
Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 216 – 231, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

On Applying the AGM Theory to DLs and OWL 

Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou 

Institute of Computer Science, FO.R.T.H.  
P.O. Box 1385, GR 71110, Heraklion, Greece 

{fgeo, dp, antoniou}@ics.forth.gr 

Abstract. It is generally acknowledged that any Knowledge Base (KB) should 
be able to adapt itself to new information received. This problem has been ex-
tensively studied in the field of belief change, the dominating approach being 
the AGM theory. This theory set the standard for determining the rationality of 
a given belief change mechanism but was placed in a certain context which 
makes it inapplicable to logics used in the Semantic Web, such as Description 
Logics (DLs) and OWL. We believe the Semantic Web community would 
benefit from the application of the AGM theory to such logics. This paper is a 
preliminary study towards the feasibility of this application. Our approach 
raises interesting theoretical challenges and has an important practical impact 
too, given the central role that DLs and OWL play in the Semantic Web. 

1   Introduction 

One of the crucial tasks towards the realization of the vision of the Semantic Web is 
the encoding of human knowledge in special structures (ontologies), using certain 
formal encodings (representation languages), such as DLs [3] and OWL [5]. Simply 
encoding the knowledge is not enough though; knowledge needs to be updated as 
well. There are several reasons for that: a piece of knowledge that was previously un-
known, classified or otherwise unavailable may have become known; or a mistake 
may have occurred in the conceptualization of the domain or during the input; or the 
domain itself may have changed. In all these cases the ontology needs to be updated 
to accommodate the change. Even the development of an ontology is a highly itera-
tive revision process, in which the ontology passes through several revising steps be-
fore reaching its “final” version. 

For all the above reasons, developing an automatic, consistent and rational updat-
ing method for ontologies is a task of great interest to the Semantic Web community. 
Despite this fact, the problem of ontology updating has been generally disregarded in 
the relevant literature [13]. In the current paper, we view this problem as a special 
case of the general problem of belief change (also known as belief revision) [8], 
which deals with the updating of a KB in the face of new information. 

The problem of belief change has been extensively studied in the literature, result-
ing in several interesting results, the most important approach being the work by Al-
chourron, Gärdenfors and Makinson (AGM for short) in [1], known as the AGM the-
ory. In that paper, the authors did not attempt to introduce a new algorithm for belief 
change; instead, they proposed certain rationality constraints (known as the AGM pos-
tulates) which should be satisfied by any rational belief change algorithm, thus setting 
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the foundations for future research on the subject. The importance of the AGM theory 
lies in the fact that these postulates were accepted by most researchers as an appropri-
ate condition to determine the rationality of a certain belief change operator. 

Unfortunately, the AGM theory is based on assumptions [1] that generally fail for 
DLs and OWL [7]; thus, the AGM theory cannot be directly applied to the Semantic 
Web. Moreover, to the authors’ knowledge, there has been no attempt towards a gen-
eral standard of rationality for belief change operators, in the AGM pattern, for sev-
eral logics outside the AGM framework (such as the logics used in the Semantic 
Web). One possible way to address this issue would be to introduce several different, 
language-specific postulates that take into account the peculiarities of each language. 

In this work, we opt for a more general approach. We believe that the concept of 
rationality is largely independent of the underlying knowledge representation scheme, 
despite the different properties of each language. Thus, it may be possible to use any 
condition determining the rationality of a belief change operator in several different 
contexts; this avoids the problem of “reinventing the wheel” for each different logic. 

Given the appeal of the AGM model in the belief change literature, we believe that 
dropping the AGM assumptions and using the theory in a more general context is a rea-
sonable initial choice. Some people may disagree on whether the AGM theory is the 
best choice for the Semantic Web; only future research can uncover the strengths and 
weaknesses of this method, as well as of its alternatives. This paper focuses on the 
AGM theory of contraction [1], by determining whether this theory can be successfully 
generalized to apply to DLs and OWL. This is the first step towards evaluating the fea-
sibility of applying the AGM theory in the context of the Semantic Web. 

The idea of using the intuitions behind the AGM theory to develop a more general 
version was initially pursued by the authors in [6], [7], where this generalization was 
defined and its properties were studied; the use of belief change techniques to address 
the problem of ontology updating has also been independently considered in [12], 
[13], [16]. Such techniques could be useful in automating the third phase of ontology 
evolution (as defined in [17]), under which the change(s) to be made in the ontology 
in response to a certain need are determined (Semantics of Change phase). 

In the current paper, we extend the work presented in [7]; we study the feasibility 
of applying the generalized AGM theory of contraction to DLs and OWL, develop 
conditions under which (the generalized version of) the AGM theory can (or cannot) 
be applied to DLs and show that the approach fails for OWL. Our focus lies on the 
theoretical aspects of our approach; practical issues, like implementation, or applica-
tions of our method to specific languages are given less weight. Throughout this pa-
per, for uniformity purposes, we will use the term KB to refer to ontologies  
as well. 

2   Preliminaries 

2.1   Description Logics (DLs) and the Web Ontology Language (OWL) 

The term Description Logics [3] refers to a family of knowledge representation lan-
guages, heavily used in the Semantic Web [4]. In DLs, classes are used to represent 
basic concepts, roles to represent basic binary relations between objects and individu-
als to represent objects. Those primitive notions can be combined using certain  
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operators (such as ¬, ⊓, ∃ etc) to produce more complex terms. Finally, connectives 
are used to represent relationships between terms, such as inclusion (⊑), disjointness 
(disj) and others. Each such relationship is called an axiom. Axioms dealing with 
classes and roles form the Tbox, while axioms dealing with individuals form the Abox. 
The operators and connectives that a certain DL admits determine the type and com-
plexity of the available axioms, which, in turn, determine the expressive power and 
the reasoning complexity of the DL. Reasoning in DLs is based on standard model-
theoretic semantics. For more details on DLs and their semantics, see [3]. In the fol-
lowing, the term DL Knowledge Base (DL KB) will refer to a set of general Tbox 
and/or Abox axioms representing knowledge regarding a domain of interest. 

The Web Ontology Language [5], known as OWL, is a knowledge representation 
language that is expected to play an important role in the future of the Semantic Web, 
as it has become a W3C Recommendation. OWL comes in three flavors (or species), 
namely OWL Full, OWL DL and OWL Lite, with varying degree of expressive power 
and reasoning complexity. In OWL, knowledge is represented using an RDF-like syn-
tax. OWL contains several features allowing the representation of complex relation-
ships between classes, roles and objects in a pattern very similar to the one used in 
DLs; this close relationship was verified in [10], where OWL DL and OWL Lite (with 
their secondary annotation features removed) were shown equivalent to the DLs 
SHOIN+(D) and SHIF+(D) respectively. On the other hand, OWL Full provides a 
more complete integration with RDF, containing features not normally allowed in 
DLs; furthermore, its inference problem is undecidable [10]. For more details on 
OWL and the differences between OWL Full, OWL DL and OWL Lite, refer to [5]. 

2.2   The AGM Theory and Its Generalization 

The problem of belief change deals with the updating of a KB in the face of new, pos-
sibly contradictory, information. Undoubtedly, the most influential work in the area of 
belief change is the work by AGM [1]. In that paper, three fundamental operations of 
belief change were defined, namely expansion, revision and contraction, as well as a 
set of rationality postulates that should apply to each of the above operations. 

In the current paper, we restrict our attention to the operation of contraction (de-
noted by ‘−’) which refers to the consistent removal of a piece of information from a 
KB when this information is no longer believed. Contraction was chosen for our ini-
tial approach because, according to AGM, it is the most fundamental among the three 
belief change operators [1], [8]. Indeed, the theoretical importance of contraction has 
been accepted by most researchers, even though revision (which refers to consistent 
addition of information) is more often used in practical applications. 

AGM used several assumptions when formulating their theory. Under these as-
sumptions, a logic is a pair <L,Cn>, where L is a set containing all the expressions of 
the logic and Cn is a consequence operator that satisfies the Tarskian axioms (itera-
tion, inclusion, monotony). Using this consequence operator, we can define the impli-
cation relation as: K⊧X ⇔ Cn(X)⊆Cn(K). This is the only assumption that was kept 
during the generalization of the AGM theory in [7]; AGM additionally assumed that 
the logic is closed under the standard operators (¬, ∧, etc); they also assumed that the 
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consequence operator includes classical tautological implication, it is compact and it 
satisfies the “rule of introduction of disjunctions in the premises”. 

It is easy to see that many AGM assumptions fail for DLs and OWL. For example, 
a DL is not necessarily closed under the usual operators (¬, ∧, etc); DL axioms are of 
equational form (e.g., A⊓B⊑C), so the negation of an axiom cannot be defined in 
general. Furthermore, many DLs are not compact. The same holds for OWL, as well 
as for many other families of knowledge representation languages [7]. On the other 
hand, our more general framework engulfs DLs, since, for any given DL, we can take 
L to be the set of all axioms that can be formed in this DL and Cn(X) the set of all 
implications of a set of axioms X⊆L under the standard model-theoretic semantics of 
DLs [3]. Similar facts hold for OWL. 

Regarding the operation of contraction, AGM assumed that a KB is a set of proposi-
tions of the underlying logic (say K⊆L) which is closed under logical consequence (i.e., 
K=Cn(K)), also called a theory. Any single expression x∈L of the logic can be con-
tracted from the KB. The operation of contraction can be formalized as a function map-
ping the pair (K, x) to a new KB K′ (denoted by K′=K−x). In [7], the definition of the 
contraction operator was slightly extended to include cases where both operands are sets 
of expressions of the underlying logic (i.e., K′=K−X, for K,X⊆L).  

The above assumptions allow any binary operator to be a “contraction” operator, 
which, of course, should not be the case; for this reason, AGM introduced several re-
strictions on the result of a contraction operation. First of all, the result should be a 
theory itself. As already stated, contraction is an operation that is used to remove 
knowledge from a KB; thus the result should not contain any new, previously un-
known, information. Moreover, contraction is supposed to return a new KB such that 
the contracted expression is no longer believed or implied. Finally, the result should 
be syntax-independent and should remove as little information from the KB as possi-
ble, in accordance with the Principle of Minimal Change [8]. The above intuitions 
were formalized in a set of six postulates, the basic AGM postulates for contraction; 
these are omitted due to lack of space, but can be found in [1]. 

As shown by the above analysis, the intuitions that led to the development of the 
AGM postulates are independent of the underlying knowledge representation language. 
On the other hand, the formulation of the AGM postulates themselves depends on the 
AGM assumptions (see [1]). For this reason, in [7], each AGM postulate was reformu-
lated in such a way as to be applicable to all logics in our more general framework, 
while preserving the original intuition that led to its definition. The resulting postulates 
can be found in the following list, where the naming and numbering of each postulate 
corresponds to the original AGM naming and numbering [7]: 

(K−1) Closure:   Cn(K−X)=K−X 
(K−2) Inclusion:   K−X⊆Cn(K) 
(K−3) Vacuity:   If X⊈Cn(K), then K−X=Cn(K) 
(K−4) Success:   If X⊈Cn(∅), then X⊈Cn(K−X) 
(K−5) Preservation:  If Cn(X)=Cn(Y), then K−X=K−Y 
(K−6) Recovery:   K⊆Cn((K−X)∪X) 
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Unfortunately, it soon became clear that not all logics in our wide framework can 
admit a contraction operator that satisfies the (generalized) AGM postulates. Fol-
lowing this observation, we defined a logic to be AGM-compliant iff a contraction 
operator that satisfies the generalized AGM postulates can be defined in the given 
logic. This class of logics was characterized using the following proposition [7]: 
Proposition 1. A logic <L,Cn> is AGM-compliant iff for all sets K, X⊆L such that 
Cn(∅)⊂Cn(X)⊂Cn(K) there is a Z⊆L such that Cn(Z)⊂Cn(K) and Cn(X∪Z)=Cn(K). 

With the above postulates, we have succeeded in developing a generalized version 
of the AGM theory for contraction. The generalized AGM postulates can be used in 
all logics in our framework; however, for a non-AGM-compliant logic, such an option 
does not make much sense, as no contraction operator satisfying the postulates  
(K−1)-(K−6) can be defined. Proposition 1 is the tool that allows us to determine 
whether this is the case or not. 

3   Conditions for AGM-Compliance 

3.1   General Intuition and Main Results 

In the following, we will refer to a DL as a pair <L,Cn>, where L is the set that con-
tains all the axioms that can be defined in this DL and Cn is the consequence operator 
under the standard model-theoretic semantics of DLs [3]. Initially, we will consider 
DLs that allow for the top concept ⊤ and the connective ⊑ (applicable to concept 
terms, at least), plus an arbitrary number of other connectives and/or operators.  

Our approach is based on the following observation: take two sets of DL axioms of 
the form K={A⊒⊤}, X={B⊒⊤} such that Cn(∅)⊂Cn(X)⊂Cn(K). Set Z={A⊒B}; Z 
is a good candidate for the set Z required by proposition 1, since Cn(Z)⊆Cn(K) and 
Cn(X∪Z)=Cn(K). There is a catch though: proposition 1 requires that Cn(Z)⊂Cn(K); 
in the above approach sometimes it so happens that Cn(Z)=Cn(K). For example, if 
K={A⊒⊤} and X={¬A⊔∃R.A⊔∀R.⊥⊒⊤} for some role R, then it holds that 
Cn(∅)⊂Cn(X)⊂Cn(K). If we take Z as above, we get Z={A⊒¬A⊔∃R.A⊔∀R.⊥}, 
which is equivalent to K={A⊒⊤}, so Cn(Z)=Cn(K). Thus, the constructed Z does not 
satisfy the conditions set by proposition 1 (example provided by Thomas Studer, per-
sonal communication). To deal with this problem, the idea must be somehow refined 
in order to guarantee that Cn(Z)⊂Cn(K) will hold in all cases. This refinement is de-
scribed and proved in a more general setting in the following lemma: 

Lemma 1. Consider the sets of axioms K={Aj⊒⊤ | j∈J} and X={B⊒⊤}. If 
Cn(∅)⊂Cn(X)⊂Cn(K) and there is an interpretation I such that BI=∅, then there is a 
set Z such that Cn(Z)⊂Cn(K) and Cn(X∪Z)=Cn(K). 

Proof. Set Z={Aj⊒B | j∈J} and assume that Z⊧K. Then Z⊧X. By the hypothesis, 
there is an interpretation I such that BI=∅; for this interpretation, Z is obviously satis-
fied, while X is not. This is a contradiction, so Z⊭K. On the other hand, K⊧Z; thus, 
Cn(Z)⊂Cn(K). The relation Cn(X∪Z)=Cn(K) is obvious by the transitivity  
of ⊑.                                                                                                                               
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Lemma 1 guarantees the existence of the set Z required by proposition 1, but only for 
sets K, X of a special form. This might cause one to believe that it is of limited use; 
on the contrary, lemma 1 forms the backbone of our theory. Before showing that, we 
will show that the prerequisites of proposition 1 need to be checked for only a subset 
of all the possible (K,X) pairs: 

Lemma 2. Consider a logic <L,Cn> and two sets K, X⊆L, such that 
Cn(∅)⊂Cn(X)⊂Cn(K). If there are sets K′, X′⊆L such that Cn(K′)=Cn(K), 
Cn(∅)⊂Cn(X′)⊆Cn(X) and a Z⊆L such that Cn(Z)⊂Cn(K′), Cn(X′∪Z)=Cn(K′), then 
Cn(Z)⊂Cn(K) and Cn(X∪Z)=Cn(K). 

Proof. Obviously Cn(Z)⊂Cn(K). Since Cn(X′)⊆Cn(X)⊂Cn(K) we can conclude that 
Cn(X∪Z)⊇Cn(X′∪Z)=Cn(K′), so Cn(X∪Z)=Cn(K).                                                   

Now consider any two sets of axioms K, X⊆L of the underlying DL, such that 
Cn(∅)⊂Cn(X)⊂Cn(K). If K and X are of the form required by lemma 1, then we are 
done; lemma 1 allows us to find a set Z that satisfies the requirements of proposition 1 
for an AGM-compliant logic. If, on the other hand, K or X are not of the desired form, 
lemma 2 shows the way; all we need is to find two sets K′, X′ of the desired form 
such that Cn(K′)=Cn(K) and Cn(∅)⊂Cn(X′)⊆Cn(X). Then, lemma 1 can be applied 
for K′, X′ and the resulting set Z can be propagated to K, X using lemma 2. These 
ideas lead to the main result of this section: 

Theorem 1. Consider a DL <L,Cn>, such that: 

• For all K⊆L there is a K′⊆L such that K′={Aj⊒⊤ | j∈J} and Cn(K)=Cn(K′) 
• For all X⊆L there is a X′⊆L such that X′={B⊒⊤}, there is an interpretation I such 

that BI=∅ and Cn(∅)⊂Cn(X′)⊆Cn(X) 
Then this DL is AGM-compliant. 

The important question is, in which DLs do the sets K′, X′ required by theorem 1 
exist? With the aid of table 1, it can be shown that several very expressive DLs allow 
transformations resulting in these K′, X′. Table 1 shows how each of the axiom types 
commonly used in DLs can be equivalently rewritten in the form A⊒⊤. Using this ta-
ble, we can generate K′, X′ as required by theorem 1 as follows: for K′, replace each 
axiom of K with its equivalent in the second column; for X′, select one non-
tautological axiom of X, replace it with its equivalent from table 1 (say B⊒⊤) and set 
X′={∀⊤R.B⊒⊤}. 

All the transformations in table 1 can be shown using model-theoretic arguments. 
Moreover, K′ as defined above obviously fulfills the requirements of theorem 1. For 
X′, notice that the axiom selected from X is non-tautological, so there is an interpreta-
tion for which BI≠⊤I; for this interpretation, it holds that (∀⊤R.B)I=∅. Furthermore, 
X⊧{B⊒⊤}⊧{∀⊤R.B⊒⊤} and Cn(X′)≠Cn(∅), so X′ is of the desired form as well. 

Table 1 shows that the necessary transformations are possible for axioms involving 
concepts, roles and even individuals. Thus, our results apply also to DL KBs that con-
tain a non-empty Abox. In table 1, A, B refer to concept terms, R, S refer to role terms 
and a, b refer to individuals. All operators subscripted by ⋅R (in the third column)  
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apply to role terms; the other operators apply to concept terms or individuals, depend-
ing on the context. Likewise, connectives apply to concepts, roles or individuals, de-
pending on the context. The symbol ⊤R refers to the top role, i.e., the role connecting 
every individual to every individual and the connective \⊏ stands for non-proper-
inclusion. The symbols ¬ and ∃ refer to full (rather than atomic) negation and full 
(rather than limited) existential quantification respectively. 

The above analysis shows that, if the DL under question contains the operators 
necessary for the transformations of table 1, then it is AGM-compliant. The required 
operators are the constant ⊤ and the connective ⊑ for the basic case (lemma 1), the 
operators of table 1 for the transformation of K plus the operator ∀ and the constant 
⊤R for the transformation of X. Notice that there is a certain amount of redundancy in 
table 1; by eliminating this redundancy the following corollary can be shown: 

Corollary 1. A DL containing the constants ⊤, ⊤R, the operators ¬, ⊓, ∀, ¬R, ⊓R, 
{…}, the concept connective ⊑ plus any connectives from table 1 is AGM-compliant. 

Table 1. Transforming axioms into the form A⊒⊤ 
 

Axiom Equivalent axiom of the proper form Required operators 

A⊑B ¬A⊔B⊒⊤ ¬,⊔ 

R⊑S ∀(R⊓¬S).⊥⊒⊤ ⊥,∀,¬R,⊓R 

A⋢B ∃⊤R.(A⊓¬B)⊒⊤ ¬,⊓,∃,⊤R 

R⋢S ∃⊤R.∃(R⊓¬S).⊤⊒⊤ ∃,⊤R,¬R,⊓R 

A≅B (¬A⊔B) ⊓ (A⊔¬B)⊒⊤ ¬,⊔,⊓ 

R≅S ∀(R⊓¬S).⊥ ⊓ ∀(S⊓¬R).⊥⊒⊤ ⊥,⊓,∀,¬R,⊓R 

A≇B ∃⊤R.[(A⊓¬B) ⊔ (B⊓¬A)]⊒⊤ ¬,⊓,⊔,∃,⊤R 

R≇S ∃⊤R.∃[(¬R⊓S) ⊔ (¬S⊓R)].⊤⊒⊤ ∃,⊤R,¬R,⊓R,⊔R 

A⊏B (¬A⊔B) ⊓ ∃⊤R.(B⊓¬A)⊒⊤ ¬,⊓,⊔,∃,⊤R 

R⊏S ∀(R⊓¬S).⊥ ⊓ ∃⊤R.∃(S⊓¬R).⊤⊒⊤ ⊥,⊓,∃,∀,⊤R,¬R,⊓R 

A\⊏B ∀⊤R.∃⊤R.(A⊓¬B) ⊔ ∀⊤R.(¬B⊔A)⊒⊤ ¬,⊓,⊔,∃,∀,⊤R 

R\⊏S ∀⊤R.∃⊤R.∃(R⊓¬S).⊤ ⊔ ∀⊤R.∀(S⊓¬R).⊥⊒⊤ ⊥,⊔,∃,∀,⊤R,¬R,⊓R 

disj(A,B) ¬A⊔¬B⊒⊤ ¬,⊔ 

disj(R,S) ∀(R⊓S).⊥⊒⊤ ⊥,∀,⊓R 

A(a) ¬{a}⊔A⊒⊤ ¬,⊔,{…} 

R(a,b) ∃R.{b}⊔¬{a}⊒⊤ ¬,⊔,∃,{…} 

a=b ¬{a}⊔{b}⊒⊤ ¬,⊔,{…} 

a≠b ¬{a}⊔¬{b}⊒⊤ ¬,⊔,{…} 
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3.2   Discussion 

Notice that corollary 1 provides one possible application of theorem 1; the family of 
DLs described by corollary 1 is not the only AGM-compliant one. There are several 
reasons for that: first of all, the transformations we propose are probably not the only 
possible ones. Other transformations for K and X would possibly generate a different 
set of operators required for AGM-compliance. 

For example, an alternative for the transformation of X is to take X′={∀R.B⊒⊤} 
for a “fresh” role name R instead of X′={∀⊤R.B⊒⊤}. The validity of this alternative 
can be easily shown using model-theoretic arguments. Notice that this requires a fresh 
role name, so the logic must admit an infinite number of role names. Additionally, 
this alternative transformation introduces roles which are completely irrelevant to the 
original KB and the contracted expression; the introduction of new, irrelevant roles 
during each contraction operation may appear irrational for some applications, despite 
the fact that it results to an AGM-compliant operation. 

Additionally, corollary 1 gives a minimal set of operators that are needed to guar-
antee AGM-compliance. Any additional operators do not bar AGM-compliance (no-
tice however that any additional connectives might). Thus, all logics that contain 
more operators than the DL described in corollary 1 are AGM-compliant too. 

Furthermore, some of the operators could be replaced by others; for example the 
combination {¬, ∀} is equivalent to the combination {¬, ∃}. Similar facts hold for 
other operators as well. Moreover, the constants ⊤ and ⊤R could be removed from 
the minimal required set of operators, because they can be replaced by A⊔¬A and 
R⊔¬R respectively. Of course, this requires that there is at least one concept (A) 
and at least one role (R) in the namespace of the logic, but this is hardly an  
assumption. 

As it is clear by theorem 1, the operators we need to guarantee AGM-compliance 
are just those that are required to produce the sets K′, X′; for example, if we are inter-
ested in DL KBs without an Abox, then the operator {…} is not necessary, i.e., it 
could be removed from the minimal set of operators required for AGM-compliance. 
Similarly, certain logics disallow certain connectives or certain uses of ones. Such re-
strictions might affect (i.e., reduce) the required minimal operator set (by allowing 
simpler transformations). Furthermore, in some DLs it might be the case that for all 
concept terms B there is an interpretation I such that BI=∅; if this is the case, then the 
last transformation for X (∀⊤R.B⊒⊤) is not necessary and we could set X′={B⊒⊤}. 

In theorem 1 we state that the DL under question must allow for concept hierar-
chies (connective ⊑). This is a reasonable assumption, since most interesting DLs 
do satisfy it. However, it turns out that it is also an unnecessary one. To show that, 
we will use the concept of equivalence of logics with respect to AGM-compliance 
that appeared in [6], where it was shown that equivalent logics have the same status 
as far as AGM-compliance is concerned. Now, using model-theoretic arguments, 
we can show the following equivalences: {A⊒⊤} ⇔ {A≅⊤} ⇔ {¬∀⊤R.A⊏⊤} ⇔ 
{¬∀⊤R.A≇⊤} ⇔ {¬∀⊤R.A⋣⊤} ⇔ {A\⊏⊤} ⇔ {disj(⊤,¬A)}. These equiva-
lences are all definable using the minimal set of operators of corollary 1. Using  
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these transformations and proposition 5 in [6], we can show that a DL that contains 
the operators required by corollary 1 plus any of the usual concept connectives (≅, 
⊏, ≇, ⋢, \⊏, disj(.,.)), but not ⊑, is equivalent to a similar DL that contains the 
same operators and connectives as well as the connective ⊑. The latter logic (which 
includes ⊑) is AGM-compliant by corollary 1; thus the original logic (which does 
not include ⊑) is AGM-compliant too (since the two logics are equivalent). This ar-
gumentation shows that the existence of concept hierarchies in the DL under ques-
tion is not mandatory for corollary 1 to be applicable; any of the usual concept con-
nectives would do. 

The AGM-compliance of a certain family of DLs is the primary result of this sec-
tion; however, the constructive proof employed in theorem 1 has the secondary effect 
of suggesting one possible contraction operator that satisfies the generalized AGM 
postulates. Indeed, if Cn(∅)⊂Cn(X)⊂Cn(K), the principal case in an AGM-compliant 
contraction operation, then by setting K−X=Cn(Z), where Z is the set constructed in 
the proof of lemma 1, we get an AGM-compliant result for the contraction. This set Z 
can be constructed in linear time on the number of axioms in K, X (this is obvious; 
see the proof of lemma 1). We can complete the definition of the contraction operator 
for the non-principal cases as follows: if Cn(X)⊈Cn(K), then (K−3) leaves us little 
choice: K−X=Cn(K); if Cn(X)=Cn(∅) then (K−6) implies K−X=Cn(K); finally, if 
Cn(K)=Cn(∅) or Cn(K)=Cn(X), then K−X=Cn(∅) is a valid choice. These results can 
be computed in constant time. Thus, given an oracle that solves the reasoning problem 
of the underlying DL in constant time, the result of this contraction operator can be 
computed in linear time on the number of axioms in K, X. So, the computational bot-
tleneck of the above contraction operator is the inference problem of the underlying 
DL. However, the semantic properties of this operator have not been studied; this is 
reserved for future work. 

Many of the required operators of corollary 1 are standard in most interesting 
DLs. One exception is the operator {…}, which is common in many DLs, but could 
not be classified as “standard”. Fortunately, this operator is not necessary for AGM-
compliance if we assume an empty Abox in the DL under question. A more impor-
tant problem is posed by the role operators (¬R, ⊓R, ⊤R), which do not appear in 
most DLs. These operators are required when role connectives are admitted and for 
the transformation of X, unless we use the alternative transformation with the fresh 
role name. Thus, role operators are not necessary if axioms involving roles are not 
allowed in the DL under question and an alternative transformation for X  
is available. 

One last (but certainly not least) observation that can be made is that theorem 1 
and its various corollaries do not provide a complete characterization of AGM-
compliant DLs. However, it looks like this characterization is close to being com-
plete: all the AGM-compliant DLs that we have considered fall into one of the 
theorem’s innumerable variations and corollaries; those who don’t, eventually 
turn out to be non-AGM-compliant (see the next sections for some examples). It 
is part of our future work to determine whether this pattern is simply coincidental 
or not. 
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4   Conditions for Non-AGM-Compliance 

Unfortunately, many DLs are not AGM-compliant; to show that, we will initially 
show the following simple lemma, which is applicable in any logic: 

Lemma 3. Consider a logic <L,Cn> and a set K⊆L. Set X={x∈L | Cn({x})⊂Cn(K)}. 
If Cn(∅)⊂Cn(X)⊂Cn(K) then <L,Cn> is not AGM-compliant. 

Proof. Take any set Z⊆L such that Cn(Z)⊂Cn(K). Then, obviously Z⊆X, so 
Cn(X∪Z)=Cn(X)⊂Cn(K). Thus, we can find no Z⊆L as required by proposition 1 for 
the sets K,X⊆L, which proves that <L,Cn> is not AGM-compliant.                            

Lemma 3 states that, if a logic contains a belief which cannot be deduced by all its 
proper consequences combined, then this logic is not AGM-compliant. Unfortunately, 
this is the case for many DLs that admit axioms between role terms but forbid the use 
of operators ¬R, ⊓R. Indeed, the axiom R⊑S implies ∃R.A⊑∃S.A, (≤2R)⊒(≤2S), etc, 
but sometimes all such implications combined do not imply R⊑S, as shown below: 

Theorem 2. Consider a DL with the following properties: 

• The DL admits at least two role names (say R, S) and one concept name (say A) 
• The DL admits at least one of the operators ∀, ∃, (≥n), (≤n), for at least some n 
• The DL admits any (or none) of the operators ¬, ⊓, ⊔, −, ⊤, ⊥, {…} 
• The DL admits only the connective ⊑ applicable to both concepts and roles 
Then this DL is not AGM-compliant. 

Sketch of Proof. Set K={R⊑S}, X={x∈L | Cn({x})⊂Cn(K)}, as in lemma 3.  
We define two interpretations I, I′, as follows:  

∆I=∆I′={a1,a2,b1,b2,c} 
BI=BI′=∅ for all concepts B 
yI=yI′=c for all individuals y 
R0

I=R0
I′=∅ for all roles R0, other than R, S 

RI=RI′={(a1,b1), (b1,a1), (a2,b2), (b2,a2)} 
SI={(a1,b1), (b1,a1), (a2,b2), (b2,a2)} 
SI′={(a1,b2), (b2,a1), (a2,b1), (b1,a2)} 

Notice that the two interpretations differ only in the interpretation of the role S. An 
easy induction on the number of operators of a concept term C shows that CI=CI′ for 
all C in all DLs considered by the hypothesis. Thus, any axiom involving concept 
terms is satisfied by I iff it is satisfied by I′. Using induction, we can also show that all 
axioms in X that involve role terms are actually tautological. 

Thus, I satisfies K (obviously), so it satisfies X (because K⊧X); since I satisfies  
X, I′ satisfies X (by the results above), but K is not satisfied by I′ (obviously). Thus 
Cn(X)⊂Cn(K). To complete the proof, we need to show that Cn(X)≠Cn(∅); this fol-
lows from the fact that at least one of the operators ∀, ∃, (≥n), (≤n) (for some n) exists 
in the DL. The above, combined with lemma 3, conclude the proof.                            
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The above negative result persists if the DL under question admits ≅ (applicable to 
both concepts and roles) instead of ⊑, or if it admits both connectives; the proof is 
identicsal. The same result can be shown (using the same proof) if we add transitive 
roles (the axiom Trans(.)), axioms with individuals, functional-only roles and/or 
qualified number restrictions. This analysis uncovers a rule of thumb regarding 
DLs: if theorem 1 cannot be applied, then there is good chance that lemma 3 will be 
applicable for a set of the form {R⊑S} or {R≅S} (for any two roles R, S). This pro-
vides a simple test to determine whether a DL is AGM-compliant, applicable to 
many DLs. 

5   A Case Study: OWL 

5.1   OWL DL and OWL Lite Without Annotation Features 

One of the corollaries of theorem 2 is that OWL DL and OWL Lite without annota-
tion features are not AGM-compliant. To show this, we will use the result of [10] 
that identifies OWL DL and OWL Lite (without annotations) as equivalent to 
SHOIN+(D) and SHIF+(D) respectively. SHOIN+(D) is a very expressive DL allow-
ing for the following operators: ⊤, ⊥, ⊓, ⊔, ¬, {…}, −, ∃, ∀, (≥n), (≤n). In addition, 
it allows a datatype theory (D), which is a mapping from a set of datatypes to a set 
of values plus a mapping from data values to their denotation (see [10] for details). 
To make datatypes useful, the logic also allows datatype (or concrete) roles, which 
are binary relationships between individuals and data values, as well as the opera-
tors ∃, ∀, (≥n), (≤n), {…} for datatype roles and data values. The axioms allowed in 
this logic are concept, role and datatype role hierarchies; individual inclusion, 
equality and inequality; role transitivity (for object roles only); and a new concept 
existence axiom (see [10]). SHIF+(D) is just SHOIN+(D) without the {…} construc-
tor and with the at-least and at-most constructors limited to 0 and 1. SHOIN+(D) 
and SHIF+(D) can be shown non-AGM-compliant, so OWL DL and OWL Lite are 
not AGM-compliant either: 

Corollary 2. SHOIN+(D) and SHIF+(D) are not AGM-compliant. 

Proof. The only difference from the proof of theorem 2 is the existence of datatypes; 
to remedy this problem, augment the interpretations with a datatype domain (∆D

I, ∆D
I′) 

and map all datatype roles to the empty set. The rest of the proof is identical.             

5.2   OWL with Annotation Features 

But what if annotation features are included? Does this make the situation any better? 
Unfortunately not: the annotation features are meant to be read by humans, so they 
carry no special meaning for the system (they imply nothing) and the same negative 
results apply here. There is one exception though: the owl:imports annotation feature 
carries some meaning for the parser, making it substantially different from the other 
annotation constructs. More specifically, owl:imports is a meta-logical annotation 
property forcing the parser to include another KB (ontology) in the current KB. In ef-
fect, the axiom owl:imports(O) has exactly the same implications as O itself. One may 
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believe that owl:imports does not add anything new to the language in terms of ex-
pressiveness, because owl:imports(O) can be replaced by the axioms of O themselves.  

Unfortunately, there is one problem with this approach: owl:imports must be re-
placed dynamically at the time when the consequences of a certain KB are calcu-
lated (at “run-time”). However, the naïve approach above replaces owl:imports 
statically, thus losing the connection between our ontology and O. This would work 
nicely until O is changed; if O is somehow revised, then the correct, dynamic ap-
proach should replace owl:imports with the axioms of the new O, while the static 
approach would leave our KB with the axioms of the old O. Notice that this would 
not be an issue if we could somehow guarantee that O would remain static and un-
changed; however, given the dynamic nature of the Web, such an assumption would 
be highly unrealistic. 

Therefore, the axiom owl:imports(O) is not equivalent to O; rephrasing this fact 
in the terminology of this paper, we conclude that, for K={owl:imports(O)}, it 
holds that Cn(K)=Cn(O)∪K and Cn(O)⊂Cn(K), thus making lemma 3 applicable 
for K. Since owl:imports is allowed in all three flavors of OWL, we conclude that 
OWL Full, OWL DL and OWL Lite (with annotation features) are non-AGM-
compliant. Furthermore, this analysis shows that any fragment of OWL that con-
tains the owl:imports construct and at least one other non-tautological expression is 
non-AGM-compliant. 

6   Discussion and Directions for Future Work 

6.1   Application to DLs in the Literature 

Our study was kept at a fairly abstract level; we did not focus on any specific DL but 
dealt with the DL family as a whole, including DLs that have not yet been considered 
in the literature. This approach allows our results to be of use to researchers who de-
velop new DLs; if the focus is on developing a DL that can be rationally updated, then 
AGM-compliance should be a desirable feature of the new DL, along with high ex-
pressive power, low reasoning complexity etc. 

However, theorems 1 and 2 can be applied to several DLs that have already been 
considered in the literature as well. We provide an indicative (but not necessarily 
complete) list of DLs for which a definite answer regarding AGM-compliance can be 
given. For a definition of the logics below, refer to [2], [3], [5], [10], [11], [14]. 

The following DLs can be shown to be non-AGM-compliant: SH, SHI, SHIN, 
SHOIN, SHOIN(D), SHOIN+, SHOIN+(D), SHIQ, SHIF, SHIF(D), SHIF+, SHIF+(D); 
all these logics admit role hierarchies, so these results are actually corollaries of theo-
rem 2. For similar reasons, adding role hierarchies to the AL family leads to non-
AGM-compliance; that is, FL0 and FL− with role axioms and all DLs between ALH 
and ALHCIOQ are non-AGM-compliant. This family includes several logics, such as 
ALHE, ALHNC, etc. None of the three flavors of OWL is AGM-compliant if the 
owl:imports axiom is included; OWL DL and OWL Lite without their annotation fea-
tures are non-AGM-compliant either. These facts were proven in section 5. 

The addition of role operators to the AL family results in some AGM-compliant 
DLs, such as ALCO¬,⊓,⊔, ALC¬,⊓,⊔ with empty Abox, ALCO(¬),⊔ and ALCO(¬),⊓,⊔ 
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with no axioms involving role terms and ALC(¬),⊔ and ALC(¬),⊓,⊔ with empty Abox 
and no axioms involving role terms. AGM-compliance persists if we add more opera-
tors (but not new axiom types) to any of the above logics; for example, all DLs with 
more operators than ALC¬,⊓,⊔ and no Abox (such as ALB) are AGM-compliant. 

If we have an infinite pool of role names, we can use the alternative transformation 
introduced in section 3.2 to produce X′; this makes ALC (and all languages with more 
operators than ALC) AGM-compliant, provided that no axioms involving role terms 
are included and that the Abox is empty. Similarly, all languages with more operators 
than ALCO are AGM-compliant if they do not allow axioms involving roles. 

As shown by the above results, it is the absence of role operators (role intersection, 
union and complement) that bars AGM-compliance in most cases. For this reason, we 
highly encourage research on DLs that admit these operators due to their nice behav-
ior with respect to updates. Unfortunately, very few logics with role operators have 
been studied in the literature (notable exceptions being [11], [14]), so the computa-
tional overhead caused by such operators is largely unknown. 

6.2   Role Operators, Negation, the Levi Identity and Ontology Revision 

An additional advantage of the use of role operators (especially ⊤R) is the fact that 
they allow the definition of an axiom’s negation. The negation of A⊑B is A⋢B, but 
most logics do not allow axioms with the connective ⋢. However, A⋢B is equivalent 
to ∃⊤R.(A⊓¬B)⊒⊤ (see table 1), so the negation of A⊑B can be defined indirectly 
using ⊤R; similar facts hold for other axiom types as well. This concept can be ex-
tended to finite sets of axioms by noticing that the set X={Aj⊒Bj | j∈J} is equivalent 
to {⊓j∈J(Aj⊔¬Bj)⊒⊤}, which is a singular set, so it has a negation,  
as above. 

It must be emphasized at this point that not all AGM-compliant DLs are closed 
with respect to axiom negation. The negation of a set of axioms in an AGM-
compliant logic, when available, is a very important concept, because it allows us to 
use the Levi identity: K+X=Cn((K−¬X)∪X) to produce a revision operator from a 
given contraction operator [8]. This identity says that, in order to revise a KB with 
some set of axioms X, we can first contract ¬X and then add X. The contraction op-
eration is needed to guarantee that no inconsistency will arise when X is added to the 
new KB. 

Therefore, for these logics, the problem of ontology revision can be solved in-
directly through the problem of contraction, which is studied in this paper; this 
way, the definition of a rational contraction operator is of dual significance. As 
future work, we are planning to study the problem of revision more thoroughly. 
Due to the above facts, a related issue is the refinement of the proposed contrac-
tion operator for AGM-compliant DLs, to produce an operator that will be based 
on semantic rather than syntactic considerations, in addition to being AGM-
compliant. 

6.3   Evaluation of AGM-Compliance 

The purpose of this paper is to evaluate the usefulness of applying the AGM theory to 
DLs and OWL. As the above analysis indicates, OWL does not support the AGM 
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postulates, so the approach is not useful for OWL ontologies. Regarding DLs, the 
situation is much better: there are certain DLs in which an AGM-compliant contrac-
tion operator can be defined, as well as several non-AGM-compliant DLs. Our results 
do not currently provide a complete characterization of AGM-compliance for DLs; 
this is an important goal for our future work. 

The AGM theory has always been the most influential approach to the problem of 
belief change, because it properly captures common intuition regarding the concept 
of rationality and it has several interesting theoretical properties [8]. However, our 
results showed that there are certain problems regarding its application to certain 
DLs, for the operation of contraction. On the other hand, as we showed in [6], all lo-
gics <L,Cn> admit a contraction operator that satisfies (K−1)-(K−5), i.e., all AGM 
postulates except the recovery postulate. Coincidentally, the only seriously debated 
AGM postulate is the postulate of recovery, as some works (e.g., [9]) state that 
(K−6) is counter-intuitive; for a thorough examination on the theoretical implications 
of using (K−6) see [15]. It is generally acceptable however that the recovery postu-
late cannot be dropped unless replaced by some other constraint that would somehow 
express the Principle of Minimal Change. Given the negative results appearing in 
this paper and the above facts, we believe it is useful to work on a “replacement” of 
the recovery postulate, or on some approximation of it, that would properly capture 
the Principle of Minimal Change in addition to being applicable to non-AGM-
compliant DLs.  

As far as AGM-compliant DLs are concerned, we believe that research on ontol-
ogy change should use the feature of AGM-compliance, thus taking advantage of 
the numerous results that appeared in the literature on belief change and the AGM 
theory during the past 20 years. For this reason, we plan to continue our research on 
the application of the AGM theory to the DLs that support it. In this respect, notice 
that AGM-compliance simply guarantees the existence of a contraction operator 
that satisfies the basic AGM postulates for contraction; one of our future goals is to 
determine the relation of AGM-compliance to other results related to the AGM the-
ory, such as the various representation theorems [8], the supplementary AGM pos-
tulates [1] etc. 

7   Conclusion 

The AGM theory is a mature and widely accepted model for belief change with 
several applications; a further application of this theory in DLs will hopefully indi-
cate rational methods for updating such logics. This paper partly evaluated the ap-
plicability and usefulness of this approach by determining whether contracting a 
DL KB using the AGM model is possible for certain DLs and by providing a 
roadmap allowing one to check AGM-compliance for DLs not covered by this 
work. We also described one possible AGM-compliant contraction operator for the 
DLs that were found to allow one and showed that OWL is incompatible with the 
AGM theory. 

We are hoping that our work will help in uncovering the limitations of the AGM 
theory with respect to DLs, by verifying the applicability of the method in certain 
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DLs and forcing us to consider alternative approaches in others. DLs and OWL have 
an important role to play in the design of the Semantic Web [4], so our research has 
the potential to find applications in ontology evolution and merging 
and,consequently, in the automation of the task of ontology maintenance on the  
Semantic Web. 
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