://lmu.de/secretary </xchange:sender>
...

</xchange:event>
<xchange:event>

...
<xchange:reception-time> 2005-05-23T15:16 </xchange:reception-time>
...

</xchange:event>
<xchange:ending-time> 2005-05-23T15:16 </xchange:ending-time>

</xchange:event-seq>

Answers to XChange composite event queries (more precisely, their representation) can be “put in an
envelope” and sent as event messages to one or more Web sites. Just as it is easy to exchange and query

92 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

information about atomic events, it is also easy to exchange and query information about composite events.
Both kinds of events are data terms (term representation of XML documents), thus Simulation Unification
can be applied for further querying (atomic or composite) events.

On Representing the Notion of Answer to Composite Event Queries (Discussion) Other approaches
for representing answers have also been investigated, e.g., XML representations mirroring the nested struc-
ture of a composite event query. Following the approach, a composite event is an XML document contain-
ing answers to the component event queries and the temporal relations between these answers.

Example 4.37 (XML Representation of a Composite Event (Possible Approach))
Consider the following composite event query (T 1 denotes a specification of a time point):

andthen [
a {{ }},
and {

b {{ }},
c {{ }}

}
] before T1

Answers to an andthen event query are represented as XML documents with root labelled xchange:
event -andthen containing the answers to the component event queries. Answers to the and event query
are represented as xchange:event-and-labelled documents. An attribute ordered denotes ordered and
unordered child elements. The answers to the above given event query look like in the following (recall
that the short notation for atomic events is used, where the root and the parameters of event messages are
missing):

<xchange:event-andthen ordered="true">
<a>
<xchange:event-and ordered="false">

<c> </c>

</xchange:event-and>
</xchange:event-andthen>

An advantage of having answers mirroring the structure of composite event queries is that Web sites
receiving composite events data can determine very easy the whole or the components of the composite
event queries they answered. A disadvantage of this approach is that same atomic events might be found
several times in the representation of a single composite event. However, a flat sequence for representing
composite events is better. It is simpler and more intuitive for users, since no knowledge of the query
structure is required. It leads to an easier definition of declarative semantics (see Section 5.1.1), due to the
similarity between sets and sequences. Finally, it is desirable for a query language to have similar input and
output — and the input of event queries is a collection of atomic events arriving sequentially. In principle,
this allows using the answer to a composite event query as the input to another event query.

4.5 Web Queries
Web queries are queries to persistent data (i.e. data of Web resources); they represent the ’condition part’
of XChange reactive rules (cf. Section 1.3.7 and Section 4.8). Web queries determine if certain conditions
hold (e.g. a person making a rental order is one of the clients of the rental firm, or the notification of a flight
cancellation regards Mrs. Smith flight) and gather data as variable bindings that is needed for performing
the desired actions (e.g. insertion of a new client in the database with the informations received through the
rental order, or booking an overnight stay for Mrs. Smith where the flight date is used).

In XChange, Web queries are expressed using the Web and Semantic Web query language Xcerpt
[125] that has been introduced in Section 2.4.2. An XChange Web query is an Xcerpt query, that specifies

Paula-Lavinia Pătrânjan 93

4.6. UPDATE PATTERNS

conjunctions or disjunctions of query terms. Query terms are used here for specifying patterns for the data
to be queried augmented with variables for selecting data of interest. Variables bindings can be restricted
to given patterns. Non-structural conditions on variables are specified in a where clause attached to the
query terms or the whole query.

Web queries (Xcerpt queries) can query persistent data directly or by querying views constructed by
means of deductive rules (Xcerpt construct-query rules). A resource specification inside an Xcerpt query
gives the Web resources to be queried. If no resource specification is given, the Xcerpt query is posed
against the data constructed by means of the Xcerpt construct-query rules contained in the same XChange
program; thus, complex querying problems can be elegantly solved by using views over multiple, hetero-
geneous data sources. Section 4.8.3 gives an example of an Xcerpt rule constructing such a view.

This section does not elaborate more on Web queries, as they have been developed as part of the project
Xcerpt and the design principles and core constructs of the language Xcerpt have been introduced in Section
2.4.2. Section 4.8 shows how Web queries are used together with event queries and action specifications
in XChange so as to give reactive rule specifications. For more information on the query language Xcerpt
used for specifying Web queries, see [125, 55, 53, 54, 126].

4.6 Update Patterns
As explained in Section 3.2, existing proposals for update languages for the Web rely on a path-expression-
matching operation that selects nodes within the input document; the selected nodes are the target of the
update operations. XChange follows another approach for updating data – update specifications are pat-
terns for the data to be updated augmented with the desired update operations. By following a pattern-based
approach for XChange updates,

• the specification of desired updates is simple and intuitive, as an update specification is like a form
where data needs to be inserted, replaced, or deleted;

• the whole language XChange follows a single approach – a pattern-based one – minimising thus the
effort of learning the language; programmers need only understand the concept of data pattern.

Recall that only persistent data (i.e. data of Web resources) can be updated, volatile data can not; thus,
when talking about updating data only updates to persistent data are meant. (Note that the short notation
used in the previous section where the envelope of events has been left out is not adopted here; all examples
given in this section use persistent data!) XChange has been primarily developed for updating XML data,
this includes also any data format having an XML serialisation (such as RDF data). However, XML data
represent data trees while e.g. RDF data represent graphs. XChange can be used for updating graph data,
but one needs to decide on the semantics of updates on graph data and to modify the update execution
accordingly. A discussion on updating graph data is given later in this section. In the XChange framework,
XML data have a more compact representation as data terms; thus, XChange updates are patterns for data
terms to be modified. Data terms are either local – on the machine the XChange program is running on – ,
or remote – on another machine (where possibly another XChange program is running on) at a given Web
resource.

An XChange update specification contains a resource specification (i.e. Web resources whose data are
to be modified) and an update pattern (i.e. gives information about how data is to be updated). The grammar
rules defining XChange (elementary) updates are:

E_Update ::= "in" "{" "resource" "{" Res_Spec ("," Res_Spec)* "}" ","
U_Term "}"

Res_Spec ::= Uri ("," Format)?

Uri is the URI of the resource on the Web; the optional Format specifies the format (e.g. XML, HTML,
RDF) of data found at Uri and may be used by the runtime system to choose the correct parser. When
more than one Web resources are given in an update specification, the specified update pattern is used for
updating each Web resource.

94 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

The outline of this section is as follows: Section 4.6.1 introduces the notion of update term and dis-
cusses general characteristics of update operations in XChange. The sections that follow dicuss in more
detail the three kinds of update operations offered by XChange. The discussion on insertion (Section 4.6.2),
deletion (Section 4.6.3), and replacement (Section 4.6.4) specifications applies to updating subterms of data
terms; the special case of updating the root of a data term is discussed in Section 4.6.5. Discussions on the
chosen approaches to updating data are offered throughout the whole section.

4.6.1 Update Terms

Developing the update language of XChange has shown that patterns are amenable to specifying updates
to Web data. For specifying updates that are to be executed, the language XChange offers a special kind of
patterns, called update terms, which are introduced in this section. This is consistent with the pattern-based
approach that has been followed in designing XChange.

Definition 4.1 (Update Term)
An update term is an Xcerpt query term augmented with the desired update operations. The query term
gives a pattern for the data to be modified. The update operations may be insertions, deletions, or replace-
ments of data. An insertion operation specifies an Xcerpt construct term that is to be inserted, a deletion
operation specifies an Xcerpt query term for deleting all data terms matching it, and a replace operation
specifies an Xcerpt query term to determine data terms to be modified and an Xcerpt construct term for
their new values.

A more detailed discussion on XChange update operations is given in the subsequent sections. More
than one update operations can be specified in an update term. Moreover, different kinds of update oper-
ations (insertions, deletions, and replacements) can be specified in an update term. Update operations can
not be nested (this will be clear after the update operations are introduced). Thus, an XChange update term
is defined through the following grammar rules:

U_Term ::= Upattern
| "desc" Upattern
| U_Root

Upattern ::= Label "{" UQ_List "}"
| Label "{{" UQ_List "}}"
| Label "[" UQ_List "]"
| Label "[[" UQ_List "]]"

Label ::= label | "var" Var_Name
UQ_List ::= ((Query_Term | U_Term) ",")* U_Term ("," (Query_Term | U_Term))*

| U_Op
U_Op ::= Ins_Op

| Del_Op
| Rep_Op

Lifting (removing) all update operations from an update term produces a query term. This query term
will be called in the following the subjacent query term of the corresponding update term. For obtaining
an update term, update operations are specified in a (subjacent) query term wherever a query subterm can
be specified. To reiterate, an update term is made of a subjacent query term and update operations for Web
resources to be modified. A discussion of the roles these two components have follows. The subjacent
query term of an update term

(a) specifies a pattern for the data to be modified (note that the pattern is for the data before any updates
are performed); only documents whose representation as data term matches the query are to be modified
(i.e. no updates are executed if simulation unifying the subjacent query term with the data term to be
modified results in failing);

Paula-Lavinia Pătrânjan 95

4.6. UPDATE PATTERNS

(b) finds bindings for the specified variables that are to be used in the execution of update operations
specified in the update term.

The update operations specified in an update term
(a) specify what kind of updates to execute, i.e. insertions, deletions, or replacements;
(b) specify which part of the data is to be modified (e.g. where to insert new data), given by the position

of update operations inside an update term;
(c) use variables bound in the subjacent query term, the event part (event query), the condition part

(Xcerpt query) of the XChange rule whose action contains the updates to be executed.

4.6.2 Insertion Specification
For inserting new data into a data term, one has first to construct the data (terms) to be inserted. Thus, an
XChange insertion specification contains always an Xcerpt construct term, i.e. a pattern that makes use of
variables so as to construct new data terms. Where the new data is to be inserted is given either implicitly
(by the position of the update operation inside the update term) or explicitly (e.g. by explicitly giving the
position at which the new data is to be found after the insertion is performed). The keyword insert is used
for specifying insertion operations in XChange.

The grammar rules defining XChange insertion operations are given next (the constructs are explained
in this section through simple examples):

Ins_Op ::= "insert" Construct_Term
| Order_Ins
| "insert" Mult_CTerm

Order_Ins :: = "after" Query_Term "insert" Construct_Term
| "insert" Construct_Term "before" Query_Term
| "at" Position "insert" Construct_Term

Mult_CTerm ::= "all" Construct_Term (Order)?
| "some" Nr Construct_Term (Order)?
| "first" Nr Construct_Term Order

Order :: = "order by" (AD)? (LN)? "[" Vars "]"
AD ::= "ascending" | "descending"
LN ::= "lexical" | "numerical"

The subjacent query term of an update term containing insertion specifications is obtained from the
update term by removing the keywords insert and the specifications of the new data to be constructed
that follow insert; positions specifications (of the form at Position) and keywords before and after are
also removed. The obtained specification is a query term that is to match the data term to be modified.

Example 4.38 (Simple XChange Update Term Specifying Insertion (1))
The following update term specifies insertion of data term d{e{}, f{}} in a data term that matches the
subjacent query term a{{b{{}},h{{}}}}.

a {{
b {{ }},
insert d { e{}, f{} },
h {{ }}

}}

The new data is to be inserted as a child of the root (labelled a). No exact position of the new child
is given; curly braces denote also that the order of child elements is not important. Consider now the
following two data terms: the result of applying the above given update term to the data term on the left
gives the data term on the right. The data inserted is written in blue.

96 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

a {
b { i{}, j{} },
h { k{} }

}

Before update

a {
b { i{}, j{} },
d { e{}, f{} }
h { k{} }

}
After update

Variables can be used inside insertion specifications; they are bound in the subjacent query, the event
query, and/or the Xcerpt query of a rule and used for constructing the data to be inserted. The bindings for
the variables are nondeterministically chosen from the set of variable substitutions resulting from evaluating
the subjacent query term and the other parts of the associated rule. Recall that Xcerpt construct terms may
contain grouping constructs (all, some) for gathering all or some of the variable bindings.

Example 4.39 (Simple XChange Update Terms Specifying Insertion (2))
The following update term specifies insertion of a data term that is constructed from d{var X} in a data
term that matches the subjacent query term a{{var X}}. The variable binding that is used to construct the
data term to be inserted is nondeterministically chosen from the set of bindings that results from matching
the subjacent query term with the data term to be modified.

a {{
var X,
insert d { var X }

}}

Consider the following two data terms. The one on the left hand side is to be modified by the above
given update term. The result of simulation unifying the subjacent query term with the data term to be
updated is the substitution set Σ = {{X 7→ b{i{}, j{}},{X 7→ h{k{}}}}. Applying the update term to the
left data term, might result in the right data term. (Because the substitution set contains two substitutions
for X , two possible results are conceivable.) Again, new data is written in blue.

a {
b { i{}, j{} },
h { k{} }

}

Before update

a {
b { i{}, j{} },
d {

h { k{} }
}
h { k{} }

}
After update

Consider now a slight modification of the above given update term; a d-labelled element containing all
bindings for X is to be inserted. The update term is shown in the following example on the left side; the
result of applying the update term to the data term given above on the left is shown in the following on the
right hand side.

a {{
var X,
insert d { all var X }

}}

a {
b { i{}, j{} },
h { k{} },
d {

h { k{} },
b { i{}, j{} }

}
}

Position Specification When updating ordered data (i.e. documents where the order of the elements is
important) is necessary to have means for inserting new data at certain position in the data terms to be
modified. The position can be specified relative to existing subterms (i.e. before or after subterms matching
a given query term) or explicitly through integers denoting the subterm position relative to its parent term.

Paula-Lavinia Pătrânjan 97

4.6. UPDATE PATTERNS

Example 4.40 (Simple XChange Update Terms Specifying Insertion (3))
Suppose now that one needs to introduce c-labelled elements (right) after each b-labelled element child
of the root (i.e. as next sibling node in the tree representation of data); assume that the data term to be
modified is ordered. Consider the following update term (bindings for the variable X are obtained from the
other parts of the rule having the update term as action):

a [[
b {{ }},
insert c { var X }

]]

The above given update term does not really have the desired effect. A sample data term is given next;
consider the substitution set Σ = {{X = ”content”},{X = ”more content”}}. The data term before the
update is shown on the left, after the update on the right.

a [
b { i{} },
h { k{} },
d {},
b {}

]

Before update

a [
b { i{} },
h { k{} },
c { "more content" },
d {},
b {}

]

After update

As the above data terms show, the given update term can be used for inserting one c-labelled node after
a b-labelled one; however, they are not necessarily next sibling nodes in the result and just one new subterm
is inserted. Thus, XChange offers also insertions of the form a f ter Query Term insert Construct Term,
meaning that after each data term matching the query term, a new data term is introduced as the next
element in the document order (the next sibling node in the tree representation of the data). The desired
effect can be obtained by using

a [[
after b {{ }} insert c { var X }

]]

In cases where the whole structure of the data to be modified is not known, the insertion after can not
be used for inserting new data before subterms matching a given query term. Thus, XChange offers also a
before counterpart of the insertion after. The insertion specification has the form insert Construct Term
be f ore Query Term, meaning that before each data term matching the query term, a new data term is
introduced as the previous element in the document order (the nodes will be next sibling nodes in the tree
representation of the data). Note that the position of the construct term in the after and before insertion
specifications denote the position of the new data relative to the subterms matching the given query term.

XChange offers support for introducing new data terms at a given position in the data term to be
modified. Position gives the position of the inserted subterm below its parent term. Given a parent term in
a data term, the first subterm below it has position 1, the last one position −1. In an insertion specification
position is either a positive integer or a negative integer (variables can not be used instead of position
specification inside an insert operation). Thus, inserting new data at position −1 means insertion as the
last subterm of the given parent term. Consider the insertion of a new (sub)term new at position p below a
parent b into a data term where the desired position is taken by a subterm old; after the update, the modified
data term contains below b the subterms new at position p, old at position p+1, and the subterms following
old at position old position+1, where old positon is the position before the insertion.

Example 4.41 (Simple XChange Update Terms Specifying Insertion (4))
The following update term inserts at last position in a catalogue a discount of 10 percent for all products
not of type New Arrival.

98 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

catalogue[[
product {{

id { var PId },
without type { "New Arrival" }

}},
at -1 insert discount {

products { all var PId },
percent { "10" }

}
]]

Multiplicity Specification With the insertion constructs exemplified until now one can not make inser-
tions of the form e.g. insert all var Product, as all var Product is not an Xcerpt construct term. But
such kind of insertions are useful in practice. Moreover, one might need not only to insert all data terms
constructed from a given construct term, but perhaps just some of these data terms (possibly chosen by
means of a certain criteria). For this, the grouping constructs all and some of Xcerpt are used; recall that
they gather all and some, respectively, possible instances of the construct term they precede. An order of
the data terms to be inserted can be specified by means of the order by construct followed by a criteria
and list of variables; the order is determined by the given criteria “applied” on the values of these variable
bindings. (A detailed explanation of the grouping constructs can be found in [125], Section 4.6.2, pages 93
– 99.)

Example 4.42 (Simple XChange Update Terms Specifying Insertion (5))
At some universities (e.g. the national universities in Romania) the best students are “awarded” by receiving
a studentship for the next teaching term. The following update term is used to introduce in a data term the
five best students (best in terms of their final grade) per teaching unit, for the ended teaching term.

BestResults {{
TeachingUnit [[

insert var Term,
UnitName { var N },
insert first 5 var Stud order by [var Grade]

]]
}}

The students are ordered by their final grade obtained for the ended teaching term. The bindings for the
variables are obtained by evaluating the next Xcerpt query; it represents the condition part of an XChange
rule having in the action part the update term given above.

in { or { resource {"file:ai.xml", "file:net.xml", "file:db.xml"} },
desc TeachingUnit [[

Name { var N },
var Term → TeachingTerm {{ }},
Students [[

var Stud → Student {{
FinalGrade { var Grade }

}}
]]

]]
}

Note that XChange insertions have no duplicate elimination semantics, i.e. the subterms constructed
with the given construct term are inserted regardless whether they already exist in the data term to be
modified or not. For example, applying an update term like

Paula-Lavinia Pătrânjan 99

4.6. UPDATE PATTERNS

a {{
var X,
insert all var X }}

to a data term results in “doubling” the children of the root.

On Introducing Other Constructs for Specifying Insertion in XChange (Discussion) A question
arose during the design phase of the language XChange, namely whether a construct like

insert var Var1 with child var Var2

is needed or not, as sometimes the structure of the data term bound to variable Var1 is unknown. For
example, consider that one needs to insert the content of a-labelled subterms into b-labelled subterms, but
with a new child element (variable New is bound in the other parts of the rule having the update term as
action part). Having a language construct like the one introduced above, the desired update can be specified
like:

root {{
a {{ var C }},
b {{

insert var C with child var New
}}

}}

The structure of the bindings for C is not known; though, dispensing with a new language construct,
using a variable instead of the elements’ label and the optionality construct of Xcerpt, the update can be
specified like:

root {{
a {{ var Label {{ optional var Content }} }},
b {{

insert var Label {{
all optional var Content,
var New

}}
}}

}}

Writing such kind of update terms is not that complex for having one update construct more in the
language XChange; thus, the construct discussed here is not in the current version of XChange.

4.6.3 Deletion Specification
In order to delete parts of an XML document one has to specify a (possibly incomplete) pattern for the
data to be deleted. The keyword delete is placed before these query patterns for specifying deletion
operations in XChange. The informal meaning of a deletion operation of the form delete Query Term can
be resumed to (a) all (sub)terms matching Query Term are to be deleted, and (b) the whole (sub)term (the
whole subtree, in the tree representation of the data) matching Query Term is to be deleted.

Similar to insertion specifications, the data term to be updated needs to match a given query term –
the subjacent query term of the update term. Consider an update term of the following form (only delete
operations are considered for simplicity) label{{q1,q2, ...,qn,delete qn+1,qn+2, ...,qm}}. The subjacent
query term for the given update term may be label{{q1,q2, ...,qn,qn+1,qn+2, ...,qm}} (obtained by leav-
ing the keyword delete out) or label{{q1,q2, ...,qn,qn+2, ...,qm}} (obtained by leaving the whole delete
operation out). The first approach is considered in XChange – the subjacent query term of an update term
containing only delete operations is obtained by leaving the keywords delete out – in the example above,

100 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

label{{q1,q2, ...,qn,qn+1,qn+2, ...,qm}}. The rational behind it is that for deleting subterms of a data term,
these subterms need to exist, that is the data term to be modified needs to contain subterms matching the
query terms following the delete keyword.

The grammar rules defining XChange deletion operations are given next:

Del_Op ::= "delete" Query_Term
| "delete" Mult_QTerm

Mult_QTerm ::= "some" Nr Query_Term
| "first" Nr Query_Term (Order)?

Example 4.43 (Simple XChange Update Term Specifying Deletion (1))
Assume that a data term is to be modified that matches the query term given next on the left. All c-labelled
subelements of a-labelled elements having at least one subelement labelled b are to be deleted. The update
term given on the right specifies the deletion. Note how easy the desired delete operation can be specified:
one only needs to put the keyword delete in front of the query term that matches the data terms to be
deleted.

desc a {{
b {{ }},
c {{ }}

}}

desc a {{
b{{ }},
delete c {{ }}

}}

Example 4.44 (Simple XChange Update Term Specifying Deletion (2))
The following update term deletes all subterms labelled b, regardless of their depth within the a-labelled
term representing the whole document to be modified. Note that only b-labelled subterms are deleted, their
parents (more concrete, their ancestors) remain in the data term if they do not have label b.

a {{
delete desc b {{ }}

}}

For inserting data terms at a given position, a construct is offered in XChange; for deleting data terms
having a given position and matching a given query term, no extra construct is needed. This can be specified
inside the query term by means of the construct position of the language Xcerpt; a query term of the form
position Pos q matches those data terms t found at position Pos in the queried data term, where q� t. The
position specification Pos is either a positive integer (where 1 is the position of the first subterm of a parent),
a negative integer (where−1 is the position of the last subterm), or a variable that matches with the position
of subterm (matching q) and binds to it as a positive integer (cf. [125], Section 4.3.3, pages 73-74).

The update operations exemplified until now have as effect the deletion of all subterms of a data term
matching a given query term. By using Xcerpt’s position specification, subterms with a given position
below its parent term can be deleted (cf. above). However, one has no means for specifying deletion of a
given number of subterms, possibly chosen by using a given criteria. Thus, two forms of deletion specifi-
cations are offered: A delete specification delete some Nr Query Term (with Nr positive integer, 1≤ Nr)
specifies deletion of n subterms matching Query Term, where n is the maximal number of such subterms
with n≤ Nr. A delete specification delete f irst Nr Query Term order by (Criteria) [Variable List] spec-
ifies deletion of the first (regarding the order given by the specified criteria “applied” to the bindings for
the variables of Variable List) m subterms matching Query Term, where m is the maximal number of
such subterms with m ≤ Nr. The order specification can be left out for deleting subterms of an ordered
term; delete f irst Nr Query Term specifies deletion of the first (taking the document order into account)
m subterm matching Query Term.

Example 4.45 (Simple XChange Update Term Specifying Deletion (3))
The following update term deletes maximal two subterms of the root element; they match b{{varX ,varY}},
where the lexical order on the values of variable X determine which are the two terms to be deleted.

Paula-Lavinia Pătrânjan 101

4.6. UPDATE PATTERNS

a {{
delete first 2 b {{ var X, var Y }} order by lexical [var X]

}}

Assume that the following substitutions for the variables are obtained by evaluating the other parts of
the XChange rule having the above given update term as action part: {X = ”cde”} or {X = ”abc”} or
{X = ”ab f ”} and {Y = i{}} or {Y = f{”g”}}. The data term to be modified is given next on the left hand
side, while the data term after the deletion has been performed is given next on the right hand side.

a {
b { i {}, "cde" },
h { k{} },
b { f {}, "abf" },
b { f {"g"}, "abc"},
j { f { k {} }}

}
Before update

a {
b { i{}, "cde" },
h { k{} },
b { f {}, "abf"},
j { f { k {} } }

}

After update

On Deletion Operations on Graph Data (Discussion) When dealing with graph data, more than one
approaches for deleting data are conceivable; they are determined by the treatment of dangling references.
When removing a subgraph sg from a graph g, two approaches can be followed: Remove also all references
to the nodes in the subgraph sg; this kind of deletion is known as greedy deletion. Leave those parts of
sg that are referenced by other nodes from the “remaining” graph g; this kind of deletion is known as
parsimonious deletion. At moment, XChange deletion operations follow the greedy deletion approach.
Supporting both kinds of deletions and offering means to choose the desired one is one of the perspectives
for future work.

4.6.4 Replacement Specification
To specify a replace operation, one has to specify a (possibly incomplete) pattern for the data that is to be
modified and a (complete) pattern for the new data to be found instead. The keyword replaceby is used
in XChange for expressing a replace operation.

The grammar rules defining XChange replacement operations are given next:

Rep_Op ::= QTerm "replaceby" CTerm

QTerm ::= Query_Term
| Mult_QTerm

CTerm ::= Construct_Term
| Mult_CTerm

Consider an update term of the following form (only replacement operations are considered for simplic-
ity) label{{q1,q2, ...,qn,qn+1 replaceby ct ,qn+2, ...,qm}}. The subjacent query term for the given update
term is label{{q1,q2, ...,qn,qn+1,qn+2, ...,qm}}; it is obtained by leaving the keyword replaceby and the
specification of the new data to be found instead of qn out. Multiplicity specifications are also left out for
obtaining the subjacent query term.

The informal meaning of a replacement operation of the form Query Term replaceby Construct Term
can be resumed to (a) all terms matching Query Term are to be replaced, and (b) each such term is to be
replaced by a data term constructed with Construct Term. (The constructed data term used for replacement
is chosen in the same manner as for insertions.) Multiplicity specifications (all, some Number, and first
Number) for the Construct Term express that (instead of a single term) a set of terms (containing all, some
or first Number constructed terms) is used for replacing each term t, where Query Term� t. Multiplicity
specifications (some Number and first Number) for Query Term express that a given number of (instead

102 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

of all) terms t are to be replaced, where Query Term � t. Multiplicity specifications for Query Term
and for Construct Term can be combined (as the above given grammar rules show); the resulting replace
operations specify that each term of a set of terms is to be replaced by a set of constructed terms.

Proposition 4.2 (Necessity of Replacement Operation)
A replace operation of the form Q Term replaceby C Term has not the same effect as the sequence of two
update operations of the form delete Q Term and insert C Term, where Q Term, C Term are specifications
of (possibly) multiplicity followed by a query term and a construct term, respectively.

Cf. Proposition 4.2, XChange replace operation is not syntactic sugar for a delete and an insert opera-
tions performed in sequence. The next, simple example intends to clarify the effect of a replace operation
in XChange and motivates the previous statement.

Example 4.46 (Simple XChange Update Term Explaining the Replace Operation)
The example gives an update term that specifies the replacement of each binding for the variable X with a
binding for the variable Y .

label {{
var X replaceby var Y

}}

The same binding for Y is used to replace the data terms that are bindings for X . If the XML document
that is queried for bindings for Y is not ordered, the first binding for Y found in the evaluation process of
the corresponding query is used. If this XML document is ordered, the first, taken the document order in
consideration, binding for Y is used for replacement. Some explanations follow for clarifying the effect of
such a replace operation. Bindings for Y are provided by evaluating the event query and/or Xcerpt query of
the XChange rule having the update term as its head (action part). The following cases for the above given
replace example can be distinguished:

• Only one binding for the variable X and only one binding for the variable Y are returned from the
evaluation of the XChange rule containing the update term.

Let {X = x1} and {Y = y1} be the obtained bindings. The update var X replaceby var Y has the
effect of delete x1 and insert y1 (instead).

• More than one bindings for X and only one binding for Y are obtained from the evaluation of the
XChange rule containing the update term.

Let {X = x1} or {X = x2} or . . .{X = xn} (with 1 ≤ n) be the bindings for X and {Y = y1} the
binding for Y . The update var X replaceby var Y has the effect of delete x1 and insert y1 (instead)
AND delete x2 and insert y1 (instead) AND ... AND delete xn and insert y1 (instead).

• More than one bindings for X and more than one bindings for Y are obtained from the evaluation of
the XChange rule containing the update term.

Let {X = x1} or {X = x2} or . . .{X = xn} (with 1 ≤ n) be the bindings for X and {Y = y1} or
{Y = y2} or . . .{Y = ym} (with 1≤ m) be the bindings for Y . The update var X replaceby var Y has
the effect of delete x1 and insert y1 (instead) AND delete x2 and insert y1 (instead) AND ... AND
delete xn and insert y1 (instead) (y1 is chosen as explained above).

• More than one bindings for X are obtained from the evaluation, but no binding for Y .

In this case, one possibility for performing the update var X replaceby var Y would be to delete all
bindings for the variable X , because there is nothing to be inserted instead. A replace operation is
to be understood as an atomic operation, in the sense that one can not split it into a delete operation
followed by an insert operation. Though, the effect of a replace operation is sometimes the same
as a delete operation followed by a well chosen insert operation (as in the previous cases). Thus,
in XChange an update var X replaceby var Y has no effect (i.e., the data to be updated remains
unchanged) in the case that the evaluation of the XChange rule containing it does not return bindings
for Y .

Paula-Lavinia Pătrânjan 103

4.6. UPDATE PATTERNS

• There is no binding for X , but more than one bindings for Y are obtained from the evaluation.

Using the same arguments as in the previous case, the update operation var X replaceby var Y has no
effect on the data to be updated if no bindings for X are returned from the evaluation of the XChange
rule containing the replace update.

• No binding for X and no binding for Y are obtained from the evaluation. In this case the replace
operation has no effect on the data to be modified.

Example 4.47 (XChange Update Term Converting Prices from Euro to Dollar)
The example gives an XChange update term that specifies the modification of the used currency from Euro
to US Dollar. The prices for all flights offered by a specific airline are modified accordingly to an exchange
rate.

in { resource { "http://airline.com" },
flights {{

last-changes { var L replaceby var Today },
currency { "EUR" replaceby "Dollar" },
flight {{

price {{ var Price replaceby var Price * var Exchange }}
}}

}}
}

Note that the construct term var Price ∗ var Exchange of the second replace operation in the above
example shares the variable Price with the query term of the replace operation. This means that for each
subterm matching the price of flights a ’corresponding’ construct term is used for replacing.

On Introducing Other Constructs for Specifying Insertion and Replacement in XChange (Discus-
sion) Language constructs are introduced for easing the programming task. As already discussed in
Section 4.4, a tradeoff between the expressive power of a language and the ease of its usage needs to be
found in designing a language. Decisions need to be taken for introducing (or not) new constructs when
use cases are discovered that can not be solved with the existing language constructs.

Example 4.48 (Example Motivating a New Language Construct)
Assume that the XML files catalogue-eu.xml and catalog-usa.xml contain information about prod-
ucts a company provides on the European and American market, respectively. One wants to insert all
products of class “New Arrival” found in the European catalogue into the American one; the product prices
should be calculated and inserted directly in US Dollar.

The following query is used to select the products of class “New Arrival”; a variable is used also for
the price, as this is needed later in the update term.

in { resource { "file:catalogue-eu.xml" },
var Product → desc product {{

class { "New Arrival" },
price { var Price } }}

}

For accomplishing the task described above, an update specification is needed for inserting all bindings
for Product into catalog-usa.xml, where the price is calculated from the bindings for Price and the
binding for a variable Exchange (this is obtained by querying another Web resource where the up-to-date
exchange rates are found). Such a problem could be solved by means of a construct of the form

insert Construct_Term_1
with var VarName replaceby Construct_Term_2

104 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

The variable VarName needs to occur as a subterm in the query term to which a variable of Construct Term 1
is restricted. E.g. the variable Price is bound to a subpattern of the pattern defining Product. Moreover,
Construct Term 1 either contains a single variable or is of the form var Var −> Construct Term, where
VarName occurs in the query term defining Var. Thus, the task of this example can be elegantly accom-
plished by evaluating the following update specification:

in { resource { "file:catalog-usa.xml" },
catalog {{

insert all var Product
with var Price replaceby var Price * var Exchange

}}
}

Such a language construct has not been introduced in XChange, as (the class of) examples like the one
given above can be realised by using the existing language constructs; however, the solution is clearly not
that elegant as the one given above. (Note that insertions of new data terms where some subterms are left
out can be easily specified by using the Xcerpt construct except.)

On the Keywords Chosen for Specifying Updates in XChange (Discussion) Update operations are
specified in XChange by using the keywords insert, delete, and replaceby, considered as infinitive
verbs expressing the kind of updates to perform. One might argue that these are imperative verbs giving
an imperative flavour to the language. The problem of updating data has indeed an imperative nature.
However, XChange is a declarative language as it specifies the what instead of the how, just like logic
programming languages. Another approach is to use the participle of the verbs insert, delete, and replace
by to specify the kind of changes one desires. Thus, the core XChange update operations would have the
following form

inserted Construct_Term
deleted Query_Term
Query_Term replacedby Construct_Term

As XChange builds upon Xcerpt, one of the most important issues in designing the language XChange
has been the uniformity e.g. of the language constructs. Thus, as Xcerpt keywords are specified as infinitive
verbs (e.g. CONSTRUCT and not CONSTRUCTED), the same approach is taken in XChange.

4.6.5 Special Case – Updating the Root

The insertion, deletion, and replacement specifications introduced in the previous sections augment query
terms for obtaining update term specifications. The premise of modifying desired data terms is that the
query terms – called subjacent query terms – simulation unify with the data terms. This is the case for up-
dating data terms that contain data (i.e. they are not empty) or the data need not be overwrite. For updating
the root – inserting a data term into an empty Web resource (actually ’constructing’ a new resource), delet-
ing the whole data term found at a Web resource (actually deleting the resource), or overwriting (replacing)
the data term at a Web resource – a subjacent query term is neither needed nor allowed, a single update
operation will do.

Imagine an XChange update like a function that takes as arguments an update term and a data term, and
returns a (updated) data term. Data terms represent trees (cf. Section 2.2.1), thus, an XChange update can
be represented as a function that applies an update term to a tree for obtaining the updated tree. Regardless
whether one wants to update the root of a tree, the whole tree, or just parts of it, the result of the update
needs to be a tree. This requirement has consequences on the possible update operations for updating
the root. Their syntax is the same as for the update operations introduced so far; though, not all update
specifications are allowed for updating the root so as not to violate the previously given requirement.

The following grammar rules define the possible update operations for updating the root:

Paula-Lavinia Pătrânjan 105

4.6. UPDATE PATTERNS

U_Root ::= "insert" Construct_Term
| "delete" Query_Term
| Query_Term "replaceby" Construct_Term

Insertion as Root In XChange, the update used for inserting data (more precisely a data term) at a given
Web resource Res has the following form

in { resource { Res },
insert Construct_Term }

The resource specification is given to emphasise the absence of a query term acting as a subjacent one.
Note that if the given Web resource contains data (it is not empty), the above given update term constructs
a new data term that overwrites the data found at Res. Update operations of one of the following forms

insert all Construct_Term
insert some Nr Construct_Term , with 0 < Nr
insert first Nr Construct_Term , with 0 < Nr

are not allowed for updating the root. They result in not having a tree representation of data, but a forest
(a sequence of trees). If one wants to insert e.g. all instances of a construct term in an empty resource, an
artificial root should be provided.
Example 4.49 (Insertion as Root)
After the next update is executed, the data term found at http://software.de/products.xml is found
at http://sn.de.

in { resource {"http://software.de/products.xml"},
insert var C

}

The condition part of the XChange rule having the above given update term as action part contains the
following Xcerpt query that binds the variable C:

in { resource {"http://sn.de"},
var C → Catalogue {{ }}

}

Deletion of the Root For deleting whole data of a given Web resource (i.e. the resource), a query term
matching it needs to be specified. The XChange update for deleting the (data of) Web resource Res has the
form

in { resource { Res },
delete Query_Term

}

Clearly, if Query Term has the form desc query pattern the data term at Res remains unchanged. Note
that an update term of the form delete var Root results in deleting the data term regardless of its structure.
Update terms of one of the following forms

delete some Nr Query_Term , with 0 < Nr
delete first Nr Query_Term , with 0 < Nr

are not allowed. They do not have an intuitive meaning when updating the root; thus, are not considered as
update terms in XChange.
Example 4.50 (Deletion of the Root)
An update that specifies the deletion of the data of http://software.de/products.xml (i.e., the entire
XML document is to be deleted).

in { resource {"http://sn.de"},
delete Catalogue {{ }}

}

106 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Replacement of the Root For replacing the data term found at a Web resource with a new data term,
XChange offers the following update specification:

in { resource { Res },
Query_Term replaceby Construct_Term }

Update terms specifying multiplicity are not allowed (neither for Query Term, nor for Construct Term).
The same motivation as for insertion and deletion. As for insertion, if the resource Res contains data, by
applying the following update the data constructed with Construct Term is to be found at Res (overwriting
effect):

in { resource { Res },
var Root replaceby Construct_Term }

Example 4.51 (Replacement of the Root)
An update that specifies the replacement of the data term found at http://sn.de with the data term found
at http://software.de.

in { resource {"http://sn.de"},
Catalogue {{ }} replaceby var P

}

The binding for the variable P is obtained from evaluating the ’condition part’ of the rule having the above
update as ’action part’; the Web query of ’condition part’ looks as follows:

in { resource {"http://software.de"},
var P → Products {{ }}

}

On Alternative Approaches to Updating Data with XChange (Discussion) In contrast to existing
proposals for update languages for the Web, XChange is a pattern-based language, which shows that update
patterns (called update terms in XChange) can be easily specified and understood. XChange takes the
philosophy of Xcerpt and applies it to specifying evolution of data on the Web; Xcerpt uses the pattern
approach for querying data on the Web – capability needed (as already shown in the previous sections)
for updating (persistent) data and for querying (volatile) data. For updating Web data with XChange,
alternative approaches have been investigated; this discussion concentrates on these approaches by showing
the evolution towards the current update component of XChange.

Following the first approach that has been investigated, the desired updates have been executed directly
on bindings for variables returned from evaluating an Xcerpt query. Xcerpt queries are specified as patterns
for the data and do not select nodes, but return data terms as bindings for the variables in the query – they are
copies of data terms. Thus, performing updates directly on the data terms obtained as answers to Xcerpt
queries means that only copies of the data are modified; such updates do not update (modify) the data.
Recall the Example 4.47, which specifies the modification of the used currency from Euro to US Dollar.
Consider now the following query term that is needed for binding data terms to variables and modify them
afterwards:

in { resource { "http://airline.com" },
flights {{

var Ch ->last-changes { var L },
var Curr -> currency { "EUR" },
flight {{

var P -> price {{ var Price }}
}}

}}
}

Paula-Lavinia Pătrânjan 107

4.7. COMPLEX UPDATES AS TRANSACTIONS

The modification of prices can be then realised by using the following update specification (one needs
to specify where the subterms to be modified are – through the in var Variable specification, a query term
and a construct term for the replace operation):

in { resource { "http://airline.com" },
in var Ch replace var L by var Today,
in var Curr replace "EUR" by "Dollar",
in var P replace var Price by var Price * var Exchange

}

A solution to the problem of updating only copies of data when using pattern-based query languages
like Xcerpt is to enhance queries with the capability to return pointers to elements inside data terms. The
pointers to data are then used in update specifications. On the other hand, by using such an approach,
patterns and pointers for data would be mixed. For having a clear language design, a single approach has
been followed in XChange – the pattern-based one – leading to an elegant language, easy to understand
and use by practitioners.

Another idea for updating persistent data is to give the intended updates “implicitly” by specifying
how data should look after the updates are performed; following such an approach consists in specifying
the result of the updates instead of the way (given through explicit update operations) towards the desired
result. This would mean that, instead of XChange update terms, construct terms are used that give a pattern
for the data after the update. For determining the update operations to be executed, a diff function can be
used. This idea has not been materialised in XChange, as specifying the result of the updates is not that
easy as it seemed at first glance. A small set of update operations and update constructs give rise to more
simple update specifications. However, thinking in the other direction – to translate XChange update terms
into deductive, construct-query rules – has yield interesting results that are given in Section 5.1.3.

4.7 Complex Updates as Transactions
XChange updates may be elementary or complex. An elementary update is a change (i.e. insert, delete,
replace) to a persistent data item (e.g. XML or RDF data) that can be expressed by means of an update
term. Complex updates expressing ordered or unordered conjunctions, or disjunctions of (elementary or
complex) updates are also offered by XChange. Such updates are often required by real applications.
E.g. when booking a trip on the Web, one might wish to book an early flight and the corresponding hotel
reservation, or else a late flight and a shorter hotel reservation. Since it is sometimes necessary to execute
such complex updates in an all-or-nothing manner (e.g. when booking a trip, a hotel reservation without a
flight reservation is useless), XChange has a concept of transactions.

The grammar rule defining XChange updates is the following (an XChange update is an elementary or
a complex update):

Update ::= E_Update | C_Update

The next section discusses elementary updates by shortly revisiting the notion of update patterns introduced
in the previous section. Complex updates are combinations of elementary and complex updates; they are
introduced in Section 4.7.2. XChange transactions, i.e. XChange updates executed in an all-or-nothing
manner, are discussed in Section 4.7.3.

4.7.1 Elementary Updates
An elementary update specification is an update term specification accompanied by a resource specifica-
tion (giving the Web resources to be modified). Section 4.6 offered an introduction to XChange update
terms – patterns for the data to be updated augmented with the desired update operations. The three kinds
of XChange update operations (insertions, deletions, and replacements) have been described almost inde-
pendent from each other (Sections 4.6.2, 4.6.3, and 4.6.4). However, more than one update operations can
be specified in an update term (nesting update operations does not make sense). Update operations are
specified as subterms inside a query term – called subjacent query term of the update term. Though, for

108 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

updating the root of a data term (e.g. inserting data into an empty resource), no subjacent query term is
needed – a single update operation is used.

Definition 4.3 (Subjacent Query Term of an Update Term)
Given an update term u, the subjacent query term of u (denoted subu) is an Xcerpt query term obtained by
removing from u

(a) the insertion operations, except the query terms they may contain due to after or before position
specifications;

(b) the delete keywords and the multiplicity specifications of delete operations;
(c) the replace operations, except the query terms they contain.

Steps (a), (b), and (c) can be performed in arbitrary order for obtaining subu.

For example, for insertion specifications of the form a f ter Query Term insert Construct Term, the
a f ter and insert Construct Term are to be removed for obtaining the subjacent query term of an update
term containing the update operation. Subjacent query terms of XChange update terms play an important
role in the execution of the desired updates.

Proposition 4.4 (Role of Subjacent Query Terms)
Let U = (d,u) be an elementary update with data term d to be modified by update term u. If subu � d does
not hold, no update operations of u are to be “applied” to d.

If the subjacent query term of an elementary update matches the data term to be modified, the specified
update operations are executed. XChange update operations are intensional updates, they are a description
of updates in terms of (standard or event) queries. They can be specified in XChange as the language
inherits the querying capabilities of the language Xcerpt. This eases considerably the specification of
updates, e.g. for specifying modification of the discounts for all flights offered by a specific airline.

Example 4.52 (XChange Elementary Update)
At http://airline.com the flight timetable needs to be updated as reaction to flight cancellations. The
information about the cancelled flight is obtained from the event part of the rule having the following
elementary update as action part.

in { resource { "http://airline.com" },
flights {{

last-changes { var L replaceby var RTime },
flight {{ number { var N }, date { var RTime },

delete departure-time {{ }},
delete arrival-time {{ }},
insert news { "Flight has been cancelled!!" }

}}
}}

}

4.7.2 Complex Updates
An XChange complex update is an ordered or unordered, conjunction or disjunction of updates (i.e. of
elementary or complex updates). A conjunction of updates expresses that all specified updates are to be
executed. A disjunction of updates expresses that one of the specified updates is to be executed.

Complex updates specifying conjunctions are introduced by the keyword and, disjunctions by the key-
word or. Specifications denoting that the XChange update is a complex one are always total (i.e. partial
conjunctions or disjunctions of updates do not make sense). Square brackets and curly braces are used for
denoting that the order of evaluation is of importance or of no importance, respectively. The grammar rules
defining complex updates in XChange are given next:

C_Update ::= Ordered_CU | Unordered_CU
Ordered_CU ::= "and" "[" Update_List "]"

Paula-Lavinia Pătrânjan 109

4.7. COMPLEX UPDATES AS TRANSACTIONS

| "or" "[" Update_List "]"
Unordered_CU ::= "and" "{" Update_List "}"

| "or" "{" Update_List "}"
Update_List ::= Update ("," Update)+

XChange offers four kinds of complex updates – ordered and unordered conjunctions, ordered and
unordered disjunctions of updates. The effect of such updates and the scope of variables occurring in
complex updates are explained in the following for each of these kinds.

Ordered Conjunction of Updates Consider an XChange complex update specification o con j of the
form o con j = and[u1,u2, ...,un], where 2 ≤ n and ui, 1 ≤ i ≤ n specify XChange updates. The effect of
o con j is the effect of executing all ui (1≤ i ≤ n) sequentially in the order of their occurrence in the list.
This means that the effect of an update ui is “visible” for updates u j, with j > i. The visibility of update
effects is twofold:

(a) the bindings for the variables of ui that are obtained by evaluating ui can be used in the evaluation
of u j with j ≤ i+1;

(b) consider updates ui and u j with j > i that modify the data found at a resource Res, and there is no
uk with i < k < j that modifies Res. Data term d is found at Res before the updates are performed. Thus ui
modifies d and results in having at Res a data term di, whereas u j modifies the data term di.

Example 4.53 (XChange Complex Update Specifying Sequence of Updates)
The following XChange complex update specifies that a flight reservation and a hotel reservation are to be
executed in the specified order. After giving the shape of such an update, an instantiation of it follows.

and [
<make flight reservation>,
<make hotel reservation depending on the flight schedule>
]

The following complex update specifies that a flight and a corresponding hotel reservations are to be
made for Christina Smith. The bindings for the variables F (the chosen flight) and H (the chosen hotel) are
obtained from the other parts of the rule having the update as action part. Note that the variables B and E
are bound during the evaluation of the first update and used afterwards in evaluating the second update of
the conjunction.

and [
in { resource { "http://travel-agency.net/flights/" },

desc reservations {{
outward-date { var B ->"2005-08-21" },
return-date { var E ->"2005-08-22" },
insert reservation {

var F, name { "Christina Smith" } }
}}

},
in { resource { "http://hotels.net/reservations/" },

accommodation {{
insert reservation {

var H, name { "Christina Smith" },
from { var B }, until { var E } }

}}
}

]

As the example above shows, ordered conjunction of updates are amenable to applications involving
sequences of updates to be executed, where the order of update execution plays an important role. They are
useful when data gathered or used in an update is needed for executing subsequent ones, or when complex
modifications to the same Web resources’ data are needed.

110 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Unordered Conjunction of Updates Consider an XChange complex update specification u con j of the
form u con j = and{u1,u2, ...,un}, where 2≤ n and ui, 1≤ i ≤ n specify XChange updates. The effect of
u con j is the effect of executing all ui, 1 ≤ i ≤ n, in some arbitrary execution order. The order of their
execution is not given and, thus, the runtime system has the freedom to choose the execution order.

The scope of variables used in update ui is restricted to ui, i.e. the bindings for the variables resulted
from evaluating ui can not be used in the evaluation of u j with i 6= j. (This restriction can be lifted, for
parallel evaluation of updates; variable substitutions need to be communicated between the Web sites where
the data to be modified are found.) Unordered conjunction of updates are suitable for specifying updates to
be executed that do not “share” other variable bindings than the ones received from the event query and/or
Web query of the rules whose action they represent.

Note that unordered conjunction of updates that modify the same data may have different results, de-
pending on the order of their evaluation. This is illustrated by means of an example.

Example 4.54 (XChange Complex Update Specifying Unordered Conjunction of Updates)
The following example specifies that a deletion and an insertion should be executed on the same data, in
test.xml.

and {
in { resource { "file:/test.xml" },

a {{ delete b {{}} }},
},
in { resource { "file:/test.xml" },

a {{ insert b { f { "content"} } }},
}

}

Consider that test.xml contains the following data term before any of the updates specified above are
executed:

a {
b { f { "info" } },
b { g { "info" } },
c { h { "info" } }

}

The possible results of executing the unordered conjunction of updates on test.xml are given next.
Depending on the order in which the two updates are executed, one of the following data terms are obtained
(on the left hand side the result of executing the deletion followed by the insertion, on the right hand side
the result of insertion followed by the deletion):

a {
b { f { "content" } },
c { h { "info" } }

}
Delete, insert

a {
c { h { "info" } }

}

Insert, delete

Ordered Disjunction of Updates Consider an XChange complex update specification o dis j of the form
o dis j = or[u1,u2, ...,un], where 2≤ n and ui, 1≤ i≤ n specify XChange updates. The effect of o dis j is
the effect of executing one single ui, 1≤ i≤ n; the disjunction of updates is an exclusive one. The ordered
specification expresses that the runtime system should try to execute the updates in the given order, until
a (first) update has been successfully executed. Like for unordered conjunctions of updates, the scope of
variables used in update ui is restricted to ui. Since just one update is to be executed, one can not discuss
visibility of updates’ effects.

Example 4.55 (XChange Complex Update Specifying Disjunction of Updates)
The following XChange complex update specifies that a travel reservation is to be performed, if no flight
reservation can be made, a train ticket should be reserved. The disjunction update has the following shape:

Paula-Lavinia Pătrânjan 111

4.7. COMPLEX UPDATES AS TRANSACTIONS

or [
<make flight reservation>,
<reserve train ticket>
]

The above template is instantiated to make the desired reservation for Christina Smith; bindings for
the variables are obtained from evaluating the event query and Web query of the rule having the update as
action.

or [
in { resource { "http://lhs.de/flights/" },

desc reservations {{
insert reservation {

var Flight, name { "Christina Smith" } }
}}

},
in { resource { "http://db.de/trains/" },

desc tickets {{
insert reservation {

var Train, name { "Christina Smith" } }
}}
}

]

Unordered Disjunction of Updates Consider an XChange complex update specification u dis j of the
form u dis j = or{u1,u2, ...,un}, where 2 ≤ n and ui, 1 ≤ i ≤ n specify XChange updates. The effect of
u dis j is the effect of executing one single ui, 1≤ i≤ n. The runtime system has the freedom to choose the
order in which it tries to find and successfully execute one of the updates. Like for ordered disjunction of
updates, the scope of variables used in update ui is restricted to ui.

4.7.3 Transactions
An XChange transaction specification is a group of (elementary or complex) update specifications and/or
explicit event specifications (expressing events that are constructed, raised, and sent as event messages)
that are to be executed in an all-or-nothing manner. That is, either all specified actions are successfully
executed or none of the updates are executed (partial effects of the updates need to be undone).

Elementary and complex update specifications have been introduced in the previous sections. They
specify (local or remote) Web resources to be modified and the updates to be performed on their data. An
XChange event specification is a (complete) pattern for the event message(s) to be constructed and sent to
one or more Web sites. The notion of event terms is used to denote such patterns for events to be raised.
An event term represents a restricted construct term that may be preceded by the keyword all.

A restricted construct term is an Xcerpt construct term having root labelled XChange-Namespace:
event and at least one subterm XChange-Namespace:recipient{uri} that specifies a Web site’s address.
The constructed event message is to be sent to the XChange program found at uri. If more than one
subterms of the form XChange-Namespace:recipient {uri} are given in an event term, the constructed
event message is to be sent to all specified recipient Web sites.

An event term of the form all Construct Term is used to raise and send all events that are constructed
with Construct Term by applying the substitutions obtained from the rest of the XChange reactive rule
whose head specifies the event term. Such event terms are useful e.g. when the event messages to be sent
have different content (depending on the variable substitutions). Examples can be found in Section 6.1,
where application scenarios for XChange are given.

Actually, Event Term in the grammar rules given next is not a construct term with arbitrary structure
– it has been generalised to construct term for reasons of simplicity. The following grammar rules define
transactions specifications in XChange:

112 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Trans ::= Update
| Event_Term
| Ordered_AList
| Unordered_AList

Event_Term ::= Construct_Term
| "all" Construct_Term

Ordered_AList ::= "and" "[" AList "]"
| "or" "[" AList "]"

Unordered_AList ::= "and" "{" AList "}"
| "or" "{" AList "}"

AList ::= Update ("," Action)+
Action ::= Update | Event_Term

A transaction specification can be considered as an ordered or unordered conjunction or disjunction of
action specifications. At moment, updates and event terms are considered as actions in XChange. However,
this view offers flexibility in extending XChange with other kind of actions if considered necessary. The
discussion on visibility of update effects for other updates inside a transaction (including also the usage
of obtained variable substitutions) can be ported to the more general setting of actions (and covering thus
event terms or combinations of updates and event terms).

On XChange Transactions and Their Management on the Web Combinations of XChange actions
are considered transactions if they obey the ACID properties [136] (Atomicity, Consistency, Isolation, and
Durability). Section 1.3.6 has explained each of the properties a transaction should have. Communicating
transaction requests and synchronising the actions to be taken can be implemented to some extent by
means of XChange rules; however, transaction-related issues deserve more investigation in the framework
of XChange so as to realise transaction management on the Web. The idea is to extend XChange with
standard solutions from database systems that are to be adapted to the biggest existing distributed system –
the Web.

Actions performed inside of a distributed transaction on the Web may trigger local or remote actions
that in turn can trigger other actions (i.e. cascading triggering on the Web). Upon abort of a triggering
transaction, rollback of all triggered actions need to be assured on the Web, a decentralised environment
posing new challenges. A nested transaction model has been proposed in [141] (for HiPac, pages 184 - 186)
for accommodating with the relationship between a transaction and the rules triggered by it (which in turn
can trigger other rules). How to cope with these kinds of problems has been discussed also in [141] (for
Chimera, page 167) and [119]. Existing proposals for management of triggering transactions and triggered
ones in database systems might prove very useful in extending XChange.

Transactions defined at the level of an XChange-aware Web site, or more concrete in an XChange pro-
gram, should recognise contradictory transactions and update specifications, possibly at compile time, or
develop transaction inconsistency resolution strategies. For example, for insert a and delete a, conceivable
strategies would be to execute the update associated with the reactive rule with higher priority, or not to
execute these two updates at all. At moment, however, XChange does not consider priorities for rules but,
at the same time, leaves room for such kind of extensions.

Contingency mechanisms could be also employed for transaction management on the Web, i.e. use the
events expressing abort of a transaction to specify how to react in case that a transaction aborts.

The emphasis in this thesis is not on a language for distributed transactions on the Web; the thesis recog-
nises the need for transactions through developed application scenarios and the components a transaction
on the Web might have, and proposes a syntax for (event-driven) transactions. A complete investigation
and realisation (including formal semantics and implementation) of transactions on the Web are outside the
scope of this thesis.

Paula-Lavinia Pătrânjan 113

4.8. RULES

4.8 Rules

An XChange program is located at one Web site and consists of one or more rules: Reactive rules of
the form Event query – Web query – Action specify situations of interest and the actions to be automati-
cally executed if such situations occur. Deductive rules are Xcerpt rules that infer new data from existing
(persistent) Web data (are views over persistent data).

The language XChange has been deliberately designed to mirror the clear separation between volatile
and persistent data. The language constructs deal either with volatile or with persistent data for easing their
understanding and usage. There are two levels of the language that mirror the view over the Web data: (a)
rules’ level, and (b) reactive rule components’ level.

(a) XChange reactive rules specify reactions to be executed in response to incoming volatile data. In
contrast, XChange deductive rules deal only with persistent data, they query persistent data and construct
new persistent data. XChange deductive rules are rules expressed in the query language Xcerpt (integrated
into XChange), which has been described in [125]. (Thus, the focus of this thesis is on XChange reactive
rules.)

(b) Regarding the components of XChange reactive rules, the Event query refers to (queries) volatile
data and the Web query refers to (queries) persistent data. The Action might refer to volatile data (by
sending event data) or to persistent data (by updating persistent data). Rule components communicate only
through variable substitutions. Substitutions obtained by evaluating the event query can be used in the Web
query and the action part, those obtained by evaluating the Web query can be used in the action part.

There are two kinds of XChange reactive rules that differ in the action to be executed: Event-raising
rules specify explicit events to be constructed and sent to one or more Web sites. Transaction rules specify
transactions to be executed. Thus, the grammar rules defining XChange rules are the following:

XCRule ::= React_Rule | Xcerpt_Rule
React_Rule ::= Raise_Rule | Trans_rule

XChange rules can be defined by programmers, system administrators, and non-programmers with a
level of knowledge depending on their application requirements. Being a high-level language, XChange
should not be to difficult to use even by non-experienced programmers. Moreover, a visual counterpart of
XChange is planned that could increase the accessibility of the language. XChange rules can be defined
also by applications – e.g. rules can be automatically generated based on the dependencies between Web
resources’ data.

This section is structured as follows: Section 4.8.1 discusses XChange event-raising rules. Section 4.8.2
focuses on XChange transaction rules. Deductive rules in XChange are motivated through an example in
Section 4.8.3. This section ends by defining the range restriction of XChange rules (Section 4.8.4).

4.8.1 Event-Raising Rules

XChange event-raising rules are means for notifying reactive (XChange-aware) Web sites of (atomic or
composite) events that have occurred. They specify event messages to be constructed and sent to other
Web sites as reaction to (local or remote) events. Conditions that need to hold for raising events can be
specified by means of queries to persistent data; these conditions select data items from persistent data that
are used for constructing event messages.

Event-raising rules are introduced by the keyword RAISE followed by an event term, the (atomic or
composite) event query is preceded by the keyword ON, and the Web query by the keyword FROM. Event
term specifications have been introduced in Section 4.7.3. Event queries have been discussed in Section
4.4. Web queries are Xcerpt queries; a short introduction has been given in Section 2.4.2, for a more
detailed discussion on Xcerpt querying capabilities see [125]. The grammar rule defining event-raising
rules is given next. (Note that just the event term specification is mandatory in XChange event-raising
rules; the event query and/or the Web query can be left out.)

Raise_Rule ::= "RAISE" Event_Term ("ON" EvQ)? ("FROM" Query)? "END"

114 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Incoming events are queried by means of event query EvQ. For each answer to EvQ the Xcerpt query
Query is evaluated. If Query evaluates successfully, an event message is constructed from Event Term
and is sent to the specified recipient. EvQ and Query select data from incoming events (volatile data)
and Web resources (persistent data), respectively, as bindings for the variables occurring in the queries.
Assuming that the answers to EvQ and Query contain the substitution sets ΣEvQ and ΣQuery, respectively,
for constructing the event message substitution set Σ = ΣEvQ 1 ΣQuery will be used.

An event that has been raised at a Web site (i.e. its representation has been constructed as event message
to be sent to one or more Web sites), contains as parameters the recipient Web site (that needs to be given in
the event term specification), the sender Web site, and the raising time (the last two are determined by the
event manager of the Web site sending the event message; the event manager provides this information by
inserting it into the event representation before its sending). The reception time and the event id parameters
are determined and inserted by the event manager of the recipient Web site when the event message is
received.
Example 4.56 (XChange Event-Raising Rule)
The site http://airline.com has been told to notify Mrs. Smith’s travel organiser of delays or cancel-
lations of flights she travels with. The shape of such an event-raising rule is given followed by a concrete,
complete XChange event-raising rule.

RAISE
<event message pattern notifying flight cancellation>

ON
<event query detecting flight cancellations>

END

The following event-raising rule is registered at http://airline.com and detects cancellation notifi-
cation events sent by one of the airline’s control points. If the flight AI2021 is cancelled, the airline notifies
the organiser of Mrs. Smith about this event.

RAISE
xchange:event {

xchange:recipient { "http://organiser.com/Smith" },
cancellation-notification { var F }

}
ON

xchange:event {{
xchange:sender { "http://airline.com/control-point20/" },
cancellation {{

var F -> flight {{ number { "AI2021" },
date { "2005-08-21" }

}}
}}

}}
END

4.8.2 Transaction Rules
XChange transaction rules are means for updating persistent data on the Web and notifying other XChange-
aware Web sites of events occurring during the execution of these updates. These actions – updates and
raising of events – are to be executed as a transaction. Conditions that need to hold, as a precondition for
transaction execution, can be specified by means of queries to persistent data.

Transaction rules are introduced by the keyword TRANSACTION followed by a transaction specification,
the (atomic or composite) event query is preceded by the keyword ON, and the Web query by the keyword
FROM. Transaction specifications have been introduced in Section 4.7.3. The grammar rule defining trans-
action rules is given next. (Note that just the transaction specification is mandatory in XChange transaction
rules.)

Paula-Lavinia Pătrânjan 115

4.8. RULES

Trans_Rule ::= "TRANSACTION" Trans ("ON" EvQ)? ("FROM" Query)? "END"

As for event-raising rules, incoming events are queried by means of event query EvQ. For each answer
to EvQ the Xcerpt query Query is evaluated. If Query evaluates successfully, the actions specified in
transaction Trans are to be executed (either all of them or none). Assuming that the answers to EvQ
and Query contain the substitution sets ΣEvQ and ΣQuery, respectively, for executing the specified actions
(updates and events to be raised) substitution set Σ = ΣEvQ 1 ΣQuery will be used.

Note that the ’event part’ is not mandatory for event-raising rules and transaction rules in XChange, so
as to be able to specify e.g. updates that are to be executed not (necessarily) as reaction to events.

Example 4.57 (XChange Rule for Booking a Flight)
The travel organiser of Mrs. Smith uses the following rule: if the return flight of Mrs. Smith is cancelled
then look for and book another suitable flight. Again, the shape of such a transaction rule is given first.

TRANSACTION
<make flight reservation>

ON
<event query detecting flight cancellations notifications>

FROM
<Web query looking for another suitable flight>

END

The XChange rule of Example 4.56 is used to send event messages to Mrs. Smith’s organiser; the next
XChange transaction rule responds to it by booking another flight. If no suitable flight is found, no action
is performed.

TRANSACTION
in { resource { "http://airline.com/reservations/" },

reservations {{
insert reservation { var F, name { "Christina Smith" } }
}}

}
ON

xchange:event {{
xchange:sender { "http://airline.com" },
cancellation-notification {{

flight {{ number { "AI2021" },
date { "2005-08-21" } }}

}}
}}

FROM
in { resource { "http://airline.com" },

flights {{
var F -> flight {{

from { "Paris" }, to { "Munich" },
date { "2005-08-21" }

}}
}}
}

END

Example 4.58 (XChange Rule Specifying Sequence of Updates as Action)
If no other suitable return flight is found and the airline does not provide an accomodation, then book for
Mrs. Smith a cheap hotel and inform her secretary about the changes of her schedule. This is represented
in XChange as a rule the travel organiser of Mrs. Smith has. The rule is shaped as follows:

116 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

TRANSACTION
<make hotel reservation>

<and>
<announce secretary of changes of schedule>

ON
<event query detecting cancellations of flights for which
the airline does not provide an accommodation>

FROM
<Web query looking for a suitable hotel>

END

For a cancelled return flight from Paris to Munich, the travel organiser of Mrs. Smith uses the following
XChange rule:

TRANSACTION
and [
in { resource { "http://hotels.net/reservations/" },

reservations {{
insert reservation {

var H, name { "Christina Smith" },
from { "2005-08-21" }, until { "2005-08-22" } }

}} },
in { resource { "diary://diary/my-secretary" },

diary {{
news {{

insert my-hotel {
remark { "I’m staying in Paris over night!" },
phone { var Tel }, reason { "Flight cancellation." } }

}} }} }
]

ON
andthen [
xchange:event {{

xchange:sender { "http://airline.com" },
cancellation-notification {{

flight {{ number { "AI2021" }, date { "2005-08-21" } }}
}}

}},
without { xchange:event {{

xchange:sender { "http://airline.com" },
accomodation-granted {{

hotel {{ }} }} }}
} during [2005-08-21T15:00:00..2005-08-21T19:00:00]

] within 2 hour
FROM

result [[
var H -> Position 1 hotel {{ phone { var Tel } }} }}

]]

END

Note that the Web query (introduced by FROM) does not query a particular Web resource; it queries a view
over the data of two Web resources having different structures. The Xcerpt rule constructing the view over
hotel data is given in the next section (Example 4.59). Variable H is to be bound to the hotel offering the
best price.

Paula-Lavinia Pătrânjan 117

4.8. RULES

4.8.3 Deductive Rules
Deductive rules are means for constructing views over heterogeneous data sources. As exemplified in
the previous section, data views are easily and elegantly queried in the Web Query part of reactive rules.
Deductive rules are expressed by using the Web and Semantic Web query language Xcerpt, which is inte-
grated into XChange. A short introduction to Xcerpt has been given in Section 2.4.2, for a more detailed
discussion on Xcerpt querying capabilities see [125].

Xcerpt_Rule ::= "CONSTRUCT" Construct_Term "FROM" Query "END"

Deductive rules of an XChange program can be chained, that is query parts of reactive or deductive
rules can query the result of other deductive rules. This is realised by matching (simulation unifying) the
query part with the construct part – the head – of other deductive rules. Note that the head of reactive rules
can not be queried.

Example 4.59 (Deductive Rule for Gathering Information about Hotels)
The following Xcerpt rule queries data found at Web resources http://hotels.net and http://hotels-
paris.fr and constructs a view over the hotel data by gathering information about all hotels in Paris. The
constructed data term contains a list of hotels ordered by their price per room.

CONSTRUCT
result [

all hotel { name { var Name },
price { var Price },
phone { var Phone } } order by ascending [var Price]

]
FROM
or {

in { resource { "http://hotels.net" },
accommodation {{

hotels {{
city { "Paris" },
desc hotel {{

name { var Name }
price-per-room { var Price },
phone { var Phone } }} }}

}}
},
in { resource {"http://hotels-paris.fr"},

logement {{
hotel {{

nom { var Name },
telephone { var Phone },
prix { var Price }

}}
}}

}
}
END

Note that the two data terms queried for hotels in Paris have different structures; the above given rule not
only gathers the desired information, but also gives data a uniform structure.

Complex applications specifying reactivity on the Web require a number of features that can not always
be specified by simple programs. In XChange, rules are also means for structuring complex XChange
programs.

118 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

4.8.4 Range Restriction
This section discusses range restriction of XChange rules, i.e. a syntactic restriction on admissible XChange
rules. The satisfaction of the range restriction property by the rules of an XChange program is assumed in
defining the formal semantics of XChange (Section 5). Moreover, range restriction of XChange rules is a
syntactical property that can be statically verified when parsing XChange programs so as to avoid (some)
programming mistakes.

Intuitively, an XChange rule is range restricted if every variable occurring in the construct term(s) of
the rule’s head (’action part’ or construct part) has at least one defining occurrence (i.e. an occurrence that
“provides” bindings for the variable) in other parts (event query part, Web query part, or actions that are to
be performed before the action containing the respective construct term) of the rule.

For defining the range restriction of XChange rules, each variable occurrence in XChange rules is
associated with a polarity and an optionality; these determine whether a variable occurring in a part of the
rule can be used in other parts of the respective rule. A negative polarity (denoted -) of a variable occurrence
expresses a defining occurrence of the variable. A positive polarity (denoted +) expresses a non-defining
variable occurrence. Optionality is given by an attribute optional (denoted ?) and not optional (denoted !)
for variables contained in an optional subtree and do not always have bindings.

An XChange program is a set of rules, denoted P = {Rr1, . . . ,Rrm,Tr1, . . . ,Trn,Dr1, . . . ,Drp}, where

• Rri, 0 ≤ i ≤ m, are event-raising rules of the form te ←r Q←r eq (te is an event term, Q an Xcerpt
query, and eq an event query),

• Tr j, 0≤ j ≤ n are transaction rules of the form tra←r Q←r eq (tra is a transaction specification, Q

an Xcerpt query, and eq an event query),

• Drk, 0 ≤ k ≤ p are Xcerpt rules of the form tc← Q (tc is a construct term and Q an Xcerpt query),
and

• 1≤m+n.

The range restriction of Xcerpt rules (deductive rules Drk, 0 ≤ k ≤ p) is defined in [125], Chapter 6,
pages 133-137. Thus, this section discusses only range restriction for XChange reactive rules of a program
P, i.e. event-raising rules Rri, 0 ≤ i ≤ m, and transaction rules Tr j, 0 ≤ j ≤ n. For this, the polarity of
event queries, Web queries, and actions need to be defined. As Xcerpt query terms are needed for defining
the polarity of event queries and updates, and construct terms are needed for defining the polarity of event
terms and updates, the definition of polarities of Xcerpt subterms is given in the following; the polarity of
Xcerpt query and construct terms has been defined in [125], Chapter 6.

Definition 4.5 (Polarity of Xcerpt Subterms)
1. Let t be a query term with polarity p and optionality o.

• if t is of the form without t ′, then t ′ is of polarity + (regardless of p) and optionality o

• if t is of the form optional t ′, then t ′ is of polarity p and optionality ?.

• if t is of one of the forms l{{t ′1, . . . , t
′
n}}, l{t ′1, . . . , t

′
n}, l[[t ′1, . . . , t

′
n]] or l[t ′1, . . . , t

′
n] (n ≥ 0), then

t ′1, . . . , t ′n are of polarity p and optionality o.

• if t is of the form desc t ′ then t ′ is of polarity p and optionality o.

• if t is of the form var X → t ′ then t ′ is of polarity p and optionality o.

2. Let t be a construct or data term with polarity p and optionality o.

• if t is of the form optional t ′, then t ′ is of polarity p and optionality ?.

• if t is of one of the forms f{t ′1, . . . , t
′
n} or f [t ′1, . . . , t

′
n] (n ≥ 0), then t ′1, . . . , t ′n are of polarity p

and optionality o.

• if t is of the forms all t ′ or some t ′, then t ′ is of polarity p and optionality o.

Paula-Lavinia Pătrânjan 119

4.8. RULES

• if t is of the form op(t ′1, . . . , t
′
n), with op a function or aggregation identifier, then t ′1, . . . , t ′n are

of polarity p and optionality o.

The root of a query term is usually of negative polarity (and thus define variable bindings) and not
optional. The root of a construct or data term is of positive polarity and not optional.

Polarity of Event Queries

For attributing a polarity for each occurrence of a variable in an XChange event query, polarities are re-
cursively attributed for each component of an event query. An XChange event query may be atomic or
composite; an atomic event query is an Xcerpt query term with an optional absolute temporal restriction
specification. The above given definition (taken from [125]) represents the base of defining the polarity of
XChange event queries; it defines polarity of atomic event queries without temporal restrictions. The next
definition is used for defining the polarity of XChange event queries.
Definition 4.6 (Polarity of XChange Event Queries)
Let eq be an event query with polarity p and optionality o. If eq is of the form:

• eq is an Xcerpt query term, then the Definition 4.5 is used for attributing polarity to its subterms;

• eq = eq′ in [b..e], or eq = eq′ before e, then eq′ is of polarity p;

• eq = eq′ within w, then eq′ is of polarity p;

• eq = and{eq1, . . . eqn}, then eqi is of polarity p, 1≤ i≤ n;

• eq = andthen[eq1, . . . ,eqn] or eq = andthen[[eq1, . . . ,eqn]], then eqi is of polarity p, 1≤ i≤ n;

• eq = andthen[[eq1,collect q12,eq2,collect q23,eq3, . . . ,eqn]], then eqi and qi j are of polarity p,
1≤ i≤ n, j = i+1, 2≤ j ≤ n;

• eq = or{eq1, . . . eqn}, then eqi is of polarity p, 1≤ i≤ n;

• eq = var X → eq′, then eq′ is of polarity p;

• eq = without {eq1} during {eq2}, then eq1 is of polarity + (regardless of p) and eq2 is of polarity
p;

• eq = without {eq1} during [b..e], then eq1 is of polarity + (regardless of p);

• eq = times (atleast|atmost)? n any var X1, . . . ,var Xk {eq′} during {eq′′}, then eq′ and eq′′

are of polarity p;

• eq = times (atleast|atmost)? n any var X1, . . . ,var Xk {eq′} during [b..e], then eq′ is of polar-
ity p;

• eq = every n any var X1, . . . ,var Xk {eq′ }, then eq′ is of polarity p;

• eq = withrank n any var X1, . . . ,var Xk {eq′ }, then eq′ is of polarity p;

• eq = last {eq1 } during {eq2 }, then eq1 and eq2 are of polarity p;

• eq = last {eq1 } during [b..e], then eq1 is of polarity p;

• eq = (atleast|atmost)? m of any var X1, . . .var Xk {eq1, . . .eqn} during {eq′}, then eq′ and eqi
are of polarity p, 1≤ i≤ n;

• eq = (atleast|atmost)? m of any var X1, . . .var Xk {eq1, . . . ,eqn} during [b..e], then eqi is of
polarity p, 1≤ i≤ n.

Each of the component event queries of the event query eq having one of the forms given above are of
optionality o.

The root of an event query is of negative polarity (it defines variable bindings) and not optional. If event
exclusion is specified, the polarity changes according to Definition 4.6.

120 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Polarity of Web Queries

Web queries in XChange event-raising rules or transaction rules are Xcerpt queries. The polarity of Xcerpt
queries has been defined in [125], Chapter 6, Definition 6.2.

Polarity of Actions

XChange actions are raising of events to one or more reactive Web sites, or executing XChange transac-
tions, i.e. ordered or unordered conjunctions or disjunctions of (elementary or complex) updates and/or
raising of events.

Definition 4.7 (Polarity of XChange Event Terms)
Let et be an event term with polarity p and optionality o.

• if et is an Xcerpt construct term, then the Definition 4.5 is used for attributing polarity and optionality
to its subterms;

• if et is of the form all ct, with ct Xcerpt construct term, then ct is of polarity p and optionality o.

An XChange update term is a pattern for the data to be updated augmented with update operations.
For attributing polarity to update terms, it suffices to attribute polarity to their subjacent query terms and
the construct terms of the update operations (insertion and replacements). (Recall that XChange update
operations can not be nested.) The subjacent query term of an update term (Definition 4.3 in Section 4.7)
is an Xcerpt query term; thus, for attributing polarity to the subjacent query terms, the part for query terms
of Definition 4.5 is used. For attributing polarity to construct terms that are part of update operations (e.g.
insert ct or qt replaceby ct, with ct construct term and qt query term), the part for construct terms of
Definition 4.5 is used.

The root of a subjacent query term is of negative polarity (it provides bindings) and not optional; the
root of a construct term that is part of an update operation is of positive polarity (it consumes bindings) and
not optional.

Definition 4.8 (Polarity of XChange Actions)
Let a be an XChange action specification of polarity p.

1. If a is an event term, then the Definition 4.7 is used for attributing polarity to its subterms.

2. If a is an elementary update, then its subjacent query term is of polarity p and its construct terms of
polarity +; the specified resources are of polarity +.

3. If a is of one of the forms:

• and [a1,a2, . . . ,an] or and {a1,a2, . . . ,an}, then every update ai is of polarity p and every event
term a j of polarity +, 1≤ i≤ n, 1≤ j ≤ n;

• or [a1,a2, . . . ,an] or or {a1,a2, . . . ,an}, then every update ai is of polarity p and every event
term a j of polarity +, 1≤ i≤ n, 1≤ j ≤ n.

The root of a complex update is of negative polarity and not optional.

Example 4.60 (Polarity in an XChange Rule)
The following event-raising rule is used for settling an appointment with one of Mrs. Smith’s friends. As
all terms have associated attribute not optional, the optionality is not depicted in the example.

RAISE
+xchange:event {

+xchange:recipient {"http://organiser.com/Eva"},
+proposal {

+text {"Can we meet?"},
+on { +var Date }, +at {"14:00"}

Paula-Lavinia Pătrânjan 121

4.8. RULES

}
}

ON
-and {

-without {
+xchange:event {{

+meeting {{
+begin { +var Time },
+date { +var Date }

}}
}}

} during [2005-08-21..2005-08-22],
-xchange:event {{

-xchange:sender {"http://organiser.com/Eva"},
-info {{

-text {"I’m in Munich"},
-date { -var Date }

}}
}}

} before 2005-08-22T22:00
FROM

-in { +resource { "file:/appointments.xml" },
-schedule {{

-desc -appointments {{
-without +appointment {{

+for { +var Date } }}
}}

}}
}

END

Note that variable Time occurs only once and with positive polarity, that is Time has no occurrence that
provides bindings for it. The variable Date occurs once with negative polarity, i.e. the event query against
notifications from Eva provides bindings for Date; the variable has more than one occurrence with positive
polarity expressing occurrences where the bindings for Date are consumed (e.g. in the event term proposing
an appointment).

Range Restriction of XChange Rules

An XChange transaction rule is range restricted if variables occurring in the construct terms of the ’action
part’ have at least one defining occurrence in the event query, Web query, or in the updates that are to be
performed before the respective variables are used. An XChange event-raising rule is range restricted if
variables occurring in the event term have at least one defining occurrence in the event query or Web query.

For simplifying the definition of range restriction of XChange rules, the disjunctive normal form of an
XChange rule is defined next.

Definition 4.9 (Disjunctive Rule Normal Form of XChange Rules)
An XChange rule A←r Q←r Eq is in disjunctive normal form if Q and A are in disjunctive normal form,
that is

(i) an Xcerpt query Q is in disjunctive normal form if it is of the form
∨

j q j, where q j is a conjunction
of query terms and/or negated query terms;

(ii) an action A is in disjunctive normal form if it is an event term or a disjunction of actions, where
each action is a conjunction of elementary updates and/or event terms; the conjunction of actions preserves
the order of action specifications.

122 Paula-Lavinia Pătrânjan

CHAPTER 4. PARADIGMS. CONCEPTS. SYNTAX

Bringing a Web query in its disjunctive normal form is rather straightforward and has been discussed in
[125], Chapter 6. The steps followed for transforming an XChange action specification into its disjunctive
normal deserve some explanation. For bringing an action specification A in its disjunctive normal form,

1. each ordered disjunction of A is transformed into an unordered one; this step does not influence
the bindings of the variables occurring in the actions specified in the disjunction (recall that com-
ponent actions of an unordered or ordered disjunction “share” only the variable bindings obtained
from evaluating the event query and the Web query). Thus, actions of the form or[a1,a2, ...,an] are
transformed into or{a1,a2, ...,an}.

2. each unordered conjunction of action specification of A is transformed into a disjunction of ordered
conjunctions. For example, an unordered conjunction of the form and{a1,a2} is transformed into

or{

and[a1,a2],

and[a2,a1] }

Note that the transformation preserves the definition of the scope of variables in unordered conjunc-
tion of actions (cf. Section 4.7.2).

3. the last step in the transformation consists in placing the action specification resulted from applying
1. and 2. to A into disjunctive normal form; this is achieved by recursively moving conjunctions
inward and disjunctions outward by using the rewriting rules:

and[a,or{b,c}] = or{and[a,b],and[a,c]}

and[or{a,b},c] = or{and[a,c],and[b,c]}

By applying the above stated rules, the order of actions in ordered conjunction specifications needs
to be preserved.

For defining the range restriction of XChange rules, a predicate prob(eq,V) is defined for expressing
that the event query eq provides bindings for the variable V occurring in eq. If prob(eq,V) = True, V can
be consumed in other parts of the rule.

Definition 4.10 (Predicate prob - Provides Bindings)
Let eq be an event query and V a variable occurring in eq. The predicate prob(eq,V) is defined recursively
on the structure of eq. prob(eq,V) = True, iff

• eq atomic event query and V occurs with negative polarity in eq;

• eq = eq′ in [b..e], or eq = eq′ before e, and prob(eq′,V) = True;

• eq = eq′ within w and prob(eq′,V) = True;

• eq = and{eq1, . . . eqn} and ∃i, 1≤ i≤ n such that prob(eqi,V) = True;

• eq = andthen[eq1, . . . ,eqn] or eq = andthen[[eq1, . . . ,eqn]], and ∃i, 1≤ i≤ n such that prob(eqi,V) =
True;

• eq = andthen[[eq1,collect q12,eq2,collect q23,eq3, . . . ,eqn]] and ∃i, 1≤ i≤ n such that prob(eqi,V) =
True or prob(qi j,V) = True;

• eq = or{eq1, . . . eqn} and ∀i, 1≤ i≤ n: prob(eqi,V) = True;

• eq = without {eq1} during {eq2} and prob(eq2,V) = True;

• eq = times (atleast|atmost)? n any var X1, . . . ,var Xk {eq′} during {eq′′} and prob(eq′,V) =
True or prob(eq′′,V) = True;

• eq = times (atleast|atmost)? n any var X1, . . . ,var Xk {eq′} during [b..e] and prob(eq′,V) =
True;

Paula-Lavinia Pătrânjan 123

4.8. RULES

• eq = every n any var X1, . . . ,var Xk {eq′ } and prob(eq′,V) = True;

• eq = withrank n any var X1, . . . ,var Xk {eq′ } and prob(eq′,V) = True;

• eq = last {eq1 } during {eq2 } and prob(eq1,V) = True or prob(eq2,V) = True;

• eq = last {eq1 } during [b..e] and prob(eq1,V) = True;

• eq = (atleast|atmost)? m of any var X1, . . .var Xk {eq1, . . .eqn} during {eq′} and prob(eq′,V) =
True or ∀i, 1≤ i≤ n: prob(eqi,V) = True.

For all other cases, prob(eq,V) = False. Actually, predicate prob states whether a variable can be
considered as having negative polarity in a (composite) event query.

Every XChange rule can be transformed into disjunctive normal form. Based on this result and using
the predicate defined above, the range restriction of XChange rules can be formalised by the following
definitions:

Definition 4.11 (Range Restriction of XChange Event-Raising Rules)
Let R be an XChange event-raising rule and R′ = te←r

∨

j q j←r Eq its disjunctive normal form. R is range
restricted iff

• ∀V variable occurring in te with positive polarity, V occurs in Eq such that prob(Eq,V) = True or
in each of the q j with negative polarity;

• ∀V variable occurring in Eq or in at least one q j with attribute optional and with negative polarity,
and without another non-optional, with negative polarity occurrence of V in Eq and q j, V is also
attributed as optional in all occurrences in Eq, q j, and te.

Definition 4.12 (Range Restriction of XChange Transaction Rules)
Let R be an XChange transaction rule and R′ =

∨

k ak ←r
∨

j q j ←r Eq its disjunctive normal form. R is
range restricted iff

• ∀V variable occurring in one of the construct terms of ak (that is, in one of the update or event terms
of akl , where ak =

∧

l akl) with positive polarity, V occurs with negative polarity in Eq and/or in each
of the q j, and/or occurs with negative polarity in at least one of the akl , 1≤ l ≤ p, where V in akp;

• ∀V variable occurring in Eq or in at least one q j with attribute optional and with negative polarity,
and without another non-optional, with negative polarity occurrence of V in Eq and q j, V is also
attributed as optional in all occurrences in Eq, q j, and ak;

• ∀V variable occurring in the subjacent query term of an update term akl with attribute optional and
with negative polarity, and without another non-optional, with negative polarity occurrence of V in
Eq, q j, and akw with 1≤ w≤ l−1, V is also attributed as optional in all occurrences in the construct
terms of akl .

An XChange program P is range restricted if all rules R ∈ P are range restricted.

124 Paula-Lavinia Pătrânjan

CHAPTER

FIVE

Semantics

The constructs offered by the reactive language XChange have been introduced in Chapter 4; grammar
rules provide their syntax and examples explain their informal meaning. This chapter turns to defining
the declarative semantics (Section 5.1) of the three parts of an XChange reactive rule: event query part
(Section 5.1.1), Web query part (Section 5.1.2), and update part (Section 5.1.3). The chapter discusses also
the evaluation of XChange event queries (Section 5.2.1), the underlying ideas of evaluating Web queries
(Section 5.2.2), and of executing XChange updates (Section 5.2.3).

5.1 Declarative Semantics
The semantics of XChange event queries has been given in an informal manner in the previous chapter; this
section defines their formal, declarative semantics, which is unambiguous and clear. Declarative semantics
is beneficial to avoid misinterpretations of language constructs by both users and implementors. Also,
declarative semantics provides a basis for formal proofs of language properties.

Notations are introduced for simplifying the definition of the declarative semantics. Recall that an
XChange program is a set of rules, denoted P = {Rr1, . . . ,Rrm,Tr1, . . . ,Trn,Dr1, . . . ,Drp}, where

• Rri, 0 ≤ i ≤ m, are event-raising rules of the form te ←r Q←r eq (te is an event term, Q an Xcerpt
query, and eq an event query),

• Tr j, 0≤ j ≤ n are transaction rules of the form tra←r Q←r eq (tra is a transaction specification, Q

an Xcerpt query, and eq an event query),

• Drk, 0 ≤ k ≤ p are Xcerpt rules of the form tc← Q (tc is a construct term and Q an Xcerpt query),
and

• 1≤m+n.

Some notes on XChange rules are needed here. An XChange program must contain at least one re-
active rule (event-raising rule or transaction rule); this motivates 1 ≤ m + n for an XChange program P.
Deductive rules are Xcerpt rules and not Xcerpt goals, that is rules Drk are views over persistent data that
are materialised when they are needed. Deductive rules are not mandatory for an XChange program (that
is why 0≤ k ≤ p for deductive rules Drk).

The set T denotes the set of all terms, Tu (T the set of all update terms, Tq (T the set of all query
terms, and T

d (T the set of all data terms (note that in [125], T does not include update terms). The
notation←r has been chosen for the formal representation of reactive rules so as to differentiate between
reactive and deductive (inference) rules in XChange.

The whole development of the language XChange follows a component-based approach, as it combines
an event language, a query language, and an update language. The same approach is followed in defining
the declarative semantics of XChange: Section 5.1.1 defines the declarative semantics of event queries,

125

5.1. DECLARATIVE SEMANTICS

Section 5.1.2 gives an overview on the declarative semantics of Web queries (i.e. Xcerpt queries), and
Section 5.1.3 discusses the declarative semantics of updates in XChange. The semantics of an XChange
(reactive) rule follows immediately from the semantics of its components; the ’glue’ between these rule
components is given by the substitution sets for the variables occurring in these parts. Adaption or extension
of one of the component languages (event query, Web query, and update languages) of XChange need to
accommodate their semantics so as to keep the simple ’communication’ inside a rule through substitution
sets.

5.1.1 Semantics of Event Queries

The declarative semantics of XChange event query language is defined as a ternary relation between event
queries, answers, and the stream of incoming event messages. This approach to the semantics is a ’special’
model theoretical semantics; it is different from a model theoretic satisfaction relation usually encountered
in logic programming languages because of the advanced constructs of the event query language. Following
the later approach, answers to event queries would be obtained by applying substitutions to the event
query. However, due to partial specifications in event queries this is not always the case. For example, by
just applying a substitution (set) to an event query eq = andthen[[eq1,eq2]] the atomic events that occur
between the events answering eq1 and eq2, respectively, are not generated, although they are contained
in the answer to eq. This is because answers to event queries contain more atomic events than actually
specified through an event query’s constituent atomic event queries.

A short discussion on time points and durations is given before formalising the answers to them, the
incoming event stream, and the answering relation between them. The declarative semantics of event
queries has been developed together with Prof. Dr. François Bry and Michael Eckert: Prof. Dr. François
Bry has supervised the development of the whole XChange project. Michael Eckert has written his master’s
thesis under the double supervision of the author and Prof. Dr. François Bry. The declarative semantics of
XChange event queries has been previously published in [76, 18]. However, the declarative semantics
presented in the cited work does not cover all kinds of XChange event queries. The semantics of all event
query language constructs is first defined in this thesis. The declarative semantics provide a sound basis for
formal proofs of event language properties; this section ends with a formal proof of the fact that XChange
legal event queries need only a bounded event stream for their evaluation (Section 5.1.1).

Time Points and Durations

A time domain (T,D) is used for interpreting time points and durations (lengths of time): Time points
are interpreted as objects of T. Durations are interpreted as objects of D. For enhancing the readability,
in defining the declarative semantics of XChange event queries time points and durations are considered
as interpreted objects (instead of using the interpretation of the syntactical representation of time points
and durations, respectively). A formally more correct approach would be to consider e.g. time points t p
in the specification of event queries and I(t p) in the definition of event queries’ semantics, where I is an
interpretation function for time objects. For working with time points and durations, the following relations
and conditions on the time domain (T,D) are needed for the declarative semantics presented in this section.

(i) An equality relation = for both time points and durations.
(ii) A total order < on time points; t1 < t2 expresses that time point t1 is before time point t2 on the time

axis. A smallest time point exists, but no greatest time point.
(iii) The time difference− between two time points; t2− t1 (with t1 < t2) is a duration of time.
(iv) Durations can be compared with <; w1 < w2 expresses that w1 is shorter than w2.
(v) Addition + of a duration to a time point results in a time point; t2 = t1 +w (where t1 time point and

w duration) is a time point such that t2− t1 = w.
(vi) A minimum min and a maximum max function for time points (from a set of time points return a

time point that represents the minimum, maximum respectively, of them).

126 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Event Stream

The stream of incoming events, or event stream for short, is the sequence of all atomic events an XChange-
aware Web site receives. An atomic event a is a data term d that has been received at point r ∈ T (the
occurrence time of the atomic event). The reception time point of events is written in superscript notation;
thus, a = dr. The domain of data terms Td is defined in [125]. For the occurrence time r of an atomic event
a = dr, the notation occ(a) is also used in this work for easing the readability.

Event queries are forward-looking (cf. Section 4.4.1), they do not have the ability to query events that
have been received before their registration. Thus, for a given event query eq, all atomic events received
after its registration form eq’s event stream. For readability reasons, E is used for denoting eq’s event
stream, instead of Eeq. From now on, each event stream used for defining the declarative semantics is
considered relative to a given event query; the event query will be clear from the context.

An event stream E is a finite sequence 〈a1,a2, . . .an〉
e
b containing all atomic events ai = dri

i a reactive
Web site is made aware of in the time interval [b..e]. The begin and end time points of the time interval are
written in subscript notation and superscript notation, respectively. This extends the notation for atomic
events where just a single time point, the occurrence time of the atomic event, is needed in representation.

The atomic events of an event stream have the following properties:
(i) r1 < · · ·< rn, i.e. they are totally ordered with respect to their occurrence time, and
(ii) b≤ r1 and rn ≤ e, i.e. the atomic events of an event stream lie inside the interval [b..e].
Note that (i) corresponds to the assumption that no two atomic events happen simultaneously.
Given an event query eq, for defining its correct semantics, the beginning time of its event stream is the

time at which the event query has been registered to the system. For this work, E is not considered as the
infinite sequence of atomic events a reactive system receives after registering eq. For evaluating an event
query eq at some point in time teval , all events needed in the evaluation have a lower temporal bound, i.e.
eq’s registration time, and an upper temporal bound, i.e. teval . Thus, it suffices to consider a finite sequence.

Answers

As explained in Section 4.4.5, the notion of answer to an event query is twofold, i.e. is made of the sequence
of all atomic events that participated to answering the event query and a substitution set for all variables
with at least one defining occurrence in the event query. Formally, an answer to an event query eq is a tuple
(s,Σ), where s is the event sequence of atomic events that enabled the successful evaluation of eq and Σ the
corresponding substitution set.

Event Sequences Event sequences s = 〈a1, . . .an〉
e
b are sequences of temporally ordered atomic events

ai = dri
i together with a beginning time b and an ending time e of the sequence, where b≤ r1 < r2 < · · ·<

rn ≤ e. Cf. Section 4.2.3, answers to atomic event queries – atomic events – have an occurrence time
point, answers to composite event queries – composite events – stretch over a time interval. The notion of
event sequence accommodates both cases: For atomic events the beginning and ending time of the event
sequence represent a single time point, the occurrence time of the atomic event (i.e. b = e). For composite
events, the beginning time b of an event sequence represents the beginning time of the composite event,
the ending time e represents the ending time of the composite event. Note that the time point e denotes
the time at which the other parts of a reactive rule associated to the event query are evaluated. Recall
that the beginning time b and ending time e of a composite event c = 〈a1, . . .an〉

e
b are not necessarily r1

and rn, i.e. the reception times of the first and last, respectively, atomic events that are part of the event
sequence representing the composite event (an explanatory example has been given in Section 4.2.3). In
the following, begin(s) and end(s) are used for denoting the beginning time and ending time, respectively,
of en event sequence s.

For defining the semantics of event queries, the notion of event subsequences and the union of event
sequences are used; their formalisation follow.
Event Subsequences. A subsequence relation between event sequences is represented in this work with the
(round) inclusion sign (. Thus, s (s′ denotes that s is a subsequence of s′. Formally, the subsequence
relation is defined as follows:
〈a1, . . .an〉

e
b (〈a′1, . . .a

′
m〉

e′
b′ if and only if

Paula-Lavinia Pătrânjan 127

5.1. DECLARATIVE SEMANTICS

(i) {a1, . . .an}({a′1, . . .a′m}, and
(ii) b′ ≤ b and e≤ e′.
The definition above states that the atomic events of a sequence s are to be found in the sequence s′ if

s (s′. However, an event sequence s can also be a complete subsequence of a sequence s′, i.e. s contains all
atomic events from s′ that lie between s’s beginning and ending time. The complete subsequence relation
between event sequences s and s′ is written with a squared inclusion sign, s @ s′. The relation is defined as
follows:
〈a1, . . .an〉

e
b @ 〈a′1, . . .a

′
m〉

e′
b′ if and only if

(i) {a1, . . .an}= {a′i | b≤ occ(a′i)≤ e, 1≤ i≤ m}, and
(ii) b′ ≤ b and e≤ e′.
Note that s @ s′ implies s (s′. Both relations (and @ are reflexive and transitive.

Union of Event Sequences. Given two event sequences s and s′, the union of the event sequences is denoted
s∪ s′. The result s′′ = s∪ s′ is an event sequence containing all events from s and s′ and stretching over a
time interval covering the intervals of s and s′. The union of event sequences is formalised for the n-ary
(not just binary) case as follows:
〈a1, . . .an〉

e
b∪〈a

′
1, . . .a′m〉

e′
b′ =de f 〈a′′1 , . . .a′′p〉

e′′

b′′ , where
(i) {a′′1, . . .a′′p}= {a1, . . .an}∪{a′1, . . .a′m}, and
(ii) b′′ ≤ a′′1 < · · ·< a′′p ≤ e′′, and
(iii) b′′ = min{b,b′} and e′′ = max{e,e′}.
The operation ∪ is associative. As usual,

⋃

1≤i≤n si is shorthand for s1∪ ·· ·∪ sn.
Note that the event stream E is an event sequence; thus, the relations defined above do apply also for

relating arbitrary sequences and the event stream.

Substitution Sets The notion of substitution sets introduced here is used also for the declarative seman-
tics of condition and action parts of XChange reactive rules. It is important to use the same notion of
substitution sets since the components of XChange reactive rules and the head and body of deductive rules
communicate through substitution sets. To accommodate with the declarative semantics of the query lan-
guage Xcerpt, which is integrated into XChange, the notion of substitution sets used in [125] is adopted for
this work.

Substitution. A substitution maps variable names to construct terms. As the number of variables occurring
in a term is always finite, the substitution here represents a finite mapping (function); in general, a substitu-
tion gives assignments for all variable names but its description covers just those of interest (e.g. variables
occurring in a term, in our case). Substitutions are denoted in this work as variable assignments instead of
as functions (e.g. {X 7→ f{”content”},Y 7→ g{”some content”}}). Recall that the same denotation has been
used in the previous sections for giving the informal meaning of XChange constructs through examples.

Substitutions are means for communicating event query and Web query result data to the action part of
the reactive rules so as to construct event messages to be sent and/or to perform updates that depend on
these substitutions. For constructing new data (to be sent or to be inserted) and to determine the subjacent
query term of an update term, the obtained substitutions are applied to construct terms and query terms.
Applying a substitution to a term means replacing all occurrences of variables for which an assignment is
provided by the corresponding assignments; the result is a term (σ(t) denotes the term obtained by applying
σ to t). However, construct terms (specifying patterns for event messages, for views over persistent data,
or for data that is to be inserted) may contain grouping constructs such as all or some (cf. Section 2.4.2
and Section 4.6), case in which all assignments for the variables in the construct term are needed. Thus, to
accommodate such requirements, substitution sets are used in this work instead of substitutions.

Substitution Set. A substitution set Σ is a (finite) set of substitutions σ1, . . . ,σn (denoted Σ = {σ1, . . . ,σn}).
In the following, upper case greek letters (like Σ) denote substitution sets, while lower case greek letters
(like σ) denote substitutions. Like substitutions, substitution sets can be applied to a term (query, construct,
or update term) but the result is in general a set of terms (called instances of the respective query, construct,
or update term). The definitions of substitution and substitution set application to query terms and construct
terms are given in [125], Section 7.3.2 and Section 7.3.3. Σ(t) denotes the result of applying the substitution
set Σ to the term t.

128 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Maximal Substitution Set. Moreover, the correct treatment of the grouping construct all requires also the
substitution set to be maximal. An intuitive meaning of this property has been given in Section 4.4.5 when
discussing the answers to XChange event queries. For an event query eq, a substitution set Σ answering eq
is maximal, if there exists no substitution set ϒ answering eq such that Σ is a proper subset of ϒ. A formal
definition of maximal substitution sets can be found in [125] (Section 7.3, Definition 7.1 on page 147).

Restriction of a Substitution Set. The restriction of a substitution set Σ to a set of variables V (denoted Σ |V)
is the set of substitutions of Σ for the variables of V , and undefined (⊥) for all other variables:

Σ |V = {σ ′ | ∃σ ∈ Σ ∀x. σ ′(x) = σ(x) if x ∈V, σ ′(x) =⊥ otherwise }

Defining Occurrence of Variables. The substitution set that is communicated between rule components and
that is used for formalising the semantics of these components contains only substitutions for the variables
having at least one defining occurrence in the (event or Web) query. Determining whether a variable
occurring in the event part (or condition part) of a rule can be used in the condition and action part (or, just
in the action part, respectively) of the rule or not, is realised by means of (positive or negative) polarities
that are associated with each variable occurrence. Explanations of polarity of variables in XChange terms
have been given in Section 4.4 and Section 4.8.4.

Answering Relation

The declarative semantics of event queries is defined as a ternary relation between event query eq, answer
(s,Σ), and event stream E. Given an event query eq and the stream E of incoming events received after its
registration, the answering relation tells whether a tuple (s,Σ) is an answer to eq under E. The answering
relation is denoted eq /E (s,Σ) meaning ’eq is answered by (s,Σ) under E’. Note that the event stream E

needs to be incorporated into the answering relation as the answers to eq depend on E.
Consider eq an XChange event query. The answering relation /E is defined inductively on eq: The

induction base is an XChange atomic query. The induction step uses case distinction on the top-level event
composition construct or temporal restriction. In the following V denotes the set of all variables having at
least one defining occurrence in eq.

Atomic Event Query Case eq atomic event query (that is, eq∈ Tq, where Tq the set of all possible Xcerpt
query terms). A tuple (s,Σ) is an answer to eq under E if and only if s contains a single atomic event d r of
E and eq matches the data term d under all substitutions from Σ. Formally, eq /E (s,Σ) holds iff

(i) ∀x ∈V , ∀σ ∈ Σ: σ(x) is defined and respects the restrictions on x,
(ii) ∀t ∈ Σ(eq) : t � d, and
(iii) s = 〈dr〉rr @ E.
Note that the answer to an atomic event query contains in this work a sequence of a single atomic event.

Thus, answers to atomic event queries and answers to composite event queries are treated in an uniform
manner. This simplify the use of the atomic event query case as the base of the inductive definition.

Conjunction Case eq = and{eq1, . . . eqn}. A tuple (s,Σ) answers eq under E if and only if s is the union
of n event sequences from E that answer the component event queries eqi. Formally, eq /E (s,Σ) holds iff
∃ s1, . . . sn event sequences such that

(i) eqi /E (si,Σ), ∀i : 1≤ i≤ n, and
(ii) s =

⋃

1≤i≤n si.
Note that begin(s) = mini=1..n begin(si) and end(s) = maxi=1..n end(si) expressing that the composite

event answer to eq stretches over the time interval covering all component atomic events. Also, the re-
quirement that s1, . . .sn (E (i.e. event sequences contain only atomic events from E) is actually given by
the induction base (this note applies also for the other cases of induction).

Disjunction Case eq = or{eq1, . . . eqn}. A tuple (s,Σ) answers eq under E if and only if (s,Σ) answers
one of the component event queries eqi. Formally, eq /E (s,Σ) holds iff

(i) ∃i,1≤ i≤ n: eqi /E (s,Σ).

Paula-Lavinia Pătrânjan 129

5.1. DECLARATIVE SEMANTICS

Temporally Ordered Conjunction In order to simplify the definition of the case temporally ordered
conjunction, the variable arity construct is defined by reducing it to the binary case, both for andthen with
complete [] and incomplete [[]] specifications.

Case eq = andthen[eq1,eq2]. A tuple (s,Σ) answers eq under the event stream E if and only if s is the
union of two event sequences from E that answer the component event queries eqi, where all atomic events
constituting the answer to eq1 happen before all atomic events constituting the answer to eq2. Formally,
eq /E (s,Σ) holds iff ∃ s1,s2 event sequences such that

(i) eqi /E (si,Σ) for i = 1,2,
(ii) s = s1∪ s2, and
(iii) end(s1) < begin(s2).
Note that begin(s) = begin(s1) and end(s) = end(s2) are comprised by the above given conditions.
Case eq = andthen[eq1,eq2,eq3, . . .eqn], n > 2. For defining the case of total temporally ordered

conjunction with variable arity (or n-ary), the definition is reduced to the one given above by applying the
following rewriting rule:

andthen[eq1,eq2,eq3, . . .eqn] 7→ andthen[eq1,andthen[eq2,eq3, . . . ,eqn]].
Case eq = andthen[[eq1,eq2]]. A tuple (s,Σ) answers eq under the event stream E if and only if s is

the union of three event sequences from E: two answering eq1 and eq2, respectively, and one representing
a continuous extract s′ of E containing all atomic events received between the answers to eq1 and eq2.
Note that s′ is used for gathering all events received in-between and, thus, capturing the meaning of partial
specification. Formally, eq /E (s,Σ) holds iff ∃ s1,s′,s2 event sequences such that

(i) eqi /E (si,Σ) for i = 1,2,
(ii) s = s1∪ s′∪ s2,
(iii) end(s1)≤ begin(s2),
(iv) begin(s′) = end(s1) and end(s′) = begin(s2), and
(v) s′ @ E.
Note that, like in the previous case, begin(s) = begin(s1) and end(s) = end(s2) are comprised by the

above given conditions.
Case eq = andthen[[eq1,eq2,eq3, . . . ,eqn]], n > 2. Like for the case of temporally ordered conjunction

with total specification, the definition of n-ary partial temporally ordered conjunction is reduced to the one
given above by applying the following rewriting rule:

andthen[[eq1,eq2,eq3, . . . ,eqn]] 7→ andthen[[eq1,andthen[[eq2,eq3, . . . ,eqn]]]].
Case eq = andthen[[eq1,collect q,eq2]]. A tuple (s,Σ) answers eq under the event stream E if and

only if s is the union of three event sequences from E: two answering eq1 and eq2, respectively, and
one containing all atomic events received between the answers to eq1 and eq2 that answer q. Formally,
eq /E (s,Σ) holds iff ∃ s1,s′,s2 event sequences such that

(i) eqi /E (si,Σ) for i = 1,2,
(ii) s = s1∪ s′∪ s2,
(iii) end(s1)≤ begin(s2),
(iv) begin(s′) = end(s1) and end(s′) = begin(s2),
(v) ∀e in s′: q /E (〈e〉occ(e)

occ(e),Σ), and

(vi) if ∃e′ atomic event with end(s1)≤ occ(e′)≤ begin(s2) and q /E (〈e′〉occ(e′)
occ(e′),Σ), then e′ is in s′.

Case eq = andthen[[eq1,collect q12,eq2,collect q23,eq3, . . . ,eqn]], n > 2. The definition of n-ary
partial temporally ordered conjunction with collecting events having a given pattern is reduced to the one
given above by applying the following rewriting rule:

andthen[[eq1,collect q12,eq2,collect q23,eq3, . . . ,eqn]] 7→
andthen[[eq1,collect q12,andthen[[eq2,collect q23,eq3, . . . ,eqn]]]].

Absolute Temporal Restriction Absolute temporal restrictions of event queries have in XChange two
forms: the monitoring time interval for answers to a given event query is specified either as an explicit
time interval (with beginning and ending time) or specifying just the ending time (recall that in this case
the beginning time is the event query’s registration time). Thus, two cases need to be defined for absolute
temporal restrictions.

130 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Case eq = eq′ in [b..e]. A tuple (s,Σ) answers eq under the event stream E if and only if (s,Σ) answers
eq′ under E and the atomic events of s occur after time point b and before time point e. Formally, eq /E (s,Σ)
holds iff

(i) eq′ /E (s,Σ), and
(ii) b≤ begin(s) and end(s)≤ e.
Case eq = eq′ before e. A tuple (s,Σ) answers eq under the event stream E if and only if (s,Σ) answers

eq′ under E and the atomic events of s occur before time point e. Formally, eq /E (s,Σ) holds iff
(i) eq′ /E (s,Σ), and
(ii) begin(E)≤ begin(s) and end(s)≤ e.

Relative Temporal Restriction Case eq = eq′ within w. A tuple (s,Σ) answers eq under the event
stream E if and only if (s,Σ) answers eq′ under E and the length of time on which s stretches is less than or
equal to the given duration w. Formally, eq /E (s,Σ) holds iff

(i) q′ /E s,Σ, and
(ii) end(s)−begin(s)≤ w.
Recall that time points and durations are already interpreted objects.

Variable Restriction Case eq = var X → eq′. A tuple (s,Σ) answers eq under the event stream E if and
only if (s,Σ) answers eq′ and all substitutions in Σ assign X to the composite event representation of s.
Formally, eq /E (s,Σ) holds iff

(i) eq′ /E (s,Σ),
(ii) ∀σ ∈ Σ: σ(X) = xchange : event− seq[db,d1, . . . ,dn,de]

where s = 〈dr1
1 , . . .drn

n 〉
b
e ,

db = xchange : beginning− time{b},
de = xchange : ending− time{e}.

Recall that a composite event answer to eq is represented as an XML document with root labelled
xchange : event− seq and containing the beginning and ending time of the event, and the atomic events
from the event sequence s.

Exclusions For exclusion event queries, two forms are distinguished: the monitoring window over the
event stream (a restriction of the event stream where answers to an event query are to be monitored) is
given either by answers to a composite event query or by a (finite) time interval. Thus, two cases need to
be defined for exclusion event queries.

Case eq = without {eq1} during {eq2}. A tuple (s,Σ) answers eq under the event stream E if and
only if (s,Σ) answers eq2 and during the time interval determined by s no answer to eq1 agrees with Σ on
the variables with at least one defining occurrence in eq. Formally, eq /E (s,Σ) holds iff

(i) eq2 /E (s,Σ),
(ii) ∀s′,s′ (E with begin(s) ≤ begin(s′) and end(s′) ≤ end(s) and all Σ′ with eq1 /E (s′,Σ′) it holds

that Σ |V ∩Σ′ |V = /0.
Case eq = without {eq1} during [b..e]. This case is a slight modification of the previous one; as

instead of the event query eq2 a time interval is given, the first requirement from above is dropped out.
Formally, eq /E (s,Σ) holds iff

(i) ∀s′,s′ (E with b≤ begin(s) and e≤ end(s) and all Σ′ with eq1 /E (s′,Σ′) it holds that Σ |V ∩Σ′ |V = /0.
Note that the exclusion or negation of events in XChange’s event query language represents the classical

negation and not negation as failure. As the definitions above show, exclusion of events is rather easy to
define; in contrary, negation as failure would be easy to implement but rather complicated to define.

Quantifications For a quantification event query eq = times n VarSpec eq′ DuringSpec to be success-
fully answered, eq′ must be answered by at least n different answers (si,Σi). The substitution sets Σi must
agree on all variables, except the existentially quantified variables (specified in VarSpec and following the
keyword any).

Case eq = times n any var X1, . . . ,var Xk {eq′} during {eq′′}.

Paula-Lavinia Pătrânjan 131

5.1. DECLARATIVE SEMANTICS

eq /E (s,Σ) holds if and only if there exist n event sequences s1, . . . sn and substitution sets Σ1, . . .Σn,
and an event sequence s′′ such that

(i) s = s′′∪
⋃

1≤i≤n si,
(ii) eq′′ /E (s′′,Σ),
(iii) eq′ /E (si,Σi) ∀i, 1≤ i≤ n,
(iv) begin(s′′)≤ begin(si) and end(si)≤ end(s′′) ∀i, 1≤ i≤ n,
(v) Σi |V\{X1,...Xk}

= Σ j |V\{X1,...Xk}
∀i, j, 1≤ i < j ≤ n ,

(vi) Σ⊆
⋃

1≤n Σi,
(vii) Σi is maximal (w.r.t. V and eq′ /E (si,Σi)) for all 1≤ i≤ n,
(viii) si 6= s j ∀i, j, 1≤ i < j ≤ n,
(ix) if ∃s′ : s′ (E with begin(s) ≤ begin(s′) and end(s′) ≤ end(s), and a Σ′ with Σ′ |V\{X1,...Xk}=

Σ |V\{X1,...Xk} such that eq′ /E (s′,Σ′), then s′ = si and Σ′ |V⊆ Σi |V for some 1≤ i≤ n.
Note that (ix) expresses the condition that there are no more than the n answers to eq′ during the time

interval determined by the answer to eq′′.

Case eq = times atleast n any var X1, . . . ,var Xk {eq′} during {eq′′}. Formally, eq /E (s,Σ) holds
if and only if there exist m≥ n event sequences s1, . . . sm and substitution sets Σ1, . . .Σm, and an event se-
quence s′′ such that the conditions from above hold with n replaced by m.

Case eq = times atmost n any var X1, . . . ,var Xk {eq′} during {eq′′}. Formally, eq /E (s,Σ) holds
if and only if there exist 1≤ m≤ n event sequences s1, . . . sm and substitution sets Σ1, . . .Σm, and an event
sequence s′′ such that the conditions from above hold with n replaced by m.

Cases eq = times(atleast|atmost)? n any var X1, . . . ,var Xk {eq′} during [b..e]. These cases
are slight modifications of the cases discussed previously at quantification event queries. Their definitions
are easily obtained when considering the empty sequence as having a duration, i.e. instead of eq′′ /E (s′′,Σ),
the condition s′′ = 〈〉eb is used in the definitions above.

Repetitions Case eq = every n any var X1, . . . ,var Xk {eq′ }. A tuple (s,Σ) answers eq under the
event stream E if and only if (s,Σ) answers eq′ and there exist (si,Σi), 1 ≤ i ≤ n ∗m− 1,1 ≤ m answers
to eq′ that agree with Σ on all variables, except the existential quantified variables. Formally, eq /E (s,Σ)
holds iff

(i) eq′ /E (s′′,Σ),
(ii) s = s′′ with begin(s) = 0,
(iii) ∃1 ≤ m, ∃ (si,Σi), 1 ≤ i ≤ n ∗m− 1 such that ∀i,1 ≤ i ≤ n ∗m− 1, and maxi=1,n∗m−1end(si) ≤

end(s), ∀Σi maximal: eq′ /E (si,Σi) with Σi |V\{X1,...Xk}= Σ |V\{X1,...Xk}, and
(iv) ∀s′ with 0≤ end(s′)≤ end(s) and all Σ′ with eq′ /E (s′,Σ′) it holds that Σ |V ∩Σ′ |V = /0.
Conditions (iii),(iv) state that (s,Σ) is the n∗m (i.e. multiple of n) answer to eq′.

Ranks In the event query language, one can specify ranks by means of a given position for events in the
event stream or by specifying interest in the last event with a given pattern that is received in a monitoring
time interval. Recall that ranks can be specified in XChange only for atomic events (cf. Section 4.4.3);
that is, in the next cases eq′ and eq1 are atomic event queries. The notation occ(s) is used for denoting the
occurrence time of the atomic event represented as sequence s (recall that begin(s) = end(s) = occ(s) in
this case).

Case eq = withrank n any var X1, . . . ,var Xk {eq′ }. A tuple (s,Σ) answers eq under the event stream
E if and only if (s,Σ) answers eq′ and there exist exactly n−1 tuples (si,Σi), 1≤ i≤ n−1 answers to eq′

that agree with Σ on all variables except the existential quantified variables. Formally, eq /E (s,Σ) holds iff
(i) eq′ /E (s′′,Σ),
(ii) s = s′′ with begin(s) = 0 (end(s) = occ(s′′)),
(iii) ∃1≤ m, ∃ (si,Σi), 1≤ i≤ n−1 such that ∀i,1≤ i≤ n−1, and maxi=1,n−1occ(si)≤ occ(s′′), ∀Σi

maximal: eq′ /E (si,Σi) with Σi |V\{X1,...Xk}= Σ |V\{X1,...Xk}, and
(iv) ∀s′ with 0≤ occ(s′)≤ occ(s′′) and all Σ′ with eq′ /E (s′,Σ′) it holds that Σ |V ∩Σ′ |V = /0.

132 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Case eq = last {eq1 } during {eq2 }. A tuple (s,Σ) answers eq under the event stream E if and
only if (s,Σ) is made of the answers to eq1 and eq2, where the answer to eq1 is the last one during the
answer to eq2. Formally, eq /E (s,Σ) holds iff ∃s1,s2 such that

(i) s = s1∪ s2,
(ii) eq1 /E (s1,Σ),
(ii) eq2 /E (s2,Σ),
(iv) begin(s2)≤ occ(s1)≤ end(s2),
(v) ∀s′,s′ (E with occ(s1) < occ(s′)≤ end(s2) and all Σ′ with eq1 /E (s′,Σ′) it holds that Σ∩Σ′ = /0.
Condition (v) expresses that the tuple (s1,Σ) is the last answer to eq1 during the time interval determined

by the answer to eq2.

Case eq = last {eq1 } during [b..e]. The definition for this case can be easily obtained when re-
placing eq2 /E (s2,Σ) with s2 = 〈〉eb in the previously given definition.

Multiple Inclusions and Exclusions Case eq = m of any var X1, . . .var Xk {eq1, . . .eqn} during {eq′}.
A tuple (s,Σ) answers eq under the event stream E if and only if (s,Σ) represents the ”union” of m tuples
(si,Σi) answers to m of the given event queries where the substitutions agree on all variables with at least
one defining occurrence except the variables following any, and the others n−m event queries have no an-
swer during the time interval determined by the answer to eq′. Formally, eq /E (s,Σ) holds iff there exist m
event sequences s1, . . .sm and substitution sets Σ1, . . .Σm and a injective mapping ι : {1, . . .m}→ {1, . . .n},
and an event sequence s′ such that

(i) s = s′∪
⋃

1≤i≤m si,
(ii) eq′ /E (s′,Σ),
(iii) eqι(i) /E (si,Σi) ∀i, 1≤ i≤ m,
(iv) begin(s)≤ begin(si) and end(si)≤ end(s) ∀i, 1≤ i≤ m,
(v) Σi |V\{X1,...Xk}= Σ j |V\{X1,...Xk} ∀i, 1≤ i < j ≤ m,
(vi) Σ⊆

⋃

1≤m Σi,
(vii) Σi is maximal (w.r.t. V and eqi /E (si,Σi)) ∀i, 1≤ i≤ n,
(viii) if ∃s′′, s′′ (E with begin(s) ≤ begin(s′′) and end(s′′) ≤ end(s), and a Σ′ with Σ′′ |V\{X1,...Xk}

=
Σ |V\{X1,...Xk} and a 1≤ j ≤ n such that eq j /E (s′′,Σ′′), then j = ι(i) for some 1≤ i≤ m.

The other two forms of multiple inclusions and exclusions (i.e. atleast, atmost) where the monitoring
time interval is given through a composite event query are defined in the same manner as above, but with
slight modifications.

Case eq = atleast m of any var X1, . . .var Xk {eq1, . . .eqn} during {eq′}. Formally, eq /E (s,Σ)
holds if and only if there exist p≥m, event sequences s1, . . . sp, substitution sets Σ1, . . .Σp, and an injective
mapping ι : {1, . . . p}→ {1, . . .n}, and an event sequence s′ such that the conditions from above hold with
n replaced by p.

Case eq = atmost m of any var X1, . . .var Xk {eq1, . . .eqn} during {eq′}. Formally, eq /E (s,Σ)
holds if and only if there exist 1 ≤ p ≤ m, event sequences s1, . . . sp and substitution sets Σ1, . . .Σp, and
an injective mapping ι : {1, . . . p} → {1, . . .n}, and an event sequence s′ such that the conditions from
above hold with n replaced by p.

A monitoring time interval can be explicitly specified for multiple inclusions and exclusions event
queries; thus, other three cases (corresponding to exactly, atleast, and atmost m event queries out of n)
need to be defined. Cases eq = (atleast|atmost)? m of any var X1, . . .var Xk {eq1, . . . ,eqn} during

[b..e]. Their definition can be easily obtained when replacing eq′ /E (s′,Σ) with s′ = 〈〉eb in the previously
given definitions.

The declarative semantics provide a sound basis for formal proofs about event language properties. It
has been used for proving that, in order to evaluate any legal event query eq at some time t p correctly, only
events of bounded lifespan are necessary; that is, it suffices to consider the restriction E |t p

t p−β of the event
stream E to a time interval [(t p−β) .. t p]. The time bound β (a duration) is only determined from eq and
does not depend on the stream of incoming events E. The formal proof of the property is given in the next
section.

Paula-Lavinia Pătrânjan 133

5.1. DECLARATIVE SEMANTICS

Bounded Event Lifespan

This section is dedicated to prove that for finding answers to XChange legal event queries only events of
a bounded restriction of the event stream are needed; it gives a formal proof of the promised legal event
queries’ property of keeping the clear cut between persistent and volatile data.

XChange legal event queries have been introduced in Section 4.4.4; recall that the following XChange
event queries are legal:

• atomic event queries;

• composite event queries with absolute or relative temporal restriction;

• composite event queries specifying exclusions, quantifications, last instance, and multiple inclusions
and exclusions of event queries where the monitoring time period is given by a finite time interval (a
during Finite Time Interval specification).

XChange event queries do not have the ability to query events that have been received before their
registration. Thus, for a given (legal) event query eq, all atomic events received after its registration form
the eq’s event stream E; that is, for proving that legal event queries need only events from bounded event
stream for their evaluation, one can consider each event query individually (with its ’own’ event stream).

Notation. An extract of the event stream E = 〈a1,a2, . . .an〉
te
tb starting at time point b and ending at

time point e is denoted as E |eb= 〈ai,ai+1, . . .a j〉
e′
b′ where b′ ≤ occ(ai) ≤ occ(ai+1) ≤ ·· · ≤ occ(a j) ≤ e′,

b′ = min{tb,b} and e′ = max{te,e}, and E |eb contains all events of E with occurrence time between b′ and
e′. Also, Legal EvQ and EvQ denote the set of possible, syntactically correct XChange legal event queries
and event queries, respectively.

Theorem 5.1 (Bounded Event Lifespan)
For all legal event queries eq ∈ Legal EvQ, there exists a time bound β ∈ D (a duration), such that for all
time points t p ∈ T, all event streams E (end(E)≥ t p), and all answers (s,Σ) with end(s) = t p holds that:

q /E (s,Σ) ⇐⇒ q /
E|

t p
t p−β

(s,Σ).

Proof. The idea of the proof is to divide the work into two: Prove that for some given legal event query eq,
a bound β exists for the duration of its answer sequences. Then, prove that for finding an answer (s,Σ) to
an event query eq only the events of E occurring between begin(s) and end(s) are needed; events occurring
before begin(s) or after end(s) do not influence the fact that (s,Σ) answers eq.

These claims correspond to the two lemmas given next. The proof of this theorem follows from Lemma
5.2 and Lemma 5.4. ut

Lemma 5.2 (Bound for Answers)
For all legal event queries eq ∈ Legal EvQ, there exists a time bound β ∈ D (a duration), such that for all
event streams E (end(E)≥ t p), and all answers (s,Σ) with end(s) = t p holds that:

q /E (s,Σ) =⇒ end(s)−begin(s)≤ β .

Proof. For proving that the duration of all answer sequences of a legal event query eq has a time bound, a
case distinction on the definition of Legal EvQ is made. Note that for an answer (s,Σ) to eq, begin(s) and
end(s) are finite time points.

Case eq atomic event query, that is eq ∈ Tq. Let β = 0. An answer to eq contains an event sequence of the
form s = 〈dr〉rr (cf. definition of /E for eq atomic event query); thus, end(s)−begin(s) = r− r = 0≤ β .

Case eq = eq′ in [b..e]. Let β = e− b. An answer (s,Σ) to eq satisfies the condition b ≤ begin(s) and
end(s) ≤ e (cf. definition of /E for such an absolute temporal restriction); thus, end(s)− begin(s) ≤
e−b = β .

Case eq = eq′ before e. Let β = e−begin(E). Remember that begin(E) is a finite time point. An answer
(s,Σ) to eq satisfies the condition begin(E) ≤ begin(s) and end(s) ≤ e (cf. definition of /E for such an
absolute temporal restriction); thus, end(s)−begin(s)≤ e−begin(E) = β .

134 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Case eq = eq′ within w. Let β = w. An answer (s,Σ) to eq satisfies the condition end(s)−begin(s)≤ w
(cf. definition of /E for relative temporal restriction); thus, end(s)−begin(s)≤ w = β .

Case eq = without {eq1} during [b..e]. Let β = e−b. An answer (s,Σ) to eq satisfies the condition b≤
begin(s) and end(s)≤ e (cf. definition of /E for such an exclusion); thus, end(s)−begin(s)≤ e−b = β .

Case eq = times (atleast|atmost)? n any var X1, . . . ,var Xk {eq′} during [b..e]. Let β = e− b.
From the definition of /E , an answer (s,Σ) to eq satisfies s = s′′ ∪

⋃

1≤i≤m si, begin(s′′) ≤ begin(si),
end(si)≤ end(s′′), and s′′ = 〈〉eb. Thus, using these conditions: end(s)−begin(s)≤ end(s′′)−begin(s′′) =
e−b = β .

Case eq = last {eq1 } during [b..e]. Analogously to the times-case, where i = 1.

Case eq = (atleast|atmost)? m of any var X1, . . .var Xk {eq1, . . .eqn} during [b..e]. Analogously to
the times-case. ut

The Lemma 5.4 given next applies not only for legal event queries, but for all XChange event queries;
it shows that for any XChange event query only events occurring during [begin(s)..end(s)] influence the
fact that a tuple (s,Σ) is answer to eq or not. For easing the proof, the following proposition is formulated
and proved so as to use its results in proving the lemma; the proposition states some properties of the
subsequence relations @ and (that have been defined in a previous section.

Proposition 5.3 (Properties of Subsequence Relations)
The following hold for the subsequence relations @ and (:

∀b≤ begin(s),∀e≥ end(s). s @ E |
end(s)
begin(s)⇐⇒ s @ E |eb

∀b≤ begin(s),∀e≥ end(s). s (E |
end(s)
begin(s)⇐⇒ s (E |eb .

Proof. The proof is restricted to proving that the above given property holds for @; the proof for (

is analogous. Recall the definition of complete subsequence relation between event sequences s and s′

(s @ s′):
〈a1, . . .an〉

e
b @ 〈a′1, . . .a

′
m〉

e′
b′ if and only if

(i) {a1, . . .an}= {a′i | b≤ occ(a′i)≤ e, 1≤ i≤ m}, and
(ii) b′ ≤ b and e≤ e′.

“=⇒”: Given s @ E |
end(s)
begin(s). To show s @ E |eb.

From the definition of restriction of E to a time interval, one obtains E |
end(s)
begin(s)@ E |eb. Now, based on

the transitivity of @ and s @ E |
end(s)
begin(s), one obtains s @ E |eb.

“⇐=”: Given s @ E |eb. To show s @ E |
end(s)
begin(s).

Showing s @ E |
end(s)
begin(s) means showing that ∀a atomic event in s, with s @ E |eb,⇒ a in E |

end(s)
begin(s).

Let a an (arbitrary) atomic event in s. From s @ E |eb, one obtains a in E |eb. The following condition
holds (because a in s): begin(s) ≤ occ(a) ≤ end(s); now, based on the definition of restriction of E to a
time interval, one obtains a in E |

end(s)
begin(s).

ut

Lemma 5.4 (Bounded Extract of Event Stream)
For all event queries eq ∈ EvQ, all event streams E, and all answers (s,Σ) holds that:

eq /E (s,Σ) ⇐⇒ eq /
E|

end(s)
begin(s)

(s,Σ).

Proof. Generalising E to E |eb, the following are to be proven:
“=⇒”: ∀b≤ begin(s),∀e≥ end(s). eq /E|eb

(s,Σ) =⇒ eq /
E|

end(s)
begin(s)

(s,Σ), and

“⇐=”: ∀b≤ begin(s),∀e≥ end(s). eq /
E|

end(s)
begin(s)

(s,Σ) =⇒ eq /E|eb
(s,Σ).

Paula-Lavinia Pătrânjan 135

5.1. DECLARATIVE SEMANTICS

The proof is by induction on eq; that is, as in the definition of the declarative semantics, for all (event
query) cases the two above given statements need to be proven. Thus, the whole proof of the lemma would
stretch over a couple of pages. Just a few cases are given here that give flavour of a pattern for giving the
proof for the other cases.

Let b≤ begin(s) and e≥ end(s) two arbitrary time points.

Case eq atomic event query, that is eq ∈ Tq.
“=⇒”: Given eq /E|eb

(s,Σ). To show eq /
E|

end(s)
begin(s)

(s,Σ).

From eq /E|eb
(s,Σ) and eq ∈ Tq, the next given conditions follow: begin(s) = end(s) = r and s =

〈dr〉rr @ E |eb. Now, based on Proposition 5.3, one obtains s = 〈dr〉rr @ E |rr.
“⇐=”: Given eq /

E|
end(s)
begin(s)

(s,Σ). To show eq /E|eb
(s,Σ).

From eq /
E|

end(s)
begin(s)

(s,Σ) and eq ∈ T
q, the next given conditions follow: begin(s) = end(s) = r and

s = 〈dr〉rr @ E |rr. Now, based on Proposition 5.3, one obtains s = 〈dr〉rr @ E |eb.

Case eq = and{eq1, . . . eqn}.
“=⇒”: Given eq /E|eb

(s,Σ). To show eq /
E|

end(s)
begin(s)

(s,Σ).

From eq = and{eq1, . . . eqn} and eq /E|eb
(s,Σ), the next given conditions follow: eqi /E|eb

(si,Σ), ∀i :

1≤ i≤ n, and s =
⋃

1≤i≤n si. Thus, one needs to prove that ∀i,si (E |
end(s)
begin(s).

From ∀i,si (E |eb and Proposition 5.3, one obtains ∀i,si (E |
end(si)
begin(si)

. From begin(s) = mini=1..n begin(si)

and end(s) = maxi=1..n end(si), one obtains ∀i,E |end(si)
begin(si)

(E |
end(s)
begin(s); now, based on the transitivity of (:

∀i,si (E |
end(s)
begin(s).

“⇐=”: Given eq /
E|

end(s)
begin(s)

(s,Σ). To show eq /E|eb
(s,Σ).

From eq = and{eq1, . . . eqn} and eq /
E|

end(s)
begin(s)

(s,Σ), the next given conditions follow: eqi /
E|

end(s)
begin(s)

(si,Σ),

∀i : 1≤ i≤ n, and s =
⋃

1≤i≤n si. Thus, one needs to prove that ∀i,si (E |eb.

From ∀i,si (E |
end(s)
begin(s) and Proposition 5.3, one obtains ∀i,si (E |eb.

Cases eq = andthen[[eq1,eq2]] and eq = without {eq1} during {eq2} are given in [76], Section 6.4,
pages 83 - 84.

ut

Lemma 5.4 has been used to prove the Theorem 5.1, which states that XChange legal event queries
require bounded event stream for their evaluation. However, Lemma 5.4, by regarding not only legal event
queries but (legal and ’illegal’) event queries, has proved a useful property of the event query language of
XChange: for determining an answer to an XChange event query, one needs not consider events that do
not lie between the beginning and ending times of the answer (of its event sequence). For any changes or
extensions to the constructs of XChange event queries, Lemma 5.4 needs to hold.

5.1.2 Semantics of Web Queries: Underlying Ideas
Given an XChange program P, the Web queries Q of P’s reactive rules are Xcerpt queries, that is conjunc-
tions (denoted and{Q1,...,Qn}, Q1∧ ·· ·∧Qn or by

∧

1≤i≤n Qi), disjunctions (denoted or{Q1,...,Qn},
Q1 ∨ ·· · ∨Qn or by

∨

1≤i≤n Qi) or negation (denoted not Q or by ¬Q.) of query terms of Tq. Also, the
deductive rules Drk of the form tkc ← Qk part of P are Xcerpt rules. The aim of P’s deductive rules is to
”provide” (inferred or transformed) data for the Web queries Q. This section presents the underlying ideas
of the declarative semantics of the query language Xcerpt and shows how this fits into the framework of
XChange.

A model theory for the query language Xcerpt has been developed (see [125], Chapter 7), which fol-
lows the approach of classical Tarski-style semantics for first order logic. However, the distinctive fea-
tures (such as the grouping constructs in the head of the rules and partial specifications of queries) of the

136 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

language Xcerpt entailed considerable differences from the classical logic. Classical logic differentiate
between terms (representing objects) and atomic formulas (representing statements about objects); though,
Xcerpt terms are atomic formulas expressing the statement that the respective term exists. Informally, an
interpretation is a set of data terms that specifies what data terms exist and a model is an interpretation
containing the terms inferred by the given Xcerpt rules.

The model theory of Xcerpt considers Xcerpt programs (sets of Xcerpt rules) as formulas. Query,
construct, and data terms, and⊥ (falsity) and> (truth) are constituents of atomic formulas. The connectives
∨, ∧, ⇒, ⇔, and ¬, and the quantifiers ∀ and ∃ are used for constructing compound formulas. Atomic
and compound formulas built this way are called term formulas. The formula representation of a set of
rules {Dr1, . . . ,Drp} is the conjunction of the formula representation of each Drk and of the data terms
that represent the specified resources as internalised (data terms are considered part of the program). The
grouping constructs need special treatment and, thus, symbols� ·� are used for denoting the scope of all
grouping constructs contained in the rules.

Example 5.1 (Formula Representation of Xcerpt Rules)
Consider the following set of Xcerpt rules:

a{all var X, var Y} ← and{ b{{var X}}, c{{ d{var X,var Y} }} }
b[var X] ← c{{ d[var X] }}
c[d[e,f], d[g,h]]

The above given set of rules is represented as formula as follows:

∀ Y � a{all var X, var Y} ← b{{var X}} ∧ c{{ d{var X,var Y} }} � ∧
∀ X � b[var X] ← c{{ d[var X] }} � ∧
c[d[e,f], d[g,h]]

Interpretations An interpretation is a tuple M = (I,Σ): I is a set of data terms of Td and Σ 6= /0 is a
grounding substitution set, i.e. provides assignments for all variables with at least one defining occurrence
in the formulas considered.

Satisfaction and Models An atomic formula F is considered to be satisfied in interpretation M if and
only if its ground instance (obtained by applying the substitutions of Σ to F) simulates into a term of I. The
satisfaction of a term formula (i.e. atomic or compound formula) is defined recursively over its structure.
The following definition is taken from [125], Section 7.4.2, on pages 151-152:

Definition 5.5 (Satisfaction, Model)
1. Let M = (I,Σ) be an interpretation (i.e. a set of data terms I and a substitution set Σ), and let t be a

construct or query term.

The satisfaction of a term formula F in M, denoted by M |= F , is defined recursively over the structure
of F :
M |=> holds
M |=⊥ does not hold
M |= t iff for all t ′ ∈ Σ(t) there exists a term td ∈ I such that t ′ � td

M |= ¬F iff M 6|= F
M |= F1∧ ·· ·∧Fn iff M |= F1 and . . . and M |= Fn
M |= F1∨ ·· ·∨Fn iff M |= F1 or . . . or M |= Fn
M |= F ⇒ G iff M |= ¬F ∨G
M |= ∀x.F iff for all t ∈ I holds that M′ = (I,Σ′) |= F ,

where Σ′ =
{

σ ◦ {x 7→ t} | σ ∈ Σ
}

M |= ∃x.F iff there exists a t ∈ I such that M′ = (I,Σ′) |= F ,
where Σ′ =

{

σ ◦ {x 7→ t} | σ ∈ Σ
}

M |= ∀∗� tc← Q� iff M′ = (I,Σ′) |= tc for a maximal grounding substitution set Σ′ for Q
with M′ |= Q

2. If a formula F is satisfied in an interpretation M, i.e. M |= F , then M is called a model of F .

Paula-Lavinia Pătrânjan 137

5.1. DECLARATIVE SEMANTICS

Note that in the definition above ∀∗ is used to universally quantify all free variables in a formula.
Given an Xcerpt program Pr, a model for Pr is an interpretation (I,Σ) where I contains all data terms

that are inferred (or produced) by the rules of Pr. Note that I may contain also data terms that are unrelated
to Pr. A concrete example for satisfaction of Xcerpt programs is given in [125], Chapter 7, pages 152-
153. However, the focus in this section is on the parts of XChange programs that are expressed in Xcerpt.
Recall that an XChange program has the form P = {Rr1, . . . ,Rrm,Tr1, . . . ,Trn,Dr1, . . . ,Drp}, where Rri,
1≤ i≤ m and Tr j, 1≤ j ≤ n are reactive rules that may have ’condition parts’ specifying Xcerpt queries.
Also, Drk, 1≤ k ≤ p are Xcerpt rules. Consider Ql , 1≤ l ≤ m+n the Xcerpt queries associated with the
reactive rules of P. The interest is on the satisfaction of the formulas of the form:

Ql ∧
∧

1≤k≤m+n∀
∗� tc

k ← Qr
k�∧dh , 1≤ l ≤ m+n ,

where Drk is of the form tc
k ← Qr

k , for 1 ≤ k ≤ p and dh ∈ T
d are data terms that represent the

internalised Web resources that are specified in the queries. Note that the interest for XChange programs is
not on the conjunction

∧

1≤l≤m+n of the formulas given above. As the definition 5.5 covers also formulas
of the form given above, the semantics of the ’condition parts’ of XChange reactive rules is given by the
model theoretical approach of Xcerpt.

Example 5.2 (Formula Representation of XChange Condition Parts and Deductive Rules)
Consider an XChange program P that consists of the following rules:

<transaction_spec> ← r a {{ var Z }} ← r <event_query>
a{all var X, var Y} ← and{ b{{var X}}, c{{ d{var X,var Y} }} }
b[var X] ← c{{ d[var X] }}
c[d[e,f], d[g,h]]

Note that P contains one transaction rule whose event query and transaction specification are not specified
as they do not contribute to the formula representation of Web queries and deductive rules. The deductive
rules of P are the Xcerpt rules of Example 5.1 with a slight modification of the data term. The above given
’condition part’ and set of deductive rules is represented as formula as follows:

a {{ var Z }} ∧
∀ Y � a{all var X, var Y} ← b{{var X}} ∧ c{{ d{var X,var Y} }} � ∧
∀ X � b[var X] ← c{{ d[var X] }} � ∧
c[d[e,f], d[g,f]]

A fixpoint semantics for Xcerpt programs without negation is proposed in [125], Chapter 7, Section
5. A fixpoint operator TP is defined by applications of which a fixpoint for Xcerpt programs is iteratively
constructed. It is proved that the fixpoint of a program is also a model of the program (Theorem 7.10 on
page 155).

5.1.3 Semantics of Updates

This section discusses the declarative semantics of XChange’s update language; it presents the semantics
of elementary and complex updates in XChange .

Recall that transactions – combining updates and events to be raised – can be specified in XChange.
However, this work on declarative semantics is restricted to XChange updates, as the accent in this thesis
is not on a language for distributed transactions on the Web; the thesis recognises the need for transactions
through developed application scenarios and the components a transaction on the Web might have, and
proposes a syntax for event-driven transactions. The declarative and operational semantics of transactions
on the Web are outside the scope of this thesis.

The idea of the semantics for the update language is based on an interesting observation, namely that
the XChange updates are an elegant and easy way for specifying data modifications as an alternative to an
intentional specification, i.e. constructing the data after the update by means of deductive rules.

138 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Semantics of Elementary Updates An XChange elementary update specification consists of a resource
specification and an update term: The resource specification gives the location and names of the documents
to be updated. The update term is a pattern for the data to be updated augmented with the desired update
operations. The effect of an elementary update is that the data at the given resources has been ’refreshed’
according to the given update term. The same result can be obtained when constructing the data after the
update. In the context of XChange this means that an elementary update has the same effect as an Xcerpt
goal that constructs the data after the update.

Given an elementary update u for modifying resources Resi, 1 ≤ i ≤ n (a finite number of Web re-
sources) with update term tu, a corresponding Xcerpt goal Gu exists that constructs new data at Resi. This
(new) data constructed at Resi is the data that would be obtained by applying tu on the (old) data at Resi.
Note that data constructed by Gu overwrites the old data found at the resources. A set of rewriting rules
have been recognised that rewrite an elementary update u into an Xcerpt goal Gu such that the effect of Gu
is the same as the effect of u. The underlying ideas of the rewriting are discussed in detail in Section 5.2.3.

Thus, the semantics of an elementary update u can be reduced to the semantics of a corresponding
Xcerpt goal Gu of the form tc

u ← Q. That is, the model theoretical semantics of Xcerpt, whose underlying
ideas have been presented in the previous section, can be used for defining the semantics of elementary
updates in XChange.

An elementary update u is transformed into a goal tc
u ← Qu and gets, thus, a formula representation

∀∗� tc
u ← Qu�∧

∧

1≤i≤n dResi , where dResi are the data terms to be modified. The satisfaction of such a
formula in an interpretation is defined in Definition 5.5. Intuitively, the model for the formula expressing
the update contains the data terms after the update has been performed.

Example 5.3 (Declarative Semantics of Elementary Updates)
Consider the following update term:

bib {{
book {{ price { var P replaceby var P * 1.5 } }}

}}

Assume that the data term to be updated contains books listed with their titles and prices; each book
price needs to be modified. A goal corresponding to the above given update term has the following formula
representation:

∀ P � bib { book { price { var P*1.5 }, all
var O }, all var C } ← bib {{ book {{ price {
var P }, var O }}, var C }} � ∧

bib { currency {"Euro"}, book { title {"Linux in a Nutshell"}, price {"36"} },
book { title {"Data on the Web"}, price {"40"} } }

A model for the above given formula is M = (I,Σ) where:

I = {
bib { currency {"Euro"}, book { title {"Linux in a Nutshell"}, price {"54"} },

book { title {"Data on the Web"}, price {"60"} } },
bib { currency {"Euro"}, book { title {"Linux in a Nutshell"}, price {"36"} },

book { title {"Data on the Web"}, price {"40"} } }
}
Σ = { { /0} }

The interpretation I contains the data terms before and after the update. The formula corresponding to
the update term together with the data term to be modified represents an Xcerpt program that produces the
data term where the book prices are replaced by new, bigger prices.

Paula-Lavinia Pătrânjan 139

5.2. OPERATIONAL SEMANTICS

Semantics of Complex Updates Complex updates specify conjunctions or disjunctions of (elementary
or complex) updates. Based on the formula representation of elementary updates and using the connectors
∧ and ∨ the formula representation of complex updates are constructed. A formula of the form

(i) F1∧ ·· ·∧Fn represents a complex update specifying conjunction of updates,
(ii) F1∨ ·· ·∨Fn represents a complex update specifying disjunctions of updates,
where Fi is the formula representation of an elementary or complex update. As for elementary updates,

the Definition 5.5 is used for determining if such a formula is satisfied in an interpretation or not. This
approach is suitable for defining the semantics of (unordered) complex updates; the definition of the scope
of variables in XChange update terms does not preclude it (cf. Section 4.7.2). Recall that for an unordered
conjunction or disjunction of updates ui, 2≤ i≤ n, the scope of variables used in update ui is restricted to
ui, i.e. the bindings for the variables resulted from evaluating ui can not be used in the evaluation of u j with
i 6= j.

Remark Observing that the effect of an elementary update can be ’simulated’ by an Xcerpt goal, the
model theoretical semantics of the query language Xcerpt has been used for defining the declarative se-
mantics of the update language of XChange. However, this approach does not cover ordered conjunctions
and disjunctions of (elementary or complex) updates. Ordered complex updates enforce an order for per-
forming the given updates. Moreover, some specified updates might depend on updates that are to be
executed before them (so as to use bindings for the variables obtained after update execution). These
features can not be defined by means of a model theoretical semantics.

5.2 Operational Semantics

XChange programs are located at Web sites distributed over the network. By means of specified XChange
rules, persistent data is updated and events are raised as reactions to (local or remote) events that have
occurred. An XChange program at a Web site does not update only local Web resources and does not raise
events only for its own ’usage’. Instead, updates to remote Web resources are requested to other XChange
programs and events are raised and sent to one or more (remote) XChange programs; in turn, these events
trigger updates at and raising of events to other XChange programs at Web sites. Thus, through local
XChange programs, global behaviour is achieved.

Locally, executing XChange program(s) determines local state changes (at the Web site where the
program runs); it can also request and/or trigger state changes at remote Web sites. Globally, executing
XChange programs determine ’global’ state changes that depend on the local ones (and the time point
of execution). XChange programs specify state transitions on the Web. Thus, the operational semantics
of XChange programs can be formalised by using approaches such as Petri nets or modal logics [70].
Also, work on logics for database transactions [37] might prove useful. At moment, XChange provides
semantics for XChange rule execution and not for the global behaviour of XChange programs running
at different Web sites; the latter is one of the perspectives for future work. Also, means for realising
transaction management on the Web will determine investigating different coupling modes for XChange
rules; possible coupling modes found in the literature have been presented in Section 3.1.2.

XChange assumes no priorities for rules; given an XChange program P = {Rr1, . . . ,Rrm,Tr1, . . . ,Trn,

Dr1, . . . ,Drp}, where Rri, 0≤ i ≤ m and Tr j, 0≤ j ≤ n, with 1≤ m+n are event-raising and transaction
rules, and Drk, 0 ≤ k ≤ p are Xcerpt rules (i.e. deductive rules), upon reception of an event e each of the
event queries of Rri and Tr j are evaluated. If answers to some of the event queries are found, no order
is given for evaluating the Web queries and executing the actions of the rules associated with these event
queries.

The next sections discuss evaluation/execution of the three components of an XChange reactive rule;
evaluation of deductive rules is touched on when discussing evaluation of Web queries. The evaluation
of XChange event queries is discussed in Section 5.2.1; this work has been developed together with
Prof. Dr. François Bry and Michael Eckert: Prof. Dr. François Bry has supervised the development of
the whole XChange project. Michael Eckert has written his master’s thesis under the double supervision
of the author and Prof. Dr. François Bry. The evaluation of event queries has been previously published in

140 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

[76, 18]. Section 5.2.2 offers a very short discussion on evaluation of Web queries (and deductive rules).
Section 5.2.3 ends this section with a discussion on executing XChange updates.

5.2.1 Evaluation of Event Queries
XChange event queries have been introduced in Section 4.4, where their informal semantics has been given
through simple examples; Section 5.1.1 has defined the declarative semantics of XChange event queries.
This section presents the approach taken in XChange for evaluating event queries. Given an XChange
program P = {Rr1, . . . ,Rrm,Tr1, . . . ,Trn,Dr1, . . . ,Drp}, the event queries of P’s reactive rules need to be
evaluated before any Web query is evaluated or action is performed. Assume that 1 ≤ s ≤ m + n is the
number of event query registered in the system through the program P; note that s is not always equal to
m + n as e.g. transaction rules may exist for updating data or raising events not necessarily as reactions
to events. This part of the thesis discusses how event queries eqk, 1 ≤ k ≤ s are evaluated in XChange;
some eqk are atomic event queries and some are composite event queries. After a general discussion on
event query evaluation in XChange, the approach taken in XChange for evaluating atomic event queries
and composite event queries is presented.

Generalities

Local Processing of Events and Evaluation of Event Queries XChange assumes no central processing
of event queries as such an approach is not suitable on the Web. Instead, event queries are processed locally
at each XChange-aware Web site. Each such Web site has its own local event manager for processing
incoming events and evaluating event queries against the incoming event stream (volatile data).

Incremental Evaluation Event queries need to be evaluated in an incremental manner, as data (events)
that are queried are received in a stream-like manner and are not persistent. Upon reception of events
(represented as event messages) partial evaluations of event queries are computed; these partial ’results’
are used in future evaluation steps done upon reception of other, future incoming events. In other words,
evaluation work is used for future evaluation.

Logical Variables Variables are place holders for the data, in the fashion of logic programming variables
are. They require equality when occurring more than ones in an (atomic or composite) event query. The
evaluation of an XChange event query needs to yield the answers to the event query based on the received
events; that includes finding maximal substitution sets for the variables in the event query. For this task,
variables in event queries need to be properly treated. To the best of author’s knowledge, related work on
composite event query evaluation does not consider treatment of logical variables; new algorithms for event
query evaluation are needed, as existing one can not be used in this setting or at least need considerable
modifications.

Bounded Event Lifespan An essential aspect for event processing is that each reactive Web site controls
its own event memory usage. In particular, which events and for how long they are kept in memory depends
only on the event queries posed at a Web site. Event lifespans are automatically detected from the event
queries already registered at a Web site. XChange legal event queries have been designed in such a way
that no data on any event can be kept forever in memory, i.e. the event lifespan is bounded. Thus, based on
the proof given in Section 5.1.1, the evaluation of event queries has also the task of discarding events when
their lifespan expires.

Evaluation of Atomic Event Queries

As explained in Section 4.4, XChange atomic event queries are patterns for incoming event messages that
are of interest for a Web site. The event manager of an XChange-aware Web site tries to match each
incoming event message received with the currently posed atomic event queries (which themselves may
be part of composite event queries). The matching of an atomic event query with an incoming event is

Paula-Lavinia Pătrânjan 141

5.2. OPERATIONAL SEMANTICS

based on the Simulation Unification [125], a novel unification method whose underlying ideas have been
presented in Section 2.4.2. Note that the same method is used for simulating Web queries into persistent
data terms and for simulating atomic event queries into volatile data terms (i.e. incoming event messages).

The outcome of evaluating an atomic event query eq against an incoming event message msg (i.e. the
result of eq� msg) is either the boolean value False (expressing unsuccessful evaluation) or a substitution
set Σ for the variables with at least one defining occurrence in eq (expressing successful evaluation); in the
latter case, the answer to eq is (msg,Σ).

Evaluation of Composite Event Queries

Evaluation of XChange composite event queries is done locally (at each XChange-aware Web site), in
an incremental manner (partial composite event query evaluations are amended upon reception of new
events), with proper treatment of logical variables, and assuring a bounded event lifespan (stored events
are dispensed when their lifespan expires).

The issue of evaluating composite event queries, called composite event detection in the literature, has
received considerable attention in the field of active database systems. Section 3.1.2 has presented the
most popular approaches to (algorithms for) composite event detection found in the literature: Petri nets,
finite state automata, and tree with bottom-up flow of events. For evaluating XChange composite event
queries, a tree-based approach with bottom-up flow of event data is used. The reasons for choosing such an
approach for XChange event queries include: The algorithms are easy to comprehend and, thus, to adapt to
possible future changes or extensions of the XChange event query language. The evaluation is reasonably
efficient and leaves room for an easier optimisation (such as event query rewriting) than the other two
approaches. For a detailed comparison of the approach taken in XChange and related work on composite
event detection, see [76], Sections 7.3.1 and 7.3.2.

Tree Representation For each composite event query eqk, 1 ≤ k ≤ s an operator tree is constructed
(by parsing and compiling eqk): The leaves of the operator tree implement atomic event queries that are
constituents of eqk. The inner nodes implement XChange event language constructs such as and, andthen,
or, without, or before Time Point. Examples of tree representation for XChange event queries follow.
The compact notation introduced in Section 4.4.3 is used throughout this section.

Example 5.4 (Tree Representation of XChange Event Queries (1))
Consider the following composite event query:

or {
andthen [a{{}}, b{{}}],
without {

c{{}}
} during {

and { d{{}}, e{{}} }
}

} within 2 hour

The operator tree of the above given composite event query is given next. The andthen event query has two
constituent event queries and, thus, two child nodes (leaves because they are atomic). The same situation is
for representing the conjunction event query, introduced by and. Note that the representation of without
has two child nodes: one corresponding to the event query whose non-occurrence is to be detected, and
one to the composite event query restricting the monitoring time interval. The same approach is used for
the other composite event queries with a during CompositeEventQuery specification (e.g. for times).

142 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

within 2 hour

or

withoutandthen

a {{ }} c {{ }}b {{ }} and

d {{ }} e {{ }}

Example 5.5 (Tree Representation of XChange Event Queries (2))
Consider now the following XChange composite event query specifying temporally ordered conjunction
of events (where T1 and T 2 represent time points):

andthen [[
a {{ var X }},
b {{ var X }}

]] in [T1..T2]

The operator tree of the andthen event query is given next. Note that the operator node for andthen has
besides the two children corresponding to the given atomic event queries, a (middle) child node ∗ that
matches any incoming atomic event (actually, ∗ implements an atomic event xchange:event {{}}); this
is used for gathering all atomic events occurring between the answers to the two given atomic event queries.

in [T1..T2]

andthen

„France“ *a {{ var X }} b {{ var X }}

Operator trees are used for detecting composite events that are answers to XChange event queries eq.
Cf. Section 4.4.5 and Section 5.1.1, an answer to an XChange event query eq is a tuple consisting of a
sequence of atomic events and a substitution set for the variables with at least one defining occurrence in
eq. For evaluating eq in an incremental manner, partial evaluations of eq in form of event sequences and
substitution sets are stored at some of the inner nodes of the operator tree. Such a storage at an inner node
consists of all composite events from its child nodes that might be needed in future evaluation steps (upon
reception of new events) to build an answer to the whole event query eq. Whether an inner node has such
storage for event data or not depends on the language construct the node represents. For example,

• an operator tree representing binary andthen needs to store (e.g. as a list ordered by reception times
of) events from its left child. Upon detection of an event answering from its right child, this event is

Paula-Lavinia Pătrânjan 143

5.2. OPERATIONAL SEMANTICS

SetOfCompositeEvents evaluate(AndNode n, AtomicEvent a) {
// receive events from child nodes
SetOfCompositeEvents newL := evaluate(n.leftChild, a);
SetOfCompositeEvents newR := evaluate(n.rightChild, a);

// compose composite events
SetOfCompositeEvents answers := /0;
foreach ((sL,ΣL),(sR,ΣR)) ∈(newL× n.storageR) ∪

(n.storageL× newR) ∪
(newL× newR) {

SubstitutionSet Σ := ΣL 1 ΣR;
if (Σ 6= /0) answers := answers ∪ new CompositeEvent(sL∪ sR, Σ);

}

// update event storage
n.storageL := n.storageL ∪ newL;
n.storageR := n.storageR ∪ newR;

// forward composed events to parent node
return answers;

}

Figure 5.1: Implementation of a (binary) and inner node in pseudo-code

paired up with all events in the storage of the andthen operator node. The outcome, i.e. composite
events, is forwarded (or pushed to the level above) to the parent of the andthen operator node.
Section 5.1.1 shown how variable arity andthen can be reduced to binary ones. (Note that it would
suffice to store references to events, and not their copies.)

• an operator tree representing or does not store data on any event; whenever one of its child nodes
detects an event, the event is forwarded to the parent node of the or operator node.

Composite events that reach the root of the operator tree of a composite event query eq represent
answers to the whole event query eq. These composite events trigger the rule having as ’event part’ the
composite event query eq. Let’s take a closer look at the evaluation that is done for composing atomic
events injected at the leaves into composite events reaching the root. The issue of deleting events from
inner nodes’ storage is discussed afterwards.

Bottom-Up Event Data Flow Incoming atomic events are matched against each leaf node of the operator
tree representing an event query to evaluate. The answers to the leaf nodes’ event queries are forwarded to
the leaves’ parents; atomic events that do not match these event queries are not kept. Inner nodes process
composite events they receive from their child nodes following the basic pattern:

1. try to build composite events by pairing up stored with newly detected events; this is done according
to the semantics of the XChange construct the inner node implements,

2. update its storage by adding newly detected events that might be needed in future evaluation steps,

3. forward the events built in (1) to the parent node.

For exemplifying the evaluation algorithm for XChange composite event queries and ease its under-
standing, the binary conjunction (and construct) of event queries is chosen. Figure 5.1 sketches an imple-
mentation for the evaluation of a (binary) and inner node in java-like pseudocode (the figure is taken from
[18]). Upon reception of a new events (event a in the example), the left and right child are evaluated to
forward newL and/or newR (tuples corresponding to newly received event(s)) to their parent node n (the

144 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

and operator node). The storage of n consists of lists storageL and storageR of events received from its
left and right child nodes from previous evaluations. The current evaluation at n does the following:

1. compute all composite events from storageL, storageR, newL, and newR. That is, try to ’marry’ each
event from the left child with an event from the right child where at least one of them is a newly de-
tected event (i.e. try to pair (sL,ΣL) with (sR,ΣR), where ((sL,ΣL),(sR,ΣR))∈ newL×newR∪newL×
storageR∪ storageL×newR). Two events (tuples) can only ’get married’ if they agree on a suitable
common substitution set Σ; as result of this pairing, a composite event (sL ∪ sR,Σ) corresponding
to a conjunction is obtained. Σ is the maximal substitution set that assigns values to all variables
with at least one defining occurrence in the child nodes and assigns same substitutions for variables
occurring in both child nodes (it is assumed that ΣL and ΣR are undefined for other variables than
the ones occurring in the left and right child, respectively). Σ is computed as a kind of natural join
between ΣL and ΣR: Σ := ΣL 1 ΣR.

2. update storageL and storageR for future evaluations. As all detected events might be needed in
future evaluations, the new storage of n is computed as

storageL = storageL ∪ newL
storageR = storageR ∪ newR

An example of evaluating a concrete conjunction event query on a concrete event stream in XChange
is given in [18]. Recall now the Example 5.5 of an andthen event query with partial specification; the
evaluation of such an event query follows the same lines as for the and operator described above, but
considering the semantics of andthen (answers to a{{var X}} and b{{var X}} need to come in sequence).
The middle child node (represented by ∗) has a storage in form of a simple list of atomic events. From
these events, only those occurring between the answers to a{{var X}} and b{{var X}} are in the event
sequence the operator node andthen forwards to its parent; the middle child node does not influence the
substitution sets of the answers to andthen.

For evaluating XChange event queries, negation (in evaluating exclusion event queries) and existential
quantified variables in composite event queries (variables in any specification inside e.g. a times construct)
need a special treatment. For dealing with negation of events, the notion of substitution sets has been
extended; besides substitutions that assign values to variables, substitutions that forbid variables to have
certain values are used. For dealing with existential variables, the substitution sets to be joined (when trying
to ’marry’ events) need not agree on all common variables (as is the case for conjunction); substitution sets
need to agree on all common variables except the existential quantified ones. In both cases, the join of
substitution sets for determining answers to be forwarded is computed accordingly.

The algorithm presented for evaluating XChange composite event queries can yield duplicate answers;
this situation can occur rarely; however, the evaluation algorithm would not be correct with respect to the
declarative semantics if duplicate elimination would not be performed. A concrete example event query
and event stream for which duplicate answers are obtained is given in [76], Section 7.3.6, page 95. For
reasons of simplicity, the evaluation algorithm is not modified and duplicate elimination is performed after
event query evaluation. It suffices to eliminate duplicate answers at the root of the operator tree.

Deletion of Events The operator tree is traversed in a bottom-up manner for detecting answers to com-
posite event queries (by pushing events towards the root of the operator tree, and by adding events to the
storage of the inner nodes); it is traversed in a top-down manner to remove events from inner nodes’ storage
if their lifespan has expired. To determine if the lifespan of an event has expired or not, the current time and
the bound(s) of the event lifespan are used. XChange legal event queries always pose (finite) bound(s) on
events’ lifespan: temporal restriction and the during FiniteTimeInterval operator nodes (representing
the corresponding XChange constructs) bound the lifespan of all events in their subtrees in the operator
tree.

The deletion of events from the storage of the inner nodes of an operator tree begins at the root node.
The idea is to use a time interval [min..max] for determining the events that are not needed anymore (i.e.
their lifespan has expired and they will not yield other answers to the whole event query representing
the operator tree); this time interval is modified by traversing the operator tree. Not all nodes do update

Paula-Lavinia Pătrânjan 145

5.2. OPERATIONAL SEMANTICS

the time interval, only temporal restriction and during FiniteTimeInterval operator nodes influence
[min..max].

The initial time interval when starting the event deletion is [min..max] = [−∞..ct], where ct is the current
time. As the operator tree always corresponds to a legal event query, the root node (representing an in,
before, within, or during construct, cf. Section 4.4.4) is the first operator node that restricts (updates)
the [min..max] interval to [minu..maxu]. How the interval is modified depends on the construct the operator
node (regardless of root or inner node) implements:

• an in [t1..t2] operator node imposes a temporal restriction to [t1..t2] for all its subtrees; it updates the
current [min..max] interval to [minu..maxu] = [min..max]∩ [t1..t2];

• a before t operator node imposes a temporal restriction to [−∞..t] for all its subtrees; it updates the
current [min..max] interval to [minu..maxu] = [min..max]∩ [−∞..t];

• a within w operator node restricts events (s,Σ) to those satisfying end(s)− begin(s) ≤ w, that
is [begin(s)..end(s)] ⊆ [(ct −w)..ct]; the operator node updates the current [min..max] interval to
[minu..maxu] = [min..max]∩ [(ct−w)..ct];

• a during [t1..t2] operator node imposes a temporal restriction to [t1..t2] for all its subtrees; it updates
the current [min..max] interval to [minu..maxu] = [min..max]∩ [t1..t2].

The whole operator tree is traversed from the root to the leaves; for removing events from nodes’ storage
the following are performed: The current time interval [min..max] is updated to [minu..maxu] whenever a
temporal restriction or during operator node is encountered (this is done as explained above). For every
composite event (s,Σ) stored in the current node’s storage test [begin(s)..end(s)] ⊆ [minu..maxu]; delete
(s,Σ) if this isn’t the case. The subtrees of the current node are traversed with [minu..maxu] in the same
manner.

Note that event deletion in XChange depends only on the current time and the composite event query;
deleting events in the operator tree is independent on the data events carry with.

The algorithm presented for evaluating XChange event queries is amenable to optimisations. The focus
of this thesis is not on developing efficient techniques for evaluating queries against volatile data; however,
this is an interesting research issue. Some ideas for optimising the evaluation of XChange event queries
are given in [76], Section 7.5, pages 98 -102.

The idea to prove correctness of the incremental algorithm w.r.t. the declarative semantics (defined in
5.1.1) is by dividing the problem into two: Forget that the algorithm is incremental and stores events; to
detect an event at a time point t pretend that all incoming events are processed in one single evaluation.
Then prove that the operator tree will always have stored the right events, that is, at time point t it stores
all events that can be constituting part of a composite event with occurrence time t or later. This requires
checking that in the bottom-up data flow all needed events are stored and that in the event deletion events
that are still needed are not deleted.

5.2.2 Evaluation of Web Queries: Basic Ideas
Evaluating the Web queries given as ’condition part’ of XChange reactive rules presupposes evaluating
Xcerpt queries against specified resources and chaining of Xcerpt rules so as to evaluate Xcerpt queries
against views constructed by means of Xcerpt rules. The operational semantics of the query language
Xcerpt is defined in [125], Chapter 8. The underlying ideas of the semantics are shortly described in this
section.

An algorithm is defined for evaluating Xcerpt programs based on two parts: an algorithm called simula-
tion unification is given and a backward chaining algorithm that uses simulation unification. The evaluation
is based on a simple constraint solver that applies simplification rules to a constraint store consisting of con-
junctions and disjunctions of constraints. An example of a constraint is a simulation constraint expressing
e.g. possible bindings for a variable. The constraint store yields bindings for the variables occurring in
Xcerpt query and construct terms.

146 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Simulation unification takes two terms and returns a set of variable substitutions (called simulation
unifier) such that their applications to the terms make them simulate one into another. The underlying
ideas of simulation between two terms have been presented in Section 2.4.2. A proof is given for the
soundness and completeness of the simulation unification algorithm.

The backward chaining algorithm used in evaluating Xcerpt programs is inspired by the SLD resolution
calculus used in logic programming [106]. It is shown that the algorithm is sound with respect to the
fixpoint semantics developed for Xcerpt; also a (weak) completeness of the algorithm (is complete in cases
where the algorithm terminates) is proved. Criteria for termination are also described in [125].

5.2.3 Execution of Updates
This section discusses the execution of XChange updates. It considers first some conceivable approaches
for executing updates on Web data (updates specified by means of an update language). Then it recalls the
model for updating data on the Web and the update operations considered in this work. The section ends
by presenting the approach taken in XChange and already mentioned in Section 5.1.3; the underlying ideas
of the taken approach are given and explained in detailed steps through a simple example of an XChange
update.

Executing Updates to Web Data Different approaches are conceivable for executing the update opera-
tions specified by means of an update language for Web data; they are determined by different conditions
or criteria that need to be taken into account. First, updating data depends on the representation formalism
and the storage of the data to be modified. One can find data on the Web (as Web resources data) repre-
sented in a multitude of formalisms (such as HTML, XML, RDF, or relational databases) and data storage
(e.g. XML data can be stored as native XML documents, in relational databases such as Tamino [1], or in
object-oriented databases). Clearly, the representation of data is more important for the language constructs
and the storage of data for the execution of updates specified through these constructs.

Let’s now consider another ’dimension’ of update execution. Updates can be performed
(i) on secondary storage, meaning that the specified update operations are executed directly (data need

not be loaded entirely in memory) on the data to be updated, or
(ii) in memory, meaning that the data to be updated is loaded in the memory where it is modified, the

data after the update need to be ’placed instead’ of the old (initial) data. Using this approach, the data
after the update can be constructed in memory or the update operations can be performed on the internal
representation of data (e.g. on the DOM representation when updating XML data). However, this approach
is not suitable for updating large documents.

Also, an update language can have proprietary update execution abilities, or transformation rules can
be provided for the language constructs into existing ’update management’ means. For the latter case, a
mapping between the update constructs of the language and update or construction constructs of another
language are provided; evaluating or executing the obtained programs yields the same effect as if a propri-
etary update processor is available. For example, update operations on XML documents can be mapped
into SQL update operations that work on an XML (relational) database; such XML to SQL mappings
eliminate the need to understand the database structure.

Efficiency issues can play an important role when updating data on the Web; however, there are few
proposals for efficient execution of updates on Web data having (native) XML storage. For example,
finding the least expensive sequence of operations to transform an initial document (before any update
is performed) in the final one (the document after the specified update are performed) poses interesting
research problems.

XChange Updates on the Web An XChange program is located at one (XChange-aware) Web site and
contains rules specifying ordered or unordered conjunctions and/or disjunctions of updates. Updates are
specified as ’action part’ of XChange reactive rules; they are performed after the successful evaluations of
the other parts (event query, Web query) of the rules. Thus, the substitution set Σu = Σeq 1 Σwq is used
in performing the specified updates, where Σeq and Σwq are the substitution sets obtained from evaluating
event query part and Web query part, respectively.

Paula-Lavinia Pătrânjan 147

5.2. OPERATIONAL SEMANTICS

XChange updates express how data found at one or more Web resources are to be modified, i.e. how
persistent data is to modified. These Web resources are either local or remote. Updates to local Web
resources are executed by the language processor at the Web site. Updates to remote Web resources are not
executed by the processor of the Web site where the update has been specified; instead updates to remote
data are update requests to the Web sites where the data to be modified is stored. A Web site receiving an
update request can try to execute the update or decide not to execute the requested update. This approach
is consistent with the local control of XChange programs.

An XChange elementary update consists of a resource specification (the resources to be updated) and
an update term (a pattern for the data to be modified augmented with update operations). The subjacent
query term of an update term is the underlying query pattern of the respective update term. Consider
an elementary update u specifying modifications of data term du through update term tu whose subjacent
query term is stu ; a premise for a successful execution of the update operations of u is the satisfaction of the
condition stu � du. In other words, the query stu needs to evaluate successfully against du for performing
the given update operations on du. The evaluation of the subjacent query term of an update term against the
given data to be modified can represent a ’pre-update operations execution’ step for determining whether
to (try to) execute the update operations on these data or not. However, performance results need to be
compared for executing updates with and without subjacent query term evaluation for determining which
technique is more suitable and less expensive.

XChange update operations specify insertions, deletions, or replacements of data for tree-like Web data.
Executing an update operation

• insert ConstructTerm implies the construction of a data term using ConstructTerm and the vari-
able substitutions obtained from the other parts of the rule and the evaluation of subjacent query term;
the construction follows closely that of Xcerpt [125]. Where the constructed data term is inserted is
given by the position of the insertion operation inside the subjacent query term.

• delete QueryTerm deletes all terms matching the QueryTerm; all subterms of these terms are
deleted.

• QueryTerm replaceby ConstructTerm replaces all terms matching the QueryTerm with a data
term constructed with ConstructTerm.

The other constructs for XChange update operations are executed conform their meaning (that have been
introduced informally in Section 4.6), for example by inserting at a given position in the document when a
position is specified.

An XChange complex update specifies ordered or unordered conjunctions or disjunctions of (elemen-
tary or complex) updates. Executing a complex update

• and [U1, . . . ,Un] means executing all Ui, 1≤ i≤ n in the given order so as to use a substitution set
for the variables obtained by executing Ui in the subsequent updates U j, i+1≤ j ≤ n.

• and {U1, . . . ,Un} means executing all Ui, 1 ≤ i ≤ n regardless of the execution order (unordered
updates can be executed in parallel).

• or [U1, . . . ,Un] means executing one of the Ui, 1 ≤ i ≤ n by trying to execute the updates in the
given order and stop after the first successful execution of a specified update.

• or {U1, . . . ,Un} means executing one of the Ui, 1≤ i ≤ n; the processor can pick freely the update
to be executed from the given ones.

The execution of complex updates is a kind of controlled execution of two or more elementary or
complex updates; the building block consists in executing XChange elementary updates. The approach
taken in XChange for executing elementary updates is discussed in the following.

148 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

Updates through Construction The approach taken for executing XChange updates is an in memory
execution of updates where the elementary updates are executed by constructing the data after the update.
Mappings between XChange elementary updates and Xcerpt goals are provided. Data to be updated has
a tree-like representation (e.g. XML, or RDF data) stored as XML documents. The approach taken in
executing XChange updates is not the most efficient alternative to update execution; methods for more
efficient execution of updates on the Web are subject to further research.

The idea of executing XChange updates is based on an interesting observation, namely that the XChange
updates are an elegant and easy way for specifying data modifications as an alternative to an intentional
specification, i.e. constructing the data after the update by means of deductive rules. That is, for each
XChange elementary update a corresponding Xcerpt goal exists, such that evaluating the Xcerpt goal has
the same effect as if the respective update operations were executed directly on the data. The substitu-
tion set obtained from evaluating the other parts of the rule having the elementary update as action or
from executing other specified updates in the action part is used in evaluating the Xcerpt goal. The data
term constructed by evaluating the Xcerpt goal is the data term after the update; this modified data term
overwrites the initial data (the data before the update).

Given an XChange elementary update u, a corresponding Xcerpt goal G of the form ConstructTerm←g
QueryTerm is constructed by taking the structure of the subjacent query term and the update operations of
u into account. This transformation poses the following challenges:

(i) partial patterns in u do not offer knowledge about all subterms of terms in the data to be modified;
means are needed for determining whether a term has other subterms than those specified in the query
pattern, and for gathering all these subterms if they exist so as not to loose data through construction.

(ii) the original order of the terms in the data to be modified needs to be maintained.
(iii) the semantics of XChange update operations needs to be mirrored by the constructed Xcerpt goals.
(iv) the position specification in insertion operations express insertion of data at the given position;

means are needed so as to assure that the modified data contains the inserted data at the given position.
Rewriting rules have been recognised for rewriting an XChange elementary update specification into a

corresponding Xcerpt goal specification. These rules are applied recursively on the structure of the given
update term to obtain a tuple (ConstructTerm,QueryTerm) consisting of the construct and query part of
an Xcerpt goal. The resources given in the elementary update are ’forwarded’ to the query and construct
part of the Xcerpt goal. The rewriting rules comprise the following solutions to the problems touched on
above:

(i) partial patterns imply the use of Xcerpt’s construct optional before a fresh variable in the goal’s
query and gathering of all these in its construct term (so as to ensure that no data is lost along the construc-
tion way);

(ii), (iv) the desired order of the subterms in the modified data term is assured by combining the use of
ordered patterns with Xcerpt’s ordering of terms based on their position.

(iii) the desired effect of XChange update operations is achieved by a careful development of the rewrit-
ing rules based on the fact that XChange update terms consist of Xcerpt terms (query terms and construct
terms) and update constructs.

For proof-of-concept purposes, rewriting rules for transforming XChange elementary updates into cor-
responding Xcerpt goals have been implemented; they cover a representative “class” of XChange update
terms and are given in Appendix B. Ongoing work concerns testing the implemented rules to determine to
which extent all possible XChange update patterns are covered and to reveal details that have been possibly
neglected.

The following example explains the transformation steps that are needed in order to go from an XChange
elementary update to a corresponding Xcerpt goal.

Example 5.6 (Flight Reservation Specified as Deductive Rule)
Recall the Example 4.57 specifying an XChange transaction rule for booking another flight as reaction
upon a flight cancellation. After evaluating the event query and Web query parts, the specified action is to
be performed. Its specification follows:

in { resource { "http://airline.com/reservations/" },
reservations {{

Paula-Lavinia Pătrânjan 149

5.2. OPERATIONAL SEMANTICS

insert reservation { var F, name { "Christina Smith" } }
}}

}

For constructing a corresponding Xcerpt goal for the above given XChange elementary update simple
steps need to be taken by paying attention to the structure of the update term. The resource http://-
airline.com/reservations/ to be modified is treated in a straightforward manner: the query part of the
goal queries it and the construct part of the goal specifies it as the output resource (where the data after the
update should be ’put’).

The subjacent query term of the given update term is

reservations {{ }}

which is transformed by applying the rewriting rules in a query term to be used in the query part of the
goal and a construct term to be used in the construct part of the goal. The query term is obtained by adding
a pattern that matches with the subterms of the reservations term; the subterm and its position are to
be bound to the variables Child and CPos, respectively. The optional construct is used because there
is no knowledge about the existence of other made reservations (or subterms of other kind) at http://-
airline.com/reservations/. Thus, the following query term is obtained

reservations {{
optional position var CPos var Child

}}

Let’s turn attention to the construction of the goal’s construct term. The partial specification turns into
total ordered specification so as to keep the order of the subterms as in the initial data term (i.e. the data
term before the update is performed). All subterms of the root reservations in the initial data term are
gathered by means of the construct all (so as not to loose information) and ordered by their position in the
initial data term (for keeping the initial order). After these steps, the construct term looks like

reservations [
all optional var Child order by [var CPos]

]

However, using this construct term one just constructs the initial data term without taking the insertion
update into consideration. One more step needs to be made; the construct term specified in the insertion
operation (i.e. after the insert keyword) is a pattern used in the goal’s construct term for constructing a
new subterm of reservations. Thus, the goal’s construct term is complete as:

reservations [
all optional var Child order by [var CPos],
reservation { var F, name { "Christina Smith" } }

]

The corresponding Xcerpt goal built by making the described transformation steps to the elementary
update given at the beginning of this example is the following:

GOAL
out { resource { "http://airline.com/reservations/" },

reservations [
all optional var Child order by [var CPos],
reservation { var F, name { "Christina Smith" } }

]
}

FROM
in { resource { "http://airline.com/reservations/" },

150 Paula-Lavinia Pătrânjan

CHAPTER 5. SEMANTICS

reservations {{
optional position var CPos var Child

}}
}

END

The desired booking is realised (i.e. the insertion update is executed) by evaluating the above given
Xcerpt goal. The reservation for Christina Smith is to be found as the last subterm of the reservations
term in the data at http://airline.com/reservations/.

The previously given example of an XChange elementary update is a simple one that keeps its simplicity
in the transformation process and the corresponding Xcerpt goal specification. However, more complex
XChange updates are still easy to be transformed (the rewriting rules are applied recursively on the structure
of the update terms) but lack clear, simple specifications of the corresponding goal for programmers. As
the whole transformation remains hidden and can be realised by automatic means, programmers need just
to use the elegant XChange update operations.

Paula-Lavinia Pătrânjan 151

5.2. OPERATIONAL SEMANTICS

152 Paula-Lavinia Pătrânjan

CHAPTER

SIX

Use Cases

Developing use cases for a programming language aims at revealing the strengths and limits of the lan-
guage. When designing a language, use cases from intended application domains are first developed so
as to identify requirements the language should fulfil. During the process in which the language gets ma-
ture, use cases are developed so as to bear evidence of the practicability of language constructs. The same
approach has been taken in developing the language XChange whose constructs have been introduced in
Chapter 4.

The World Wide Web Consortium (W3C) [3] has published a set of use cases for different kinds of
languages for the Web, such as XML or RDF query languages; when developing a new Web language of
one of these kinds, application scenarios that correspond to the ones described by the W3C are means for
showing the abilities of the language by comparing it to existing languages. Though, at moment there is no
such W3C document describing use cases for a reactive language. No use cases or classes thereof for reac-
tivity on the Web exist that can be taken as reference for developing XChange use cases. The application
scenarios developed for XChange and implemented in part in this chapter have been motivated by their use
in real-life situations. In general, there is no use case of reasonable size whose implementation uses all
the constructs a language offers; thus, besides application scenarios for travel planning and support, this
chapter touches also other two application areas where the work on XChange use cases seems promising.

This chapter is structured as follows: Section 6.1 presents (part of) an implementation in XChange
of the use case Travel organisation whose explanation has been given in Section 1.2.1. Section 6.2 gives
flavour of two XChange use cases, one aiming at showing that XChange can also be employed for Semantic
Web applications and one at showing that XChange is suitable for implementing business rules.

6.1 Travel Organisation
Travel organisation is an application of Web-based reactive travel planning and support. In realising such
an application two subtasks need to be considered: 1. initial planning and 2. reacting to happenings that
influence the plan. These subtasks have been explained in more detail in Section 1.2.1. Note that the task
of travel planning and support does not involve a single system. Instead, in order to save time and perfectly
manage trips, several systems must cooperate to realise 1. and 2., e.g. flight and train schedules, passenger
notification system, hotel reservation service.

For exemplifying the task of organising travels, consider that Mrs. Smith uses a travel organiser that
plans her trips and reacts to happenings that could influence her schedule. Exemplary application scenarios
have been implemented that fit into the Travel organisation setting; they have as common story-line the
organisation of Mrs. Smith’s vacation in Provence, France. Mrs. Smith wants to visit a couple of cities
(Lyon, Orange, Arles, Nı̂mes, and Marseilles). However, for space and simplicity reasons the scenarios of
this section are restricted to a single city to visit, Lyon; flavour of extending the given implementation to
the scenarios of Section 1.2.1 are given throughout the section. Mrs. Smith’s vacation is planned for 5th
to 20th of March 2005. The scenario of Section 6.1.1 corresponds to the task of initial planning, while the

153

6.1. TRAVEL ORGANISATION

scenario of Section 6.1.2 corresponds to the task of adapting plans to changes. Unless otherwise stated, all
XChange rules presented in the following sections implement a single system – the travel organiser. Note
that the order in which the travel organiser’s rules are presented here is not of importance (cf. Section 5.2).

6.1.1 Initial Planning Scenario
Planning Mrs. Smith’s vacation implies gathering e.g. information about hotels, flights, trains, correspond-
ing prices; to this aim, deductive rules (i.e. Xcerpt rules) can be employed. Though, for taking notifications
such as offered flight discounts into considerations, reactive rules are needed.

For gathering information about hotels located in the cities Mrs. Smith would like to visit, (possibly)
different Web resources’ data need to be queried. Some Web sites offer information on more than one city,
while others are restricted to hotels in a specific city. Excerpts of data from two such Web sites follow; at
http://hrs.net one can find information about hotels in e.g. Lyon and Arles, at http://h-lyon.fr just
information about hotels in Lyon. Note that besides the information about the city where a particular hotel
is located, no other location data is given; these kind of data have been abstracted as XChange does not yet
have the ability to reason about location data. Integrating a language capable of location data representation
and reasoning into XChange is one possible direction for further work (cf. Section 7.2).

At http://hrs.net

accommodation {
service{"http://hrs.net/res/"},
currency {"EUR"},
hotels {

city {"Lyon"},
hotel {

name {"Princesse Isabelle"},
phone {"+33 123 456"},
category {"3 stars"},
price-per-room {"112"}

},
hotel {

name {"Corail"},
phone {"+ 33 123 789"},
category {"2 stars"},
price-per-room {"55"},
no-pets { }

},
...

},
hotels {

city {"Arles"},
hotel {...},
hotel {...},
...

},
...

}

At http://h-lyon.fr

logement {
monnaie {"EUR"},
ville {"Lyon"},
hotel {

nom {"Unic"},
telephone {"+33 123 123"},
classe {"3 etoiles"},
prix {"112"}

},
hotel {

nom {"Corail"},
telephone {"+33 123 789"},
classe {"2 etoiles"},
prix {"55"}

},
hotel {

nom {"Istria"},
telephone {"+33 123 789"},
classe {"3 etoiles"},
prix {"65"}

},
...
service{"http://h-lyon.fr/res/"}

}

The following deductive rule queries data found at Web resources http://hrs.net and http://
h-lyon.fr and constructs a view over the hotel data by gathering information about all listed hotels in
Lyon. The constructed data term contains a list of hotels ordered by their price per room. For each hotel
the service where the hotel can be booked needs also to be provided. Note that same kind of rules are used
for gathering information for the overnight stays in the other cities to visit.

CONSTRUCT

154 Paula-Lavinia Pătrânjan

CHAPTER 6. USE CASES

hotel-info [
city {"Lyon"},
all hotel { service { var Service },

name { var Name },
price { var Price },
phone { var Phone } } order by ascending [var Price]

]
FROM
or {

in { resource { "http://hrs.net" },
accommodation {{

service { var Service },
hotels {{

city { "Lyon" },
desc hotel {{

name { var Name }
price-per-room { var Price },
phone { var Phone } }} }}

}}
},
in { resource {"http://h-lyon.fr"},

logement {{
hotel {{

nom { var Name },
telephone { var Phone },
prix { var Price }

}}
service { var Service },

}}
}

} where var Price < 70
END

So as to query hotel data in an uniform manner when making the necessary booking, a view over the
hotel data in the cities of interest is constructed by means of the following deductive rule. The rule queries
the result of the other existing rules gathering hotel information (i.e. rules like the one given above).

CONSTRUCT
hotels {

all view [
var City,
all var Hotel

]
}
FROM

hotel-info [[
var City → city {{ }},
var Hotel → hotel {{ }}

]]
END

A similar approach is taken for gathering information about flights. Offers of different airlines are
queried for finding Munich – Lyon connections: deductive rules in the style of those used for gathering
hotel information are used, for space reasons they are not given here (for more use cases for the Web
query language Xcerpt used for specifying deductive rules in XChange, see [98, 125, 33]). Data to be

Paula-Lavinia Pătrânjan 155

6.1. TRAVEL ORGANISATION

queried contains information about e.g. flight number, departure and arrival airports, class, price having the
following possible structure:

flights {
airline { "AI" },
currency { "EUR" },
flight {

number { "AI2000" },
from { "Munich" },
to { "Lyon" },
date { "2005-03-05" },
departure-time { "6:15" },
arrival-time { "7:50" },
class { "economy" },
price { "55" }
},

flight {
number { "AI2011" },
from { "Lyon" },
to { "Munich" },

date { "2005-03-20" },
departure-time { "10:30" },
arrival-time { "12:00" },
class { "economy" },
price { "75" }
},

flight {
number { "AI2021" },
from { "Lyon" },
to { "Munich" },
date { "2005-03-20" },
departure-time { "17:30" },
arrival-time { "19:00" },
class { "economy" },
price { "80" }
},

...
}

Views over flight data where the flight to Lyon and back costs less than 400 Euro can be constructed as
for hotel data; here, recursion can play an important role for determining connections that are not direct.
However, this scenario considers just direct connections from Munich to Lyon and return:

CONSTRUCT
connection {

all direct [
outward { all var Outward },
return { all var Return }
]

}
FROM

flights {{
var Outward → flight {{ date {"2005-03-05"},

from {"Munich"}, to {"Lyon"}
without via {{ }}

}}
var Return → flight {{ date {"2005-03-20"},

from {"Lyon"}, to {"Munich"}
without via {{ }}

}}
}}

END

Assume that the airlines notify the persons who have already been their passengers about discounts they
are offering. The discount information is sent to the travel organisers as event messages. The following
XChange event-raising rule is part of an XChange reactive program running at an airline’s Web node:

RAISE
all xchange:event {

xchange:recipient { var To },
news {

subject {"Flight discounts"},
discount {

156 Paula-Lavinia Pătrânjan

CHAPTER 6. USE CASES

airline { "AI" },
from {"2005-02-25"}, until {"2005-03-25"},
percent {"10"} }

}
}

FROM
in { resource { "file:passengers.xml" },

desc passenger-data {{
year { "2005" },
passenger {{

organiser { var To} }}
}}

}
END

In order to be able to determine the most advantageous flight Munich – Lyon and return, the travel
organiser makes the discount information persistent. The next XChange reactive rule is triggered by the
event-raising rule given above, i.e. the rule fires upon reception of the discount event message.

TRANSACTION
in { resource {"file:flight-discounts.xml"},

discounts {{
insert var D

}}
}

ON
xchange:event {{

news {{
subject {"Flight discounts"},
var D → discount {{

airline {{ }},
from {{}}, until {{}},
percent {{}}

}}
}}

}}
END

The deductive rule that determines the cheapest direct flight(s) from Munich to Lyon and back query
the data at flight-discounts.xml and the view constructed with the previously given deductive rule; the
rule is not given here as it does not make use of any other constructs than the ones presented so far.

The travel organiser uses an XChange transaction rule for booking a flight from Munich to Lyon and
return and, after a successful flight booking, booking overnight stays in Lyon. Also, the travel organiser
stores as persistent (in file trips.xml) information about the made arrangements, so as to (i) be able to
react to events that can affect these arrangements, and (ii) rate e.g. hotels based on Mrs. Smith’s input for
influencing further arrangements.

TRANSACTION
and [

in { resource { var Agency},
desc reservations {{

insert reservation {
var F, name {"Christina Smith"}

}
}}

Paula-Lavinia Pătrânjan 157

6.1. TRAVEL ORGANISATION

},
in { resource { var Service },

accommodation {{
insert reservation {

var H, name {"Christina Smith"},
from {"2005-03-05"}, until {"2005-03-08"}

}
}}

},
in { resource { "file:trips.xml" },

trip [[
at 1 insert vacation {

location { "Provence" },
flight { var F,

service { var Agency } },
var Hotel }

]]
}

]
FROM

and {
best-flights [[
Position 1 choice {

var F → connection {{ }},
reserve-at { var Agency }

}
]],
hotels {{
view [[city {"Lyon"},

Position 2 var Hotel → hotel {{
service { var Service },
name { var H } }}

]]
}}

}
END

After successful execution of the transaction given previously, the file trips.xml looks as follows:

trip [
vacation {

location { "Provence" },
flight {

connection { direct {
outward {

flight {
date {"2005-03-05"},
from {"Munich"}, to {"Lyon"},
...

}
},
return {

flight {
date {"2005-03-20"},

158 Paula-Lavinia Pătrânjan

CHAPTER 6. USE CASES

departure-time {"17:30"},
arrival-time {"19:00"},
...

}
}

} },
service {"http://ai.com/res/"}

},
hotel {

service {"http://h-lyon.fr/res/"},
name {"Istria"},
phone {"+33 123 789"},
price {"65"}

}
},
business-trip { ... },
...

]

Note that for the case of visiting more than one city, the file trips.xml needs to be adapted so as to
store for each period of time the corresponding hotel booked for Mrs. Smith.

The next XChange reactive rule is dedicated to planning entertainment. As reaction to the reception of
an exhibition notification and a forecast notification, the travel organiser orders a ticket for Mrs. Smith and
notifies a friend of her about the exhibition of G. Barthouil.

TRANSACTION
and {

in { resource {"http://artactif.com/tickets.xml"},
desc exhibition {{

insert ticket-order {
var P, var L, name {"Christina Smith"}

}
}}

},
xchange:event {

xchange:recipient {"http://organiser.fr/˜Ramona"},
var Notif

}
}

ON
and {

var Notif → xchange:event {{
xchange:sender {"http://artactif.com"},
exhibition {{ var P → painter {"G. Barthouil"},

var L → location {"Lyon"},
time-interval { var TI }

}}
}},
xchange:event {{
xchange:sender {"http://weather.com"},
forecast { date { var D }, city {"Lyon"},

info {"It’s going to rain."} }
}}

} before 2005-03-01T11:15:00

Paula-Lavinia Pătrânjan 159

6.1. TRAVEL ORGANISATION

where var D included-in var TI
and [2005-03-05..2005-03-08] included-in var TI

END

In the same manner (using XChange transaction rules as the ones presented) flight and train tickets
can be booked for arranging the trip of Mrs. Smith so as to visit other cities (Orange, Arles, Nı̂mes, and
Marseilles) too. The successful execution of the transaction booking a flight to and a corresponding hotel
in Lyon triggers rules for arranging appointments with Mrs. Smith’s friends.

RAISE
all xchange:event {

xchange:recipient { var To },
subject { "Can we meet?" },
info { "Dear"+var N+"I’m in Lyon between 5th and 8th of March" }

}
ON

xchange:event {
xchange:type { "commit" },
conjunction {

flight {{ }},
hotel {{ }}

}
}

FROM
in { resource {"file:address-book.xml "},

addresses {{
friends {{

info {{
city { "Lyon" },
name { var N },
organiser { var To }

}}
}}

}}
}

END

Note that for arranging a trip (gathering information, make reservations and arrangements) deductive
rules and transaction rules that are not event-driven are not sufficing; transactions and raising of events as
reactions to (local and remote) events need also be employed.

6.1.2 Adapting to Changes Scenario
The XChange rules given in the previous section implement part of the abilities of Mrs. Smith’s travel or-
ganiser, which are needed for making all the arrangements for an initial plan. Besides these rules, the travel
organiser has rules dedicated to adapting already made plans to happenings that occur during Mrs. Smith’s
vacation. XChange event-raising rules and transaction rules are employed for detecting and reacting e.g.
to important changes at office, to family-related events, to hotel over-booking, to train or flight delays, or
to flight cancellations. It can be noticed that the number of classes of events and the number of possible
reactions to them is quite big. Though, this section gives a few exemplary XChange reactive rules that
show XChange’s abilities to elegantly implement the task of adapting plans to changes.

The next XChange event-raising rule is fired during Mrs. Smith vacation if she receives at least three
important messages during a vacation day. Note here the use of the temporal type day that can be defined
using the calendar and temporal type system CaTTS [51] like

160 Paula-Lavinia Pătrânjan

CHAPTER 6. USE CASES

type day = aggregate 24 hour @ hour(1) ;

where type hour is similarly defined. Using the next XChange rule, the travel organiser detects important
messages, looks for the organiser’s address of the sender, and sends him/her the phone number of Mrs.
Smith’s hotel. Note that if Mrs. Smith does not have the address of the messages’ sender, the travel
organiser does not reveal the hotel where its owner is staying at.

RAISE
xchange:event {

xchange:recipient { var From },
contact {

text {"You might want to call Mrs. Smith"},
var Name, var Phone

}
}

ON
times atleast 3 any var S {

xchange:event {{
xchange:sender { var From },
important-message {{

subject { var S }
}}

}}
} during day

FROM
and {

in { resource {"file:address-book.xml "},
desc organiser { var From }

},
in { resource {"file:trips.xml"},

trip [[
Position 1 vacation {{

desc hotel {{
var Name → name {{ }},
var Phone → phone {{ }}

}}
}}

]]
}

}
END

The next XChange reactive rule deals with delays of flights Mrs. Smith travels with. As the airline
might send several delay notifications for a flight, the rule detects the last notification that occurred during
the first signalling of delays and the notifications announcing the boarding time. The detected composite
event triggers an event message to be sent to one of Mrs. Smith’s friends so as to pick her up.

RAISE
xchange:event {

xchange:recipient { "http://organiser.de/˜Simona" },
var AT

}
ON

last {
xchange:event {{

Paula-Lavinia Pătrânjan 161

6.1. TRAVEL ORGANISATION

xchange:sender { var Service },
delay-notification {{

var Flight,
expected-departure-time { var DT },
var AT → expected-arrival-time {{ }}

}}
}}

} during {
andthen [

withrank 1 {
xchange:event {{
xchange:sender { var Service },
delay {{ var Flight → number {{ }} }}

}}
},
xchange:event {{
xchange:sender { var Service },
boarding-time {{ var Flight, begin { var BT } }}

}}
]

}
FROM

in { resource {"file:trips.xml"},
trip [[

Position 1 vacation {{
flight {{

desc return {{ desc var Flight }},
service { var Service }

}}
}}

]]
}

END

The next XChange reactive rules deal with cancellation of flights Mrs. Smith travels with. On cancel-
lation of Mrs. Smith flights where the airline grants and accommodation, the travel organiser announces
her friend about the changes in her plan.

RAISE
xchange:event {

xchange:recipient { "http://organiser.de/˜Simona" },
important {"Flight cancelled! I’m back on 21st of March!"}

}
ON

andthen [
xchange:event {{

xchange:sender { var Service },
cancellation {{ var Flight → number {{ }} }}

}},
xchange:event {{

xchange:sender { var Service },
granted-accommodation {{ }}

}}
] before 2005-03-21

162 Paula-Lavinia Pătrânjan

CHAPTER 6. USE CASES

FROM
in { resource {"file:trips.xml"},

trip [[
Position 1 vacation {{

flight {{
desc return {{ desc var Flight }},
service { var Service }

}}
}}

]]
}

END

The following XChange transaction rule is used in case of flight cancellations where no accommodation
is granted by the airline. The travel organiser looks for and books another return flight for Mrs. Smith.

TRANSACTION
and [

in { resource { var Agency},
desc reservations {{

insert reservation {
var Flight, name {"Christina Smith"}

}
}}

},
in { resource { "file:trips.xml" },

trip [[
Position 1 vacation {

location { "Provence" },
new-flight { var Flight,

service { var Agency } }
}

]]
}

]
ON

andthen [
xchange:event {{

xchange:sender { var Service },
cancellation {{ var Nr → number {{ }} }}

}},
without { xchange:event {{

xchange:sender { var Service },
granted-accommodation {{ }}

}}
} during [2005-03-05..2005-03-20T]

] before 2005-03-21
FROM

and {
in { resource {"file:trips.xml"},

trip [[
Position 1 vacation {{
flight {{

desc return {{ desc var Nr }},

Paula-Lavinia Pătrânjan 163

6.2. FLAVOUR OF FURTHER USE CASES

service { var Service }
}}

}}
]]

},
best-flights [[

choice {{
desc return {{

var Flight → flight {{
without var Nr

}}
}},
reserve-at { var Agency }
}}

]]
}

END

6.2 Flavour of Further Use Cases
Ongoing work in the XChange project focuses on the development of use cases for the language; it aims at
revealing possible shotcomings of the language when developing Semantic Web apllications or modelling
business processes. This section gives flavour of two further XChange use cases: a simple Semantic Web
book store and a case study where workflows and business rules are employed.

6.2.1 E-Book Store – A Simple Semantic Web Scenario
XChange has been conceived not only for standard Web but also for Semantic Web applications. Such
applications of XChange are presented and discussed in [43, 24]. It is crucial that relevant changes to data
that has been used by a Semantic Web agent, e.g. in deciding which book to buy or what train to book, are
consistently and rapidly propagated to all interested parties.

This scenario considers a Semantic Web-based book store that coordinates its activities based on clients
orders and publishers’ offers. The e-book store (an Amazon-like book store1) offers books that are pre-
sented to the clients as a collection of related Web pages (i.e. one or more Web sites); both for data pre-
sentation and for (internal) data processing, Semantic Web technologies are employed (such as ontologies
that bring semantics into the data and allow for reasoning with data). The e-book store processes buy or-
ders from its clients (implying e.g. order reception, updating store data on books), notifies its clients about
books that are in particular class of books or other literary works and are available for buying, notifies
clients about new published books (that are ordered just as reaction to clients’ interests). It also makes
book buy orders to publishers as reaction to updates to its store or to client orders. This section gives an
excerpt of the data used by the e-book store and a couple of simple XChange rules for implementing tasks
of an e-book store of such kind.

The data term of Figure 6.1 shows a small excerpt from a book database together with a sample ontology
over novels and other literary works. Some of the concepts used are drawn from the “Friend of a Friend”
(foaf) project2. The excerpt database is taken from [43, 24], where a more detailed use case for the Web and
Semantic Web query language Xcerpt and for the reactive language XChange is given. Note that prefixes
are used to abbreviate the URLs for properties.

The data contains two books. One is classified (via rdf:type) as a Historical Novel (defined in the
sample ontology). The sample ontology is a conceptual hierarchy for classifying books and other literary
works. The terms of the ontology are related by rdfs:subClassOf, meaning that, e.g., a Historical Novel
is a kind of Novel that, in turn, is a kind of Writing.

1Amazon, http://amazon.com
2Foaf Project, http://www.foaf-project.org/

164 Paula-Lavinia Pătrânjan

http://amazon.com
http://www.foaf-project.org/

CHAPTER 6. USE CASES

RDF {
Historical_Novel {

author {
foaf:Person {

foaf:name{"Colleen McCullough"}
}

},
dc:title{"The First Man in Rome"}

}

Historical_Essay {
author {

foaf:Person {
foaf:name { "Julius Caesar" }

},
foaf:Person {

foaf:name { "Aulus Hirtius" }
}

},
dc:title { "Bellum Civile" },
translator {

foaf:Person {
foaf:name { "J. M. Carter" }

} } }

&author @ rdf:Property {
rdfs:domain {

ˆ&writing
}
rdfs:range {

ˆ&foaf:Person
}

}

&translator @ rdf:Property {
rdfs:domain {
ˆ&writing

}
rdfs:range {
ˆ&foaf:Person

}
}

&historical_novel @ rdfs:Class {
rdfs:label { "Historical_Novel" },
rdfs:subClassOf {
&novel @ rdfs:Class {

rdfs:label { "Novel" },
rdfs:subClassOf {

&writing @ rdfs:Class {
rdfs:label { "Writing" }

} } }
}
rdfs:subClassOf {
&historical_essay @ rdfs:Class {

rdfs:label { "Historical_Essay" }
rdfs:subClassOf {

&essay @ rdfs:Class {
rdfs:label { "Essay" }
rdfs:subClassOf {
ˆ&writing

} } } }
}

}
}

Figure 6.1: Excerpt of Book Database at http://bookstore.com

TRANSACTION
in {

resource { "http://bookstore.com" },
RDF {{
insert Historical_Novel {

dc:title { "Ein Kampf um Rom" }
author {

foaf:Person {
foaf:name { "Felix Dahn" }

}
}

}
}}

}
END

Figure 6.2: Insertion of a New Historical Novel

Paula-Lavinia Pătrânjan 165

6.2. FLAVOUR OF FURTHER USE CASES

RAISE
xchange:event {
xchange:recipient { "http://organiser.de/˜Smith" },
new-book {

type { var Type },
all optional var Title

}
}

ON
xchange:event {

xchange:type {"update"},
insertion {

resource { "http://bookdealer.com" },
term {

var Type {{
optional var Title → dc:title{{}}

}}
},
parent { RDF {{ }} }

}
}

FROM
subClassOf[
rdfs:Class {{ rdfs:label{var Type} }},
rdfs:Class {{ rdfs:label{"Essay"} }}

]
END

Figure 6.3: Notifying Mrs. Smith

The XChange transaction rule of Figure 6.2 is used for inserting a new novel titled Ein Kampf um Rom
in the book database found at http://bookstore.com. Slight modifications of the rule allow for updating
the book database with e.g. more than one book that are part of different classes of books.

Mrs. Smith is very interested in Essays and therefore wants to be notified about any new book that is
classified as an Essay once it is added to the list of books managed by http://bookstore.com. By using
the XChange event-raising rule of Figure 6.3, http://bookstore.com sends notifications triggered by
insertions of books of type Essay.

Note that the ’condition part’ of the rule does not query a given Web resource; instead it queries a view
over data that is constructed by means of an Xcerpt rule, a rule that computes the transitive closure of
rdf:subClassOf by using recursion. The Xcerpt rule is given in [43] as Example 12 on page 14.

Extensive work on Semantic Web use cases for the reactive language XChange is planned so as to
identify possible extensions to the language that are required by a reactive Semantic Web. Also, combining
XChange with other Semantic Web technologies (so as to be able to reason with different kinds of data)
needs to be investigated.

6.2.2 EU-Rent – Business Rules for Reactivity on the Web

At moment, use cases are developed that aim at showing to which extent the reactive language XChange is
suitable for implementing business rules. The business rules approach has been employed with success in
the industry for describing the business logic; thus, their practicability has been already proven.

“A business rule is a statement that defines or constraints some aspect of the business. It is intended to

166 Paula-Lavinia Pătrânjan

CHAPTER 6. USE CASES

assert business structure or to control or influence the behaviour of the business”. (Business Rules Group3)
For example, “an order with value greater than 500 Euro has no delivery charge” is a business rule.

Focus of the XChange use cases is the implementation of business rules and not their specification e.g.
as a controlled English language or the validation of sets of business rules. However, not all business rules
can be implemented; for example, “everyone in a construction area must wear safety helmet” can not be
implemented by using programming languages. Though, the first given example of a business rule can be
implemented (e.g. by using XChange as programming language).

Multiple classifications of business rules exist; the Rule Markup (RuleML) Initiative4 considers three
kinds of business rules: integrity constraints, derivation rules (also called deductive rules), and reaction
rules (also called reactive rules). Integrity constraints can be implemented for example by means of schema
languages or can be enforced by means of reactive rules. The fact that the language XChange has reactive
rules (i.e. XChange event-raising rules and transaction rules) and deductive rules (i.e. Xcerpt rules) give
reasons to claim that XChange is suitable for implementing (most kinds of) business rules. The developed
use cases will bear evidence of this and/or will reveal useful extensions to XChange.

The EU-Rent5 case study has been chosen for developing (some of the) XChange use cases; it is a case
study used by the business rules community to demonstrate their product abilities. EU-Rent is a (fictive)
car rental company with branches in different cities and countries. XChange use cases consider Web-based
EU-Rent branches distributed over the network. EU-Rent branches offer typical car rental services such
as car reservations (rentals made in advance) or ’walk-in’ rentals, rentals of cars from different car groups
are possible, and customers may return cars to different branches. Business rules used by the EU-Rent
branches for constraining or controlling (some of their) processes (actions that might be part of workflows)
regard e.g. car reservations, offered discounts, or car assignment. Some concrete examples follow:

(i) If the customer requesting a car rental has no valid driver licence, the request should be denied.
(ii) If the car model requested for reservation is not available, a car of the same group should be

assigned.
For flexible changes to business rule and processes, business rules should be separated from the pro-

cesses, not contained in them; however, different implementation approaches are conceivable. In general,
the approach chosen depends on the intended applications; for example, for the EU-Rent case study, busi-
ness rules could be stored at each branch or just at the central branch(es) coordinating (local) ones. More-
over, different approaches for so-called decision points (between steps of a workflow when a decision is
to be taken based on the set of employed business rules) are possible. For example, business rules can be
“verified” before executing each action (or process) of the workflow, or business rules can be “verified”
when events occur during workflow execution.

The EU-Rent case study, as a concrete example where business rules and reactivity on the Web are
employed, and the implementation in XChange of (some of) the possible scenarios are ongoing work. Inna
Romanenko investigates this issues as her master thesis under the double supervision of Prof. Dr. François
Bry and the author. This work has begun recently, but first results are promising. The EU-Rent scenarios
can be combined with Travel organisation scenarios so as to support the travel organisation task with the
possibility of renting cars for the trips; this is one of the possible directions for future work.

3Business Rules Group, http://www.businessrulesgroup.org/brghome.html
4RuleML, http://www.ruleml.org
5EU-Rent, http://www.eurobizrules.org/eurentcs/eurent.html

Paula-Lavinia Pătrânjan 167

http://www.businessrulesgroup.org/brghome.html
http://www.ruleml.org
http://www.eurobizrules.org/eurentcs/eurent.html

6.2. FLAVOUR OF FURTHER USE CASES

168 Paula-Lavinia Pătrânjan

Part III

Conclusion

169

CHAPTER

SEVEN

Conclusion

7.1 Contributions
The research topic investigated by this thesis is reactivity on the Web. Identifying possible approaches to
reactivity on the Web calls for analysing the characteristics of the Web – as environment for applications
that exhibit reactive behaviour – so as to suit the reactive technology to them. Turning then to what re-
activity means and keeping in mind that the environment is a distributed one, reactive technologies call
for: updating data on the Web, exchanging information about events (such as executed updates) between
reactive Web systems, and automatically reacting to combinations of such events. Moreover, of crucial im-
portance for the Web (and also for the Semantic Web) is the lightness of technologies’ usage (in particular
the languages’ usage) that should be approachable also by non-programmers.

Following a declarative approach to reactivity on the Web, a novel reactive language called XChange is
proposed. XChange is a high-level programming language that offers means for programming distributed
Web applications requiring state changes as reaction to events that have occurred on the Web. It consists
of three components: an event query language, a Web query language, and an update language. XChange
has an imperative nature, but its components do follow a declarative approach: The event query language
of XChange offers means for declaratively specifying classes of events of interest that might require a
reaction. The Web query language of XChange is inherited from the declarative Web and Semantic Web
query language Xcerpt, i.e. the ’condition part’ of XChange reactive rules are Xcerpt queries and Xcerpt
(construct-query) rules can be specified in an XChange program for constructing views over Web data. The
update language of XChange offers means for declaratively specifying templates for the data before the
updates, and templates for the data to be inserted, removed, or replaced. Though, an update language with
explicit update operations (expressing e.g. do an insert) can not be fully declarative; also, a conjunction
of updates to be executed in sequence has an imperative touch.

The research work presented in this thesis (having as materialisation the reactive language XChange)
contributes to the research on (Semantic) Web reactivity with the following:

Recognised Requirements for Web Reactivity The development of application scenarios for reactivity
on the Web has raised requirements for languages aimed at entailing enhancements of the actual Web with
reactive capabilities. To mention some of these requirements: composite event queries and composite event
detection, and event-driven transactions are between the first-class citizen of needed language abilities.
However, different classes of applications exist that might be useful for upcoming, reactive Web systems;
these share with applications like the ones presented in Section 1.2 and Chapter 6 some capabilities but, at
the same time, might require new ones or just adapting the presented approach to the considered application
domain.

Concept Clarification This thesis offers clear definitions and descriptions of the concepts and notions
used by/in XChange for programming reactive applications. Most proposals for reactivity use notions that

171

7.1. CONTRIBUTIONS

do not always have an unambiguous meaning; overloading notions (for example, by not differentiating
between event and event query) precludes a clear language semantics and thus, makes the implementation
of the language and its usage much more difficult.

Novel and Intuitive View over (Reactive) Web Data XChange introduces a novel view over the Web
data by stressing a clear separation between persistent data (data of Web resources, such as XML or
HTML documents) and volatile data (event data communicated between XChange programs on the Web).
Based on the differences between these kinds of data, the data metaphor is that of written text vs. speech.
XChange’s language design enforces this clear separation and entails new characteristics of event process-
ing on the Web.

Language Design The design of the language XChange has received special attention throughout the
whole development process; however, it is not that clear which kind of constructs should necessarily be
included into a reactive language developed not only for a single kind of applications, but trying to cover
different classes of applications. A tradeoff between the expressive power of the language and the ease of its
usage has been looked for in designing XChange. On the other hand, the language XChange aims at acting
as a ’referee’ language where the pattern-based approach has been investigated and used for specifying
reactivity on the Web.

Event Queries with Double Purpose One of the essential traits of XChange event queries is that they
have a double purpose: they are aimed for event detection and event data extraction. Event queries in
XChange not only detect atomic and composite events that have occurred on the Web and might require a
reaction, they also extract pieces of information from incoming events by means of variables. The bindings
for the variables occurring in event queries can be subsequently used for raising events or executing updates.

Composite Event Queries Novel in XChange is its ability to detect composite events on the Web, i.e.
possibly time related combinations of events that have occurred at (same or different) XChange-aware Web
sites. This is possible as XChange offers composite event queries for specifying interest in classes of events
only if they are in particular temporal relationships.

Bounded Event Lifespan Events are not stored forever in memory, just as long as they are needed for
answering the event queries registered at a Web site. The amount of time for which data on any received
event is in memory – the event lifespan – is bounded. This is aided by the fact that event queries are forward-
looking (event queries do not query events received in the past). By design, the property of bounded event
lifespan is enforced.

Declarative Semantics Declarative semantics are not only beneficial to avoid misinterpretations of lan-
guage constructs by both users and implementors; they also provide a basis for formal proofs of language
properties. However, the declarative semantics of other proposals for Web reactive languages is not pro-
vided. A model theoretical semantics for XChange event query language has been defined as a ternary
relation between an event query, an answer, and the stream of incoming events. The Web query language
Xcerpt integrated into XChange provides a model theoretical semantics for the Web queries of reactive
rules and for deductive rules. Moreover, this work on declarative semantics is used for the XChange update
language, as the effect of an elementary update is the same as of a corresponding Xcerpt goal.

Use Cases Developing use cases for a language aims at introducing, removing, or modifying constructs
of the language. It also reveals the strengths and limits of a language. The most substantial contribution of
the use cases developed for the language XChange (some of them presented or touched on in this thesis, and
some representing ongoing work) is that they bear evidence for the practicability of language constructs.

172 Paula-Lavinia Pătrânjan

CHAPTER 7. CONCLUSION

7.2 Perspectives

The language XChange is an approach to reactivity on the Web; XChange has not saturated the research
on reactivity on the Web, instead it aims at acting as a framework for further research work. Some of the
perspectives for further work in XChange follow.

7.2.1 Transaction Management on the Web

The work on XChange has recognised the need for transactions (as combinations of possibly complex up-
dates and events to be raised that are to be executed in an all-or-nothing manner) through developed appli-
cation scenarios and the components a transaction on the Web might have (cf. Section 4.7). XChange pro-
poses a syntax for (event-driven) transactions on the Web by specifying them as ’action part’ of XChange
transaction rules (cf. Section 4.8.2). To some extent, the execution of actions in an all-or-nothing manner
can be implemented by means of XChange reactive rules. However, as the discussion on transactions in
Section 4.7.3 has shown, issues (such as the cascading triggering of local and remote actions inside a trans-
action) need to be investigated and means need to be materialised for transaction management on the Web.
Database technology applied to Web data (such as XML or RDF) and the Web as environment can play
an important role in realising this task. However, as Jennifer Widom already recognised “everything needs
to scale to Web proportions (!).”1 Along this line, work on transactions in database management systems
such as [141, 66, 77] might prove very useful.

7.2.2 Generation of XChange Rules

The issue of generating XChange rules based on integrity constraints’ specifications is a promising per-
spective for further work. The management of distributed projects is a good, concrete example where
generating XChange reactive rules would be of real help. For example, the research project REWERSE
(Reasoning on the Web with Rules and Semantics) has 27 participants each contributing to the project with
its own members. At site http://rewerse.net information about the project, its participants, and its
members can be found. Updating a member’s information results in updating multiple, distributed Web
documents (e.g. home page data, member page data, working group involvement data). At moment this is
done manually implying an amount of time and (surely) delays in gaining data accuracy. Thus, a kind of
’integrity-preserving rules’ need to be generated. This issue has been investigated in the context of active
database systems, where different possibilities have been explored: (i) syntactic generation of event and
condition parts, (ii) syntactic generation of event and condition parts, and declarative specification of action
part, and (iii) syntactic generation of event and condition parts, and semantic generation of action part. A
detailed discussion on these possibilities accompanied by examples and references can be found in [141],
pages 264-270.

7.2.3 Efficiency Issues

This thesis has not considered optimising XChange event query evaluation and XChange update execution;
a more efficient evaluation of Web queries is investigated at moment in the Xcerpt project. However, they
leave room for research work aiming at a more efficient event query evaluation and update execution on the
Web. One direction towards efficient event query evaluation is the clustering of XChange rules; the idea is
to recognise event queries or parts of them that occur in more than one rule and to cluster rules into rule
sets that can be associated with event classes. This method might be useful when the number of reactive
rules is big (e.g. when implementing a large number of business rules by means of reactive rules). Clearly,
a basis for a more efficient execution of updates on the Web would be provided by an update execution on
secondary storage.

1Jennifer Widom, Data Management for XML, urlhttp://www-db.stanford.edu/ widom/xml-whitepaper.html

Paula-Lavinia Pătrânjan 173

7.2. PERSPECTIVES

7.2.4 Type System for Semistructured Data

The integration into XChange of a type system for semistructured data with static type checking ability is
planned. Type checking of the language XChange means detection prior to execution that event queries and
Web queries do not provide results based on the types the queries and the data to be queried have (clearly,
if the schema of event data and Web resources’ data is known), and executing the specified update terms
do not result in updating data because e.g. the corresponding subjacent query terms do not match the data
to be modified.

The idea is to extend the type system for the Web query language Xcerpt so as to cope with the con-
structs of the event query and update languages of XChange. At moment two research efforts towards
Xcerpt’s type system exist: R2G2 (Rooted Regular Graph Grammars) [22], and the type system proposed
in [41]; both are regular tree grammar-based approaches for typing Xcerpt.

7.2.5 Visual Rendering of XChange Programs

Visual renderings of programming languages play an important role in easing the use of languages by
programmers and novice practitioners. The intended visual counterpart of XChange extends the visual
language visXcerpt [23, 26, 27], merely a visual rendering of textual Xcerpt programs. The idea is to keep
and extend the clear design principles that have been followed in developing visXcerpt so as to obtain a
very easy to use visual reactive language for the Web. Some of the design principles for the visual rendering
of XChange elementary updates have been already identified, e.g.

(i) grey coloured boxes labelled with insert, delete, or replace by visualise the simplest update
operations,

(ii) insert and delete boxes are visualised on the left, ’before’ the (construct or query) pattern, and
replace boxes are visualised between the query and construct patterns,

(iii) patterns for the data before the update are visualised using light-coloured boxes, patterns for the
data after the update is performed are visualised using corresponding dark-coloured boxes.

The following examples bear evidence for the simplicity of the implied visualisation.

Example 7.1 (Visual Rendering of XChange Insertion After)
The following example visualises an XChange elementary update specifying insertion of discounts of 10
percent for Addison-Wesley books. The discount terms are to be inserted after the price terms.

Example 7.2 (Visual Rendering of XChange Insertion Before)
The following example is a slight modification of the one given above, where the discount terms are to
be inserted before the price terms.

174 Paula-Lavinia Pătrânjan

CHAPTER 7. CONCLUSION

Examples 7.1 and 7.2 show one of the advantages of a visual rendering of the update language – the
structure of the data after the update is performed is very easy to grasp.

Example 7.3 (Visual Rendering of XChange Delete)
The following example visualises an XChange rule having just ’condition’ and ’action parts’; the rule is
used for deleting all books from xmp-bib.xml that are also in xmp-reviews.xml. The ’condition part’ is
given on the right, the ’action part’ on the left, and the parts are connected using an arrow.

Example 7.4 (Visual Rendering of XChange Replace)
The following example visualises an XChange elementary update that is used for changing the prices from
Dollar to Euro for all books found at http://www.example.com/bookstore.xml.

Paula-Lavinia Pătrânjan 175

7.3. CONCLUDING REMARKS

For developing a visual counterpart to the whole reactive language XChange, analysing the design prin-
ciples of other existing visual query and transformation languages such as XML-GL [58, 59], GraphLog
[71], or VXT [121] might prove useful.

7.2.6 Authentication, Authorisation, and Accounting
XChange in its present stage of development does not offer specific means for security (especially authen-
tication and authorisation). However, such extensions are neither incompatible with the current version
of XChange nor precluded in future versions of the language. The protocols of a Grid architecture (such
as Globus [79]) would provide with convenient means for such an extension. Extending XChange with
accounting functionalities is a promising perspective for future research. Vice versa, XChange could be
seen as a (core of a) high-level reactive language for Grids.

7.2.7 Integration with Location and Temporal Reasoning Languages
The integration with languages for specifying and reasoning with specific kind of data is intended. The
presented application scenarios assessed the practical need of reasoning with location data (e.g. to look
for and book a hotel in a quiet area near to a metro station). This suggests to consider an integration
of XChange with MPLL (Multi Paradigm Location Language) [25, 45], a language for specifying and
reasoning with different kinds of location data. Integrating XChange with CaTTS (Calendar and Temporal
Type System) [51, 44], a static typed calendar and time language that allows for declarative modelling of
various calendars (e.g. Gregorian calendar, business calendars, holiday calendars, etc.), would provide the
event language with richer temporal specifications.

7.3 Concluding Remarks
This thesis has presented the language XChange, a programming language that aims at filling the gap
between the actual, passive Web and the more dynamic, reactive Web. It suits to building applications
based on the Web as a large distributed environment by considering local programs through which global
behaviour is achieved. XChange’s language design enforces the clear separation between persistent (Web
resources’ data) and volatile data (event data) and entails new characteristics of event processing on the
Web.

Developing a programming language with clear paradigms mirrored by its syntax, powerful constructs,
and a simple formal semantics is not (necessarily) an easy task; though, it is an interesting research work.
This kind of work offers strong motivation all along the developing phase, for the language shapes up
making one to proceed with the conviction of attaining a useful technology.

After more than two years of research work on XChange, the language is not yet “mature” enough (cf.
Section 7.2) to freeze the work on it with the completion of this thesis. The author ends the writing of this
thesis by hoping that XChange will act as a framework for investigating further research work on reactivity
on the Web.

176 Paula-Lavinia Pătrânjan

Part IV

Appendix

177

APPENDIX

A

A Prototypical Runtime System

This part of the thesis discusses the proof-of-concept implementation that has been developed for the lan-
guage XChange. At moment of writing, the XChange prototype does not implement all features of the
language; the development of the XChange prototype is ongoing work. This part gives a description of
its current status accompanied by suggestions on where and how the implementation is to be changed or
extended for fully implementing XChange.

The XChange prototype has been implemented in Haskell [135], a functional programming language.
Chosing Haskell has been strongly motivated by the existing Xcerpt1 prototype implementation, which is
implemented in Haskell. Recall that not only Web queries and deductive rules specified in Xcerpt need to
be evaluated for executing XChange programs, but also Simulation Unification is employed for evaluating
XChange atomic event queries. Thus, the prototype implementation of Xcerpt has been “extended” so as
to implement the language XChange.

For space reasons, this part of the thesis does not offer a complete discussion of every aspect of the
implementation; it offers a high-level guide to XChange’s implementation and a general view over the
structure of the source code. It also abstracts away from details on the Xcerpt implementation; more
information on Xcerpt’s prototype implementation can be found in [125], pages 207-225.

A.1 Overview. Source Code Structure
For executing XChange programs, an implementation of the language XChange needs to provide, besides a
parser for the language, components for evaluating the ’event part’ and the ’condition part’, and executing
the ’action part’ of XChange rules. These components need to communicate through substitution sets for
the variables with at least one defining occurrence in the rule parts. The implementation needs to convey
the semantics of the three rule parts, which has been presented in Chapter 5.

Mirorring the three parts of an XChange reactive rule, the main module of the XChange prototype
implements an event handler, a condition handler, and an action handler. They are defined as functions
and run separately. Communication between the functions implementing the event, condition, and action
handlers is realised through channels, an extension to Haskell found in Concurrent Haskell [120]. Channels
provide a buffered First In, First Out message-pasing communication between the component handlers.
The flow of messages between the handlers mirrors the flow of substitution sets between the parts of an
XChange reactive rule.

The event handler has the abilities to receive atomic events, evaluate the event queries registered in
the system, and release events whose lifespan has expired. Detected answers to the these event queries
are communicated to the condition handler through a condition channel. Upon successful evaluation of
an event query eq, the condition handler evaluates the Web query q of the rule having eq as event query
(for determining which parts form a registered reactive rule, each rule gets an identifier at registration);
evaluation of Web queries is based on Xcerpt’s abilities. The successful evaluation of the Web query q is

1Xcerpt Project, http://www.xcerpt.org

179

http://www.xcerpt.org

A.1. OVERVIEW. SOURCE CODE STRUCTURE

signalled to the action handler by writing the substitution set obtained from the evaluation of eq and q to
the action channel. The action handler executes the action of the rule having ’event part’ eq and ’condition
part’ q. It executes local updates by transforming update terms into Xcerpt goals and evaluate these goals.
At moment, the prototype implementation of XChange does not offer support for executing transactions on
the Web.

XChange Parser

Action

Condition

Event

Data

UI

Xcerpt

XUtils

compile.sh

Main.hs

Figure A.1: Overall module and file structure

The structure of the source code is depicted in Figure A.1. By using the hierarchical module mecha-
nism of Haskell, the code is structured in different modules: Module XChange implements the language
XChange by using module Xcerpt, which implements the language Xcerpt. Module XUtils implements
some date, list, and string utilities (i.e. functions needed in module XChange). Files compile.sh and
Main.hs are used for compiling XChange (see Section A.7). Module XChange is made of the following
submodules:

XChange.Parser provides lexer and parser modules for parsing XChange programs into the data struc-
tures defined in XChange.Data.

XChange.Data provides data structures (e.g. data structures into which programs are parsed and channel
data structures) and functions on these structures.

XChange.Event provides functions for receiving events, evaluating event queries, and deletion of events.

XChange.Condition provides functions for evaluating Web queries and deductive rules.

XChange.Action provides functions for executing actions (e.g. for transforming update terms into Xcerpt
goals and evaluate these goals).

XChange.UI provides functions for the command line and for debugging purposes.

The next sections discuss in more detail the functions and data structures defined in the modules
XChange.Parser, XChange.Data, XChange.Event, XChange.Condition, and XChange.Action. The
module Xcerpt is described in [125].

180 Paula-Lavinia Pătrânjan

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

A.2 XChange Parser

XChange XChangeLexer.x

XCSymbolTable.hs

XChangeParser.y

Parser

Figure A.2: Module and file structure of XChange.Parser module

Given an XChange program to be executed, two steps are realised for transforming the program into
the data structures used by the event, condition, and action handlers: A lexical analysis is performed for
transforming the characters of the program into a sequence of tokens. Based on the language grammar, the
sequence of tokens is transformed into XChange data structures (defined in module XChange.Data).

The module and file structure of the XChange.Parser module is presented in Figure A.2. The XChange
parser has been implemented by extending the parser for Xcerpt programs. The lexical analysis of XChange
programs is done by an XChange lexer built by using the lexer generator Alex [75]. The parser of XChange
programs has been built by using the parser generator Happy [107].

Module XChange.Parser.XChangeLexer implements the XChange lexer; it defines tokens in terms
of regular expressions. The function lexer in XChangeLexer.x takes a string (an XChange program)
and return a list of tokens ([Token]). Module XChange.Parser.XCSymbolTable defines the function
resolveSymbols that looks up in a symbol table for correctly analysing XChange programs. The symbol
table contains tokens for the language keywords; it should be modified when XChange constructs are
modified or extended.

Module XChange.Parser.XChangeParser defines the function parseXCProgram for parsing the list
of tokens resulted from the lexical analysis of a program. The parser generator Happy uses grammar rules
in a syntax similar to Backus-Naur Form (BNF); rules are extended for defining the action to be taken
when “encountering” given specifications. For example, the next given code specifies an excerpt of the
grammar rule defining XChange event query specifications. An event query specification is either a term
specification, or a keyword (here or, and, andthen) followed by single or double opening braces, a list of
event query specifications, and corresponding closing braces. An event query (instance of type EvQuery)
is to be returned.

PEvQuery :: { EvQuery }
PEvQuery : PTerm { EvQTerm $1 }

| or ’{’ PEvQueryL ’}’ { EvQOr $3 }
| and ’{’ PEvQueryL ’}’ { EvQAnd $3 }
| andthen ’[’ PEvQueryL ’]’ { EvQAndthen $3 False }
| andthen ’[’ ’[’ PEvQueryL ’]’ ’]’ { EvQAndthen $4 True }
...

Clearly, XChangeParser.y contains the grammar rules for XChange event queries, Web queries, ac-
tions, and rules. Such grammar rules are used for building the data structures introduced in the next section.
The function for performing the lexical analysis and building the XChange data structures is also defined
in XChangeParser.y:

parseXChange = parseXCProgram . resolveSymbols . lexer

A.3 XChange Data Structures
The module XChange.Data defines the data structures on which the event, condition, and action han-
dlers work; it also provides functions over these data structures. The module and file structure of the

Paula-Lavinia Pătrânjan 181

A.3. XCHANGE DATA STRUCTURES

XChange IntermediateData.hs

XChangeTime.hs

XChangeData.hs

Data

ChannelData.hs

SubstSet.hs

XChangeXcerpt.hs

XChangeSetup.hs

Figure A.3: Module and file structure of XChange.Data module

XChange.Data module is given in Figure A.3; the module is made of the following submodules:

XChange.Data.IntermediateData defines the data structures (Haskell data types) whose “instances” are
built when parsing XChange programs. Recall the previous example giving an excerpt of the parser’s
code; it returns an instance of the type EvQuery. The following code gives an excerpt of the definition
for the data type EvQuery (corresponding to an XChange event query):

data EvQuery = EvQTerm { eterm :: Term }
| EvQOr { evq_queries :: [EvQuery] }
| EvQAnd { evq_queries :: [EvQuery] }
| EvQAndthen { evq_queries :: [EvQuery], evq_partial :: Bool }
...
deriving (Eq,Show)

For example, the data type for a temporally ordered conjunction event query is given as a constructor
EvQAndthen followed by a list of elements of type EvQuery and a boolean value expressing whether
the event query specification is total or partial. The data type corresponding to an XChange program
is defined as:

data XCProgram = XCProg [XCRule] deriving Show

That is, the XChange parser “transforms” an input XChange program into a list of rules (elements of
type XCRule) having as constructor XCProg.

XChange.Data.XChangeData defines a slight modification of the data types returned by the XChange
parser; these types are further used by the event, condition, and action handlers. For example, a rule
identifier type is defined here that is to be associated to each rule registered in the system. Also,
the time specifications (time points, time intervals, durations) returned as strings by the parser are
transformed into XChange time types (e.g. type XChangeDuration for a length of time).

XChange.Data.XChangeTime defines the XChange time types (XChangeTime, XChangeDuration) that
are needed for evaluating event queries correctly. The module provides also functions for transform-
ing strings in XChange time types and the relations between time points and durations, respectively
(e.g. equality relation, comparison of time points and durations, respectively). For example, the
data type XChangeDuration is defined as a time difference or an integer having as constructors
XChangeTimeDiff and XChangeIntDuration, respectively:

182 Paula-Lavinia Pătrânjan

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

data XChangeDuration
= XChangeTimeDiff TimeDiff |
XChangeIntDuration Int

and the equality relation on durations:

instance Eq XChangeDuration where
(XChangeTimeDiff td1) == (XChangeTimeDiff td2)
= (td1 == td2)

(XChangeIntDuration i1) == (XChangeIntDuration i2)
= (i1 == i2)

The XChange time types are used also for the parameters of XChange event messages, i.e. raising
time and reception time.

XChange.Data.ChannelData defines data structures AtomicEvent (as a term with a reception time) and
CompositeEvent (as a list of AtomicEvent instances, a beginning and an ending time, and a con-
straint). Constraints represent the possible variable substitutions; they are used in defining the data
structure Firing, instances of which are communicated through the channels expressing successful
evaluations of parts of an XChange rule (identified by XCRuleId). Functions on these data structures
are also provided (e.g. show functions for firings output).

XChange.Data.XChangeXcerpt, XChange.Data.SubstSet provides data structures and functions from
Xcerpt that are needed for evaluating event queries and Web queries.

XChange.Data.XChangeSetup defines configuration data used for executing XChange programs. The
event, condition, and action channels are defined in this module; also functions for the output of e.g.
intermediate states or firings, and other useful data (e.g. port number for server) are declared.

A.4 XChange Event Handler

XChange EventReceiver.hs

PEQE.hs

AlternateEventReceiver.hs

Event

EventQueryEvaluation.hs

EventDeletion.hs

OutputFunctions.hs

EventHandler.hs

State.hs

Figure A.4: Module and file structure of XChange.Event module

The XChange event handler receives event messages, evaluates the event queries registered in the
system, and deletes events whose lifespan has expired. The module and file structure of the module
XChange.Event is given in Figure A.4. The module XChange.Event consists of the following submod-
ules:

Paula-Lavinia Pătrânjan 183

A.5. XCHANGE CONDITION HANDLER

XChange.Event.EventReceiver defines the function eventReceiver for receiving event messages from
TCP/IP connections using the default port 4711. The received event messages are augmented with
reception time and identifier before writing them in the event channel for the event handler:

let ae = (AtomicEvent term (XChangeClockTime rcptTime))
writeChan channel ae

The prototype uses TCP/IP socket communication; receiving and sending event messages over HTTP
is planned.

XChange.Event.AlternateEventReceiver is used for evaluating event queries against the event messages
contained in given files; it is useful for debugging purposes.

XChange.Event.PEQE implements the operator trees for XChange event queries; a discussion on the
defined data structures and functions can be found in [76], Section 8.3.

XChange.Event.EventQueryEvaluation defines the function evaluateQuery that performs the event
query evaluation:

evaluateQuery :: AtomicEvent -> PartialEventQueryEval ->
(PartialEventQueryEval, [CompositeEvent])

The function takes an atomic event and a partial evaluated event query, it returns an updated partial
evaluation and a list of composite events. A more detailed discussion on evaluateQuery is given in
[76], Section 8.3.

XChange.Event.EventDeletion provides functions for releasing events after their lifespan has expired;
the method outlined in Section 5.2.1 is followed.

XChange.Event.EvenHandler defines the main loop of the event handler, a tail-recursive function

eventHandlerLoop :: XChangeSetup -> State -> IO()

where the state of the event handler is a list of partial evaluations (PartialEventQueryEval) for
the event queries of the rules registered in the system (identified by XCRuleId):

newtype State = State [(PartialEventQueryEval, XCRuleId)]

XChange.Event.OutputFunctions provides functions for the output of received events, firings, and reg-
istered rules.

XChange.Event.State provides the definition of type State given above.

A.5 XChange Condition Handler
The XChange condition handler evaluates Web queries and deductive rules when a new firing is signalled
from the event handler. The evaluation of Web queries and deductive rules is based on the prototype
implementation of Xcerpt.

The main loop of the condition handler (conditionHandlerLoop) is implemented as a tail-recursive
function so as to get an infinite loop in Haskell. The type of the function is

conditionHandlerLoop :: XChangeSetup -> State -> Program -> IO()

where the state of the condition handler is a list of Web queries (Query) registered in the system and
associated with the corresponding rule identifiers (XCRuleId):

newtype State = State [(Query, XCRuleId)]

184 Paula-Lavinia Pătrânjan

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

XChange ConditionHandler.hs

State.hs

Condition

Figure A.5: Module and file structure of XChange.Condition module

and the program (of type Program) contains the deductive rules of the XChange program to be executed.
The result type of the function is the IO()-monad.

The module and file structure of the module XChange.Condition implementing the XChange condi-
tion handler is depicted in Figure A.5. The submodules of XChange.Condition are:

XChange.Condition.ConditionHandler defines the function presented above that implements the condi-
tion handler. When a new firing is written in the condition channel, the condition handler looks for
the Web query associated with the rule identifier (recall that a firing is made of a constraint and a rule
identifier) in its state. The Web query is evaluated against the specified Web resources (if a resource
specification is given) or against the set of deductive rules (xcerptRules) contained in the XChange
program executed.

The evaluation returns either a constraint False (expressing unsuccessful evaluation) or a constraint
expressing possible bindings for the variables; in the latter case, a new firing is written to the ac-
tion channel representing the modified constraints (obtained from the event handler and condition
handler) associated with the rule identifier.

XChange.Condition.State provides the definition of type State given above.

A.6 XChange Action Handler

XChange UpdateBuilder.hs

ActionHandler.hs

Action

State.hs

Figure A.6: Module and file structure of XChange.Action module

The XChange action handler executes the actions specified in the ’action part’ of XChange reactive
rules. Similar to the functions implementing the event and condition handlers, the main loop of the action
handler (actionHandlerLoop) is a tail-recursive function:

actionHandlerLoop :: XChangeSetup -> State -> IO()

where the state of the action handler is a list of tuples of actions registered in the system (XCAction) and
corresponding rule identifiers (XCRuleId):

newtype State = State [(XCAction, XCRuleId)]

Again, the result type of the function is the IO()-monad.
The module and file structure of the XChange.Action module is given in Figure A.6. The submodules

of XChange.Action are:

Paula-Lavinia Pătrânjan 185

A.7. BUILDING AND RUNNING XCHANGE

XChange.Action.UpdateBuilder defines the function createUpdateGoal that takes an update term, a
list of resources to be modified and returns an Xcerpt goal that is used to construct the data after the
update:

createUpdateGoal :: Term -> [Resource] -> Rule

The function implements the needed rewriting rules for transforming XChange update terms into
Xcerpt goals; the rules are given in Appendix B.

XChange.Action.ActionHandler defines the actionHandlerLoop function discussed above. Upon re-
ception of a new firing consisting of a constraint and a rule identifier from the condition handler,
the action handler looks for the action to be executed (using its state and the rule identifier). The
function executeAction executes the retrieved action; at moment, it implements the execution of
local updates by constructing data after the update.

XChange.Action.State provides the definition of type State given above.

At present, the action handler executes XChange local updates as reactions to (atomic or composite)
events. The execution of remote updates and raising events are to be implemented in the near future. The
implementation of local updates is the most important part of the action handler; it acts as a building block
for the execution of remote updates. For executing a remote update ur specified in an XChange program P,
P sends a request to the XChange processor at the Web site whose data is to be modified by ur. Thus, the
desired update ur is to be executed locally by the XChange processor receiving the update request.

Raising and sending event messages can be easily implemented: The given event term(s) and the con-
straints (variable substitutions) received through the action channel are used to construct data term(s) to be
sent. The construction of data terms can be realised by using the applySubstitutions function of Xcerpt
(defined in module Xcerpt.EngineNG.Substitution):

applySubstitutions :: Term -> [Substitution] -> [Term]

and the function getSubstSet (defined in module XChange.Data.SubstSet) for obtaining the set of
substitutions from the constraint received through the action channel:

getSubstSet :: Constraint -> SubstSet

where the type SubstSet is defined in module XChange.Data.SubstSet as

newtype SubstSet = SubstSet [Substitution]

The obtained data terms need to be augmented with the event messages’ parameters sender and raising-
time by using a function similar to augmentEventTerm defined in module XChange.Event.EventRecei-
ver. The sending of the constructed event messages can be implemented similarly to the reception of event
messages (see eventReceiverLoop in module XChange.Event.EventReceiver).

A.7 Building and Running XChange
The source code of the XChange prototypical implementation is available at http://www.pms.ifi.lmu.de
/mitarbeiter/patranjan/. For building and running XChange, one needs to compile XChange with the
Glasgow Haskell Compiler2 (GHC); the version of GHC used in compiling the XChange source code is
GHC 6.2.2. The shell script compile.sh calls GHC on the given file. In a Unix shell, one needs to do

> ./compile.sh Main
> mv Main xchange

Now, one can execute XChange programs. The command line syntax for running an XChange program
is:

2The Glasgow Haskell Compiler, http://www.haskell.org/ghc/

186 Paula-Lavinia Pătrânjan

http://www.haskell.org/ghc/

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

> xchange [Options] Program [Event Messages Files]

where

Options are the supported command line options; they are prefixed by− and provided in a short and a long
form (as is common on Unix systems). The options provided by xchange are given in the following:

Short form Long form Description

-r[FILE] --receivedEventOutput[=FILE] write output of received events to FILE
-i[FILE] --intermedEventOutput[=FILE] write output of intermediate state to

FILE
-c[FILE] --cleanedStateOutput[=FILE] write output of cleaned state to FILE
-f[FILE] --firingsOutput[=FILE] write output of firings to FILE
-d[FILE] --debugOutput[=FILE] write debug output to FILE
-p[PORT] --port[=PORT] set server port (default: 4711)

Program gives the XChange program to be executed (e.g. ./test/test5.xchange); the current XChange
prototype runs XChange programs written using the term syntax of the language. An XChange parser
for an XML-based syntax of the language is to be developed.

Event Messages Files give the files from which the event messages are to be used for evaluating the given
XChange program; this option is provided for debugging purposes.

The prototype implementation of XChange is not the result of the work of a single person. The imple-
mentation of Xcerpt, which is the query language integrated into XChange, is the outcome of Dr. Sebastian
Schaffert’s efforts with contribution of a couple of graduate students. The evaluation of XChange event
queries (for atomic and composite event detection) has been developed as part of the master’s thesis of
Michael Eckert, work supervised by Prof. Dr. François Bry and the author. The integration of the Xcerpt
and XChange implementations as well as other implementation tasks (the transformation of the rewriting
rules for update terms from an “informal” description into Haskell code) have been done in collaboration
with Oliver Friedmann, a student assistant in the XChange project.

Paula-Lavinia Pătrânjan 187

A.7. BUILDING AND RUNNING XCHANGE

188 Paula-Lavinia Pătrânjan

APPENDIX

B

Updates through Construction: Rewriting Rules

This part of the thesis gives rewriting rules for transforming an XChange elementary update into a corre-
sponding Xcerpt goal, i.e. a goal that constructs the data after the update. This represents the approach
taken in XChange for executing elementary updates; the main challenges and ideas of the approach have
been presented in Section 5.2.3.

Given an XChange elementary update u, the following code (implementing the rewriting rules) con-
structs a corresponding Xcerpt goal G of the form ConstructTerm←g QueryTerm. The structure of the
subjacent query term and the update operations of u are taken into account. The resources of u (i.e. persis-
tent data to be modified) are just ’forwarded’ to the query and construct part of the Xcerpt goal.

The following code is found in module XChange.Action.UpdateBuilder (see Appendix A.1 for the
module and file structure of the XChange prototype implementation and Appendix A.6 for the module and
file structure of the action handler). Note that -- precedes comments in the following function definitions.

module XChange.Action.UpdateBuilder (createUpdateGoal) where

-- System-related imports
import IO
import System
import Control.Concurrent.Chan

-- Import data structures and functions over lists
import XUtils.ListUtils
import XChange.Data.XChangeXcerpt
import Xcerpt.Data.Program

-- Creates an Xcerpt goal (of type Rule) from an update
-- term (type Term) and resources (type Resource)
createUpdateGoal :: Term -> [Resource] -> Rule
createUpdateGoal t r =

let
(term, query) = createUpdateGoal’ t getBaseName

in
Goal {output = r,

rhead = maybeTermToTerm term,
rbody = termToQuery (maybeTermToTerm query) r}

-- An Xcerpt goal consists of head (type Term) and body (type Term)
type UpdGoal = (Maybe Term, Maybe Term)

189

-- Creates an Xcerpt goal given a term (type Term) and a
-- base name (type String) for the fresh variables
createUpdateGoal’ :: Term -> String -> UpdGoal

-- The following function is applied to every child of an
-- update term and ’concatenate’ the results
createUpdateGoal’ e@Elem {children = oldChildren, total = t} base =
let

-- Variable basename for children
childrenBase = getVarName base 0
-- Variable name
freshVar = getVarName base 1
-- Position var name
posVar = getVarName base 2
-- See Xcerpt, Comparison.hs
cmpRoutine = ("compareIntTerm", compareIntTerm)
-- Generates an all optional var Fresh order by position
-- for the goal’s head
headVar = Optional SortAll { variables = [posVar], cmp = cmpRoutine,

template = [(Var freshVar)]}
-- Generates an position var Fresh1 optional var Fresh2
-- for the goal’s body
bodyVar = Optional TPos {pos = (Var posVar), content = (Var freshVar)}
-- Apply createUpdateGoal’ on every child and return a
-- couple of maybe Term lists
newChildren = unzip (mapIdx (\a i -> createUpdateGoal’ a (sb i)) oldChildren 0)

where
sb i = getSubBaseName childrenBase i

-- Children of the goal’s head
headChildren = concatListCond (filterMaybe (fst newChildren)) [headVar] (not t)
-- Children of the goal’s body
bodyChildren = concatListCond (filterMaybe (snd newChildren)) [bodyVar] (not t)

in
-- The goal’s head is total and ordered
(Just e{ordered = True, total = True, children = headChildren},
Just e{children = bodyChildren})

-- For transforming an insert operation: the construct
-- term occurs in the goal’s head and nothing in its body
createUpdateGoal’ (Insert term) _ = (Just term, Nothing)

-- For transforming a delete operation: the query term
-- occurs in the goal’s body and nothing in its head
createUpdateGoal’ (Delete term) _ = (Nothing, Just term)

-- For transforming a replace operation: the construct term
-- occurs in the goal’s head and the query term in its body
createUpdateGoal’ (Replace a b) _ = (Just b, Just a)

-- Variable need to occur in both parts (head and body) of a goal
createUpdateGoal’ (Var s) _ = (Just (Var s), Just (Var s))

190 Paula-Lavinia Pătrânjan

APPENDIX B. UPDATES THROUGH CONSTRUCTION: REWRITING RULES

-- Rest remains unchanged
createUpdateGoal’ t _ = (Just t, Just t)

-- Helper functions are defined next

-- Compares two integer terms
compareIntTerm :: Term -> Term -> Ordering
compareIntTerm (TInt a) (TInt b) = compare a b

-- Returns a dummy term given nothing and the associated term otherwise
maybeTermToTerm :: Maybe Term -> Term
maybeTermToTerm (Just t) = t
maybeTermToTerm Nothing = TOr [] []

-- Creates a dummy framework around term
termToQuery :: Term -> [Resource] -> Query
termToQuery t r = QTerm {resources = r, term = t}

-- Creates a variable name
-- getVarName "Test" 5 = "Test5"
getVarName :: String -> Int -> String
getVarName s i = s ++ show i

-- Creates a sub variable name
-- getSubBaseName "Test5" 3 = "Test5_3"
getSubBaseName :: String -> Int -> String
getSubBaseName s i = s ++ "_" ++ (show i)

-- Creates a base var name
getBaseName :: String
getBaseName = "Fresh_"

Functions defined in module XUtils.ListUtils are used for defining the function createUpdateGoal;
they are given next.

module XUtils.ListUtils where

...

-- Maps a function on array by adding index argument
mapIdx :: (a -> Int -> b) -> [a] -> Int -> [b]
mapIdx f (x:xs) i = (f x i) : (mapIdx f xs (i + 1))
mapIdx _ [] _ = []

-- Returns all Just elements
filterMaybe :: [Maybe a] -> [a]
filterMaybe l = [x | Just x <- l]

-- Concats two lists on codition
concatListCond :: [a] -> [a] -> Bool -> [a]
concatListCond x y True = x ++ y

Paula-Lavinia Pătrânjan 191

concatListCond x y False = x

...

The given Haskell code implements rewriting rules for transforming XChange elementary updates into
corresponding Xcerpt goals. These rules have been implemented for proof-of-concept purposes; they cover
a representative “class” of XChange update terms. Ongoing work concerns testing the implemented rules
to determine to which extent all possible XChange update patterns are covered and to reveal details that
have been possibly neglected.

192 Paula-Lavinia Pătrânjan

LIST OF EXAMPLES

Example 2.1 XML Elements . 14
Example 2.2 XML Attributes . 15
Example 2.3 XML Document Declaration . 16
Example 2.4 XML DTD . 17
Example 2.5 XML ID/IDREF . 18
Example 2.6 XML Namespaces . 18
Example 2.7 XML Tree Representation . 19
Example 2.8 Semistructured Expressions . 20
Example 2.9 HTML . 21
Example 2.10 RDF Statements . 23
Example 2.11 RDF/XML . 23
Example 2.12 SOAP Messages . 26
Example 2.13 XPath Expressions . 28
Example 2.14 XSLT . 28
Example 2.15 XQuery . 29
Example 2.16 Xcerpt Data Terms . 31
Example 2.17 Total vs. Partial Query Specifications . 31
Example 2.18 Ordered vs. Unordered Query Specifications . 32
Example 2.19 Xcerpt Variables . 32
Example 2.20 Xcerpt Variable Restrictions . 33
Example 2.21 Xcerpt Descendant Construct . 33
Example 2.22 Xcerpt Without Construct . 33
Example 2.23 Xcerpt Except Construct . 34
Example 2.24 Xcerpt Optional Construct . 34
Example 2.25 Xcerpt Construct Some . 35
Example 2.26 Xcerpt Construct All . 35
Example 2.27 Xcerpt Construct-Query Rules . 35
Example 2.28 Xcerpt Rule Chaining . 37
Example 2.29 Graph Induced by Query Term . 37
Example 2.30 Rooted Graph Simulation . 38
Example 2.31 Rule Rendering in visXcerpt . 39
Example 4.1 XChange Event Message Notifying an Exhibition 66
Example 4.2 Nesting XChange Event Messages . 67
Example 4.3 XChange Implicit Event Representation . 68
Example 4.4 Simple XChange Atomic Event Query . 70
Example 4.5 Variables Inside XChange Atomic Event Queries 70
Example 4.6 XChange Event Message Notifying a Phone Conference 71
Example 4.7 Variables Outside XChange Atomic Event Queries 71
Example 4.8 Conditions on XChange Atomic Event Queries . 72
Example 4.9 XChange Atomic Event Query Specifying Temporal Restriction 73

193

Example 4.10 XChange Atomic Event Query Detecting Discounts 73
Example 4.11 XChange Event Query Specifying Conjunction (1) 75
Example 4.12 XChange Event Query Specifying Conjunction (2) 75
Example 4.13 XChange Event Query Specifying Conjunction . 76
Example 4.14 XChange Event Query Specifying Temporally Ordered Conjunction (1) 76
Example 4.15 XChange Event Query Specifying Temporally Ordered Conjunction (2) 77
Example 4.16 XChange Event Query Specifying Temporally Ordered Conjunction (3) 77
Example 4.17 XChange Event Query Specifying Temporally Ordered Conjunction 77
Example 4.18 XChange Event Query Specifying Inclusive Disjunction (1) 78
Example 4.19 XChange Event Query Specifying Inclusive Disjunction 78
Example 4.20 XChange Event Query Specifying Exclusion (1) . 79
Example 4.21 XChange Event Query Specifying Exclusion (2) . 80
Example 4.22 XChange Event Query Specifying Exclusion (3) . 80
Example 4.23 XChange Event Query Specifying Event Exclusion 81
Example 4.24 XChange Event Query Specifying Quantification (1) 81
Example 4.25 XChange Event Query Specifying Quantification (2) 82
Example 4.26 XChange Event Query Specifying Repetition (1) 82
Example 4.27 XChange Event Query Specifying Repetition . 83
Example 4.28 Position of Composite Events in an Incoming Event Stream 83
Example 4.29 XChange Event Query Specifying Ranks (1) . 84
Example 4.30 XChange Event Query Specifying Ranks . 85
Example 4.31 XChange Event Query Specifying Multiple Inclusions and Exclusions (1) 85
Example 4.32 Nesting XChange Event Queries . 87
Example 4.33 Conditions on XChange Composite Event Queries 87
Example 4.34 “Illegal” XChange Composite Event Query . 89
Example 4.35 XChange Composite Event Query . 90
Example 4.36 XML Representation of a Composite Event . 92
Example 4.37 XML Representation of a Composite Event (Possible Approach) 93
Example 4.38 Simple XChange Update Term Specifying Insertion (1) 96
Example 4.39 Simple XChange Update Terms Specifying Insertion (2) 97
Example 4.40 Simple XChange Update Terms Specifying Insertion (3) 98
Example 4.41 Simple XChange Update Terms Specifying Insertion (4) 98
Example 4.42 Simple XChange Update Terms Specifying Insertion (5) 99
Example 4.43 Simple XChange Update Term Specifying Deletion (1) 101
Example 4.44 Simple XChange Update Term Specifying Deletion (2) 101
Example 4.45 Simple XChange Update Term Specifying Deletion (3) 101
Example 4.46 Simple XChange Update Term Explaining the Replace Operation 103
Example 4.47 XChange Update Term Converting Prices from Euro to Dollar 104
Example 4.48 Example Motivating a New Language Construct . 104
Example 4.49 Insertion as Root . 106
Example 4.50 Deletion of the Root . 106
Example 4.51 Replacement of the Root . 107
Example 4.52 XChange Elementary Update . 109
Example 4.53 XChange Complex Update Specifying Sequence of Updates 110
Example 4.54 XChange Complex Update Specifying Unordered Conjunction of Updates 111
Example 4.55 XChange Complex Update Specifying Disjunction of Updates 111
Example 4.56 XChange Event-Raising Rule . 115
Example 4.57 XChange Rule for Booking a Flight . 116
Example 4.58 XChange Rule Specifying Sequence of Updates as Action 116
Example 4.59 Deductive Rule for Gathering Information about Hotels 118
Example 4.60 Polarity in an XChange Rule . 121
Example 5.1 Formula Representation of Xcerpt Rules . 137
Example 5.2 Formula Representation of XChange Condition Parts and Deductive Rules 138
Example 5.3 Declarative Semantics of Elementary Updates . 139

194 Paula-Lavinia Pătrânjan

APPENDIX B. UPDATES THROUGH CONSTRUCTION: REWRITING RULES

Example 5.4 Tree Representation of XChange Event Queries (1) 142
Example 5.5 Tree Representation of XChange Event Queries (2) 143
Example 5.6 Flight Reservation Specified as Deductive Rule . 149
Example 7.1 Visual Rendering of XChange Insertion After . 174
Example 7.2 Visual Rendering of XChange Insertion Before . 174
Example 7.3 Visual Rendering of XChange Delete . 175
Example 7.4 Visual Rendering of XChange Replace . 175

Paula-Lavinia Pătrânjan 195

INDEX

Absolute temporal restrictions, 72, 74
Active database systems prototypes, 42
Active database systems, 41
Active View, 51
Active XQuery, 50
Answer to event query, 91, 127
Answering relation, 129
Application scenario, 4
Atomic event, 62
Atomic event query, 69

Bounded event lifespan, 69, 141
Bounded event lifespan (proof), 134
Business Rules, 166

Communication of data, 24
Complex update, 109
Complex updates, 10
Composite event, 41, 63
Composite event query, 73
Conjunction event query, 75
Construct term, 35
Coupling modes, 44

Data on the Web, 14
Data term, 31
Declarative semantics, 125
Deductive rules, 118
Deletion specification, 100

Elementary update, 108
Elementary updates, 10
Eu-Rent, 167
Evaluation of event queries, 141
Evaluation of Web queries, 146
Event, 8, 62
Event stream, 127
Event messages, 64
Event propagation, 10
Event queries, 10, 68
Event query vs. Web query, 69
Event sequence, 127
Event-raising rules, 114

Evolution of data, 4
Exclusion event query, 79
Execution of updates, 147
Extensible Markup Language, 14
Extensible Stylesheet Language, 28

Hypertext Markup Language, 21
Hypertext Transfer Protocol, 25

Inclusive disjunction event query, 78
Incremental evaluation, 141
Insertion specification, 96
Interpretation, 137

Language constructs, 69, 87
Legal event query, 89
Logical variables, 69, 141
Lorel, 47

Markup, 14
Model theoretical semantics, 126
Model theoretical semantics, 136
Multiple inclusion and exclusion event query, 85

Nesting event queries, 86
Non-structural condition, 87

Occurrence event query, 81
OntoView, 48

Peer-to-peer communication, 24
Polarity, 119
Pull strategy, 8
Push strategy, 8

Quantification event query, 81
Query term, 31, 70

Range restriction, 119
Rank event query, 83
Reactive languages, 48
Reactive rules, 11, 42
Reactivity on the Web, 4
Relative temporal restrictions, 74

196

INDEX

Releasing events, 145
Repetition event query, 82
Replace specification, 102
Resource Description Framework, 22
Rule chaining, 37
Rule components, 42
Rule prioritisation, 44
Rule priority, 140
Rules, 114

Satisfaction, 137
Semantic Web, 13
Semantics of rule execution, 44
Semistructured data, 20
Simple Object Access Protocol, 26
Simple Semantic Web Scenario, 164
Simulation Unification, 37
Situation, 8, 62
Standard Generalised Markup Language, 20
Substitution, 128
Substitution set, 128

Temporal restrictions, 73
Temporally ordered conjunction event query, 76
Transaction, 11
Transaction rules, 115
Transaction specification, 112
Travel Organisation Scenarios, 153
Triggers, 42

Update languages, 45
Update term, 95
Updates, 10
Updates through construction, 149
Updating the root, 105

Variables in event queries, 86
visXcerpt, 38
Volatile vs. persistent data, 9
VOXX, 39

Web query languages, 27
Web resource, 3
Web site, 4
WebVigiL, 52
World Wide Web, 13
World Wide Web Consortium, 13, 153

Xcerpt, 29
Xcerpt rules, 35
XChange program, 125
XML document, 15
XML Path Language, 28
XML Schema, 17
XML-RL Update Language, 46

XPathLog, 46
XQuery, 29
XUpdate, 46

Paula-Lavinia Pătrânjan 197

INDEX

198 Paula-Lavinia Pătrânjan

BIBLIOGRAPHY

[1] Tamino XML Server. website. http://www.softwareag.com/tamino/ .

[2] Working Draft: Database Language SQL (SQL3). ISO/IEC DBL MAD-007, June 1996.
http://www.inf.fu-berlin.de/lehre/SS94/einfdb/SQL3/sqlindex.html .

[3] World Wide Web Consortium (W3C). website, 2002. http://www.w3.org/.

[4] JTC 1/SC 34. Standard Generalized Markup Language (SGML). International Organization for
Standardization (ISO), 1986. ISO 8879:1986.

[5] Serge Abiteboul, Bernd Amann, Sophie Cluet, Adi Eyal, Laurent Mignet, and Tova Milo. Active
Views for Electronic Commerce. In Proc. of 25th Int. Conf. on Very Large Databases, Edinburgh,
Scotland, 1999.

[6] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, 2000.

[7] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet Wiener. The Lorel Query
Language for Semistructured Data. In Proc. Int. Journal on Digital Libraries, April 1997.

[8] Asaf Adi and Opher Etzion. Amit – the Situation Manager. In Very Large Data Bases Journal,
volume 13, pages 177–203, 2004.

[9] Rakesh Agrawal and Narain H. Gehani. ODE (Object Database and Environment): The Language
and the Data Model. pages 36–45, 1989.

[10] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis, and Karsten
Tolle. The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc. 2nd
International Workshop on the Semantic Web (SemWeb 2001) at WWW’01, Hong Kong, May 2001.

[11] José Júlio Alferes, Ricardo Amador, and Wolfgang May. A General Language for Evolution and
Reactivity in the Semantic Web. In Proceedings of Third Workshop on Principles and Practice of
Semantic Web Reasoning, Dagstuhl, Germany. INRIA, September 2005.

[12] José Júlio Alferes, Wolfgang May, and François Bry. Towards Generic Query, Update, and Event
Languages for the Semantic Web. In Workshop on Principles and Practice of Semantic Web Rea-
soning. Springer, 2004.

[13] James F. Allen. Maintaining Knowledge about Temporal Intervals. In Communications of the ACM,
volume 26, pages 832–843, 1983.

[14] James F. Allen. Time and Time Again: The Many Ways to Represent Time. In International Journal
of Intelligent Systems, volume 6(4), pages 341–355, July 1991.

[15] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT Press, 2004.

199

http://www.softwareag.com/tamino/
http://www.inf.fu-berlin.de/lehre/SS94/einfdb/SQL3/sqlindex.html
http://www.w3.org/

BIBLIOGRAPHY

[16] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider.
The Description Logic Handbook. Cambridge University Press, 2003.

[17] James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Flavours of XChange, a
Rule-Based Reactive Language for the (Semantic) Web. 2005.

[18] James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan. Reactivity on the Web:
Event Queries in XChange. 2005.

[19] James Bailey, François Bry, and Paula-Lavinia Pătrânjan. Composite Event Queries for Reactivity
on the Web. In Proc. of 14th Int. World Wide Web Conference, Chiba, Japan, May 2005. ACM.

[20] James Bailey and Szabolcs Mikulás. Expressiveness Issues and Decision Problems for Active
Database Event Queries. In ICDT ’01: Proceedings of the 8th International Conference on Database
Theory, pages 68–82, London, UK, 2001. Springer-Verlag.

[21] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An Event-Condition-Action Language
for XML. In Int. World Wide Web Conf., Honolulu, Hawaii, USA, May 2002.

[22] Sacha Berger and François Bry. Towards Static Type Checking of Web Query Language. In Pro-
ceedings of 17. Workshop über Grundlagen von Datenbanken, Wörlitz, Germany. GI, May 2005.

[23] Sacha Berger, François Bry, Oliver Bolzer, Tim Furche, Sebastian Schaffert, and Christoph Wieser.
Xcerpt and visXcerpt: Twin Query Languages for the Semantic Web. In Proceedings of 3rd Inter-
national Semantic Web Conference, Hiroshima, Japan, 2004.

[24] Sacha Berger, François Bry, Tim Furche, Paula-Lavinia Pătrânjan, and Sebastian Schaffert. Data
Retrieval and Reactivity on the (Semantic) Web: A Deductive Approach. In Collaboration Workshop
for the Future Semantic Web, at 2nd European Semantic Web Conference (ESWC 2005), May 2005.

[25] Sacha Berger, François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, Paula-Lavinia Pătrânjan, Se-
bastian Schaffert, Uta Schwertel, and Stephanie Spranger. Reasoning on the Web: Language Proto-
types and Perspectives. In Proc. of European Workshop on the Integration of Knowledge, Semantics
and Digital Media Technology, pages 157–164, London, United Kingdom, November 2004. The
Institution of Electrical Engineers, IEE.

[26] Sacha Berger, François Bry, and Sebastian Schaffert. A Visual Language for Web Querying and
Reasoning. In Proc. of Workshop on Principles and Practice of Semantic Web Reasoning, Mumbai,
India, volume 2901 of LNCS, 2003.

[27] Sacha Berger, François Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In Int. Conf. on Very Large
Databases (VLDB), 2003.

[28] Brian Berliner. CVS II: Parallelizing Software Development. In Proc. of the Winter 1990 USENIX
Conference, Washington, DC, USA, January 1990.

[29] Martin Bernauer, Gerti Kappel, and Gerhard Kramler. Composite Events for XML. In 13th Int.
Conf. on World Wide Web. ACM, 2004.

[30] Tim Berners-Lee. A Strawman Unstriped Syntax for RDF in XML (online), May 1999.

[31] Tim Berners-Lee. Weaving the Web – The Past, Present and Future of the World Wide Web by its
Inventor. Orion Publishing Group, London, UK, 1999.

[32] Tim Berners-Lee, James Handler, and Ora Lassila. The Semantic Web. Scientific American, May
2001.

[33] Oliver Bolzer, François Bry, Tim Furche, Sebastian Kraus, and Sebastian Schaffert. Development
of Use Cases, Part I. 2005. Deliverable.

200 Paula-Lavinia Pătrânjan

BIBLIOGRAPHY

[34] Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano Ceri. Active XQuery. In 18th Int.
Conf. on Data Engineering (ICDE2002), San Jose, California, February 26 - March 01 2002.

[35] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Active Rules for XML: A New Paradigm for
E-Services. In First Workshop on Technologies for E-Services, colocated with VLDB2000, Septem-
ber 2000.

[36] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Pushing Reactive Services to XML Reposi-
tories using Active Rules. In World Wide Web, pages 633–641, 2001.

[37] Anthony J. Bonner and Michael Kifer. A Logic for Programming Database Transactions. In Jan
Chomicki and Gunter Saake, editors, Logics for Databases and Information Systems. Kluwer Aca-
demic Publishers, 1998.

[38] Marco Brambilla, Stefano Ceri, Sara Comai, and Christina Tziviskou. Exception Handling in
Workflow-Driven Web Applications. In WWW ’05: Proceedings of the 14th International Con-
ference on World Wide Web, pages 170–179, New York, NY, USA, 2005. ACM Press.

[39] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, and John Cowan.
Extensible markup language (XML) 1.1. W3C recommendation, World Wide Web Consortium
(W3C), February 2004.
http://www.w3.org/TR/2004/REC-xml11-20040204/ .

[40] Jeen Broekstra, Michel Klein, Stefan Decker, Dieter Fensel, and Ian Horrocks. Adding Formal
Semantics to the Web: Building on Top of RDF Schema, 2000.

[41] François Bry, Wlodzimierz Drabent, and Jan Maluszynski. On Subtyping of Tree-structured Data
A Polynomial Approach. In Proceedings of Workshop on Principles and Practice of Semantic Web
Reasoning, St. Malo, France (6th–10th September 2004). REWERSE, Springer-Verlag, 2004.

[42] François Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian Schaffert, and Sacha Berger.
Querying the Web Reconsidered: Design Principles for Versatile Web Query Languages. Journal of
Semantic Web and Information Systems (IJSWIS), 1(2), 2005.

[43] François Bry, Tim Furche, Paula-Lavinia Pătrânjan, and Sebastian Schaffert. Data Retrieval and
Evolution on the (Semantic) Web: A Deductive Approach. In Workshop on Principles and Practice
of Semantic Web Reasoning, volume 3208, pages 34–49. Springer, 2004.

[44] François Bry, Jutta Haußer, Frank-André Rieß, and Stephanie Spranger. Cultural Calendars for Pro-
gramming and Querying. In Proceedings of 1st Forum on the Promotion of European and Japanese
Culture in Cyber-Societies and Virtual Reality, Laval, France, April 2005.

[45] François Bry, Bernhard Lorenz, and Stephanie Spranger. Calendars and Topologies as Types - A
Programming Language Approach to Modelling Mobile Applications. In Proceedings of 9th In-
ternational Conference on Knowledge-Based Intelligent Information and Engineering System, Mel-
bourne, Australia. Springer-Verlag, September 2005.

[46] François Bry and Massimo Marchiori. Ten Theses on Logic Languages for the Semantic Web.
In Proc. of W3C Workshop on Rule Languages for Interoperability, Washington D.C., USA, April
2005. W3C.

[47] François Bry and Paula-Lavinia Pătrânjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In 20th Annual ACM Symposium on Applied Computing (SAC’2005),
volume 2, pages 1645–1649. ACM Press, March 2005.

[48] François Bry and Paula-Lavinia Pătrânjan. Reactivity on the Web Paradigms and Applications of
the Language XChange. 2005.

Paula-Lavinia Pătrânjan 201

http://www.w3.org/TR/2004/REC-xml11-20040204/

BIBLIOGRAPHY

[49] François Bry, Paula-Lavinia Pătrânjan, and Sebastian Schaffert. Poster Presentation: Xcerpt and
XChange - Logic Programming Languages for Querying and Evolution on the Web. In Proc. of
19th Int. Conf. on Logic Programming, volume 3132 of LNCS, pages 450–451, St. Malo, France,
September 2004. Springer.

[50] François Bry, Paula-Lavinia Pătrânjan, and Sebastian Schaffert. Xcerpt and XChange: Deductive
Languages for Data Retrieval and Evolution on the Web. In Proc. of Workshop on Semantic Web
Services and Dynamic Networks, volume 51 of LNI, pages 562–568, Ulm, Germany, September
2004. GI.

[51] François Bry, Frank-André Rieß, and Stephanie Spranger. CaTTS: Calendar Types and Constraints
for Web Applications. In Proc. of 14th Int. World Wide Web Conference, Chiba, Japan, 2005. ACM.

[52] François Bry and Peer Kröger. A Computational Biology Database Digest: Data, Data Analysis,
and Data Management. Distributed and Parallel Databases, 13(1):7–42, 2002.

[53] François Bry and Sebastian Schaffert. A Gentle Introduction into Xcerpt, a Rule-based Query and
Transformation Language for XML. In Proc. Int. Workshop on Rule Markup Languages for Business
Rules on the Semantic Web, June 2002. (invited article).

[54] François Bry and Sebastian Schaffert. The XML Query Language Xcerpt: Design Principles, Ex-
amples, and Semantics. In Proc. 2nd Int. Workshop ”Web and Databases”, LNCS 2593, Erfurt,
Germany, October 2002. Springer-Verlag.

[55] François Bry and Sebastian Schaffert. Towards a Declarative Query and Transformation Language
for XML and Semistructured Data: Simulation Unification. In Proc. Int. Conf. on Logic Program-
ming (ICLP), LNCS 2401. Springer-Verlag, 2002.

[56] Martin Bryan. SGML and HTML Explained. Addison Wesley, 1997.

[57] Alejandro P. Buchmann, Juergen Zimmermann, José A. Blakeley, and David L. Wells. Building an
Integrated Active OODBMS: Requirements, Architecture, and Design Decisions. In Proc. of 11th
Int. Conference on Data Engineering, pages 117–128. IEEE Computer Society Press, 1995.

[58] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca.
XML-GL: A Graphical Language for Querying and Restructuring XML Documents. In WWW ’99:
Proceedings of the Eighth International Conference on World Wide Web, pages 1171–1187, New
York, NY, USA, 1999. Elsevier North-Holland, Inc.

[59] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, and Letizia Tanca. Complex Queries
in XML-GL. In SAC ’00: Proceedings of the 2000 ACM Symposium on Applied Computing, pages
888–893, New York, NY, USA, 2000. ACM Press.

[60] Stefano Ceri, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca. Active Rule Management
in Chimera. In Active Database Systems: Triggers and Rules For Advanced Database Processing,
pages 151–176. Morgan Kaufmann, 1996.

[61] Stefano Ceri and Rainer Manthey. Chimera: A Model and Language for Active DOOD Systems. In
East/West Database Workshop, pages 3–16, 1994.

[62] Sharma Chakravarthy, Jyoti Jacob, Naveen Pandrangi, and Anoop Sanka. WebVigiL: An Approach
to Just-In-Time Information Propagation in Large Network-Centric Environments. In Proc. of 2nd
Int. Workshop on Web Dynamics in Conjunction with Eleventh Int. World Wide Web Conference,
Honolulu, Hawaii, 2002.

[63] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Composite Events for Ac-
tive Databases: Semantics, Contexts and Detection. In Jorge B. Bocca, Matthias Jarke, and Carlo
Zaniolo, editors, Proc. of 20th International Conference on Very Large Data Bases, pages 606–617,
Santiago de Chile, Chile, September 1994. Morgan Kaufmann.

202 Paula-Lavinia Pătrânjan

BIBLIOGRAPHY

[64] Sharma Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Language for
Active Databases. Data Knowledge Engineering, 14(1):1–26, 1994.

[65] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis Papakon-
stantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS Project: Integration of Heteroge-
neous Information Sources. In 16th Meeting of the Information Processing Society of Japan, pages
7–18, Tokyo, Japan, 1994.

[66] Panos Kypros Chrysanthis and Krithi Ramamritham. Advances in Concurrency Control and Trans-
action Processing. IEEE Computer Society Press, September 1996.

[67] James Clark. Comparison of SGML and XML. Technical report, World Wide Web Consortium
(W3C), 1997.

[68] James Clark and Makoto Murata. RELAX NG Specification. http://relaxng.org/, 2001.
ISO/IEC 19757-2:2003.

[69] Sara Comai and Letizia Tanca. Termination and Confluence by Rule Prioritization. IEEE Transac-
tions on Knowledge and Data Engineering, 15(2):257–270, 2003.

[70] Stefan Conrad. A Logic Primer. In Jan Chomicki and Gunter Saake, editors, Logics for Databases
and Information Systems. Kluwer Academic Publishers, 1998.

[71] Mariano P. Consens and Alberto O. Mendelzon. GraphLog: A Visual Formalism for Real Life
Recursion. In PODS ’90: Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 404–416, New York, NY, USA, 1990. ACM Press.

[72] DAML Project, http://www.daml.org/language/. The Ontology Language DAML+OIL, 2001.

[73] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A Query Language
for XML. In Eighth Int. World Wide Web Conference, 1999.

[74] Klaus R. Dittrich and Stella Gatziu. Aktive Datenbanksysteme, Konzepte und Mechanismen. Internat.
Thompson Publ., 1996.

[75] Chris Dornan, Isaac Jones, and Simon Marlow. Alex User Guide.
http://www.haskell.org/alex/ .

[76] Michael Eckert. Reactivity on the Web: Event Queries and Composite Event Detection in XChange.
Master’s thesis, Institute for Informatics, University of Munich, Germany, 2005.

[77] Ahmed K. Elmargarmid. Database Transaction Models for Advanced Applications. Data Manage-
ment Systems. Morgan Kaufmann, April 1992.

[78] Tim Furche et. al. Survey over Existing Query and Transformation Languages. Technical report,
EU FP6 Project Reasoning on the Web with Rules and Semantics (REWERSE), 2004.

[79] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid. Enabling Scalable Virtual
Organizations. In Int. Journal of Supercomputer Applications, 2001.

[80] Piero Fraternali and Letizia Tanca. A Structured Approach for the Definition of the Semantics of
Active Databases. ACM Transactions on Database Systems (TODS), 20(4):414–471, 1995.

[81] Norbert E. Fuchs and Uta Schwertel. Reasoning in Attempto Controlled English. In Workshop on
Principles and Practice of Semantic Web Reasoning, Lecture Notes in Computer Science, Mumbai,
India, 2003. Springer.

[82] Stella Gatziu and Klaus R. Dittrich. SAMOS: An Active Object-Oriented Database System. IEEE
Quarterly Bulletin on Data Engineering, Special Issue on Active Databases, 15(1-4):23–26, Decem-
ber 1992.

Paula-Lavinia Pătrânjan 203

http://relaxng.org/
http://www.haskell.org/alex/

BIBLIOGRAPHY

[83] Stella Gatziu and Klaus R. Dittrich. Detecting Composite Events in Active Database Systems Using
Petri Nets. In RIDE-ADS, pages 2–9, 1994.

[84] Stella Gatziu, Andreas Geppert, and Klaus R. Dittrich. Integrating Active Concepts into an Object-
Oriented database System. In Workshop on Database Programming Languages, pages 399–415,
1991.

[85] Narain Gehani, H. Jagadish, and Oded Shmueli. Compose: A System for Composite Event Specifi-
cation and Detection, 1994.

[86] Narain H. Gehani and H. V. Jagadish. Ode as an Active Database: Constraints and Triggers. In Proc.
of 17th Conference on Very Large Data Bases, Los Altos, Barcelona, 1991. Morgan Kaufmann.

[87] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. Composite Event Specification in Active
Databases: Model and Implementation. In Proceedings of the 18th International Conference on
Very Large Databases, 1992.

[88] Charles F. Goldfarb and Paul Prescod. The XML Handbook (Second Edition). Prentice Hall, 2000.

[89] IETF. Internationalized Resource Identifiers (IRIs), October 2003. Draft 5,
http://www.w3.org/International/iri-edit/draft-duerst-iri-05.txt .

[90] Infozone, http://www.infozone-group.org. Infozone Group, 2002.

[91] Ulrike Jaeger and Johann Christoph Freytag. An Annotated Bibliography on Active Databases.
SIGMOD Record, 24(1):58–69, 1995.

[92] Rick Jelliffe. The Schematron Assertion Language 1.5. Academia Sinica Computing Centre, 2002.
http://xml.ascc.net/resource/schematron/ .

[93] Hao Jin and Curtis Dyreson. Sanitizing using Metadata in MetaXQuery. In 20th Annual ACM
Symposium on Applied Computing (SAC’2005). ACM Press, 2005.

[94] Michiko Kasuya. Teaching Features of the Stream of Speech in Japanese Classrooms. Technical
report, Open Learning Program, University of Birmingham, 1999.

[95] Michel Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanoff. OntoView: Comparing and
Versioning Ontologies. In Collected Posters of First Int. Semantic Web Conf. (ISWC 2002), Sardinia,
Italy, 2002.

[96] Michel Klein and Natasha F. Noy. A Component-Based Framework for Ontology Evolution. In
Proc. of the Workshop on Ontologies and Distributed Systems (IJCAI’03), Acapulco, Mexico, 2003.

[97] Kevin Kline and Daniel Kline. SQL in a Nutshell. O’Reilly Associates, 2000.

[98] Sebastian Kraus. Use Cases für Xcerpt: Eine positionelle Anfrage- und Transformationssprache für
das Web. Diplomarbeit/diploma thesis, Institute of Computer Science, LMU, Munich, 2004.

[99] Tim Berners Lee, Roy Fielding, and Henrik Frystyk. Hypertext Transfer Protocol (HTTP) 1.0.
Internet Informational RFC 1945, 1996.

[100] Tim Berners Lee, Roy Fielding, Henrik Frystyk, Jim Gettys, and Jeffrey C. Mogul. Hypertext
Transfer Protocol (HTTP) 1.1. Internet Informational RFC 2068, 1997.

[101] Patrick Lehti. Design and Implementation of a Data Manipulation Processor for an XML Query
Language. Master’s thesis, Technische Universität Darmstadt, Germany, August 2001.

[102] Mark Levene and Alexandra Poulovassilis, editors. Web Dynamics - Adapting to Change in Content,
Size, Topology and Use. Springer, 2004.

204 Paula-Lavinia Pătrânjan

http://www.w3.org/International/iri-edit/draft-duerst-iri-05.txt
http://xml.ascc.net/resource/schematron/

BIBLIOGRAPHY

[103] Mengchi Liu. A Logical Foundation for XML. In Proc. of the 14th Int. Conf. on Advanced Infor-
mation Systems Engineering (CAISE’02), Toronto, Canada, 2002.

[104] Mengchi Liu and Tok Wang Ling. Towards Declarative XML Querying. In Proc. of the 3rd Int.
Conf. on Web Information System Engineering (WISE 2002), Singapore, 2002.

[105] Mengchi Liu, Li Lu, and Guoren Wang. A Declarative XML-RL Update Language. In Proc. Int.
Conf. on Conceptual Modeling (ER 2003), LNCS 2813. Springer-Verlag, 2003.

[106] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1993.

[107] Simon Marlow and Andy Gill. Happy User Guide. http://www.haskell.org/happy/ .

[108] Wolfgang May. A Logic-Based Approach to XML Data Integration. Habilitationsschrift, 2001.

[109] Wolfgang May and Erik Behrends. On an XML Data Model for Data Integration. In Proc. Int.
Workshop on Foundations of Models and Languages for Data and Objects, Viterbo, Italy, September
2001.

[110] Dennis McCarthy and Umeshwar Dayal. The Architecture of an Active Database Management
System. In Proc. of the 1989 ACM SIGMOD Int. Conference on Management of Data, pages 215–
224, New York, NY, USA, 1989. ACM Press.

[111] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas Quass, and Jennifer Widom. Lore: a
Database Management System for Semistructured Data. SIGMOD Rec., 26(3):54–66, 1997.

[112] Peter Naur. Revised Report an the Algorithmic Language ALGOL60. In Communications of the
ACM, Vol.3, No.5, May 1960.

[113] Orbeon, http://www.orbeon.com/oxf/doc/processors-xupdate/. XUpdate Processor.

[114] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object Exchange across
Heterogeneous Information Sources. In P. S. Yu and A. L. P. Chen, editors, 11th Conference on
Data Engineering, pages 251–260, Taipei, Taiwan, 1995. IEEE Computer Society.

[115] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-Condition-Action Rule
Languages for the Semantic Web. In Workshop on Semantic Web and Databases, Berlin, September
2003.

[116] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-Condition-Action Rules
on RDF Metadata in P2P Environments. In Proc. 2nd Workshop on Metadata Management in Grid
and P2P Systems (MMGPS): Models, Services and Architectures, London, UK, December 2004.

[117] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. RDFTL: An Event-Condition-
Action Language for RDF. In Proc. 3rd Hellenic Data Management Symposium (HDMS’04),
Athens, Greece, June 2004.

[118] George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. RDFTL: An Event-Condition-
Action Language for RDF. In Proc. 3rd Web Dynamics Workshop at WWW’04, New York, US, May
2004.

[119] Norman W. Paton. Active Rules in Database Systems. Springer, 1999.

[120] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of programming languages (POPL
1996), pages 295–308. ACM Press, 1996.

[121] Emmanuel Pietriga, Jean-Yves Vion-Dury, and Vincent Quint. VXT: A Visual Approach to XML
Transformations. In DocEng ’01: Proceedings of the 2001 ACM Symposium on Document Engi-
neering, pages 1–10, New York, NY, USA, 2001. ACM Press.

Paula-Lavinia Pătrânjan 205

http://www.haskell.org/happy/

BIBLIOGRAPHY

[122] Jon Postel and Joyce Reynolds. File Transfer Protocol (FTP). Internet Informational RFC 959,
Network Working Group, 1985.

[123] Mathieu Roger, Ana Simonet, and Michel Simonet. Toward Updates in Description Logics. In Proc.
Int. Workshop on Description Logics (DL2002). Ian Horrocks and Sergio Tessaris, editors, 2002.

[124] Arnon Rosenthal, Upen S. Chakravarthy, Babara T. Blaustein, and José Blakely. Situation Moni-
toring for Active Databases. In Proc. of the 15th Int. Conference on Very Large Data Bases, pages
455–464, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[125] Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. Dis-
sertation, University of Munich, Germany, December 2004.

[126] Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Practical Introduction to
Xcerpt. In Int. Conf. Extreme Markup Languages, Montreal, Quebec, Canada, 2004.

[127] Manfred Schmidt-Schauß and Gert Smolka. Artificial Intelligence. Attributive Concept Descriptions
with Complements. Elsevier Science Publ. Ltd, 1991.

[128] Scarlet Schwiderski. Monitoring the Behaviour of Distributed Systems. Dissertation, University of
Cambridge, United Kingdom, April 1996.

[129] Sesame: A Generic Architecture for Storing and Querying RDF, LNCS, Sardinia, Italy, 2002.
Springer.

[130] Thomas Sindt. Formal Operations for Ontology Evolution. In Proc. Int. Conf. on Emerging Tech-
nologies (ICET’03), Minneapolis, Minnesota (USA), August 2003.

[131] Adam Souzis. RxML 1.0 Specification (online), 2004.

[132] Stanford University, http://www-db.stanford.edu/lore/. The Lore Project, 1995-2000.

[133] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating XML. In Proc.
ACM SIGMOD 2001, Santa Barbara, California, USA, May 2001.

[134] Jean Thierry-Mieg and Richard Durbin. Syntactic Definitions for the ACeDB Data Base Manager.
Technical report, MRC-LMB xx.92, MRC Laboratory for Molecular Biology, Cambridge, 1992.

[135] Simon Thompson. Haskell: The Art of Functional Programming. Addison-Wesley, second edition,
1999.

[136] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, volume 1. Computer
Science Press, 1988.

[137] University of Freiburg, http://www.informatik.uni-freiburg.de/ dbis/florid/. The Florid System.

[138] University of Trier, http://www.informatik.uni-trier.de/ ley/db/. DBLP Bibliography.

[139] Jennifer Widom. The Starburst Rule System: Language Design, Implementation, and Applications.
IEEE Quarterly Bulletin on Data Engineering, Special Issue on Active Databases, 15(1-4):15–18,
1992.

[140] Jennifer Widom. The Starburst Active Database Rule System. Knowledge and Data Engineering,
8(4):583–595, 1996.

[141] Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann, 1996.

[142] Erik Wilde. Wilde’s WWW: Technical Foundations of the World Wide Web. Springer, 1999.

[143] Niklaus Wirth. Extended Backus-Naur Form (EBNF), 1996. ISO/IEC 14977:1996(E).

206 Paula-Lavinia Pătrânjan

BIBLIOGRAPHY

[144] Wolfgang May. The LoPiX System. University of Goettingen, http://www.dbis.informatik.uni-
goettingen.de/lopix/.

[145] World Wide Web Consortium (W3C). Web Naming and Addressing: URIs, URLs, Website,
http://www.w3.org/Addressing/ .

[146] World Wide Web Consortium (W3C). Cascading Style Sheets (CSS), December 1996. W3C Rec-
ommendation, http://www.w3.org/Style/CSS/ .

[147] World Wide Web Consortium (W3C). HTML 4.01: The HyperText Markup Language, 1999. W3C
Recommendation, http://www.w3.org/TR/html401/ .

[148] World Wide Web Consortium (W3C), http://www.w3.org/RDF/. Resource Description Framework
(RDF), 1999.

[149] World Wide Web Consortium (W3C), http://www.w3.org/TR/xpath. XML Path Language (XPath),
1999.

[150] World Wide Web Consortium (W3C), http://www.w3.org/TR/xslt/. XSL Transformations (XSLT),
1999.

[151] World Wide Web Consortium (W3C), http://www.w3.org/TR/DOM-Level-2-Events/. Document
Object Model (DOM) Level 2 Events Specification, 2000.

[152] World Wide Web Consortium (W3C), http://www.w3.org/TR/soap. Simple Object Access Protocol
(SOAP) 1.1, 2000.

[153] World Wide Web Consortium (W3C). XHTML 1.0: The Extensible HyperText Markup Language,
2000. W3C Recommendation, http://www.w3.org/TR/xhtml1/ .

[154] World Wide Web Consortium (W3C), http://www.w3.org/TR/xsl/. Extensible Stylesheet Language
(XSL), 2001.

[155] World Wide Web Consortium (W3C). XML Linking Language (XLink), June 2001. W3C Recom-
mendation, http://www.w3.org/TR/xlink/ .

[156] World Wide Web Consortium (W3C). XML Schema Part 0: Primer, 2001. W3C Recommendation,
http://www.w3.org/TR/xmlschema-0/ .

[157] World Wide Web Consortium (W3C). XML Schema Part 2: Datatypes, 2001. W3C Recommenda-
tion, http://www.w3.org/TR/xmlschema-2/ .

[158] World Wide Web Consortium (W3C), http://www.w3.org/TR/xquery/. XQuery: A Query Language
for XML, February 2001.

[159] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.1, February 2004.
W3C Recommendation, http://www.w3.org/TR/2004/REC-xml11-20040204/ .

[160] World Wide Web Consortium (W3C). Namespaces in XML 1.1, February 2004. W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-xml-names11-20040204/ .

[161] World Wide Web Consortium (W3C), http://www.w3.org/TR/owl-features/. OWL Web Ontology
Language, 2004.

[162] World Wide Web Consortium (W3C). RDF Vocabulary Description Language, February 2004.
W3C Recommendation, http://www.w3.org/TR/rdf-schema/ .

[163] World Wide Web Consortium (W3C). RDF/XML Syntax Specification (Revised), February 2004.
W3C Recommendation, http://www.w3.org/TR/rdf-syntax-grammar/ .

Paula-Lavinia Pătrânjan 207

http://www.w3.org/Addressing/
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml-names11-20040204/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-syntax-grammar/

BIBLIOGRAPHY

[164] Detlef Zimmer and Rainer Unland. On the Semantics of Complex Events in Active Database Man-
agement Systems. In Proc. of the 15th International Conference on Data Engineering, pages 392–
399. IEEE Computer Society Press, 1999.

[165] Juergen Zimmermann and Alejandro P. Buchmann. REACH. In Active Rules in Database Systems,
pages 263–277. 1999.

208 Paula-Lavinia Pătrânjan

About the Author

Ms. Paula-Lavinia Pătrânjan, born on June 27, 1978 in Cluj-Napoca, Romania, received her B.Sc. in
Computer Science in 2001 at the Babeş-Bolyai University, Cluj-Napoca, Romania. One year later, at the
same university, she received her M.Sc. in Intelligent Systems.

In Autumn 2002, she has obtained a grant of the German Foundation for Research (Deutsche Forschungs-
gemeinschaft, DFG) in the framework of the Ph.D. programme “Logic in Computer Science”, a joint pro-
gramme between the University of Munich (Ludwig-Maximilians-Universität München) and the Institute
of Technology Munich (Technische Universität München).

The three-years grant received has given her the possibility to investigate promising research issues
at the Institute for Informatics, University of Munich, under the supervision of Prof. Dr. François Bry.
Assisted by her supervisor, her research work has yielded the proposal found in this Ph.D. thesis. During
the last years Ms. Paula-Lavinia Pătrânjan has published a couple of scientific articles in proceedings of
conferences such as the Symposium of Applied Computing or the World Wide Web Conference.

Ms. Paula-Lavinia Pătrânjan is also actively involved in the Working Group I5 “Evolution and Reac-
tivity” of the Network of Excellence “Reasoning on the Web with Rules and Semantics” (REWERSE), an
EU FP6 project funded by the European Commission and by the Swiss Federal Office for Education and
Science.

Ms. Paula-Lavinia Pătrânjan is very interested in dissemination and standardisation of research out-
comes. Along this line, she is one of the co-organisers of the Workshop ’Reactivity on the Web’ to be held
as an official satellite event at the International Conference on Extending Database Technology (EDBT
2006) in Munich, Germany.

209

	I Introduction
	Motivation and Outline
	Context
	Motivating Application Scenarios
	Travel Organisation

	Concepts
	Events
	Communication Strategies: Push and Pull
	Volatile vs. Persistent Data
	Event Queries
	Raising Events
	Updates and Transactions
	Reactive Rules

	Outline

	Preliminaries
	World Wide Web
	Data on the Web
	Extensible Markup Language (XML)
	XML Ancestors
	XML Friends

	Communicating Data on the Web
	Peer-to-Peer Model
	Communication Protocol
	XML Exchange Units

	Querying Web Data
	Web Query Languages: An Overview
	The Web Query Language Xcerpt

	Related Work
	Active Database Systems
	Rule Components
	Semantics of Rule Execution

	Update Languages
	Update Languages for the Web
	Special Purpose Tools for Ontology Evolution

	Reactive Languages
	Reactive Languages for the Web
	Reactive Languages for the Semantic Web

	II The Language XChange
	Paradigms. Concepts. Syntax
	Paradigms
	Event vs. Event Query
	Volatile vs. Persistent Data
	Rule-Based Language
	Pattern-Based Approach
	Transactional Reactivity
	Communication Paradigms
	Composite Events Defined through Event Queries
	Processing of Events
	Relationship Between Reactive and Query Languages
	Language Syntax

	Events
	Atomic Events
	Composite Events
	Events' Occurrence Time

	Event Messages
	Event Messages' Parameters
	Implicit Events' Representation

	Event Queries
	Essential Traits
	Atomic Event Queries
	Composite Event Queries
	Legal Event Queries
	Answers to Event Queries

	Web Queries
	Update Patterns
	Update Terms
	Insertion Specification
	Deletion Specification
	Replacement Specification
	Special Case -- Updating the Root

	Complex Updates as Transactions
	Elementary Updates
	Complex Updates
	Transactions

	Rules
	Event-Raising Rules
	Transaction Rules
	Deductive Rules
	Range Restriction

	Semantics
	Declarative Semantics
	Semantics of Event Queries
	Semantics of Web Queries: Underlying Ideas
	Semantics of Updates

	Operational Semantics
	Evaluation of Event Queries
	Evaluation of Web Queries: Basic Ideas
	Execution of Updates

	Use Cases
	Travel Organisation
	Initial Planning Scenario
	Adapting to Changes Scenario

	Flavour of Further Use Cases
	E-Book Store -- A Simple Semantic Web Scenario
	EU-Rent -- Business Rules for Reactivity on the Web

	III Conclusion
	Conclusion
	Contributions
	Perspectives
	Transaction Management on the Web
	Generation of XChange Rules
	Efficiency Issues
	Type System for Semistructured Data
	Visual Rendering of XChange Programs
	Authentication, Authorisation, and Accounting
	Integration with Location and Temporal Reasoning Languages

	Concluding Remarks

	IV Appendix
	A Prototypical Runtime System
	Overview. Source Code Structure
	XChange Parser
	XChange Data Structures
	XChange Event Handler
	XChange Condition Handler
	XChange Action Handler
	Building and Running XChange

	Updates through Construction: Rewriting Rules
	List of Examples
	Index
	Bibliography
	About the Author

