
A Graphical Rule Authoring Tool for Defeasible
Reasoning in the Semantic Web

Nick Bassiliades1, Efstratios Kontopoulos1, Grigoris Antoniou2, and
Ioannis Vlahavas1

1Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

{nbassili, skontopo, vlahavas}@csd.auth.gr
2Institute of Computer Science, FO.R.T.H.

P.O. Box 1385, GR-71110, Heraklion, Greece
antoniou@ics.forth.gr

Abstract. Defeasible reasoning is a rule-based approach for efficient reasoning
with incomplete and inconsistent information. Such reasoning is useful for
many applications in the Semantic Web, such as policies and business rules,
agent brokering and negotiation, ontology and knowledge merging, etc. How-
ever, the syntax of defeasible logic may appear too complex for many users. In
this paper we present a graphical authoring tool for defeasible logic rules that
acts as a shell for the DR-DEVICE defeasible reasoning system over RDF
metadata. The tool helps users to develop a rule base using the OO-RuleML
syntax of DR-DEVICE rules, by constraining the allowed vocabulary through
analysis of the input RDF namespaces, so that the user does not have to type-in
class and property names. Rule visualization follows the tree model of RuleML.
The DR-DEVICE reasoning system is implemented on top of the CLIPS pro-
duction rule system and builds upon an earlier deductive rule system over RDF
metadata that also supports derived attribute and aggregate attribute rules.

1. Introduction

The development of the Semantic Web [8] proceeds in layers, each layer being on top
of other layers. At present, the highest layer that has reached sufficient maturity is the
ontology layer, with OWL [11], a description logic based language, being the stan-
dard. The next step in the development of the Semantic Web will be the logic and
proof layers and rule systems appear to lie in the mainstream of such activities. Rule
systems can play a twofold role in the Semantic Web initiative: (a) they can serve as
extensions of, or alternatives to, description logic based ontology languages; and (b)
they can be used to develop declarative systems on top of (using) ontologies.

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete
and inconsistent information. It can represent facts, rules, and priorities among rules.
This reasoning family comprises defeasible logics ([3]) and Courteous Logic Pro-
grams [14]. The main advantage of this approach is the combination of two desirable
features: a) enhanced representational capabilities, allowing one to reason with in-

complete and contradictory information, coupled with b) low computational complex-
ity compared to mainstream nonmonotonic reasoning.

Defeasible logic can easily express conflicts among rules. Such conflicts arise,
among others, from rules with exceptions, which are a natural representation for poli-
cies and business rules [2]. And priority information is often implicitly or explicitly
available to resolve conflicts among rules. Potential applications include security
policies ([5], [16]), business rules [1], personalization, brokering [4], bargaining, and
automated agent negotiations ([13], [19]).

However, defeasible logic is certainly not an end-user language but rather a devel-
oper's one, because its syntax may appear too complex. In this paper, we present a
graphical rule authoring tool for defeasible logic that acts as a shell for the DR-
DEVICE [6] defeasible reasoning system for the Semantic Web. This rule authoring
tool is built in Java and helps users to develop a rule base using the OO-RuleML [9]
syntax of DR-DEVICE rules. Among others, the tool constrains the allowed vocabu-
lary, by analyzing the input RDF namespaces; therefore, it removes from the user the
burden of typing-in class and property names and prevents potential semantical and
syntactical errors. The visualization of rules follows the tree model of RuleML.

DR-DEVICE supports multiple rule types of defeasible logic, as well as priorities
among rules. Furthermore, it supports two types of negation (strong, negation-as-
failure) and conflicting (mutually exclusive) literals. DR-DEVICE has a RuleML-
compatible [9] syntax, which is the main standardization effort for rules on the Se-
mantic Web. Input and output of data and conclusions is performed through process-
ing of RDF data and RDF Schema ontologies. The system is built on-top of a CLIPS-
based [10] implementation of deductive rules, namely the R-DEVICE system [7]. The
core of the system consists of a translation of defeasible knowledge into a set of de-
ductive rules, including derived and aggregate attributes.

The paper is organized as follows. Section 2 briefly introduces the syntax and se-
mantics of defeasible logics. Section 3 presents the architecture of the DR-DEVICE
reasoning system. Section 4 describes the RuleML syntax of defeasible logic rules in
DR-DEVICE. Section 5 presents the graphical rule authoring tool. Finally, section 6
discusses related work, and section 7 concludes the paper with a summary and de-
scription of current and future work.

2. An Introduction to Defeasible Logics

A defeasible theory D is a couple (R,>) where R a finite set of rules and > a superior-
ity relation on R. Each rule has a unique rule label. There are three kinds of rules:
strict rules, defeasible rules, and defeaters.

Strict rules are denoted by A → p and are interpreted in the classical sense: when-
ever the premises are indisputable, then so is the conclusion. An example of a strict
rule is “Penguins are birds”. Written formally: r1: penguin(X) → bird(X). In-
ference from strict rules only is called definite inference. Strict rules are intended to
define relationships that are definitional in nature and such an example is ontological
knowledge.

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence.
An example of such a rule is r2: bird(X) ⇒ flies(X), which reads as: “Birds
typically fly”.

Defeaters are denoted as A ~> p and are not used to actively support conclusions,
but only to prevent some of them. An example of such a defeater is:
r4: heavy(X) ~> ¬flies(X), which reads as: “Heavy birds may not fly”.

A superiority relation on R is an acyclic relation > on R (that is, the transitive clo-
sure of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior
to r1. This expresses that r1 may override r2. For example, given the defeasible rules r2
and r3: penguin(X) => ¬flies(X), no conclusive decision can be made about
whether a penguin flies, because rules r2 and r3 contradict each other. But if we intro-
duce a superiority relation > with r3 > r2, then we can indeed conclude that a penguin
does not fly.

3. The DR-DEVICE System Architecture and Functionality

The DR-DEVICE reasoning system consists of two major components (Fig. 1): the
RDF loader/translator and the rule loader/translator. The user submits to the rule
loader a rule program (a URL or a local file name) that contains a) one or more rules
in RuleML-like syntax [9], b) the URL(s) of the RDF input document(s), which is
forwarded to the RDF loader, c) the names of the derived classes to be exported as re-
sults, and d) the name of RDF output document.

RDF triple
Loader

RDF triple
Translator

Local Disk

User

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document URI

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

Fig. 1. Architecture of the DR-DEVICE reasoning system.

The RuleML file is transformed into the native CLIPS-like syntax through an
XSLT stylesheet. The DR-DEVICE rule program is then forwarded to the rule trans-
lator. The RDF loader downloads the input RDF documents, including their schemas,

and translates RDF descriptions into CLIPS objects, according to the RDF-to-object
translation scheme of R-DEVICE [7].

The rule translator compiles the defeasible logic rules into a set of CLIPS produc-
tion rules in two steps: First, the defeasible logic rules are translated into sets of de-
ductive, derived attribute and aggregate attribute rules of the basic R-DEVICE rule
language, using the translation scheme described in [6]. Then, all these R-DEVICE
rules are translated into CLIPS production rules [10], according to the R-DEVICE
rule translation scheme [7]. All compiled rule formats are kept into local files, so that
the next time they are needed they can be directly loaded, improving speed.

The inference engine of CLIPS performs the reasoning by running the production
rules and generates the objects that constitute the result of the initial rule program or
query. The compilation phase guarantees correctness of the reasoning process accord-
ing to the operational semantics of defeasible logic.

Finally, the result-objects are exported to the user as an RDF/XML document
through the RDF extractor. The RDF document includes the RDF Schema definitions
for the exported derived classes and the instances of the exported derived classes,
which have been proven (positively or negatively, defeasibly or definitely).

4. The Defeasible Logic Language of DR-DEVICE

DR-DEVICE has both a native CLIPS-like syntax ([6]) and a RuleML-compatible
syntax [9]. Rules are encoded in an imp element and they have a label (_rlab ele-
ment), which also includes the rule's unique ID (ruleID attribute) and the type of the
rule (ruletype attribute). The names (rel elements) of the operator (_opr) ele-
ments of atoms are class names, since atoms actually represent CLIPS objects. Atoms
have named arguments, called slots, which correspond to object properties. In DR-
DEVICE, RDF resources are represented as CLIPS objects; therefore, atoms corre-
spond to queries over RDF resources of a certain class with certain property values.
For example, the following fragment represents the defeasible rule r2 of section 2:
<imp><_rlab ruleID="r2" ruletype="defeasiblerule"><ind>r2</ind></_rlab>
 <_head> <atom> <_opr><rel>flies</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_head>
 <_body> <atom> <_opr><rel>bird</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_body>
</imp>

Superiority relations are represented as attributes of the superior rule. For example,
rule r3 (of section 2) is superior to rule r2. In RuleML, this is represented via a supe-
riority attribute in the rule label of rule r3. Negation is represented via a neg ele-
ment that encloses an atom element.
<imp> <_rlab ruleID="r3" ruletype="defeasiblerule" superior="r2">
 <ind>r3</ind> </_rlab>
 <_head> <neg> <atom> <_opr><rel>flies</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </neg>
 </_head>

 <_body> <atom> <_opr><rel>penguin</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_body>
</imp>

Apart from the rule declarations, there are comp_rules elements that declare
groups of competing rules which derive competing positive conclusions, also known
as conflicting literals.
<comp_rules c_rules="r10 r11 r12">
 <_crlab> <ind>cr1</ind> </_crlab>
</comp_rules>

Further extensions to the RuleML syntax, include function calls that are used either
as constraints in the rule body or as new value calculators at the rule head. Addition-
ally, multiple constraints in the rule body can be expressed through the logical opera-
tors: _not, _and, _or.

Finally, in the header of the rulebase several important parameters are declared; the
input RDF file(s) are declared in the rdf_import attribute of the rulebase (root)
element of the RuleML document. There exist two more attributes in the rulebase
element: the rdf_export attribute, which is the RDF file with the exported results,
and the rdf_export_classes attribute, which are the derived classes, whose in-
stances will be exported in RDF/XML format. An example is shown below:
<rulebase rdf_import="http://lpis.csd.auth.gr/.../carlo.rdf#"
 rdf_export_classes="acceptable rent"
 rdf_export="http://lpis.csd.auth.gr/.../export-carlo.rdf">

5. The Graphical Rule Authoring Tool

As the previous section shows, expressing or even viewing rules in RuleML syntax
can often be highly cumbersome. In order to enhance user-friendliness and efficiency,
DR-DEVICE is supported by a Java-built graphical authoring tool, which also acts as
a graphical shell for the DR-DEVICE core reasoning system.

The graphical shell facilitates the development and invocation of rulebases, by call-
ing the external applications that constitute the DR-DEVICE system. Users can evoke
local or remote RuleML rulebases by starting new projects. The rulebase is then dis-
played in the left frame in XML-tree format, also offering the user the capability of
navigating through the entire tree (Fig. 2). When the rulebase is compiled and run, the
DR-DEVICE core system, described in section 3, is evoked. The execution trace is
watched via a DOS Window which can be later re-examined using the 'Run Trace'
window (Fig. 3). Users can set the level of detail during the trace, using the Parame-
ters menu. The exported results of the inference process can be examined via an
Internet Explorer window (Fig. 3). Finally, users can also re-run already compiled
projects considerably (10-times) faster.

The graphical authoring tool facilitates rulebase developers via constrained yet
flexible deployment of pre-defined rule templates, according to both the RuleML-
compatible syntax and the RDF-oriented semantics.

While traversing the XML tree, the user can add or remove elements, according to
the DTD limitations. In general, the rule editor allows only a limited number of opera-

tions performed on each element, according to the element's meaning within the rule
tree. The main principle of tree expansion is the following: when a new element is
added, then all the mandatory sub-elements are also added. When there are multiple
alternative sub-elements, none is added, but the user can select one of them to add by
right-clicking on the parent element. Furthermore, the user can alter the textual con-
tent (PCDATA) of the tree leafs. The atom element has a special treatment because it
can be either negated or not. To facilitate this, the wrapping/unwrapping of an atom
element within a neg element is performed via a toggle button.

Fig. 2. The graphical rule authoring tool of DR-DEVICE and the namespace dialog window.

Fig. 3. The Run Trace and Results windows of the graphical DR-DEVICE shell.

The attribute editing area (in the right-hand frame) shows the XML attributes, cor-
responding to the selected tree node in the XML navigation-editing area. All the at-
tributes (both mandatory and optional) are shown in this area, but the final XML
document will contain only the non null ones. Rule IDs are treated specially, since
they uniquely represent rules within the rulebase. Some IDREF attributes, such as the
superior attribute of the _rlab element, use the list of rule IDs to constrain the list
of possible values. Names of functions appearing in an fcall element are con-
strained to be among the system-defined CLIPS functions.

One of the important aspects of the rule editor is the namespace dialog window
(Fig. 2), where the user can declare all the XML namespaces that will be used
throughout the rulebase. Actually, namespace declarations are addresses of RDF
Schema documents that contain the vocabulary for the input RDF documents over
which the rules of the rulebase will be run. Namespaces are analyzed by the authoring
tool in order to discover the allowed class and property names for the rulebase being
edited. These names are used in pull-down menus and name lists throughout the au-
thoring of the RuleML rulebase, in order to constrain the allowed names that can be
used, to facilitate rule authoring and, consequently, reduce the possible semantical
(and syntactical) errors of the rule developer.

More specifically, RDF Schema documents are parsed, using the ARP parser of
Jena [18], a flexible Java API for processing RDF documents, and the names of the
classes found are collected in the base class vector (CVb), which already contains
rdfs:Resource, the superclass of all RDF user classes. Therefore, the vector is con-
structed as follows:

rdfs:Resource ∈ CVb
∀C (C rdf:type rdfs:Class) → C ∈ CVb

where (X Y Z) represents an RDF triple found in the RDF Schema documents.
. Except from the base class vector, there also exists the derived class vector (CVd),

which contains the names of the derived classes, i.e. the classes which lie at rule
heads (conclusions). This vector is initially empty and is dynamically extended every
time a new class name appears inside the rel element of the atom in a rule head.

The vector CVd is used for loosely suggesting possible values for rel elements of
the atom in a rule head, but not constraining them, because rule heads can either in-
troduce new derived classes or refer to already existing ones.

The full class vector (CVf), which is a union of the above two vectors (CVf = CVb ∪
CVd), is used for constraining the allowed class names, when editing the contents of
the rel element inside atom elements of the rule body.

Furthermore, the RDF Schema documents are also parsed for property names and
their domains. The properties are placed in a base property vector PVb, which already
contains some built-in RDF properties (BIP) whose domain is rdfs:Resource:

BIP = {rdf:type, rdfs:label, rdfs:comment, rdfs:seeAlso,
 rdfs:isDefinedBy, rdf:value} ⊆ PVb

∀P, (P rdf:type rdf:Property) → P ∈ PVb

Except from the base property vector, there also exists the derived property vector
(PVd), which contains the names of the properties of the derived classes, i.e. the prop-
erties of classes which lie at rule heads (conclusions). This vector is initially empty
and is dynamically extended every time a new property name appears inside the
_slot element of the atom in a rule head. Therefore, the full property vector (PVf) is
a union of the above two vectors: PVf = PVb ∪ PVd.

For each property P in the PVf vector an object is created that maintains all the
RDF Schema information needed. More specifically, each P object maintains two
sets: superproperty set SUPP(P) and domain set DOM(P).

The SUPP(P) set initially contains all the direct superproperties of P. The rest of
the properties (including the derived class properties) have an empty SUPP(P):

∀P∈PVb ∀SP∈PVb, (P rdfs:subPropertyOf SP) → SP ∈ SUPP(P)

The SUPP(P) set is then further populated with the indirect superproperties of each
property, by recursively traversing upwards the property hierarchy. Existing dupli-
cates due to multiple inheritance are subsequently merged, since SUPP(P) is a set:

∀P∈PVb ∀SP∈SUPP(P) ∀SP'∈SUPP(SP) → SP' ∈ SUPP(P)

The DOM(P) set of domains is initially constructed, by examining the domain of
each property declared in the RDF Schema documents. The domain of each derived
class property is the corresponding derived class:

∀P∈PVb ∀C, (P rdfs:domain C) → C ∈ DOM(P)

The domain of the RDF built-in properties BIP is rdfs:Resource:

∀P∈BIP, rdfs:Resource ∈ DOM(P)

If a property does not have a domain, then rdfs:Resource is assumed:

∀ P∈(PVb-BIP), (¬∃C P rdfs:domain C) → rdfs:Resource ∈ DOM(P)

The DOM(P) set is then further populated, by inheriting the domains of all the su-
perproperties (both direct and indirect):

∀P∈PVb ∀SP∈SUPP(P) ∀C∈DOM(SP), C ∈ DOM(P)

This follows from the RDFS semantics, which dictate that the domains (and
ranges) of the superproperties are inherited by the subproperties conjunctively.

The domains of the properties are needed, in order to constrain the possible values
that the slot names can take, when editing the RuleML tree. More specifically, for
each atom element appearing inside the rule body, when the class name C is selected,
the names of the properties that can appear inside the _slot subelements are con-
strained only to those that have C as their domain, either directly or inherited. Fur-
thermore, subsumed properties are also allowed, as it is explained below.

In order to link each class with the allowed properties, for each class C in the CVf
vector an object is created that maintains all the RDF Schema information needed.
More specifically, each C object maintains five sets: superclass set SUPC(C), sub-
class set SUBC(C), owned property set OWNP(C), inherited property set INHP(C),
and subsumed property set SUBP(C).

The SUPC(C) set initially contains all the direct superclasses of C:

∀C∈CVb ∀SC∈CVb, (C rdfs:subClassOf SC) → SC ∈ SUPC(C)

If a class does not have a superclass, then it is considered to be a subclass of
rdfs:Resource:

∀C∈CVb, C≠rdfs:Resource ∧ (¬∃SC SC∈CVb → (C rdfs:subClassOf SC))
 → rdfs:Resource ∈ SUPC(C)

Derived classes are considered to be subclasses of rdfs:Resource:

∀C∈CVd, rdfs:Resource ∈ SUPC(C)

The SUPC(C) set is then further populated with the indirect superclasses of each
class, by recursively traversing upwards the class hierarchy. Potential duplicates due
to multiple inheritance are again subsequently merged, since SUPC(C) is a set:

∀C∈CVb ∀SC∈SUPC(C) ∀SC'∈SUPC(SC) → SC' ∈ SUPC(C)

The SUBC(C) set is constructed, by inversing all the subclass relationships (both
direct and indirect):

∀C∈CVb ∀SC∈SUPC(C) → C ∈ SUBC(SC)

The OWNP(C) set of owned properties is constructed, by examining the domain set
of each property object in the full property vector:

∀P∈PVf ∀C∈DOM(P) → P ∈ OWNP(C)

The inherited property set INHP(C) is constructed, by inheriting the owned proper-
ties from all the superclasses (both direct and indirect):

∀C∈CVb ∀SC∈SUPC(C) ∀ P∈OWNP(SC) → P ∈ INHP(C)

This follows from the RDFS semantics, which dictate that the instances of a sub-
class are also instances of its superclass; therefore, properties which have the super-
class as domain can also have any of its subclasses as domain.

Finally, the subsumed property set SUBP(C) is constructed, by copying the owned
properties from all the subclasses (both direct and indirect):

∀C∈CVb ∀SC∈SUBC(C) ∀P∈OWNP(SC) → P ∈ SUBP(C)

Although the domain of a subsumed property of a class C is not compatible with
class C, it can still be used in the rule condition for querying objects of class C, imply-
ing that the matched objects will belong to some subclass C' of class C, which is com-
patible with the domain of the subsumed property. For example, consider two classes
A and B, the latter being a subclass of the former, and a property P, whose domain is
B. It is allowed to query class A, demanding that property P satisfies a certain condi-
tion; however, only objects of class B can possibly satisfy the condition, since direct
instances of class A do not even have property P.

The above three property sets comprise the full property set FPS(C):

FPS(C) = OWNP(C) ∪ INHP(C) ∪ SUBP(C)

which is used to restrict the names of properties that can appear inside a _slot ele-
ment (see Fig. 2), when the class of the atom element is C.

6. Related Work

There exist several previous implementations of defeasible logics. Deimos [17] is a
flexible, query processing system based on Haskell. It implements several variants,
but not conflicting literals nor negation as failure in the object language. Also, it does
not integrate with Semantic Web (for example, there is no way to treat RDF data and
RDFS/OWL ontologies; nor does it use an XML-based or RDF-based syntax for syn-
tactic interoperability). Therefore, it is only an isolated solution. Finally, it is proposi-
tional and does not support variables.

Delores [17] is another implementation, which computes all conclusions from a de-
feasible theory. It is very efficient, exhibiting linear computational complexity.
Delores only supports ambiguity blocking propositional defeasible logic; so, it does
not support ambiguity propagation, nor conflicting literals, variables and negation as

failure in the object language. Also, it does not integrate with other Semantic Web
languages and systems, and is thus an isolated solution.

SweetJess [15] is another implementation of a defeasible reasoning system (situ-
ated courteous logic programs) based on Jess. It integrates well with RuleML. How-
ever, SweetJess rules can only express reasoning over ontologies expressed in
DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary RDF
data, like DR-DEVICE. Furthermore, SweetJess is restricted to simple terms (vari-
ables and atoms). This applies to DR-DEVICE to a large extent. However, the basic
R-DEVICE language [7] can support a limited form of functions in the following
sense: (a) path expressions are allowed in the rule condition, which can be seen as
complex functions, where allowed function names are object referencing slots; (b)
aggregate and sorting functions are allowed in the conclusion of aggregate rules. Fi-
nally, DR-DEVICE can also support conclusions in non-stratified rule programs due
to the presence of truth-maintenance rules [6].

Mandarax [12] is a Java rule platform, which provides a rule mark-up language
(compatible with RuleML) for expressing rules and facts that may refer to Java ob-
jects. It is based on derivation rules with negation-as-failure, top-down rule evalua-
tion, and generating answers by logical term unification. RDF documents can be
loaded into Mandarax as triplets. Furthermore, Mandarax is supported by the Oryx
graphical rule management tool. Oryx includes a repository for managing the vocabu-
lary, a formal-natural-language-based rule editor and a graphical user interface li-
brary. Contrasted, the rule authoring tool of DR-DEVICE lies closer to the XML na-
ture of its rule syntax and follows a more traditional object-oriented view of the RDF
data model [7]. Furthermore, DR-DEVICE supports both negation-as-failure and
strong negation, and supports both deductive and defeasible logic rules.

7. Conclusions and Future Work

In this paper we argued that defeasible reasoning is useful for many applications in
the Semantic Web, such as modeling policies and business rules, agent brokering and
negotiation, ontology and knowledge merging, etc., mainly due to conflicting rules
and rule priorities. However, the syntax of defeasible logic may appear too complex
for many users; therefore, we have developed a graphical authoring tool to facilitate
users in developing a rulebase using a RuleML-compatible defeasible logic rule lan-
guage. DR-DEVICE is a defeasible reasoning system over RDF metadata, which is
implemented on top of the CLIPS production rule system. The rule authoring tool
constrains the allowed vocabulary by analyzing the input RDF namespaces, so that
the user does not have to type-in class and property names, preventing potential syn-
tactical and semantical errors. Rule visualization follows the tree model of RuleML.

In the future, we plan to delve into the proof layer of the Semantic Web architec-
ture by developing further the graphical environment into a full visual IDE that in-
cludes rule execution tracing, explanation, proof exchange in an XML or RDF format,
proof visualization and validation, etc. These facilities would be useful for increasing
the trust of users for the Semantic Web agents and for automating proof exchange and
trust among agents in the Semantic Web.

Acknowledgments

This work is partially funded by the Greek Ministry of Education (EPEAEK) and the
European Union under the Pythagoras II programme.

References

[1] Antoniou G. and Arief M., “Executable Declarative Business rules and their use in Elec-
tronic Commerce”, Proc. ACM Symposium on Applied Computing, 2002.

[2] Antoniou G., Billington D. and Maher M.J., “On the analysis of regulations using defeasi-
ble rules”, Proc. 32nd Hawaii International Conference on Systems Science, 1999.

[3] Antoniou G., Billington D., Governatori G. and Maher M.J., “Representation results for
defeasible logic”, ACM Trans. on Computational Logic, 2(2), 2001, pp. 255-287.

[4] Antoniou G., Skylogiannis T., Bikakis A., Bassiliades N., “DR-BROKERING – A Defea-
sible Logic-Based System for Semantic Brokering”, IEEE Int. Conf. on E-Technology, E-
Commerce and E-Service, pp. 414-417, Hong Kong, 2005.

[5] Ashri R., Payne T., Marvin D., Surridge M. and Taylor S., “Towards a Semantic Web Se-
curity Infrastructure”, Proc. of Semantic Web Services, 2004 Spring Symposium Series,
Stanford University, California, 2004.

[6] Bassiliades N., Antoniou, G., Vlahavas I., “A Defeasible Logic Reasoner for the Semantic
Web”, 3rd Int. Workshop on Rules and Rule Markup Languages for the Semantic Web
(RuleML 2004), Springer-Verlag, LNCS 3323, pp. 49-64, Hiroshima, Japan, 2004.

[7] Bassiliades N., Vlahavas I., “R-DEVICE: A Deductive RDF Rule Language”, 3rd Int.
Workshop on Rules and Rule Markup Languages for the Semantic Web (RuleML 2004),
Springer-Verlag, LNCS 3323, pp. 65-80, Hiroshima, Japan, 2004.

[8] Berners-Lee T., Hendler J., and Lassila O., “The Semantic Web”, Scientific American,
284(5), 2001, pp. 34-43.

[9] Boley H., Tabet S., The Rule Markup Initiative, www.ruleml.org/
[10] CLIPS Basic Programming Guide (v. 6.21), www.ghg.net/clips/CLIPS.html
[11] Dean M. and Schreiber G., (Eds.), OWL Web Ontology Language Reference, 2004,

www.w3.org/TR/2004/REC-owl-ref-20040210/
[12] Dietrich J., Kozlenkov A., Schroeder M., Wagner G., "Rule-based agents for the semantic

web", Electronic Commerce Research and Applications, 2(4), pp. 323–338, 2003.
[13] Governatori G., Dumas M., Hofstede A. ter and Oaks P., “A formal approach to legal ne-

gotiation”, Proc. ICAIL 2001, pp. 168-177, 2001.
[14] Grosof B. N., “Prioritized conflict handing for logic programs”, Proc. of the 1997 Int.

Symposium on Logic Programming, pp. 197-211, 1997.
[15] Grosof B.N., Gandhe M.D., Finin T.W., “SweetJess: Translating DAMLRuleML to

JESS”, Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Seman-
tic Web (RuleML 2002).

[16] Li N., Grosof B. N. and Feigenbaum J., “Delegation Logic: A Logic-based Approach to
Distributed Authorization”, ACM Trans. on Information Systems Security, 6(1), 2003.

[17] Maher M.J., Rock A., Antoniou G., Billington D., Miller T., “Efficient Defeasible Reason-
ing Systems”, Int. Journal of Tools with Artificial Intelligence, 10(4), 2001, pp. 483-501.

[18] McBride B., “Jena: Implementing the RDF Model and Syntax Specification”, Proc. 2nd
Int. Workshop on the Semantic Web, 2001.

[19] Skylogiannis T., Antoniou G., Bassiliades N., Governatori G., “DR-NEGOTIATE – A
System for Automated Agent Negotiation with Defeasible Logic-Based Strategies”, IEEE
Int. Conf. on E-Technology, E-Commerce and E-Service, pp. 44-49, Hong Kong, 2005.

