
The REWERSE View on Policies

P.A. Bonatti, G. Antoniou, M. Baldoni, C. Baroglio, C. Duma, N. Fuchs, A.
Martelli, W. Nejdl, D. Olmedilla, J. Peer, V. Patti, and N. Shamheri

REWERSE (REasoning on the WEb with Rules and SEmantics)
WG-I2: Policy specification, composition, and conformance

Abstract. In this position paper we outline the vision adopted by the
working group on policies of the EU FP6 Network of Excellence REW-
ERSE, IST-2004-506779.

Keywords: Integrated heterogeneous policies, Cooperative policy enforce-
ment, Lightweight trust, Trust management, Natural language interfaces,
Explanation mechanisms.

1 Introduction

REWERSE (REasoning on the WEb with Rules and SEmantics) is one of the
two european networks of excellence on the semantic web funded by the Euro-
pean Union within the 6th framework program.1 The focus of REWERSE is on
lightweight knowledge representation and reasoning, based as much as possible
on rule-based languages because of their low computational complexity.

One of REWERSE’s working groups, WG I2, is expressly devoted to pol-
icy specification, composition, and conformance. The members of WG I2 have
identified in policies one of the most interesting areas for applying semantic web
ideas.

Policies are pervasive in web applications. They play crucial roles in enhanc-
ing security, privacy, but also service usability. They may determine the success
of a web service (or its failure). A user will not be able to benefit of the protection
mechanisms of its system until she understands and is able to personalize the
policies applied by the system. Similarly, the facilities of a web service will not
be fully available to its customers unless they understand the policies applied by
the system (access control policies, privacy policies, and business rules, at least).

The vision of WG I2 can be summarized by the following list of strategic
goals and lines of research:

– We adopt a broad notion of policy, encompassing not only access control
policies, but also privacy policies, business rules, quality of service, etc. We
believe that all these different kinds of policies should eventually be inte-
grated into a single framework.

1 REWERSE has 27 academic and industrial participants distributed across 14 euro-
pean countries. The network officially started on March 1, 2004. More information
on http://www.rewerse.net.



– Strong and lightweight evidence: Policies make decisions based on properties
of the peers interacting with the system. These properties may be strongly
certified by—say—cryptographic techniques, or be reliable to an intermedi-
ate degree, where evidence gathering and validation are easier (lightweight
evidence). A flexible policy framework shall merge the two forms of evidence
to meet the efficiency and usability requirements of web applications.

– The above two points imply that trust negotiation, reputation models, busi-
ness rules, and action specification languages should be integrated into a
single framework, to some extent. It is crucial to find the right tradeoff be-
tween generality and efficiency. So far, no framework has tried to merge all
these aspects together into a coherent system. This is one of the hard chal-
lenges of WG I2.

– Automated trust negotiation (ATN)—adapted to other forms of negotiation—
is one of the main ingredients that we use to make heterogeneous peers effec-
tively interoperate. Therefore we are actively contributing to the advances
in the area of trust management.

– By lightweight knowledge representation and reasoning we do not only refer
to computational complexity; we mean also reducing the effort to specialize
our general frameworks to specific application domains; and we mean that
our tools should be easy to learn and use for common users, with no partic-
ular training in computers or logic. We regard these properties as crucial for
the success of a semantic web framework.

– The last issue cannot be tackled simply by adopting a rule language. We
are working at a controlled natural language syntax for policy rules, to be
translated by a parser into the internal logical format.

– Cooperative policy enforcement : A secure cooperative system should (almost)
never say no. Web applications need to help new users in obtaining the
services that the application provides—potential customers should not be
discouraged. When the prerequisites for accessing a service are not met, the
web application should better explain what is missing and help the user in
obtaining the required permissions.

– As part of cooperative enforcement, advanced explanation mechanisms should
be developed to help users in understanding policy decisions and obtaining
the permission to access the desired service.

In the rest of this paper we expand on the above issues and point out what we
regard as interesting research directions.

2 A broad notion of policy

Policies are pervasive in all web-related contexts. Access control policies are
needed to protect any system open to the internet. Privacy policies are needed
to assist users while they are browsing the web and interacting with web services.
Business rules (that in the view of WG I2 are just another kind of policy) specify
which conditions apply to each customer of a web service. Other policies specify



constraints related to Quality of Service (QoS). In E-government applications,
visas and other documents are released according to specific eligibility policies. Of
course this list is not exhaustive, and is limited only by the class of applications
that can be deployed in the world wide web.

Note that most of these policies make their decisions based on similar pieces
of information—essentially, properties of the peers involved in the transaction.
For example, age, nationality, customer profile, identity, and reputation may all
be considered both in access control decisions, and in determining which dis-
counts are applicable (as well as other eligibility criteria). Then it is appealing
to integrate these kinds of policies into a coherent framework, so that (i) a com-
mon infrastructure can be used to support interoperability and decision making,
and (ii) the policies themselves can be harmonized and synchronized.

In the general perspective depicted above, policies may also establish that
some events must be logged (audit policies), that user profiles must be updated,
and that when a transaction fails, the user should be told how to obtain missing
permissions. In other words, policies may specify actions whose execution may
be interleaved with the decision process. Such policies are called provisional
policies.

Then, in our view, policies act both as decision support systems and as declar-
ative behavior specifications. An effectively user-friendly approach to policy spec-
ification would give common users (with no training in computer science or logic)
a better control on the behavior of their own system (see the discussion in Sec-
tion 5).

Of course, the extent to which this goal can be actually achieved depends
on the policy’s ability of interoperating with legacy software and data—or more
generally, with the rest of the system. Then a policy specification language should
support suitable primitives for interacting with external packages and data in a
flexible way.

The main challenges raised by the above discussion are the following:

– Harmonizing security and privacy policies with business rules, provisional
policies, and other kinds of policy is difficult because their standard formal-
izations are based on different derivation strategies, and even different rea-
soning mechanisms, sometimes (cf. Section 4.3). Deduction, abduction, and
event-condition-action rule semantics need to be integrated into a coherent
framework, trying to minimize subtleties and technical intricacies (otherwise
the framework would not be widely accessible to common users).

– The interactions between a rule-based theory and “external” software and
data has been extensively investigated in the framework of logic-based medi-
ation and logic-based agent programming [11, 10]. However, there are novel
issues related to implementing high-level policy rules with low-level mech-
anisms such as firewalls, web server and DBMS security mechanisms, op-
erating system features etc., that are typically faster and more difficult to
bypass than rule interpreters [8]. A convincing realization of this approach
might boost the application of the rich and flexible languages developed by
the security community.



3 Strong and lightweight evidence

There exist currently two different major approaches for managing trust: policy-
based and reputation-based trust management. The two approaches have been
developed within the context of different environments and targeting different
requirements. On the one hand, policy-based trust relies on objective “strong se-
curity” mechanisms such as signed certificates and trusted certification authori-
ties (CA hereafter) in order to regulate the access of users to services. Moreover,
the access decision is usually based on mechanisms with well defined semantics
(e.g., logic programming) providing strong verification and analysis support. The
result of such a policy-based trust management approach usually consists of a
binary decision according to which the requester is trusted or not, and thus the
service (or resource) is allowed or denied. On the other hand, reputation-based
trust relies on a “soft computational” approach to the problem of trust. In this
case, trust is typically computed from local experiences together with the feed-
back given by other entities in the network. For instance, in eBay buyers and
sellers rate each other after each transaction. The ratings pertaining to a certain
seller (or buyer) are aggregated by the eBay’s reputation system into a number
reflecting seller (or buyer) trustworthiness as seen by the eBay community. The
reputation-based approach has been favored for environments, such as Peer-to-
Peer or Semantic Web, where the existence of certifying authorities could not
be always assumed but where a large pool of individual user ratings is often
available.

Yet another approach—very common in today’s applications—is based on
forcing users to commit to contracts or copyrights by having users click an “ac-
cept” button on a pop-up window. This is perhaps the lightest approach to
trust, that can be generalized by having users utter declarations (on their e-mail
address, on their preferences, etc.) e.g. by filling an HTML form.

Real life scenarios often require to make decisions based on a combination
of the above approaches. Transaction policies must handle expenses of all mag-
nitudes, from micropayments (e.g. a few cents for a song downloaded to your
iPod) to credit card payments of a thousand euros (e.g. for a plane ticket) or
even more. The cost of the traded goods or services typically contributes to de-
termining the risk associated to the transaction and hence the trust needed for
performing it.

Strong evidence is generally harder to gather and verify than lightweight
evidence. Sometimes, a “soft” reputation measure or a declaration (in the sense
outlined above) is all one can obtain in a given scenario. We strongly believe that
the success of a trust management framework can be determined by the ability
of balancing trust levels and risk levels for each particular task supported by
the application. So we add the following items to the list of interesting research
directions:
– How should the different forms of trust be integrated? A first proposal can

be found in these proceedings (see the paper by Bonatti, Duma, Nejdl,
Olmedilla, and Shahmehri). However, new reputation models keep on be-
ing introduced, and there is a large number of open research issues in the



reputation area (e.g., vulnerability to coalitions). Today, it is not clear which
of the current approaches will be successful and how the open problems will
be solved (this is why our current proposal aims at maximal modularity in
the integration of numerical and logical trust).

– How many different forms of evidence can be conceived? In principle, prop-
erties of (and statements about) an individual can be extracted from any—
possibly unstructured—web resource. Supporting such a variety of informa-
tion in policy decisions is a typical semantic web issue—and an intriguing
one. However, such general policies are not even vaguely as close to become
real as the policies based on more “traditional” forms of evidence (see the
discussion in the next section).

4 Trust management

4.1 Some history

During the past few years, some of the most innovative ideas on security policies
arose in the area of automated trust negotiation [1, 2, 5, 6, 12–15]. That branch of
research envisaged peers that automatically negotiate credentials according to
their own declarative, rule-based policies. Rules specify for each resource or cre-
dential request which properties should be satisfied by the subjects and objects
involved. Then, at each negotiation step, the next credential request is formu-
lated essentially by reasoning with the policy, e.g. by inferring implications or
computing abductions.

Since year 2000 there exist frameworks where credential requests are formu-
lated by exchanging sets of rules [2, 5]. Requests were formulated intensionally
in order to express compactly and simultaneously all the possible ways in which
a resource can be accessed—thereby shortening negotiations and improving pri-
vacy protection (because peers can choose the best option from the point of view
of sensitivity). Intuitively, it is not appealing to request “an ID and a credit card”
by enumerating all possible pairs of ID credentials and credit card credentials;
it seems much better to define what IDs and credit cards are and send the def-
inition itself. Another peer may use it to check whether some subset of its own
credentials fulfills the request. This boils down to gathering the relevant concept
definitions in the policy (so-called abbreviation rules) and sending them to the
other peer that reasons with those rules locally.

In other words, in [2, 5] peers communicate by sharing their ontologies. Inter-
estingly, typical policies require peers to have a common a priori understanding
only of the predicate representing credentials and arithmetic predicates, because
any other predicate can be understood simply by sharing its definition. There-
fore, the only nontrivial knowledge to be shared is the X.509 standard credential
format. In this framework, interoperability based on ontology sharing is already
at reach! This is one of the aspects that make policies and automated trust
negotiation a most attractive application for semantic web ideas.

Another interesting proposal of [5] is the notion of declaration, that has al-
ready been discussed in Section 3. This was the first step towards a more flexible



and lightweight approach to policy enforcement, aiming at a better tradeoff be-
tween protection efforts and risks.

This framework was chosen as the starting point for the work of WG I2,
because according to [9] it was still one of the most complete trust negotiation
systems in 2002. The major limitation was the lack of distributed negotiations
and credential discovery, which are now supported as specified in [3, 2]. As we
already pointed out, a first approach at integrating crisp and soft notions of trust
is described in [3] and in these proceedings.

4.2 Negotiations

In response to a resource request, a web server may ask for some credentials,
proving that the client can access the resource. However, the credentials them-
selves are sensitive resources, in general. So the two peers are in a completely
symmetrical situation: the client, in turn, may ask the server for credentials
(say, proving that it participates into the Better Business Bureau program) be-
fore sending off the required credentials. Each peer decides how to react to
incoming requests according to a local policy, which is typically a set of rules
written in some logic programming dialect. As we already pointed out, requests
are formulated by selecting some rules from the policies.

This basic schema has been refined along the years taking several factors into
account [1, 2, 5, 6, 12–15].

First, policy rules may possibly inspect a local state (such as a legacy database)
that typically is not accessible by the other peers. In that case, in order to make
rules intelligible to the recepient, they are first partially evaluated w.r.t the cur-
rent state.

Second, policies themselves are sensitive resources, therefore not all relevant
rules are shown immediately to the peer. They are first filtered according to
policy release rules; the same schema may be applied to policy release rules
themselves for an arbitrary but finite number of levels.

As a consequence, some negotiations that might succeed, in fact fail just
because the peers do not tell each other what they want. The study of method-
ologies and properties that guarantee negotiation success (when appropriate) is
an interesting open research issue.

Moreover, credentials are not necessarily on the peer’s host. It may be nec-
essary to locate them on the network [7]. As part of the automated support to
cooperative enforcement, peers may give each other hints on where a credential
can be found [16].

There are further complications related to actions (cf. Section 4.3). In order to
tune the negotiation strategy to handle all these aspects optimally, Protune—
the core policy language of REWERSE—supports a metapolicy language [3, 2]
that specifies which predicates are sensitive, which are associated to actions,
which peer is responsible for each action, where credentials can be searched for,
etc., thereby guiding negotiation in a declarative fashion and making it more
cooperative and interoperable. Moreover, the metapolicy language can be used



to instantiate the framework in different application domains and link predicates
to the ontologies where they are defined.

4.3 Provisional policies

Policies may state that certain requests or decisions have to be logged, that the
system itself should search for certain credentials, etc. In other words, policy
languages should be able to specify actions. Event-condition-action (ECA) rules
constitute one possible approach. Another approach, supported by the current
core policy language of REWERSE, consists in labelling some predicates as pro-
visional, and associating them to actions that (if successful) make the predicate
true [3, 2]. It may also be specified that an action should be executed by some
other peer; this results in a request.

A cooperative peer tries to execute the actions under its responsibility when-
ever this helps in making negotiations succeed. For example, provisional predi-
cates may be used to encode business rules. The next rule (formulated in Pro-
tune’s language) enables discounts on low selling articles in a specific session:

allow(Srv)← . . . , session(ID),

in(X , sql:query(′
select ∗ from low selling

′),

enabled(discount(X ), ID) .

Intuitively, if enabled(discount(X ), ID) is not yet true but the other conditions
are verified, then the negotiator may execute the action associated to enabled
and the rule becomes applicable (if enabled(discount(X ), ID) is already true,
no action is executed). The (application dependent) action can be defined and
associated to enabled through the metapolicy language of Protune. With the
metalanguage one can also specify when an action is to be executed.

Some actions would be more naturally expressed as ECA rules. However,
it is not obvious how the natural bottom-up evaluation schema of ECA rules
should be integrated with the top-down evaluation adopted by the current core
language. The latter fits more naturally the abductive nature of negotiation
steps. The integration of ECA rules in the core policy language is one of the
open issues in REWERSE’s agenda.

4.4 Stateful vs. stateless negotiations

The negotiations described above are in general stateful, because (i) they may
refer to a local state—including legacy software and data—and (ii) the sequence
of requests and counter requests may become more efficient if credentials and
declarations are not submitted again and again, but are rather kept in a local
negotiation state.

However, negotiations are not necessarily stateful:

– the server may refuse to answer counter-requests, or—alternatively—the cre-
dentials and declarations disclosed during the transaction may be included
in every message and need not be cached locally;



– the policy does not necessarily refer to external packages.

In other words, stateless protocols are just special cases of the frameworks in-
troduced so far. Whether a stateless protocol is really more efficient depends on
the application. Moreover, efficiency at all costs might imply less cooperative
systems.

The question is: are stateful protocols related to scalability issues? We do not
think so. The web started as a stateless protocol, but soon a number of tech-
niques have been implemented to simulate stateful protocols and transactions in
a number of real world applications and systems, capable of answering a huge
number of requests per time unit. We must observe that if the support for state-
ful negotiations had been cast into http, then probably many of the intrinsic
vulnerabilities of simulated solutions (like cookies) might have been avoided.

So we think that policy languages and frameworks for the web should support
both stateful and stateless protocols to face the variety of different needs of web
applications.

4.5 What’s new?

The existing approaches to trust management and trust negotiation already
tackle the need for flexible, knowledge based interoperability, and take into ac-
count the main idiosyncrasies of the web—because ATN frameworks have been
designed with exactly that scenario in mind. Today, to make a real contribution
(even in the context of a policy-aware web), one should work on the open issues
of trust management, that include at least the following topics:

– Negotiation success: how can we guarantee that negotiations succeed de-
spite all the difficulties that may interfere? For example: rules not disclosed
because of lack of trust; credentials not found because their repository is
unknown. What kind of properties of the policy protection policy and of the
hints (see Section 4.2) guarantee a successful termination when the policy
“theoretically” permits access to a resource?

– Optimal negotiations: which strategies optimize information disclosure dur-
ing negotiation? Do any reasonable preconditions prevent unnecessary infor-
mation disclosure?

– A related problem is: In the presence of multiple ways of fulfilling a request,
how should the client choose a response? One needs both a language for
expressing preferences, and efficient algorithms for solving the corresponding
optimization problem. While this negotiation step is more or less explicitly
assumed by most works on trust negotiation, there is no concrete proposal
so far.

Moreover, the integration of abductive semantics and ECA semantics is an open
issue, as we have pointed out in a previous section. Of course this list is not
exhaustive.



5 Cooperative policy enforcement

Cooperative enforcement involves both machine-to-machine and human-machine
aspects. The former is handled by negotiation mechanisms: published policies,
provisional actions, hints, and other metalevel information (see Section 4.2) can
be interpreted by the client to identify automatically what information is needed
to access a resource, and how to obtain that information. The human-machine
interaction aspect deserves some discussion.

One of the causes of the enormous number of computer security violations
on the Internet is the users’ lack of technical expertise. In particular, users are
typically not aware of the security policies applied by their system, not to speak
about how those policies can be changed and how they might be improved by
tailoring them to specific needs. As a consequence, most users ignore their com-
puter’s vulnerabilities and the corresponding countermeasures, so the system’s
protection facilities cannot be effectively exploited.

For example, it is well known that the default, generic policies that come
with system installations—biased toward functionality rather than protection—
are significantly less secure than a policy specialized to a specific context, but
very few users know how to tune or replace the default policy. Moreover, users
frequently do not understand what the policy is really checking up on, and hence
they are unaware of the risks involved in many common operations.

Similar problems affect privacy protection. In trust negotiation, credential
release policies are meant to achieve a satisfactory tradeoff between privacy and
functionality (many interesting services cannot be obtained without releasing
some information about the user). However, one cannot expect such techniques
to be effective unless users are able to understand and possibly personalize the
privacy policy enforced by their system.

Additionally, a better understanding of a web service’s policy makes it eas-
ier for a first-time user to interact with the service. If a denied access results
simply in a “no”, then the user has no clue on how he or she can possibly ac-
quire the permission to get the desired service (e.g., by completing a registration
procedure, by supplying more credentials, by filling in some form, etc.) This is
why we are advocating a form of cooperative policy enforcement, where negative
responses are enriched with suggestions and other explanations whenever such
information does not violate confidentiality (sometimes, part of the policy itself
is sensitive).

For these reasons, WG I2 selected as one of its main objectives greater user
awareness and control on policies. We are making policies easier to understand
and formulate to the common user in the following ways:

– We adopt a rule-based policy specification language, because such languages
are very flexible and at the same time structurally similar to the natural way
in which policies are expressed by nontechnical users.

– We are making the policy specification language more friendly by developing
a controlled natural language front-end to translate natural language text
into executable rules (see next section).



– We are developing advanced explanation mechanisms to help the user un-
derstand what policies prescribe and control.

We have just published a deliverable on such explanation mechanisms [4]. It
contains a requirements analysis for explanations in the context of automated
trust negotiation (ATN). Moreover, we define explanation mechanisms for why,
why-not, how-to, and what-if queries. There are several novel aspects in our
approach:

– We adopt a tabled explanation structure as opposed to more traditional ap-
proaches based on single derivations or proof trees. The tabled approach
makes it possible to describe infinite failures (which is essential for why not
queries).

– Our explanations show simultaneously different possible proof attempts and
allow users to see both local and global proof details at the same time. Such
combination of local and global (intra-proof and inter-proof) information is
expected to facilitate navigation across the explanation structures.

– We introduce suitable heuristics for focussing explanations by removing ir-
relevant parts of the proof attempts. Anyway, we provide a second level of
explanations where all the missing details can be recovered, if desired.

– Our heuristics are generic, i.e. domain independent. This means that they
require no manual configuration.

– The combination of tabling techniques and heuristics yields a completely
novel method for explaining failure. In the past, the problem has been ignored
or formulated differently.

Moreover, we make our explanation mechanisms lightweight and scalable in
the sense that (i) they do not require any major effort when the general frame-
work is instantiated in a specific application domain, and (ii) most of the com-
putational effort can be delegated to the clients.

Queries are answered using the same policy specifications used for negotia-
tion. Query answering is conceived for the following categories of users:

– Users who are trying to understand how to obtain access permissions;
– Users who are monitoring and verifying their own privacy policy;
– Policy managers who are verifying and monitoring their policies.

Currently, advanced queries comprise why/why not, how-to, and what-if queries.
Why/why not queries can be used by security managers to understand why

some specific request has been accepted or rejected, which may be useful for
debugging purposes. Moreover, why-not queries may help a user to understand
what needs to be done in order to obtain the required permissions (a process
that in general may include a combination of automated and manual actions).
Such features are absolutely essential to enforce security requirements without
discouraging users that try to connect to a web service for the first time. How-to
queries have a similar role, and differ from why-not queries mainly because the
former do not assume a previous query as a context, while the latter do.



What-if queries are hypothetical queries that allow to predict the behavior
of a policy before credentials are actually searched for and before a request is
actually submitted. What-if queries are good both for validation purposes and
for helping users in obtaining permissions.

Among the technical challenges related to explanations, we mention:

– Finding the right tradeoff between explanation quality and the effort for
instantiating the framework in new application domains. Second order ex-
planation systems prescribe a sequence of expensive steps, including the
creation of an independent domain knowledge base expressly for communi-
cating with the user. This would be a serious obstacle to the applicability of
the framework.

5.1 Natural language policies

Policies should be written by and understandable to the final users, to let them
keep the behavior of their system under control. Otherwise the risk that users
keep on adopting generic (hence ineffective) built-in policies, and remain unaware
of which controls are actually made by the system would be extremely high—and
this would significantly reduce the benefits of a flexible policy framework.

Of course, most users have no specific training in programming nor in formal
logics. Fortunately, they spontaneously tend to formulate policies as rules; still,
logical languages may be intimidating.

For this reason, we are designing front-ends based on graphical formalisms as
well as natural language interfaces. We would like policy rules to be formulated
like: “Academic users can download the files in folder historical data whenever
their creation date precedes 1942”.

Clearly, the inherent ambiguity of natural language is incompatible with the
precision needed by security and privacy specifications. For this reason we adopt
a controlled fragment of English where a few simple rules determine a unique
meaning for each sentence. This approach is complemented with a suitable in-
terface that clarifies what the machine understands.

Some working group members have long standing expertise in controlled nat-
ural language, and a natural language front-end based on the Attempto system
(http://www.ifi.unizh.ch/attempto/) is being progressively adapted to the
need of policy languages, including negation as failure and deontic constructs.

6 Conclusions and perspectives

In our vision policies are really knowledge bases: a single body of declarative
rules used in many possible ways, e.g., for negotiations, query answering, and
other forms of system behavior control.

As far as trust negotiation is concerned, transparent interoperation based
on ontology sharing can potentially become “everyday technology” in a short
time (cf. Section 4.1). As such, trust negotiation may become a success story for
semantic web ideas and techniques.



We are currently implementing the features described in this paper by ex-
tending the PeerTrust automated negotiation system (http://www.l3s.de/
english/projects/peertrust.html) and the parser of the Attempto system.
Our current prototypes support real credential verification and real distributed
computations, as well as the grammar structure and the anaphora mechanism
underlying the sample natural language rule illustrated above.

Recently, the Semantic Web community declared interest in a notion of pol-
icy very similar to REWERSE’s approach (see the paper co-authored by Hendler
and Berners-Lee in these proceedings). While the examples outlined there are
just special cases of what can be done in the old framework introduced in [5],
there is evidence of interest in more advanced and powerful developments, in
line with the curret goals of the research in ATN. There seems to be an empha-
sis on stateless interactions (i.e. degenerate negotiations consisting of one step
only) defended by scalability arguments. However, we do not believe in such a
priori restrictions. After all, the web started as a stateless protocol, but soon a
number of techniques have been implemented to simulate stateful protocols and
transactions in a number of real world applications.

We insist on the importance of cooperative policy enforcement and trust man-
agement, that give common users better understanding and control on the poli-
cies that govern their systems and the services they interact with. The closer we
get to this objective, the higher the impact of our techniques and ideas will be.

References

1. M. Blaze, J. Feigenbaum, and M. Strauss. Compliance Checking in the Policy-
Maker Trust Management System. In Financial Cryptography, British West Indies,
February 1998.

2. P.A. Bonatti and D. Olmedilla. Driving and monitoring provisional trust negoti-
ation with metapolicies. In IEEE 6th Intl. Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), pages 14–23. IEEE Computer Soc., 2005.

3. P.A. Bonatti and D. Olmedilla. Policy specification language. Technical Report
I2-D2, REWERSE, Feb 2005. http://www.rewerse.net.

4. P.A. Bonatti, D. Olmedilla, and J. Peer. Advanced policy queries. Technical Report
I2-D4, REWERSE, Aug 2005. http://www.rewerse.net.

5. P.A. Bonatti and P. Samarati. A uniform framework for regulating service access
and information release on the web. Journal of Computer Security, 10(3):241–272,
2002. Short version in the Proc. of the Conference on Computer and Communica-
tions Security (CCS’00), Athens, 2000.

6. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and Mari-
anne Winslett. No registration needed: How to use declarative policies and negoti-
ation to access sensitive resources on the semantic web. In 1st European Semantic
Web Symposium (ESWS 2004), volume 3053 of Lecture Notes in Computer Science,
pages 342–356, Heraklion, Crete, Greece, may 2004. Springer.

7. N. Li, W. Winsborough, and J.C. Mitchell. Distributed Credential Chain Discovery
in Trust Management (Extended Abstract). In ACM Conference on Computer and
Communications Security, Philadelphia, Pennsylvania, November 2001.



8. Arnon Rosenthal and Marianne Winslett. Security of shared data in large systems:
State of the art and research directions. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-18, 2004,
pages 962–964. ACM, 2004.

9. K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobsen, H. Mills, and
L. Yu. Requirements for Policy Languages for Trust Negotiation. In 3rd Interna-
tional Workshop on Policies for Distributed Systems and Networks, Monterey, CA,
June 2002.

10. V. S. Subrahmanian, Piero A. Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Ozcan, and Robert Ross. Heterogenous Active Agents. MIT Press, 2000.

11. V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers,
R. Ross, and C. Ward. Hermes: Heterogeneous reasoning and mediator system.
http://www.cs.umd.edu/projects/publications/ abstracts/hermes. html.

12. W. Winsborough, K. Seamons, and V. Jones. Negotiating Disclosure of Sensi-
tive Credentials. In Second Conference on Security in Communication Networks,
Amalfi, Italy, September 1999.

13. W. Winsborough, K. Seamons, and V. Jones. Automated Trust Negotiation. In
DARPA Information Survivability Conference and Exposition, Hilton Head Island,
SC, January 2000.

14. Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacobson, Ryan
Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, 2002.

15. Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured cre-
dentials and sensitive policies through interoperable strategies for automated trust
negotiation. ACM Trans. Inf. Syst. Secur., 6(1):1–42, 2003.

16. C. Zhang, P.A. Bonatti, and M. Winslett. Peeraccess: A logic for distributed
authorization. In 12th ACM Conference on Computer and Communication Security
(CCS 2005). ACM. To appear.


