
NLP-DL: A Knowledge-Representation System for Coupling
Nonmonotonic Logic Programs with Description Logics

�

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits
Institut für Informationssysteme, Technische Universität Wien,

Favoritenstraße 9–11, A-1040 Vienna, Austria�
eiter, ianni, roman, tompits � @kr.tuwien.ac.at

Abstract

Combining description logic systems with other
reasoning systems, possibly over the Web, has be-
come an important research issue and calls for ad-
vanced methods and algorithms. Among several
approaches in this direction are nonmonotonic de-
scription logic programs, which couple descrip-
tion logics and nonmonotonic logic programs un-
der generalized versions of the answer-set seman-
tics as well as of the well-founded semantics, which
are the predominant semantics for such programs.
We briefly report here on the current prototype of
the NLP-DL system, implementing these seman-
tics, which couples state-of-the-art engines for de-
scription logics and nonmonotonic logic programs.

1 Introduction
The Web Ontology Language (OWL) is a W3C recommended
standard for the Ontology Layer of the Semantic Web,1 whose
major sublanguages OWL Lite and OWL DL and are based on
the description logics �����	��
��� and ����������
��� , respec-
tively. Current and future efforts in building the Semantic
Web are aimed at the Rules, Logic, and Proof Layers on top of
the Ontology Layer. As they should offer sophisticated rep-
resentation and reasoning capabilities, this requests the need
for integrating the Rules and the Ontology Layer. Indeed, de-
scription logics do not offer rules, and powerful extensions
with rich knowledge representation constructs (such as nega-
tion as failure) are non-trivial, both from a semantic as well
as from a computational point of view, since major reasoning
tasks quickly become undecidable.

Several proposals for combining description logics with
rule-based languages exist, cf. [1] and references therein.
Among them, nonmonotonic description logic programs (or
dl-programs) [3] are a novel method to couple description
logics with nonmonotonic logic programs. Roughly, such
a program is a pair ������
������� , containing a knowledge
base in a description logic, i.e. a finite set of description
logic axioms (in �!���	��
��� resp., �!�"���#�$
���) represent-
ing knowledge about concepts, roles, and individuals, and a
%
This work was partially supported by the Austrian Science

Fund (FWF) under grant P17212 and by the European Commission
through the IST REWERSE Network of Excellence (IST-506779).

1See www.w3.org/TR/2004/REC-owl-features-20040210/.

finite set � of nonmonotonic logic-programming rules (since
negation as failure is supported) called dl-rules. These rules
are extended logic program rules [9] but may additionally
contain queries to � in their bodies. Noticeably, such a query
may involve input from � to � ; hence, a bidirectional flow
of information between � and � is facilitated. Thus, dl-
programs allow for building nonmonotonic rules on top of
ontologies. Importantly, dl-programs are decidable [3].

Semantically, dl-programs fully support encapsulation and
privacy of the components, in the sense that logic programs
and description logic reasoning are technically separated and
only interfacing details need to be known. This also fosters
the view of dl-programs providing a rule-based glue for com-
bining inferences from a description logic knowledge base.
Computationally, this encapsulation means that dl-programs
can be evaluated by coupling existing reasoners to a hybrid
reasoning system.

Here, we briefly describe our operational prototype of
the NLP-DL system implementing dl-programs, which has
been developed by coupling the two state-of-the-art solvers
DLV [6] for nonmonotonic logic programs and RACER [7]
for description logics. Due to this combination, NLP-DL
is a powerful platform for expressive (yet decidable) knowl-
edge representation and reasoning, featuring (i) ontologies,
(ii) rules under negation as failure (a.k.a. default negation),
(iii) strong (“classical”) negation besides negation as failure,
and (iv) constraints (which can be easily emulated).

2 Description Logic Rules
A dl-rule is an expression of the form&('*),+ �,-,-.-/�),0 �,13254)/0768+ �,-.-,-/�.192:4)7; �=<?>A@B>DCE� (1)

where & is a classical literal and each)/F is either a classical
literal in a function-free first-order language, or a dl-atom,
which is of the form GH��I J + 2LK +NM + �,-.-,-/�OJ ; 2LK ;PM ;RQOSUT
WVX� ,<�>�C , where each J F is either a concept or a role name,2LK FZY\[5] �_^` �#^acb , M F is a unary resp. binary “input” predicate
symbol, and S
WVd� is a dl-query. Informally, a dl-atom of the
above form amounts to the query S
WVd� which is evaluated as
a subjunctive statement on the underlying description logic
knowledge base . The operator 2LK F �] (resp., 2OK F � ^`) in-
creases J F (resp., e	J F) in � by the extent of predicate M F in
an interpretation (given by a consistent set of ground literals),
while 2LK F �f^a constrains J F to M F . For details, see [3].

For dl-programs, two basic types of semantics have been
defined: the answer-set semantics [3] and the well-founded
semantics (WFS) [4] (under necessary restrictions). They are

conservative extensions of the standard answer-set seman-
tics [9] and the standard WFS [11], respectively, and share
many of their appealing properties.

We note that the answer-set semantics may yield no, one,
or multiple models (i.e., answer sets) in general, while the
WFS yields a canonical (three-valued) model. Thus, under
the answer-set semantics, for query answering, brave and
cautious reasoning (i.e., truth in some resp. all models) are
considered in practice, depending on the application.

3 System Prototype
A fully operational NLP-DL prototype, ready for experi-
ments, is available through a Web interface at http://www.
kr.tuwien.ac.at/staff/roman/semweblp/.

The system accepts dl-programs as input, given by an on-
tology formulated in OWL-DL (as processed by RACER) and
a set of dl-rules in the language above, where ' ,] , ^` , and^a are written as “:-”, “+=”, “–=”, and “?=”, respectively. It
features the following reasoning tasks:

� Computing models (answer sets or the well-founded
model) of a given dl-program. For computing the answer
sets, a preliminary computation of the well-founded
model may be issued, which semantically approximates
the answer sets—this is exploited for optimization.

� Evaluating a given query on the given dl-program. Un-
der the answer-set semantics, both brave reasoning and
cautious reasoning are available.

The system architecture integrates the external DLV and
RACER engines, the latter being embedded into a caching
module, a well-founded semantics module, an answer-set
semantics module, a pre-processing module, and a post-
processing module.

Each internal module has been implemented in the PHP
scripting language; the overhead is insignificant, provided
that most of the computing power is devoted to the execution
of the two external reasoners. In particular, efficient usage
of RACER is critical for the system performance. Respec-
tive techniques, mainly based on caching query results and
exploiting monotonicity of description-logic reasoning, are
described in [2]. The current prototype, whose development
is ongoing, already incorporates several of these techniques,
which are implemented in the caching module.

4 Examples
A suite of various reasoning examples in different domains,
showing the applicability of NLP-DL, including partial appli-
cations of the closed-world assumption, incomplete informa-
tion, and defaults, is available on the system Web page. We
consider here briefly an example in the Web-service domain.

The OWL-S ontology for describing Web services has been
recently submitted as a W3C standard [8]. Matchmaking of
OWL-S (formerly DAML-S) services is an important target
to be achieved, and the first on-purpose techniques are being
published (see, e.g., [10]). The small example program be-
low shows how our language can be adopted for specifying
matching policies, focusing on processes of services about
food and drink recommendations.
% Extracts all known processes from the knowledge base.
processes(X) :-

DL[http://www.daml.org/services/owl-s/1.1/Process.owl
#AtomicProcess](X).

% The concept ’servesWhiteWine’ extract all those pro-
% cesses which are known to be giving WhiteWine as
% output and taking some kind of food as input.

servingWhiteWine(W) :- DL[servesWhiteWine](W).

% The concept ’takesFish’ extracts all those processes
% which are known to have a process taking fish as
% input and giving some wine as output.

takingFish(F) :- DL[takesFish](F).

% By default (unless proven otherwise), a ’takingFish’
% process always has a WhiteWine in the output.
% Thus, it can be added to servingWhiteWine.

aServingWhiteWine(W) :-
takingFish(W), not -aServingWhiteWine(W).

-aServingWhiteWine(W) :-
DL[servesWhiteWine+=aServingWhiteWine;
-servesWhiteWine](W), takingFish(W).

servingWhiteWine(W) :- aServingWhiteWine(W).

The rule for aServingWhiteWine states that a known
process W for taking fish should suggest a white wine by de-
fault. The subsequent rule checks, feeding the default conclu-
sions into the ontology, whether its consistency is preserved
(if not, then no default conclusion could have been drawn).
The answer-set semantics enforces that, as desired, defaults
are applied to a largest extent.

Evaluated against the input ontology, the brave (resp., cau-
tious) consequences of form servingWhiteWine(W) are
all those processes that suggest white wine under a credu-
lous (resp., skeptical) assumption. The resulting set may be
(much) larger than under classical inference, given that such
default information can not be captured by it. Process selec-
tion may then be based on this set, or on defaults if no process
provably suggests white wine, using a modified program.

References
[1] Antoniou, G., et al.: Combining rules and ontologies. A sur-

vey. Technical Report IST506779 REWERSE, Linköping/I3-
D3/D/PU/a1, Linköping University (2005).

[2] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmono-
tonic Description Logic Programs: Implementation and Ex-
periments. In: Proc. LPAR 2004. LNCS 3452, (2005).

[3] Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Com-
bining Answer Set Programming with Description Logics for
the Semantic Web. In: Proc. KR 2004. (2004) 141–151.

[4] Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-
founded Semantics for Description Logic Programs in the Se-
mantic Web. In: Proc. RuleML 2004. LNCS 3323, (2004).

[5] Fensel, D., Wahlster, W., Lieberman, H., Hendler, J., eds.:
Spinning the Semantic Web: Bringing the World Wide Web
to its Full Potential. MIT Press (2002).

[6] Leone, N., et al: The DLV System for Knowledge Represen-
tation and Reasoning. ACM Trans. Comp. Logic, to appear.

[7] Haarslev, V., Möller, R.: RACER System Description. In:
Proc. IJCAR 2001. LNCS 2083.

[8] W3C: OWL-S: Semantic Markup for Web Services. W3C
Member Submission. Available at http://www.w3.org/
Submission/OWL-S/.

[9] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Pro-
grams and Deductive Databases. New Generation Computing
17 (1991) 365–387.

[10] Sycara, K., Paolucci, M., Soudry J., and Srinivasan N.: Dy-
namic Discovery and Coordination of Agent-Based Semantic
Web Services. IEEE Internet Comp., 8 (3), 66-73, 2004.

[11] Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded
Semantics for General Logic Programs. Journal of the ACM
38 (1991) 620–650.

System Demo Description

Figure 1: NLP-DL Web evaluation prototype.

Figure 2: Editing the logic program.

The current prototype is accessible through a publicly accessible Web page, which can compute the models or, respectively,
evaluate queries for a given dl-program. The rules of the latter are entered into a text field, using traditional logic-programming
syntax (extended by the syntax for dl-atoms), whereas the description-logic knowledge base can either be given by a second
text field or—considering the ontology to be substantially larger than the logic program—be specified by a URL.

On pushing the “Evaluate”-button, the computation procedure is started, which iteratively calls DLV and RACER. Two
corresponding progress bars display the time spent by each of these external applications. Below these bars, a status message
informs about the currently executed subtask and additionally indicates that the system is in a running state. If the model
generation task is selected, the found answer set(s) resp. the well-founded model are shown upon termination; if the query-
evaluation task is selected, the corresponding query answer is given. If query answering under the answer-set semantics is
chosen, one can additionally decide between brave and cautious reasoning.

Figure 1 shows the task selection part of the Web page together with the answer set result for the wine Web service example.
The text fields for the logic program and the ontology can be toggled on and off. Our aim was to find a concise page layout
which provides room for the user input and the evaluation result simultaneously. In Figure 2, the model of another example is
evaluated under the well-founded semantics. Here, the result filter specification is used in order to restrict the result output to
one or more specified predicates.

In addition to the two examples mentioned here, the NLP-DL Web page, which is reachable under http://www.kr.
tuwien.ac.at/staff/roman/semweblp/, includes a selection of further dl-programs demonstrating various aspects of
our formalism. They can be loaded into the prototype and altered arbitrarily.

