
Merging and Aligning Ontologies in dl-Programs

Kewen Wang1, Grigoris Antoniou2, Rodney Topor1, and Abdul Sattar1

1 Griffith University, Australia
{k.wang,r.topor,a.sattar}@griffith.edu.au

2 University of Crete, Greece
ga@csd.uoc.gr

Abstract. The language of dl-programs is a latest effort in developing an ex-
pressive representation for Web-based ontologies. It allows to build answer set
programming (ASP) on top of description logic and thus some attractive features
of ASP can be employed in the design of the Semantic Web architecture. In this
paper we first generalize dl-programs by allowing multiple knowledge bases and
then accordingly, define the answer set semantics for the dl-programs. A novel
technique called forgetting is developed in the setting of dl-programs and applied
to ontology merging and aligning.

1 Introduction

A key part of the Semantic Web architecture is designing a set of languages so that
web-based ontologies can be represented and reasoned easily and correctly. The Web
Ontology Language (OWL) is the latest standard recommended by the World Wide Web
Consortium (W3C). The design and standardization of OWL is largely influenced by
description logic [2]. As observed by many researchers, for example, [1, 7, 10, 11, 16],
OWL is still too limited in representing, reasoning about and merging ontologies on the
Web. In particular, the following three issues are still far from solved:

– How to represent commonsense knowledge in ontologies.
– How to represent and reason with multiple ontologies.
– How to effectively reuse and share ontologies in the Semantic Web.

Many researchers believe that the next step in the development of the Semantic Web
is to realize the logic layer. This layer will be built on top of the ontology layer and
provide sophisticated representation and reasoning abilities. Given that most current
reasoning systems are based on rules, it is a key task to combine rules with ontolo-
gies. The RuleML initiative (http://www.ruleml.org) is considered to be a first attempt
in this direction. Theoretically, the problem of integrating the ontology layer with the
logic layer is reduced to combine rule-based systems with description logics. Recently,
a number of attempts at combining description logic with logic programs have been
made, for example, [5, 11]. A more recent work in [7] aimed to build nonmonotonic
logic programs on the top of description logic (or OWL) by combining answer set pro-
gramming (ASP) and description logic. In particular, the notion of dl-atoms allows to
query and virtually align the dl-knowledge base.

ASP is a paradigm of logic programming under the answer sets [9] and it is becom-
ing one of the major tools for knowledge representation due to its simplicity, expressive
power, connection to major nonmonotonic logics and efficient implementations, such
as DLV [6] and Smodels [14] However, some aspects of dl-programs introduced in [7]
should be extended and improved:

– dl-programs can only query or align a fixed dl-knowledge base.
– there is no construct provided in dl-programs so that concepts from different on-

tologies can be used. This issue can be reduced to the problem of how to merge or
align ontologies.

– The operatorª provides a means to constrain some objects from a concept but there
is no construct for discarding a concept. For example, suppose we want to define
a concept of Top100Singers. We may wish to use an ontology “MUSICIAN” on
the Web and thus have to import the ontology. However, we do not want to import
some irrelevant concepts like “Violinist”.

In this paper we first generalize the language of dl-programs and its semantics. Then
the notion of forgetting [17] is introduced into dl-programs and thus show how to use
this technique to merge and align different ontologis in dl-programs.

2 Preliminaries

The language for representing ontologies in this paper is a combination of a simple
description logic and extended logic programs. In this section we briefly recall some
background knowledge of logic programs, description logic, and their relation to Web
markup languages.

2.1 Description Logic and Web Markup Languages

Although the Web is a great success, it is basically a collection of human-readable pages
that cannot be automatically processed by computer programs.The Semantic Web is to
provide tools for explicit markup of Web content and to help create a repository of
computer-readable information. RDF is a language that can represent explicit metadata
and separate content of Web pages from their structure. However, as noted by the W3C
Web Ontology Working Group (http://www.w3.org/2001/sw/WebOnt/) , RDF/RDFS is
too limited to describe some application domains which require the representation of
ontologies on the Web and thus, a more expressive ontology modeling language was
needed. This led to a number of ontology languages for the Web including the well-
known DAML+OIL [3] and OWL [4]. In general, if a language is more expressive,
then it is less efficient. To suit different applications, the OWL language provides three
species for users to get a better balance between expressive power and reasoning effi-
ciency: OWL Full, OWL DL and OWL Lite.

The cores of these Semantic Web languages are description logics, and in fact, the
designs of OWL and its predecessor DAML+OIL were strongly influenced by descrip-
tion logics, including their formal semantics and language constructors. In these Se-
mantic Web languages, an ontology is represented as a knowledge base in a description
logic.

Description logics are a family of concept-based knowledge representation lan-
guages [2]. They are fragments of first order logic and are designed to be expressively
powerful and have an efficient reasoning mechanism.

A dl-knowledge base L has two components: a TBox and an ABox.

The TBox specifies the vocabulary of an application domain, which is actually a
collection of concepts (sets of individuals) and roles (binary relations between individ-
uals). So the TBox can be used to assign names to complex descriptions. For example,
we may have a concept named area which specifies a set of areas in computer science.
Suppose we have another concept expert which is a set of names of experts in com-
puter science. We can have a role expertIn which relates expert to area. For instance,
expertIn(John, “Semantic Web”) means “John is an expert in the Semantic Web”.

The ABox contains assertions about named individuals.

A dl-knowledge base can also reason about the knowledge stored in the TBox and
ABox, although its reasoning ability is a bit too limited for some practical applications.
For example, the system can determine whether a description is consistent or whether
one description subsumes another description.

The knowledge in both the TBox and ABox are represented as formulas of the
first order language but they are restricted to special forms so that efficient reasoning
is guaranteed. For our purpose, we deal with a simple description logic called SAL.
The formulas in SAL are called concept descriptions. Elementary descriptions consists
of both atomic concepts and atomic roles. Complex concepts are built inductively as
follows (in the rest of this subsection, A is an atomic concept, C and D are concept de-
scriptions, R is a role): A (atomic concept);> (universal concept);⊥ (bottom concept);
¬A (atomic negation); C u D (intersection); C t D (union). Note that we can use t
and u to represent ∀R.C (value restriction) and ∃R.C (existential quantification).

To define a formal semantics of concept descriptions, we need the notion of interpre-
tation. An interpretation I of SAL is a pair (∆, ·I) where ∆ is a non-empty set called
the domain and ·I is an interpretation function which associates each atomic concept A
with a subset AI of ∆ and each atomic role R with a binary relation RI ⊆ ∆×∆. The
function ·I can be naturally extended to complex descriptions:

– >I = ∆

– ⊥I = ∅
– (¬A)I = ∆−AI

– (C uD)I = CI ∩DI

– (C tD)I = CI ∪DI

A terminology axiom is of the form C v D or C ≡ D where C and D are concepts
(roles). An interpretation I satisfies C v D iff CI ⊆ DI ; it satisfies C ≡ D iff
CI = DI .

2.2 Extended Logic Programs

We deal with extended logic programs [9] whose rules are built from some atoms where
default negation not and strong negation ¬ are allowed. A literal is either an atom a or
its strong negation ¬a3. For any atom a, we say a and ¬a are complementary literals.

If l is a literal, then not l is called a negative literal. For any set S of literals,
not S = {not l | l ∈ S}.

An extended logic program is a finite set of rules of the following form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (1)

where l0 is either a literal or empty, each li is a literal for i = 1, . . . , n, and 0 ≤ m ≤ n.
If l0 is empty, then the rule is a constraint.

If a rule of form (1) contains no default negation, it is called positive; P is a positive
program if every rule of P is positive.

If a rule of form (1) contains only negative literals, it is called negative; P is a
negative program if every rule of P is negative.

Given a rule r of form (1), head(r) = l0 and body(r) = body+(r)∪ not body−(r)
where body+(r) = {l1, . . . , lm}, body−(r) = {lm+1, . . . , ln}. The set head(P) con-
sists of all literals appearing in rule heads of P .

In the rest of this section we assume that P is an extended logic program and S
is a set of ground literals. A rule r in P is satisfied by S, denoted S |= r, iff “if
body+(r) ⊆ S and body−(r) ∩ S = ∅, then head(r) ∈ S”. S is a model of P , denoted
S |= P if every rule of P is satisfied by S.

The answer set semantics The reduct of logic program P on a set S of literals,
written PS , is obtained as follows:

– Delete every r from P such that there is a not q ∈ body−(r) with q ∈ S.
– Delete all negative literals from the remaining rules.

Notice that PS is a set of rules without any negative literals. Thus PS may have no
model or have a unique minimal model, which coincides with the set of literals that can
be derived by resolution.

S is an answer set of P if S is the minimal model of PS .
A logic program may have zero, one or more answer sets. We use ‖ P ‖ to denote

the collection of answer sets of P .
A program is consistent if it has at least one answer set.
Two logic programs P and P ′ are equivalent, denoted P ≡ P ′, if they have the

same answer sets.
As usual, BP is the Herbrand base of logic program P , that is, the set of all (ground)

literals in P .

3 We use the same sign “¬” to represent the negation in description logic and the strong negation
in extended logic programs.

3 Answer Sets for dl-Programs

The dl-program introduced in this section is a generalization of the description logic
program introduced in [7]. This language is a combination of the description logic SAL
and extended logic programs, which allows to build logic programs on top of description
logic (and thus some description logic-based web ontology languages like OWL). We
will also define the answer set semantics for dl-programs.

3.1 Syntax

Informally, a dl-program consists of some dl-knowledge bases L = {L1, . . . , Ls} and
a logic program P whose rule bodies may contain queries to some knowledge base (or
its update) in L.

A dl-query Q[t] is either a concept, or its negation, or a role, or its negation where
t is a term. A dl-atom has the form DL[L, S1 ◦ P1, . . . , Sm ◦ Pm, Q](t) where L is a
dl-knowledge base, each Si is either a concept or a role, each Pi is a predicate; each
◦ is either ⊕ or ª, and Q[t] is a dl-query. Intuitively, Si ⊕ Pi and Si ª Pi implement
views of inserting and deleting the objects satisfying the property Pi (see Section 3.2
for formal definition).

Note that we do not include the third operator in [7] because it can be represented
by ª. Thus we do not need the notion of monotonicity of dl-atoms.

In the ontology MUSICIAN , if we are not interested in Jazz music, dl-atom
DL[Singer ª jazz(x), Cui] can be used. When there is no confusion, the L in the
dl-atom can be omitted.

Definition 1. A dl-rule is of the form

a ← b1, . . . , br,not br+1, . . . ,not bn

where a, br+1, . . . , bn are ordinary atoms; each of b1, . . . , br can be either an ordinary
atom or a dl-atom.

A dl-program is a pair (L, P) where L is a set of knowledge bases in description
logic and P is a finite set of dl-rules. Sometimes, we just say P is a dl-program if there
is no confusion caused.

The dl-programs here are a bit different from the programs introduced in [7] in that
a multitude of dl-knowledge bases can be queried in the same program. This is more
useful for Web-based ontology representation.

A dl-program (L, P) is positive if it does not contain negation as failure “not ”.
The dl-base DP of a dl-program P is defined as the set of all ground ordinary literals

in P (including the literals appearing in dl-atoms). A ground instance of a rule r ∈ P is
a rule obtained by replacing every variable in r by a constant. ground(P) denotes the
set of all ground instances of P . An interpretation I of a dl-program P is a consistent
set of literals in DP .

Let us consider the following example, which extends a scenario from http://www.kr.
tuwien.ac.at/staff/roman/asp sw/.

Example 1. Suppose that we have an ontology called ARTISTS. According to the on-
tology, Artists are either Singers or Painters. Some artists in the ontology are ”Jodie
Nash”, ”Vincent Van Gogh”, ”Luciano Pavarotti”.

We also have some rules for formalizing commonsense knowledge.
If someone is an artist and there is no evidence to show that he is a painter, then he

is not a painter:

r1 : ¬painter(A) ← DL[L, artist](A),not painter(A)

Similarly, if someone is an artist and there is no evidence to show that he is a singer,
then he is not a singer:

r2 : ¬singer(A) ← DL[L, artist](A),not singer(A).

Single out cases when an artist ought to be a painter or singer (but not necessarily
both)

r3 : painter(A) ← DL[L⊕Wynne(X), artist](A), DL[L, painter](A)

Here L ⊕Wynne(X) guarantees that a Wynne Prize Winner is treated as an artist in
case he is not included the ontology.

r4 : singer(A) ← DL[Lª Jazz(X), artist](A), DL[L, singer](A).

Here DL[Lª Jazz(X) shows that we are not interested in Jazz music.
Suppose we have another dl-knowledge base L1 to check if A is a singer:

r5 : singer(A) ← DL[L1, singer](A).

Let L be the ontology ARTIST and P = {r1, r2, r3, r4, r5}. Then ({L}, P) is a dl-
program.

The above dl-program intends to provide a compact representation for an ontology
which extends the following owl-ontology (we omit an ontology ”Awards” containing
”Wynne” and the class ”Jazz” of ”Artist”).

<!DOCTYPE rdf:RDF [] > <rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns="file://artist#"
xmlns:base="file://artist">

<owl:Ontology rdf:ID="artist"/>

<owl:Class rdf:ID="Painter" />
<owl:Class rdf:ID="Singer" />

<owl:Class rdf:ID="Artist">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Painter" />
<owl:Class rdf:about="#Singer" />

</owl:unionOf>
</owl:Class>

<Artist rdf:ID="Jodie_Nash"/>
<Painter rdf:ID="Vincent_Van_Gogh"/>
<Singer rdf:ID="Luciano_Pavarotti"/>

</rdf:RDF>

3.2 Semantics

The semantics for a dl-program (L, P) is defined by the dl-answer sets, which modify
and generalize the corresponding notion in [7].

An interpretation I of a dl-program P is a consistent set of ground literals. So we
also allow dl-atoms in an interpretation.

The following interpretations for operators ⊕ and ª is expected to remedy some
problems in the original definition.

Definition 2. Let I be an interpretation of the dl-program P and DL[L, S1◦P1, . . . , Sm◦
Pm, Q](t) is a ground dl-atom in P .

Denote ¯I the interpretation obtained from ·I by replacing (Si)I

– with (Si)I ∪ {t | Pi(t)} if Si is a concept and ◦ = ⊕;
– with (Si)I − {t | Pi(t)} if Si is a concept and ◦ = ª;
– with (Si)I ∪ {(t1, t2) | Pi(t1, t2)} if Si is a role and ◦ = ⊕;
– with (Si)I − {(t1, t2) | Pi(t1, t2)} if Si is a role and ◦ = ª;

The resulting semantic relation is denoted |=dl.
L |= DL[L, S1 ◦ P1, . . . , Sm ◦ Pm, Q](t) if and only if L |=dl Q(t).

Note that every positive dl-program P has a least model, denoted M(P). A general
dl-program can be reduced into a positive dl-program with respect to an interpretation.

Let P be a dl-program and I a set of atoms in P . The reduct P I of P on I is the
positive dl-program obtained from ground(P) by the following three ordered steps :

1. adding a rule Q(t) ← for each dl-atom d in the body of a rule in ground(P) such
that L |= Q(t), where Q(t) is the query for d;

2. deleting every rule r in ground(P) such that b ∈ I for some not b in the body of
r and

3. deleting every not b in the remaining rules.

The first condition says a dl-atom must be true in the model if it occurs in the
program and can be derived from the corresponding dl-knowledge base; the second and
third conditions are inherited from the definition of standard answer sets.

Definition 3. Let P be a dl-program and S a set of literals in P . S is a dl-answer set if
M(PS) = S.

A dl-answer set S is consistent if (1) there is no atom a such that both a and ¬a in S
and (2) if d is a dl-atom and d ∈ S, then L 6|=dl ¬Q(t) where Q(t) is the query of d.

A dl-program may have zero, one or more dl-answer sets. We use ‖ P ‖ to denote
the collection of answer sets of P .

Consider the dl-program ({L,L1}, P) again where L1 is a dl-knowledge base which
includes “Tweety” as a singer. Then this dl-program has the unique dl-answer set which
contains some information like painter(V incentV anGogh) and singerTweety.

A dl-program is consistent if it has at least one consistent dl-answer set.
Two dl-programs P and P ′ are equivalent, denoted P ≡ P ′, if they have the same

dl-answer sets.

4 Forgetting in dl-Programs

In this section we introduce the notion of forgetting for dl-programs. That is, we want
to define what it means to forget about (or discard) a literal l in a dl-program P . The
intuition behind the forgetting theory is to obtain a dl-program which is equivalent to
the original dl-program if we ignore the existence of the literal l.

4.1 Forgetting Ordinary Atoms

It is easy to forget a literal l in a set X of literals, that is, just remove l from X if l ∈ X .
This notion of forgetting can be easily extended to subsets. A set X ′ is an l-subset of X
if X ′−{l} ⊆ X−{l}. Similarly, a set X ′ is a true l-subset of X if X ′−{l} ⊂ X−{l}.

Two sets X and X ′ of literals are l-equivalent, denoted X ∼l X ′, iff (X −X ′) ∪
(X ′ −X) ⊆ {l}.

Given a consistent dl-program P and an ordinary ground literal l, we could define
a result of forgetting about l in P as a dl-program P ′ whose dl-answer sets are exactly
‖ P ‖ −l = {X − {l} | X ∈‖ P ‖}. However, such a notion of forgetting cannot even
guarantee the existence for some simple programs as illustrated in [17]. So we need a
notion of minimality of dl-answer sets which can naturally combine the definition of
dl-answer sets, minimality and forgetting together.

Definition 4. Let P be a consistent dl-program, l an ordinary ground literal in P and
X a set of ground literals.

1. We say X is l-minimal in a collection S of sets of ground literals if X ∈ S and
there is no X ′ ∈ S such that X ′ is a true l-subset of X . In particular, if SP is the
set of models of P , then we say X is an l-minimal model of dl-program P if X is a
model of P and it is l-minimal in SP .

2. X is a dl-answer set of P by forgetting l (briefly, l-answer set) if X is the l-minimal
model of the reduct PX .

The above definition is a filter for dl-answer sets rather than a new semantics.
Having the notion of minimality about forgetting an ordinary ground literal, we are

now in a position to define the result of forgetting about a literal in a dl-program.

Definition 5. Let P be a consistent dl-program and l be an ordinary ground literal.
A dl-program P ′ is a result of forgetting about l in P if the following conditions are
satisfied:

1. DP ′ ⊆ DP − {l}.
2. For any set X ′ of ground literals, X ′ is a dl-answer set of P ′ iff there is an l-answer

set X of P such that X ′ ∼l X .

Notice that the first condition implies that l does not appear in P ′. In particular, no new
symbol is introduced in P ′.

Suppose we have a dl-knowledge base L which contains some concepts “bird”,
“parrot” and “penguin”. An ontology “BIRD” is specified as a dl-program (L, P) where
P = P1 ∪ P2, P2 contains no information about “penguin” and P1 consists of the
following rules:

bird(A) ← penguin(A)
flies(A) ← bird(A),not penguin(A)
¬flies(A) ← penguin(A)

penguin(Tweety) ←
If we do not want to import the concept “penguin”, we can discard the information on
“penguin” by forgetting and get forget((L,P), penguin) = {flies(A) ← bird(A)} ∪
P2.

A dl-program P may have different dl-programs as results of forgetting about the
same ordinary ground literal l. However, it follows from the above definition that any
two results of forgetting about the same literal in P are equivalent under dl-answer sets.

Proposition 1. Let P be a dl-program and l an ordinary ground literal in P . If P ′ and
P ′′ are two results of forgetting about l in P , then P ′ and P ′′ are equivalent (i.e. they
have the same dl-answer sets).

We use forget(P, l) to denote the result of forgetting about l in P .
To compute forget(P, l), we can easily adapt the corresponding algorithms in [17]

to dl-programs.
Similarly, we can forget a set of ordinary literals F in a dl-program P and thus

define forget(P, F).

4.2 Forgetting dl-Atoms

To discard or forget an unwanted ground dl-atom d in a dl-program P , we need to
remove all the effects caused by d in both P and L. This can be accomplished by the
following steps:

Step 1. Forget d in dl-knowledge base L by removing all those concepts, roles and
terminology axioms of L in which Q(t) occurs. Denote the resulting dl-knowledge
base L− d.

Step 2. Replace each occurrence of the dl-atom d by d′ in P where d′ is obtained from
d by replacing L with L− d. The resulting dl-program is denoted P ′.

Step 3. Forget the dl-atom d′ in P ′ by treating d′ as an ordinary atom.

5 Merging and Aligning Ontologies

In recent years, researchers have developed many ontologies. These different groups
of researchers are now beginning to work with each other, so they must bring together
ontologies from different sources. Approaches to this problem usually fall into one of
the two categories:

– merging the ontologies to create a single coherent ontology.
– aligning the ontologies by establishing links between them to reuse information

from one another.

In this section we show how to merge and align ontologies in dl-programs by forgetting.
For simplicity, throughout the discussion, we assume that only two ontologies are

being merged or aligned.

5.1 Merging Ontologies by Forgetting

When two ontologies are merged, a new ontology is created, which is a merged version
of the original ontologies. Usually, overlapping domains are kept in the merged ontol-
ogy. Some algorithms like SMART [15] tried to automate parts of the merging process
of ontologies. However, their languages are relatively simple and thus reasoning is al-
most not involved.

As shown in the algorithm of SMART, those concepts and roles to be merged can
be specified by users and/or automatic processes. For instance, Linguistically similar
names can be found automatically. Linguistic similarity can be determined in a couple
of different ways including by synonymy or shared substrings.

Let O1 and O2 be two ontologies expressed as dl-programs. Suppose we have deter-
mined two sets of literals F1 and F2 for O1 and O2, respectively. F1 and F2 correspond
to certain concepts that need to be handled separately in the merging. A literal is put
into F1 or/and F2 due to a number of reasons. However, in an expressive language like
dl-programs, these two concepts may be related to some other concepts by terminology
axioms. Thus we may have to deal with some issues related to reasoning like conflict
resolving and consistency maintaining. Another possibility is that some concepts are
useless and we want to discard them as mentioned in the introduction. The second sce-
nario can be satisfactorily handled by the following algorithm.

Algorithm 1 Input: Two ontologies O1 and O2 (in dl-programs).
Output: A merged ontology O.
Process:

Step 1. Determine the sets F1 and F2 of literals that need to be handled separately.
Step 2. Compute forget(Oi, Fi) for i = 1, 2.
Step 3. F1 and F2 are handled by user and thus O0 is obtained.
Step 4. Merged ontology: O = O0 ∪ forget(O1, F1) ∪ forget(O2, F2).

As for Step 3, it depends on the application. There may be a couple of possible different
approaches. For example, we may remove some literals from F1 and/or F2; we may
replace some literal of one Fi with a literal in the other; or we may even replace two
literals li ∈ Fi, i = 1, 2 with a new literal.

5.2 Aligning Ontologies by Forgetting

In alignment, the two original ontologies persist but one of the aligned ontologies (say
O1, more general) is preferred over another (say O2, more specific), with links estab-
lished between their concepts and roles. These links can be represented as a mapping or
a view (virtual ontology). However, the domain-specific ontology O2 does not become
part of the more general ontology O1; rather O2 is a separate ontology that includes
O1 and uses O1’s top-level distinctions. For example, many ontologies in the domain
of military are structured around a central ontology, the CYC knowledge base [13].
The developers of these domain-specific ontologies then align their ontologies to CYC
by establishing links into CYC’s upper- and middle-level ontologies [8]. However, in
many cases the alignment cannot be done by only some simple links. As in the case of
merging, conflicts and/or inconsistencies may arise when aligning two ontologies. In
particular, we have to deal with their subsumption relations. For example, if we have
two ontologies ARTIST, where a concept “Singer” is included, and MUSICIAN, where
a concept “singer” is included, we may wish to merge “singer” and “Singer”. Moreover,
ARTIST is established by the Australian Association of Arts and MUSICIAN by the
College of Music at Griffith University. Since both “Singer” and “singer” may be re-
lated to some other concepts in their ontologies by roles and axioms, we cannot simply
replace “singer” by “Singer”.

By employing the notion of forgetting, the tasks of conflict resolution and consis-
tency maintenance during aligning can be done automatically.

Algorithm 2 Input: Two ontologies O1 and O2 (in dl-programs) where O1 is preferred
to O2.
Output: Aligned ontology O.
Process:

Step 1. Determine the set F2 of atoms that will be aligned in O2.
Step 2. Compute forget(O2, F2).
Step 3. Aligned ontology: O = O1 ∪ forget(O2, F2).

6 Conclusions

The language of dl-programs is a latest effort in developing an expressive representation
for Web-based ontologies. It allows to build answer set programming (ASP) on top of
description logic and thus some attractive features of ASP can be employed in the de-
sign of the Semantic Web architecture. Often, an ontology on the Web is based on more
than one knowledge base. In this paper we have generalized dl-programs by allowing
multiple knowledge bases and then accordingly, defined the answer set semantics for
the dl-programs. The notion of forgetting has been proved an extremely useful tech-
nique for updating knowledge bases, constraint problem solving and query answering
[12, 17, 18]. In this paper we have imported the notion of forgetting into dl-programs.
We have also applied the technique of forgetting to two important tasks of representing
ontologies, that is, merging and aligning ontologies. In particular, we have introduced
two algorithms for these two tasks. This is only preliminary report of our work. There
are a couple of issues to be pursued in the future:

– More constructs in ASP can be introduced into dl-programs, like disjunction and
preference. The major difficulty in allowing these constructs is how to design cor-
responding algorithms for forgetting.

– It is also important to see if more expressive description logic can be allowed in the
forgetting of dl-programs.

– The two algorithms for merging and aligning ontologies need further improvement.
We are also planning to implement them and apply to some practical application
domains.

References
1. G. Antoniou and G. Wagner. A rule-based approach to the semantic web (preliminary report).

In Proceedings of the 2nd Workshop on Rules and Rule Markup Languages for the Semantic
Web (RuleML2003), pages 111–120, 2003.

2. F. Baader, D. Calvanese, D.McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2002.

3. D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. Daml+oil reference description. http://www.w3.org/tr/2001/note-daml+oil-
reference-20011218.html, W3C Note, 18 December 2001.

4. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L. Stein. Owl web ontology language reference.
http://www.w3.org/tr/2004/rec-owl-ref-20040210/, 3C Recommendation, 10 February 2004.

5. F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating datalog and descrip-
tion logics. Journal of Intelligent Information Systems, 10(3):227–252, 1998.

6. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A kr system dlv: Progress report,
comparisons and benchmarks. In Proceedings of the Sixth International Conference on the
Principles of Knowledge Representation and Reasoning, pages 406–417. Morgan Kaufmann
Publishers, 1998.

7. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the semantic web. In Proceedings of the 9th International
Conference on Principles of Knowledge Representation and Reasoning, pages 141–151,
2004.

8. R. Fikes and A. Farquhar. Large-scale repositories of highly expressive reusable knowledge.
IEEE Intelligent Systems, 14(2):73–79, 1999.

9. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceedings of the
International Conference on Logic Programming, pages 579–597, 1990.

10. B. Grau, B. Parsia, and E. Sirin. Combining owl ontologies using e-connections. Techni-
cal Report TR-2005-01, University of Maryland Institute for Advanced Computer Studies
(UMIACS), January 2005.

11. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining logic
programs with description logics. In Proceedings of the 12th International World Wide Web
Conference, pages 48–57, 2003.

12. J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-variable inde-
pendence and forgetting. Journal of Artificial Intelligence Research, 18:391–443, 2003.

13. D. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications of
ACM, 38(11):33–38, 1995.

14. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, editors, Pro-
ceedings of the Fourth International Conference on Logic Programming and Nonmonotonic
Reasoning, pages 420–429. Springer-Verlag, 1997.

15. N. Noy and M. Musen. An algorithm for merging and aligning ontologies: Automation and
tool support. In Proceedings of the Workshop on Ontology Management at AAAI-99, 1999.

16. T. Swift. Deduction in ontologies via asp. In Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning. Springer-Verlag, 2004.

17. K. Wang, A. Sattar, and K. Su. A theory of forgetting in logic programming. In Proceedings
of the AAAI National Conference on Artificial Intelligence. AAAI Press, 2005.

18. Y. Zhang, N. Foo, and K. Wang. Solving logic program conflicts through strong and weak
forgettings. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 627–632. the Professional Book Centre, USA, 2005.

