
Modelling Periodic Temporal Notions
by Labelled Partitionings – The PartLib
Library

Hans Jürgen Ohlbach

abstract. The key notion for modelling calendar systems and
many other periodic temporal notion is the mathematical concept
of a partitioning of the real numbers. A partitioning of R splits the
time axis into a sequence of intervals. Basic time units like seconds,
minutes, hours, days, weeks, months, years etc. can all be represented
by partitionings of R with finite partitions. Besides the basic time
units in calendar systems, there are a lot of other temporal notions
which can be modelled as partitions: the seasons, the ecclesiastical
calendars, financial years, semesters at universities, the sequence of
sunrises and sunsets, the sequence of the tides, the sequence of school
holidays etc. In this chapter a formalisation of periodic temporal
notions by means of labelled partitionings of R is presented. The
formalism is implemented as the C++ library PartLib (Partitioning
Library). The interface to PartLib is presented in the appendix.

1 Motivation and Introduction

In 1998 I published with Dov Gabbay a very first paper about a system we
called calendar logic [Ohlbach and Gabbay, 1998; Ohlbach, 2000]. It was
a theoretical formalisation of calendar systems and operations on calendar
systems. In the meantime a growing community of computer scientists is
working at modelling calendar systems and more abstract temporal notions.
A reason why this work is becoming more important is the globalisation,
and with this the need to make software familiar with all the different cal-
endar systems and temporal notions used at our planet. In particular the
Semantic Web initiative [Berners-Lee et al., 1999] generates a need for de-
tailed modelling of temporal notions. As one of the activities in the EU
network of excellence REWERSE (http://www.rewerse.net) I am develop-
ing the ideas of these early papers with Dov further into a support system
for representing and manipulating all kinds of temporal notions. This chap-
ter describes the component of the system that deals with periodic temporal
notions.

2 Hans Jürgen Ohlbach

The basic time units of calendar systems, years, months, weeks, days etc.
are the prototypes of periodic temporal notions. Because time is one of
the most important parameters of our life, the representation of temporal
notions, and in particular periodic temporal notions, is necessary in many
computer applications. There have been quite intensive studies of periodic
temporal notions from various points of view. One can distinguish at least
three approaches.

First of all, there is the important work of Dershowitz and Reingold
[Dershowitz and Reingold, 1997] who analysed existing calendar systems
and came up with algorithms for converting date information from one
system to another. These algorithms are the basis for the implementation
of concrete calendar systems in computer programs.

On a more abstract level there is all the work about the mathematical
representation of periodic temporal notions as time granularities, or similar
kind of mathematical objects. A good overview is given in the book of
Bettini, Jajoda and Wang [Bettini et al., 2000]. This work is particularly
motivated by the need to represent time in temporal databases. A selection
of papers about the abundant work in this area is [Bettini and R.D.Sibi,
2000; Ning et al., 2002; Kline et al., 1999; Soo and Snodgrass, 1992; Leban
et al., 1986; Niezette and Stevenne, 1993; Dyreson et al., 2000; Bettini et

al., 1998; Egidi and Terenziani, 2004; Bettini et al., 2004; Goralwalla et al.,
2001; Bry et al., 2004]. Since time granularities are the most important
objects in this area, we introduce them already at this early place in the
chapter. A time granularity is usually defined as a mapping of a subset of the
integers to sets of intervals in the time domain, the granules. This mapping
must have certain properties in order to count as time granularity. Another
way to explain time granularities is: a granule is a, possibly non-convex
finite subinterval of the time domain. A time granularity is a sequence of
such granules. One can require that this sequence is consecutive, i.e. the
rightmost time point of a granule n comes before the leftmost time point
of the granule n + 1. Sometimes, however, overlapping granules are also
considered [Egidi and Terenziani, 2004]. The simplest time granularities
are in fact partitionings of the time domain. All basic time units, years,
months etc., are of this type. The granules consist of one single interval, and
there are no gaps between them. Granules consisting of one single interval
only, but with gaps between them, can, for example, be used to model
‘weekend’. The time spans between the weekends are the gaps between
the granules. Granules consisting of several intervals are useful to model
notions like ‘my working day’, where there is a lunch break which should
not count as part of ‘my working day’. Overlapping granules might be used
to model, for example, the union of ‘my working day’ and ‘my wife’s working

The PartLib Library 3

day’. The ‘time granularity community’ has developed ways for constructing
time granularities, usually as algebraic operations on previously constructed
time granularities. Conversion operations between different granularities
have been defined. Relations between different time granularities have been
developed, and applications, mainly in the area of temporal databases, have
been considered.

An even further abstraction is possible by axiomatising temporal notions
in an expressive enough logic, for example in first order predicate logic. The
SOL time theory (SOL for Structured Temporal Object) of Diana Cuckier-
man with a first order formalisation of time loops is a prominent exam-
ple for this approach [Cukierman, 2003; Cukierman and Delgrande, 1998;
Cukierman and Delgrande, 2004].

This chapter presents an alternative to the granularities approach. We
represent periodic temporal notions as partitionings of the real numbers,
which is the simplest form of granularities. To compensate for this very
weak structure, we introduce names (labels) for the partitions. The labels
carry information about the meaning of the partitions. As we shall see, this
separation of structure and meaning has a number of algorithmic advan-
tages. A built-in label is ‘gap’. It can be used to denote a partition which
logically does not belong to a given partitioning. For example, the time be-
tween two subsequent school holidays in a school holiday partitioning can
be labelled ‘gap’. The label ‘gap’ allows one to simulate the granules of time
granularities while separating the algorithms into the ones dealing with the
partitionings and the other ones dealing with the labels and the granules.

The CTTN System

The work on partitionings for modelling periodic temporal notions is part of
the CTTN-project. The CTTN system (Computational Treatment of Tem-
poral Notions) [Ohlbach, 2005a] is a system for understanding, representing
and manipulating complex temporal notions from everyday life. The basic
modules in the CTTN system are the FuTI library for representing and
manipulating fuzzy time intervals [Ohlbach, 2005b], the PartLib library for
representing and manipulating periodic temporal notions, different calen-
dar systems, and finally the GeTS language [Ohlbach, 2005c]. The GeTS
language (GeoTemporal Specifications) is a typed functional programming
language with a lot of built-in data types and operations for manipulating
temporal notions. The GeTS language has in particular access to the FuTI
library for dealing with crisp and fuzzy time intervals, and to the PartLib
library for dealing with periodic temporal notions. A simple example for a
definition in GeTS is

tomorrow = partition(now(), day, 1, 1).

4 Hans Jürgen Ohlbach

now() yields the current moment in time, measured in seconds. day refers
to the day partitioning from the currently activated calendar, partition(. . . ,
day, 1, 1) creates the interval that corresponds to the day partition of the
next day. The algorithms for computing the boundaries of this interval are
presented in this document.

REMARK 1. It is important to notice that the ideas and techniques pre-
sented in this chapter are only one piece in a bigger mosaic. The labelled
partitionings together with the operations described in this chapter are only
one of several components in the GeTS language, which is the main tool
for representing and working with temporal notions. Not all operations
which are in principle possible with partitionings are therefore realized in
the PartLib library itself, but on another level of the CTTN–system. In
particular, there is no direct support for logical inferencing with the parti-
tionings in the PartLib library.

Guidelines

The guidelines for the particular approach presented in this chapter, and
realized in the PartLib library were:

1. The reality should be taken serious:

This means that all phenomena in real calendar systems and realistic pe-
riodic temporal notions should be taken into account. The consequences
of this can be illustrated with the following definition of month taken from
[Ning et al., 2002]: The authors defined day first, then
pseudomonth = Alter12

11,−1(day, Alter12
9,−1(day, Alter12

6,−1(day, Alter12
4,−1(

day, Alter12
2,−3(day, Group31(day))))))

and finally
month = Alter12·400

2+12·399,1(day, Alter12·100
2+12·99,−1(day,

Alter12·4
2+12·3,1(day, pseudomonth))).

The last definition takes leap days into account. Alter is the alternat-

ing tick operator and Group is the grouping operator. It is not necessary
here to understand these operators. The point is that in a user friendly
implementation of these operators an evaluator for arithmetic expressions
like 2 + 12 · 3 is needed. This should be be no problem as long as the ex-
pressions are simple enough. For more complex temporal notions, however,
the expressions become also more complex, and eventually a full size pro-
gramming language is needed here. For example, for modelling ecclesiastical
calendars, one needs to calculate the Easter date, and the algorithm for this
is too complex to be expressed as a simple arithmetic formula.

The consequence for the PartLib library was to introduce a partition-
ing type algorithmic partitionings, which is specified by providing concrete

The PartLib Library 5

algorithms in a concrete programming language (C++ in this case). Nev-
ertheless, this is an exception. The general guideline is ‘as algorithmic as
necessary, as symbolic as possible’. The algorithmic partitionings can be
used to define what some authors call basic calendars [Leban et al., 1986;
Egidi and Terenziani, 2004].

2. Separation of structure and meaning:

An infinite sequence of non-overlapping granules is in principle also a parti-
tioning of the time domain if the gaps between the granules and within the
granules are considered as part of the partitioning. Therefore one can turn
a partitioning into a granularity by labelling certain partitions as gaps, and
labelling the partitions which should belong to a granule with a common
name. This has the advantage that the algorithms can be separated into
a part which deals with the structure of the partitions, and a part which
deals with the labels. Moreover, the labels can be used for other purposes.
For example, the labels of a bus timetable can be the bus identifiers, and
these can be keys for a bus database.

Notice that the notion of a ‘label’ in this chapter is different to the notion
of a ‘label’ in the literature about granularities. Labels in this chapter are
names, i.e. strings like ‘Monday’, ‘Tuesday’ etc. The ‘labels’ in the literature
about granularities correspond to coordinates in this chapter.

PartLib provides no means for representing overlapping granularities as
a single object. They must be represented as two separate partitionings.

3. Compact data structures and efficient algorithms:

The partitionings must be represented with finite data structures which sup-
port a number of particular algorithms. This excludes certain problematic
operators for constructing new partitionings (granularities) from existing
ones. An example is the union operator. To understand this, consider a
representation of, say, ‘Tom’s working day’ and ‘Jane’s working day’. If
Tom’s working day is every day from 8 am until 5 pm, and ‘Jane’s working
day’ is every day from 9 am until 6 pm, then the union operation on these
two partitionings is unproblematic. The resulting partitioning is easily rep-
resentable in a compact way. If, however, Tom’s job is to watch the moon in
an observatory, then his working day may need to follow the moon phases,
which can be represented with an algorithmic partitioning. The union of
the two partitionings ‘Tom’s working day’ and ‘Jane’s working day’ is now a
really complicated object, and not easily represented. Therefore we exclude
operations like union, intersection etc. in PartLib itself. Instead we provide
such operations in the GeTS language. What is easy to realize is an op-
eration which cuts ‘Tom’s working days’ and ‘Jane’s working day’ out of a
given finite interval and then applies the set operation to the two intervals.

6 Hans Jürgen Ohlbach

Therefore ‘Tom’s and Jane’s working day’ would not be represented as a
partitioning, but as a function that takes a time interval I and returns the
subintervals of I which corresponds to the union of Tom’s working days and
Jane’s working days in I .

4. Intuitive specification of user defined partitionings:

Most basic time units of calendar systems have a non-trivial algorithmic
component. In the CTTN–system they are therefore realized as built-in
partitionings. Many others, however, are application specific or user de-
fined. Therefore various authors have come up with algebraic operations
for constructing new partitionings (granularities) from given ones [Egidi
and Terenziani, 2004]. The art is to find a basic set of operations which
allows one to define new partitionings in a way which is intuitive to the
user, and which provides good data structures for the algorithms. This set
should be as small as possible in order to reduce the burden to develop
the corresponding algorithms. On the other hand, it should be powerful
and expressive enough that most real world examples for periodic temporal
notions can be specified.

Besides the algorithmic partitionings, PartLib provides two more basic
types of specifications: ‘duration partitionings’ and ‘folded partitionings’.
Duration partitionings are specified by an anchor time and a sequence of
‘durations’. A duration is something like ‘1 month + 3 day’, where ‘month’
and ‘day’ represent previously defined partitionings. For example, I could
define ‘my weekend’ as a duration partitioning with anchor time 2004/7/23,
4 pm (Friday July, 23rd, 2004, 4 pm) and durations: (‘8 hour + 2 day’, ‘4
day + 16 hour’). The first interval would be labelled ‘weekend’, and the
second interval would be labelled ‘gap’.

Notice that this specification is different to (‘56 hour’, ‘112 hour’). The
difference is that when standard time changes to daylight savings time then
the day is only 23 hours long, and when daylight savings time changes to
standard time then the day is 25 hours long. A proper representation of ‘day’
as an algorithmic partitioning can take this into account, such that ‘8 hour
+ 2 day’ would be the correct time shift even in this case. The specification
of ‘weekend’ with a duration of ‘56 hour’, however, would become wrong
during the daylight savings time period.

PartLib provides two specialisations of duration partitionings. They al-
low for faster algorithms, and they are more intuitive in certain cases. The
first specialisation, the regular partitionings covers the case that the dura-
tions are all of the same kind ‘n P ’ where P is always the same partitioning.
For example, ‘semester’ could be defined this way. The anchor time is the
start of, say, the winter semester. The durations are (‘6 month’, ‘6 month’).

The PartLib Library 7

The first partition would be labelled ‘winter semester’, and the second par-
tition would be labelled ‘summer semester’. The algorithms for this simple
kind of duration partitioning are more efficient than in the general case.

Another specialisation are date partitionings. In this version the parti-
tions are specified by concrete dates. In many countries, for example, people
used to count the years from the beginning of the reigns of their emperors,
and these are concrete dates. At a first glance, this specifies a partitioning
of only a finite part of the time domain. To take this into account many of
the algorithms would need to check whether the time points under consider-
ation are in the valid part of the time line where the partitioning is specified,
or not. With a simple trick, however, one can turn this finite partitioning
into an infinite partitioning, and thus avoid these special cases. The trick
is to turn the difference between two consecutive dates into durations. For
example, the two dates 2004/5/10 and 2006/8/15 can be turned into a du-
ration ‘2 year + 3 month + 5 day’. This way a date partitioning is turned
into a duration partitioning. The finite part of the date partitioning is then
automatically extrapolated into the infinite future and past. PartLib pro-
vides means to define boundaries for the partitionings, but these boundaries
are not checked by the algorithms. It is up to the application of PartLib to
check the boundaries.

Duration partitionings are the second basic type of partitionings. The
third type are folded partitionings. Consider a bus timetable, which changes
from season to season. The best way to specify this, would be to specify the
seasons first, and for each season to specify the particular bus timetable.
The ‘folded partitioning’ specification operation takes as input a frame par-

titioning, for example the seasons, and a sequence of folded partitionings, for
example the four different bus timetables. It maps the folded partitionings
automatically to the right frame partition, such that from the outside the
whole thing looks like an ordinary partitioning.

5. Support for certain key operations with partitionings:

A very natural operation is to measure the distance between two time points
in terms of a given time unit. ‘The distance between t1 and t2 is 3.5 weeks’,
could, for example, be a useful information. Measuring the distance between
two time points in terms of partitions of fixed length, for example seconds,
is no point. It becomes more difficult if the time units have varying lengths.
‘The distance between t1 and t2 is 3.5 months’ is a nontrivial statement,
because it depends on the location of t1 and t2 on the time line.

PartLib provides two length functions. The first one measure the distance
between two time points in partitions of a given partitioning, and the second
one measures the distance in granules. ‘The distance between t1 and t2 is

8 Hans Jürgen Ohlbach

1 working day’, for example, is a possible outcome, even if ‘working day’ is
defined not as a partitioning, but as a granule with a gap in it (for lunch
time).

The second very natural operation is a shift operation, also in terms of
partitions or granules. For example, one can ask a PartLib method to shift
a time point t by, say 3.5 months, or 3.5 working days into the future. Since
the lengths of the partitions and granules may vary, the concrete amount,
t is shifted, depends on the location of t on the time line. It turns out that
the notion of a time shift by some partitions is ambiguous. There are at
least two different ways to do this, with more or less intuitive results. This
problem is discussed in detail in Section 4.

After a brief review of PartLib’s time domain we present the formal defi-
nitions of the basic concepts and then discuss the specification mechanisms
and the operations on partitionings. The interface to the PartLib imple-
mentation is presented in the appendix.

Time Measurements and the Semantics of Computer Time

The backbone of our time representation is a reference time line, measured
in seconds. The relation between the artificial counting of seconds in the
computer and the real flow of time on our planet is determined by the
physics of time measurement. Before the adoption of the UTC standard
(Coordinated Universal Time) in 1972, a second was just the 86400th frac-
tion of a day, measured between two subsequent zeniths of the sun. Since
the rotation of the earth is not perfectly stable over the year, and, moreover,
slows down from year to year, these seconds corresponded to varying time
intervals. After the adoption of the UTC standard, a second corresponds
to exactly 9.192.631.770 cycles of the light emitted when an electron jumps
between the two lowest hyperfine levels of the Cesium 133 atom (measured
and coordinated by the ‘Bureau International des Poids et Mesures’ in Paris,
URL: http://www.bipm.fr/). The synchronisation with the rotation of the
earth is achieved by inserting a leap second almost every year by the Inter-
national Earth Rotation Service (URL: http://hpiers.obspm.fr/). Therefore
the seconds in our modelling of partitionings for the time before 1972 cor-
respond to a fraction of the day. For the time after 1972 they correspond to
the atomic seconds of the TAI standard (Temps Atomique International).

In this chapter it is assumed that there is a global reference time GRT ,
measured in seconds or some fraction of a second. GRT is actually iso-
morphic to the real numbers, but the number 0 corresponds to a particular
point in time. As it is common in Unix systems, the origin of the reference
time in our examples is the beginning of the year 1970 at the 0-meridian.

REMARK 2. Since the real numbers R are used as the time axis, we speak

The PartLib Library 9

of the earliest or leftmost number, time point or interval if we mean the one
closest to −∞. We speak of the latest or rightmost number, time point or
interval if we mean the one closest to +∞.

A Top Level View of the System

Partitionings are infinite structures. For specifying and implementing infi-
nite structures, however, it is necessary to find finite representations. The
algorithms can, of course, only work on these finite representations. There
may, however, be different finite representations and hence different algo-
rithms for the same task. The different finite representations are caused by
the different ways the structures are specified. From a software engineering
point of view, we have therefore two sides of the system, in this case the
PartLib library. At one side there are the different specification types for
partitionings. Certain algorithms, for example the mapping between par-
tition boundaries and partition numbers, rely on the concrete specification
type. At the other side there is the application interface to the library.
The API hides the fact that there are different types of partitionings and
provides a uniform access to them. The API is realized in PartLib as an
abstract class Partitioning. As many algorithms as possible are defined
for the abstract class. They may, however, use algorithms which are specific
for the specification types.

The next section describes the aspects of abstract partitionings, which
is essentially the application interface. The concrete specification types are
then introduced in Section 8.

2 Partitionings

A partitioning of the real numbers R may be for example (..., [−100, 0[,
[0, 100[, [100, 101[, [101, 500[, ...). The intervals in the partitionings consid-
ered in this chapter need not be of the same length (because time units like
years are not of the same length either). The intervals can, however, be
enumerated by integers (their coordinates). For example, we could have the
following enumeration

... [−100 0[[0 100[[100 101[[101 500[...

... −1 0 1 2 ...

It is not by chance that half open intervals are used in this example. Since
the partitions in a partitioning do not overlap, one cannot use closed inter-
vals because the endpoints of the closed intervals would be in two different
partitions. Open intervals can not be used either because then the infima
and suprema of the intervals would not be in any partition at all. Therefore
only half open intervals can be used, either of the type [a, b[, or of the type

10 Hans Jürgen Ohlbach

]a, b]. In most cases there is no preference for either of the two types, but
both types should not be used together. In this chapter we therefore use
the first type [a, b[.

Since all time measurements are done in discrete units (seconds, ticks of
a clock, hyperfine transitions in a Cesium atom etc.) it makes sense to take
integers as boundaries of the partitions. In the examples they represent
seconds. Any other fraction of a second is possible as well. Multiples of
seconds are not possible without losing precision because the leap seconds
are ignored in this case.

The formal definition for partitionings of R which is used in this chapter
is:

DEFINITION 3 (Partitioning). A partitioning P of the real numbers R is
a sequence

. . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .

of non-empty half open intervals in R with integer boundaries.

Some useful notations for partitionings are defined:

DEFINITION 4 (Notations). Let P be a partitioning.

1. For a partition p = [s, t[in P let p[=def s be the left boundary of p and
let p] =def t be the right boundary of p.

2. For a time point t and a partitioning P , let tP be the partition in P
which contains t.

A sequence of finite partitions of the real numbers is in fact isomorphic to
the integers. This can be exploited to give the partitions addresses or coor-

dinates. The coordinates are very useful for navigating through sequences
of partitions. Therefore we introduce coordinate mappings. In principle,
there are many different coordinate mappings for a given partitioning, but
for the intended application of the partitioning concept described in this
chapter, one single coordinate mapping is sufficient. Therefore this unique
coordinate mapping becomes an integral component of a partitioning.

DEFINITION 5 (Coordinate Mapping). A coordinate mapping of a parti-
tioning P is a bijective mapping between the intervals in P and the integers.
Since we usually use one single coordinate mapping for a partitioning P , we
can just use P itself to indicate the mapping.

Therefore let pP be the coordinate of the partition p in P .

For a coordinate i let iP be the partition which corresponds to i.

For a time point t let P.pc(t) =def (tP)P be the coordinate of the partition
containing t. (pc stands for ‘partition coordinate’).

The PartLib Library 11

Let P.sopT (t) =def tP [be the start of the partition containing t.
Let P.eopT (t) =def tP [be the end of the partition containing t.

For a coordinate i let P.sopC(i) =def iP [be the start of the partition with
coordinate i.
Let P.eopC(i) =def iP [be the end of the partition with coordinate i.

For a time point t we define

P.lopT (t) =def P.eopT (t) − P.sopT (t)

as the length of the partition containing t.

For a coordinate i we define

P.lopC(i) =def P.lopT (P.sopC(i))

as the length of the partition with coordinate i.

The two pictures below illustrate the transitions between time points,
coordinates and partitions:

-?

t
P.sopT (t)P.eopT (t)

Rpartition tP with coordinate P.pc(t)

-
Rpartition i

P.sopC(i) P.eopC(i) = P.sopC(i + 1)

EXAMPLE 6 (Seconds and Minutes). The partitioning for seconds consists
of the sequence of intervals . . . [−i,−i+1[. . . [0, 1[. . . [k, k+1[. . .. The interval
[0, 1[represents the first second in January 1st 1970, and its coordinate is
0.

The partitioning for minutes is

1970/1/1
↓

ref.time : ... [−60, 0[[0, 60[[60, 120[[120, 180[...
coordinate : ... −1 0 1 2 , ...

Remarks:

1. Partitions are not explictly represented in PartLib, only time points and

12 Hans Jürgen Ohlbach

coordinates. The functions which map time points to coordinates and back
are therefore the important ones. Thus, the formulations of the algorithms
below do not refer to partitions, but use these functions.

2. We use the notation P.pc(t) for the function that maps a time point t to
the coordinate of its partition in the partitioning P . Alternative notations
would be pc(P, t) or pcP (t) or pcP (t). The notation P.pc(t) comes from
object oriented programming. P is an object (instance of a class), and pc
is a method in this class. This notation has two advantages. First of all, it
is a bridge to the actual implementation where the program code looks just
so. Secondly, it emphasises the special role of P as the context for the pc
function as well as a number of other functions. Therefore we shall use the
dot notation ‘P.’ for most of the functions which depend on partitionings
and other objects. If it is clear from the context, which object is meant, we
may omit this object, and just use the function name.

2.1 Length of Intervals in Partitions

It is very common to measure the length of intervals or the distance between
time points in terms of time units. Examples are ‘The train A arrives in
the station 5 minutes before the train B leaves it’. ‘Tomorrow I go on a
adventure trip and will be back in 3 months time’.

A very useful function is therefore P.length(t1, t2), which measures the
length of the distance between t1 and t2 in terms of partitions of the parti-
tioning P . For example, month.length(t1, t2) measures the length of [t1, t2[
in months. Since partitions may have different lengths, this is a nontrivial
operation.

The idea for the method can be illustrated with the following picture

-??

� -� -

t2t1

3 4 5 6 72

f2f1

The distance between t1 and t2 is the sum of the relative length of f1,
measured as a fraction of the length of partition 3, plus the relative length
of f2, measured as a fraction of the length of partition 6, plus the number
of partitions in between.

DEFINITION 7 (Length in Partitions). Let P be a partitioning.

For two time points t1 and t2 with t1 ≤ t2 we define

The PartLib Library 13

P.lengthP (t1, t2) =def



























t2 − t1
P.lopT (t1)

if P.pc(t1) = P.pc(t2)

P.pc(t2) − P.pc(t1) − 1 +
P.eopT (t1) − t1

P.lopT (t1)
+

t2 − P.sopT (t2)

P.lopT (t2)
otherwise

If t2 < t1 then P.lengthP (t1, t2) =def −P.lengthP (t2, t1).

P.lengthP (t1, t2) is continuous. That means if t1 is kept fixed and t2 is
moved, or the other way round, then P.lengthP (t1, t2) makes no jumps. It
is, however, not differentiable at the points where t2 crosses the boundaries
of neighbouring partitions with different length.

P.lengthP (t1, t2) can be used to measure the absolute length of the in-
terval [t1, t2[if P is the partitioning for seconds or smaller time units. If P
is the partitioning for minutes we can get the effect that an interval of 60
seconds length is smaller than one minute. This is the case for those min-
utes which contain leap seconds. Similar things happen for the coarser time
units. We may get day.length(t1, t2) < 1 even if hour.length(t1, t2) = 24.
This happens when daylight savings time is disabled just during the interval
[t1, t2[and the day is 25 hours long.

DEFINITION 8 (modulo, remainder, b...c and | . . . |).
The mod and remainder functions are used to map integers to non-negative
indices 0, . . . , n − 1. Therefore we need versions where the resulting values
are between 0 and n − 1, even for negative numbers. mod and remainder
are defined for positive numbers as usual. For the negative numbers there
are two different possibilities. We need the version where the resulting value
is positive.

That means, k mod n is chosen such that for example 4 mod 3 = 1 and
−4 mod 3 = 2.

m/n = k remainder l is chosen such that for example 4/3 = 1 remainder 1
and −4/3 = −2 remainder 2.

Let bmc be the integer part of m such that b3.5c = 3 and b−3.5c = −3.

For an interval s let |s| be the length of the interval.

2.2 Labels

For many periodic temporal notions there are standard names for the par-
titions. For example, days are named ‘Monday’, ‘Tuesday’ etc., months are
named ‘January’, ‘February’ etc., seasons are named ‘winter’, ‘spring’ etc.
If these names are attached as labels at the partitions, temporal notions like
‘next summer’ etc. can be modelled in an elegant way.

14 Hans Jürgen Ohlbach

DEFINITION 9 (Labelled Partitionings). A Labelling L is a finite sequence
of labels (strings) l0, . . . , ln−1.

A labelling L = l0, . . . , ln−1 is turned into a labelling function L(i) for a
coordinate i:

L(i) =def li mod n

In the sequel we shall identify the labelling L with the labelling function
L(i).

A labelling L can now be very easily attached to a partitioning: the partition
with coordinate i gets label L(i).

EXAMPLE 10 (The Labelling of Days). The origin of the reference time
is again January 1st 1970. This was a Thursday. Therefore we choose as
labelling for the day partitioning

L =def Th, Fr, Sa, Su, Mo, Tu, We.

The following correspondences are obtained:

ref.time : . . . [−86400, 0[[0, 86400[[86400, 172800[. . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, L(−1) = We, i.e. December 31 1969 was a
Wednesday.

2.3 Granules

The label ‘gap’ is a reserved keyword. It can be used to denote gaps between
semantically related partitions. For example, if the partitions represent
school holidays then the periods between the school holidays can be named
‘gap’. Gaps, together with the possibility to use the same label at different
positions in a labelling makes it possible to define granules, with the same
effect as in the original definitions of granularities. As an example, consider
again the definition of ‘working day’ as a period of time between 8 o’clock
am and 5 o’clock pm, interrupted by a lunch break between 1 o’clock pm
and 2 o’clock pm. This could be defined in two stages. First, we define a
partitioning with an anchor time at some particular Monday 8 o’clock am,
and durations ‘5 hour’, ‘1 hour’, ‘3 hour’, ‘16 hour’. The ‘1 hour’ period is
the lunch break and the ‘16 hour’ period is the time between two ‘working
days’. A suitable labelling is ‘working day, gap, working day, gap’.

A generator for granules is characterised by a maximally long subsequence
of a labelling such that the non-gap labels in the generator are the same.
‘working day, gap, working day’ in the above labelling is a generator for a
granule, and this is the only one in this example.

The PartLib Library 15

REMARK 11. The definition of a granule in this chapter includes internal
gaps. A granule that corresponds to the generator ‘working day, gap, work-
ing day’ includes therefore the ‘gap partition (the lunch time). A granule
therefore corresponds always to a convex interval. Since a granule is gen-
erated by a labelling, the information about which part of the granule is a
gap, is always available. Therefore it is technically simpler to define it this
way, and to let the algorithms exploit information about internal gaps.

If a labelling is attached at a partitioning, we get granules as subsets
of the time line. The next picture illustrates this for the ‘working day’
example. ‘wd’ stands for ‘working day’.

-�

� - -�

3 4 5 6 7 8-1 0 1 2

gapwd gap wd gapwd gapwd

first granule second granule

Only the partitions 0-2, 4-6 etc. represent granules. The partitions 2-4
are not a granule, although they are also labelled ‘working day, gap, work-
ing day’. This is prevented because the definition of granule is based on the
initial labelling, in this case ‘working day, gap, working day, gap’.

DEFINITION 12 (Granule). Let L = l0, . . . , ln−1 be a labelling.

1. A generator for granules of the labelling L is a maximal subsequence
G = lk . . . lm of L such that
(i) lk 6= gap and lm 6= gap, and
(ii) all non-gap labels in G are the same.

2. A granule of a labelling function L(. . .) (Def. 9) is a sequence k . . . m of
coordinates, such that l

k mod n
, . . . l

m mod n
is a generator for gran-

ules of the labelling L.

3. A granule of a labelled partitioning P with labelling L is an interval
kP ∪ . . . ∪ mP , such that k . . . m is a granule of the labelling function
L(. . .).

A labelling like ‘Monday, Tuesday, . . . ’ without gaps and with the labels
all being different has granules labelled with a single label each. A labelling
may of course also have several non-trivial granules. To see this, let us
take our ‘working day’ example a bit further. The underlying partitioning
partitions also the weekends. If we want to specify that ‘working days’ are
only from Monday till Friday, we could do this with the following labelling:

16 Hans Jürgen Ohlbach

‘wdMo, gap, wdMo, gap, wdTu, gap, wdTu, gap, wdWe, gap, wdWe, gap,
wdTh, gap, wdTh, gap, wdFr, gap, wdFr, gap, gap, gap, gap, gap, gap, gap,
gap, gap’. This labelling has five different granules ‘wdMo, gap, wdMo’,
‘wdTu, gap, wdTu’, ‘wdWe, gap, wdWe’, ‘wdTh, gap, wdTh’, ‘wdFr, gap,
wdFr’, one for each day. The last 8 gaps exclude the weekend.

A partitioning without an explicit labelling defines of course also granules:
each partition is a granule consisting just of this single partition.

We define a function closestGranule which returns for a partition coor-
dinate or a time point the coordinates of the closest granule. The ver-
sion closestGranuleC(i, direction) takes a coordinate as argument, and
the version closestGranuleT (t, direction) takes a time point as argument.
direction is only relevant for time points between granules. It can be either
past, future, or closest. past causes that these time points are mapped
to the previous granule. future causes that these time points are mapped
to the next granule in the future, and finally closest causes that the clos-
est granule is chosen, with a preference for future when the time point lies
exactly in the middle between two granules. The closestGranule function
is used in particular for the function lengthG (Def. 14) which measures
intervals in terms of granules.

DEFINITION 13 (Closest Granule). Let L be a labelling of a partitioning
P , i a coordinate and t a time point. direction is a keyword which can be
past, future, or closest.

The function L.closestGranuleC(i, direction) returns a pair (k, m) of coor-
dinates, such that
(i) k . . . m is a granule of the labelling function L(. . .) (Def. 12), and
(ii) either i is within a granule, i.e. k ≤ i ≤ m, or i is not within a granule
and
(ii,a) direction = past and k . . . m is the closest granule before i, or
(ii,b) direction = future and k . . .m is the closest granule after i, or
(ii,c) direction = closest and i is closer to the granule k . . . m than to any
other granule. That means precisely, if (a, b) are the boundaries of another
granule, and b ≤ i ≤ k then k−i ≤ i−b, and if m ≤ i ≤ a then a−i ≤ i−m.

The function L.closestGranuleT (t) returns a pair (k, m) of coordinates,
such that
(i) (k, m) is a granule of the labelling function L(. . .), and
(ii) either t is within a granule, t is not within a granule, and
(ii,a) direction = past and k . . . m is the closest granule before t, or
(ii,b) direction = future and k . . .m is the closest granule after t, or
(ii,c) direction = closest and t is closer to the granule k . . .m than to any
other granule. That means precisely, if (a, b) are the boundaries of another

The PartLib Library 17

granule, and P.eopC(b) ≤ t ≤ P.sopC(k) then P.sopC(k)−t ≤ t−P.eopC(b),
and if P.eopC(m) ≤ t ≤ P.sopC(a) then P.sopC(a) − t ≤ t− P.eopC(m).

Length of intervals in granules:

Once the notion of ‘working day’ is defined by means of granules, it is quite
natural to measure intervals in terms of the length of a ‘working day’. For
example, you may want to say that ‘these four hours are half a working day’.
This is not much of a problem if the granules all have the same length. If
not, it depends on the position of the interval. ‘Half a working day’ may
mean something different if I measure it on a Monday where I work 8 hours,
or on a Friday, where I work, say, only 4 hours. Even worse, what if the
interval lies on a weekend, and therefore outside any granules? It may still
make sense to say that ‘these four hours are half a working day’, if I consider
to shift the interval into a working day.

The function lengthG(t1, t2, direction) measures the distance between t1
and t2 in terms of granules. It deals with the problem that part of the
interval [t1, t2[or even the whole interval may lie outside any granule. The
basic idea is to split the interval [t1, t2[according to the given partitioning,
determine for each subinterval the closest granule (Def. 13), and measure
the subinterval in terms of this closest granule. The arrows in the next
picture show which granules are used to measure the different parts of the
interval. direction = closest is chosen in this example.

-�

� - -�
6BBM HHHY ���*

Z
Z}6

3 4 5 6 7 8-1 0 1 2

gapwd gap wd gapwd gapwd

first granule second granule

DEFINITION 14 (Length in Granules). Let P be a partitioning which is
labelled with a labelling L. The function P.lengthG(t1, t2, direction) mea-
sures the distance between t1 and t2 in terms of granules. direction is again
one of the keywords past, future, or closest. The function works as
follows:

Step 1: The interval [t1, t2[is partitioned into subintervals s1, . . . such
that the subinterval boundaries are aligned with the partition boundaries
of P .

Step 2: The middle point ti for each subinterval si is computed, and
the coordinates (l, m) of the granule closest to ti is determined by the
closestGranuleT function (Def. 13). Let li be the length of the non-gap
partitions in this granule.

18 Hans Jürgen Ohlbach

Step 3: The relative lengths |si|/li are added together to give the result
of P.lengthG(t1, t2, direction).

2.4 Relations Between Partitionings

PartLib supports four different relations between partitionings.

DEFINITION 15 (Relations Between Partitionings). Let P and Q be two
partitionings. We define the following four relations between P and Q.

1. ‘P has shorter partitions than Q’ if the largest partition of P is shorter
than the shortest partition of Q (P is finer grained than Q.)

2. ‘P has shorter granules than Q’ if the largest granule of P is shorter
than the shortest granule of Q.

3. ‘P includes the partitions of Q’ if each partition of P is a subset of a
partition of Q.

4. ‘P includes the granules of Q’ if each granule of P is a subset of a
granule of Q.

These four relations are easy to define, but difficult to compute because
for algorithmic partitionings it is in general not possible to compute the
minimal or maximal partition length. Therefore PartLib uses an approxi-
mation. It generates random time points and computes the partition and
granule length for these random points and certain points in their neighbour-
hood. How many points in the neighbourhood are to be checked is controlled
by the ‘repetition’ parameter. For example, for the partitioning ‘month’ one
would check 12 subsequent months for each random time point. This way,
the ‘local structure’ of the partitionings is checked completely, whereas only
finite samples check the ‘global structure’, in the ‘month’ example, the leap
years.

The relations ‘includes the partitions of’ and ‘includes the granules of’
are also checked with finitely many randomly generated time points and
their neighbourhoods.

3 Date Formats

In the subsequent section various notions are introduced in a recursive way:
date formats, shifts, durations, and different types of partitionings.

We start with the definition of date formats. Date formats and dates in
PartLib are data structures, not date strings. Concrete date strings depend
on calendar systems and conventions or standards. They are dealt with in
the interface to the CTTN system, not in the PartLib library.

The PartLib Library 19

DEFINITION 16 (Date Format). A date format DF is a sequence P0/ . . . /Pk

of partitionings.

A date in a date format DF is a sequence d0/ . . . /dn of integers with
n ≤ k.

In principle, the date formats can consist of arbitrary partitionings. In
most calendar systems there are, however, a few particular date formats.
The Gregorian calendar, for example, has the two date formats
year/month/day/hour/minute/second (where the names stand for the cor-
responding partitions), and year/week/day/hour/minute/second.

There are, however, two big differences between common date formats
and the particular interpretation of the numbers in the dates we need in this
chapter. Consider the date format year/month/day/hour/minute/second.
The first difference is the interpretation of the year. The number 30, for
example, for the ‘year’ part in the date format is the coordinate of the year.
If the year 1970 has coordinate 0 then ‘30’ is the coordinate of the year
2000. The next difference has to do with the way we count months, weeks
and days. Usually these are counted from 1. That means, January is month
1, the first week in a year is week 1, and Monday is day 1. In contrast to
this, we count hours, minutes and seconds from 0. The first hour in a day
is hour 0, the first minute in an hour is minute 0 etc. Our interpretation of
date formats like the above is that months, days etc. denote shifts, instead
of absolute values. In this interpretation the date 30/1 denotes a shift of
1 month from the beginning of the year with coordinate 30 (i.e. the year
2000). This is the beginning of February. Thus, all time units are counted
from 0.

By interpreting the numbers as shifts, there is no problem to deal with
arbitrary big numbers, and even with negative numbers. The date 30/200/-
50, for example, in the date format year/month/day/hour/minute/second
denotes a time point t which is obtained from the beginning s of the year
2000 (30 years after 1970), by shifting s 200 months into the future, and
from there 50 days into the past.

With these ideas in mind we can define a function date, which turns a
time point into a date of the given format.

DEFINITION 17 (date). Let DF = P0/ . . . /Pk be a date format, and t a
time point.

Let d0/ . . . /dk =def DF.date(t) where

d0 =def P0.pc(t) and

ti =def Pi.sopT (Pi−1.sopT (t)) and

di =def bPi.lengthP (ti, t)c for i = 1 . . . k.

d0 is the absolute coordinate of the P0 partition containing t. t1 is the

20 Hans Jürgen Ohlbach

starting point of the P1 partition containing t. The di are then calculated
as Pi increments compared to ti where ti is the beginning of the pi partition
containing t.

For example, in the date format year/week/day/... d0 is the coordinate
of the year containing t. t1 is the beginning of the first week overlapping
with the year d0. d1 is then the integer part of the number of weeks between
t1 and t. t2 is the beginning of the first day in the week containing t etc.

The date function is exact only if the last partitioning Pk corresponds to
the integers of the time axis, usually seconds, or fractions of a second.

It is also possible to turn a date d = d0/ . . . /dn in a date format DF =
P0/ . . . /Pk into a time point. The function T imePoint(d) gives the dates
a precise semantics.

DEFINITION 18 (Time Point DF.T imePoint(d)). Let DF = P0/ . . . /Pk

be a date format and let d = d0/ . . . /dn be a date in this format. The
corresponding time point is defined:

DF.T imePoint(d) =def tn where

t0 =def P0.sopC(d0) and

ti =def Pi.sopC(Pi.pc(ti−1) + di) for i = 1 . . . n.

In the date format year/week/day/..., for example, t0 is the beginning of
the year with coordinate d0. week.pc(t0) is the coordinate of the week
containing t0. week.pc(t0) + d1 is the coordinate of the week which is d1

weeks into the year. t1 = week.sopC(week.pc(t0) + d1) is the beginning of
this week. t2 is then the beginning of the day which is d2 days into this
week etc. Finally, tk is the coordinate of the second denoted by the given
date.

By induction on the length of a date, one can prove that turning a time
point t into a date and the date back into a time point then we end up at
the same time point t.

PROPOSITION 19. For a date format DF whose last partitioning corre-

sponds to the integers in the time axis, and a time point t:

DF.T imePoint(DF.date(t)) = t.

The other direction, DF.date(DF.T imePoint(d)) = d. need not hold,
because there may be quite different dates which represent the same time
point. For example, February 1st 2000 may be represented by 30/1/0 or by
30/0/31.

The PartLib Library 21

4 Shift Functions

Notions like ‘in two weeks time’ or ‘three years from now’ etc. denote time
shifts. They can be realized by a function which maps a time point t to a
time point t′ such that t′ − t is just the required distance of ‘two weeks’ or
‘three years’ etc. Shift functions are of particular importance to the PartLib
library because some of the specification mechanisms for partitionings re-
quire to shift an anchor point by certain durations. Therefore this needs to
be explained in detail.

4.1 Length Oriented Shift Function

We define a function P.shiftPL(t, m) which shifts a time point t to a time
point t′ = P.shiftPL(t, m) such that P.lengthP (t′ − t) = m. (‘shiftPL’
stands for ‘shift Partitions Length oriented’, in contrast to ‘shiftPD’, which
stands for ‘shift Partitions Date oriented’).

EXAMPLE 20 (for shiftPL). The algorithm for this function can be best
understood by the following example:

-? ?

� - � -
2 6 73 4 5

t t′

f1
f2

Suppose we want to shift the time point t by 3.5 partitions. First, the
relative distance f1 between t and the end of the partition containing t is
measured. Suppose it is 0.75. That means from the end of the partition we
need to move forward still 2.75 partitions. We can move forward 2 partitions
by just adding the 2 to the coordinate 4. We end up at the start of partition
6. From there we need to move forward 0.75 partitions, which is just 75%
of the length of partition 6.

DEFINITION 21 (shiftPL). Let P be a partitioning, t a time point, and m
a real number.
If m ≥ 0 then

shiftPL(t) =def























t + m ∗ lopT (t) if t + m · lopT (t) ≤ eopT (t)
sopC(pc(t) + bmc) + (m − bmc) · lopC(pc(t) + bmc)

if sopT (t) = t
sopC(pc(t) + bm′c + 1)
+ (m − m′) · lopC(pc(t) + bm′c + 1) otherwise

where m′ =def m − (eopT (t) − t)/lopT (t).

If m < 0 then

22 Hans Jürgen Ohlbach

shiftPL(t) =def























t + m ∗ lopT (t) if sopT (t) ≤ t + m · lopT (t)
sopC(pc(t) + bmc) + (m − bmc) · lopC(pc(t) + bmc − 1)

if sopT (t) = t
sopC(pc(t) + bm′c)
+(m − m′) · lopC(pc(t) + bm′c − 1) otherwise

where m′ =def m + (t − sopT (t))/lopT (t).

It is not so difficult to see that the shiftPL function shifts a time point t by
m partitions to a time point t′ such that the distance t′ − t is just m.

PROPOSITION 22 (Soundness of shiftPL). For any time point t:

shiftPL(t, m)− t = lengthP (t, shiftPL(t, m)) = m

Furthermore

shiftPL(shiftPL(t, m1), m2) = shiftPL(t, m1 + m2)

The proof is technical and gives no new insight. It is therefore omitted.

Unfortunately the shiftPL function does not always give intuitive results.
Suppose the time point t is noon at March, 15th, and we want to shift t by
1 month. March has 31 days. Therefore the distance to the end of March is
exactly 0.5 months. Thus, we need to move exactly 0.5 times the length of
April into April. April has 30 days. 0.5 times its length is exactly 14 days.
Thus, we end up at midnight April, 14th.

This is not what one would usually expect. We would expect to shift t to
the same time of the day as we started with. With the above definition of
shiftPL this happens only by chance, or when the partitions have the same
length.

4.2 Date Oriented Shift Function

PartLib provides another shift function, shiftPD which avoids the above
problems and gives more intuitive results. The idea is to do the calculations
not on the level of reference time points, but on the level of dates. If, for
example, t represents 2004/1/15, then ‘in one month time’ usually means
2004/2/15. That means the reference time must be turned into a date,
the date must be manipulated, and then the manipulated date is turned
back into a reference time. This is quite straight forward if the partitioning
represents a basic time unit of a calendar system (year, month, week, day
etc.), and this calendar system has a date format where the time unit occurs.
In the Gregorian calendar this is the case, even for the time unit ‘weeks’. ‘In
two weeks time’ requires to turn the reference time into a date format which
uses weeks. The corresponding date format uses the counting of weeks in

The PartLib Library 23

the year (ISO 8601). For example, 2004/42/1 means Tuesday1 in week 42
in the year 2004. In two weeks time would then be 2004/45/1.

The next problem is to deal with fractional shifts. How can one imple-
ment, say, ‘in 3.5 months time’? The idea is as follows: suppose the date
format is year/month/day/hour/minute/second, and the reference time cor-
responds to, say, 34/1/20/10/5/1. First we make a shift by three months
and we end up at 34/4/20/10/5/1. This is a day in May. From the date
format we take the information that the next finer grained time unit is ‘day’.
May has 31 days. 0.5 ∗ 31 = 15.5. Therefore we need to shift the date first
by 15 days, and we end up at 34/4/34/10/5/1. There is still a remaining
shift of half a day. The next finer grained time unit is hour. One day has
24 hours. 0.5 ∗ 24 = 12. Thus, the last date is shifted by 12 hours, and the
final date is now 34/4/34/22/5/1. This is turned back into a reference time.

This version of ‘shift’ gives more intuitive results. The drawback is that
shiftPD(t, m) − t = lengthP (t, shiftPD(t, m)) = m is usually no longer
true. shiftPD has in fact not much to do with lengthP .

The concrete definition of shiftPD depends on the partitioning type.
Therefore, we give them in the corresponding sections below (see for example
Def. 34).

4.3 Shift by Granules

A statement like ‘we must move this task by three working days’ refers to a
shift of time points which is measured in granules. Since granules are mul-
tiples of partitions, it is not necessary to have a shiftGranules function. A
simpler idea is to turn a number m of granules into a corresponding num-
ber n of partitions and then to apply the date oriented or length oriented
shift function for partitions. Therefore PartLib provides only a function
granules2Partitions(t, m). It turns the number m of granules into a num-
ber n of partitions such that a shift of the time point t by m granules
corresponds to a shift by n partitions. m can be any positive or negative
integer or fractional number.

The algorithm for granules2Partitions has to distinguish different cases:

case 1: the time point t is within a granule;

case 1a: t is within a non-gap partition of the granule;

case 1b: t is within a gap partition of the granule;

case 2: t is in a gap partition between two granules. This case can be
reduced to case 1a by inverting the role of gaps and granules. That

1According to ISO 8601, the first day in a week is Monday. In the standard notation
this is day number 1. Since we count days from 0, Monday is day 0 and Tuesday is day
1.

24 Hans Jürgen Ohlbach

means the granules together with the intra–granule gaps, become gaps,
and the gaps between the granules become granules.

These cases are quite trivial if the structure of the granules is always the
same. An example where the granules have a different structure may be a
working day consisting of a day shift (ds) and a night shift (ns). As indicated
in the figure below the day shift consists of two non-gap blocks (morning
and afternoon) separated by a lunch break. The night shift consists of three
non-gap blocks separated by two breaks.

-

ds gap ds gap gapns ns nsgap

Let us illustrate the difficulties with a still quite simple example. If the
time point t is, say, in the afternoon block of the day shift, where should
‘one granule further’ be? It should be in the night shift, but not in one
of the breaks of the night shift. The function granules2Partitions tries
to identify in this case a corresponding non-gap block in the night shift by
measuring the relative distance of the non-gap block containing t to the
left boundary of the granule, in this case 2/2 (t is in non-gap block 2 of
two non-gap blocks). Since the night shift contains three non-gap blocks,
2/2 ∗ 3 = 3, i.e. the corresponding non-gap block in the night shift is the
third block. This is a heuristic. Experience has to show whether there are
better ones.

We present the cases 1a and 1b of the algorithm for granules2Partitions
by means of typical examples. Only the case m > 0 is explained in detail.
The case m < 0 is analogous.

EXAMPLE 23 (for case 1a of granules2Partitions:). Suppose we want to
shift the time point t in the picture below by m = 1.5 granules. t is within
a non-gap partition of a granule and m > 0. We determine the number of
partitions to be shifted in 5 steps.

? ? ?

� - � -

t, i j j′

...

start granule target granule G

Let i =def P.pc(t) be the coordinate of the partition containing t. Let b be the
relative distance of the non-gap block containing t. In the example t is in

The PartLib Library 25

block 2 of three blocks. Therefore b = 2/3. Let d be the relative distance
of partition i within the non-gap block containing t. In the example t is in
partition 1 of a 2-partition non-gap block. Therefore d = 1/2.

Step 1: we determine the target granule G into which the time point is
to be shifted by moving from the start granule containing t bmc granules
forward. In this example, it is just one granule further.

Step 2: we determine the target block B in the target granule G as
b′ = b ∗ bG where bG is the number of non-gap blocks in G. The target
granule in the example has 3 non-gap blocks. Therefore b′ = 2/3 ∗ 3 = 2,
i.e. the second block is the target non-gap block in G.

Step 3: we determine the target partition in block B by d′ = d∗dG where
dG is the number of non-gap partitions in the target block. In the example
d′ = 1/2 ∗ 3 = 1.5 ∼ 2, i.e. the second partition in block B is the target
partition. Let j be the coordinate of this partition.

Step 4: Let m =def m − bmc. If m′ = 0 then j − i is the result of
granules2Partitions. If m′ > 0 let e =def m′ ∗ |G| where |G| is the num-
ber of non-gap partitions in G. In the example e = 0.5∗8 = 4. Let j ′ be the
partition obtained by moving from j e non-gap partitions forward. If j ′ is
within the target granule G, then j ′−i is the result of granules2Partitions.

Step 5: If j′ is beyond the target granule G, let f be the relative distance
between the partition j and the end of the granule G, counting only non-gap
partitions. In the example f = 5/8. Since j ′ is beyond the target granule
G, f > m′. Let G′ be the next granule after G. We must move the target
partition into G′. Now let j′′ be the coordinate of the partition obtained
by moving b(f − m′) ∗ |G′|c non-gap partitions forward from the start of
granule G′. j′′ − i is now the result of granules2Partitions.

EXAMPLE 24 (for case 1b of granules2Partitions:). Suppose we want
to shift the time point t in the picture below by m = 1.5 granules. t is
within a gap partition of a granule and m > 0. We determine the number
of partitions to be shifted in 5 steps.

? ? ?

� - � -

t, i j j′

...

start granule target granule G

Let i =def P.pc(t) be the coordinate of the partition containing t. Let b be
the relative distance of the gap block containing t. In the example t is in
block 1 of two blocks. Therefore b = 1/2. Let d be the relative distance of

26 Hans Jürgen Ohlbach

partition i within the block containing t. In the example t is in partition 1
of a 1-partition gap block. Therefore d = 1.

Step 1: we determine the target granule G into which the time point is
to be shifted by moving from the start granule containing t bmc granules
forward. In this example, it is just one granule further. If G contains no
gaps at all, we proceed as in case 1a (Example 23), while ignoring that there
are gaps in the start granule.

Step 2: we determine the target block B in the target granule G as
b′ = b ∗ bG where bG is the number of gap blocks in G. The target granule
in the example has 2 non-gap blocks. Therefore b′ = 1/2 ∗ 2 = 1, i.e. block
1 is the target gap block in G.

Step 3: we determine the target partition in block B by d′ = d∗dG where
dG is the number of gap partitions in the target block. In the example
d′ = 1 ∗ 1 = 1, i.e. the first partition in block B is the target partition. Let
j′ be the coordinate of this partition.

Step 4: Let m′ =def m − bmc. If m′ = 0 then j − i is the result of
granules2Partitions. If m′ > 0 we proceed as in case 1a, but ignore that
there are gaps in the granules. Let e =def m′ ∗ |G| where |G| is the number of
partitions in G. In the example e = 0.5 ∗ 10 = 5. Let j ′ be the partition
obtained by moving from j e partitions forward. If j ′ is within the target
granule G, then j′ − i is the result of granules2Partitions.

Step 5: If j′ is beyond the target granule G, let f be the relative distance
between the partition j and the end of the granule G, counting all partitions.
In the example f = 7/10. Since j ′ is beyond the target granule G, f > m′.
Let G′ be the next granule after G. We must move the target partition
into G′. Now let j′′ be the coordinate of the partition obtained by moving
b(f − m′) ∗ |G′|c partitions forward from the start of granule G′. j′′ − i is
now the result of granules2Partitions.

5 Durations

The partitionings are the mathematical model of periodic time units, such
as years, months etc. This offers the possibility to define durations. A
duration may for example be ‘3 months + 2 weeks’. Months and weeks are
represented as partitionings, and 3 and 2 denote the number of partitions in
these partitionings. The numbers need not be integers, but can be arbitrary
real numbers.

A duration can be interpreted as the length of an interval. The num-
bers should not be negative in this case. A duration, however, can also be
interpreted as a time shift. In this interpretation negative numbers make
perfectly sense. d = (−2 week), (−3 month), for example, denotes a back-
ward shift of 2 weeks followed by a backward shift of 3 months.

The PartLib Library 27

DEFINITION 25 (Duration). A duration d = (d0, P0), . . . , (dk, Pk) is a list
of pairs where the di are real numbers and the Pi are partitionings.

If a duration is interpreted as a shift of a time point, it may be necessary
to turn the shift around, in the backwards direction. Therefore the inverse
of a duration is defined:

−d =def (−dk, Pk), . . . , (−d0, P0)

For example, if d = (3 month), (2 week) then −d = (−2 week), (−3 month).

In Def. 34 below a shift function for algorithmic partitionings is intro-
duced. It shifts a time point by a number of partitions in a given partition-
ing. Any such shift function can be lifted to operate on durations.

DEFINITION 26 (shift for Durations). Given a function P.shift(t, m),
which shifts a time point t by m partitions of the partitioning P , we define
a corresponding shift function for durations:

D.shift(t) =def Pk .shift(. . . P1.shift(P0.shift(t, d0), d1) . . . , dk)

where t is a time point and D = (d0, P0), . . . , (dk, Pk) is a duration.

For example, if D = (3 month), (2 week) then

D.shift(t) = week.shift(month.shift(t, 3), 2),

i.e. t is shifted by 3 months first, and the resulting time point is then shifted
by 2 weeks.

6 Calendar Systems

Calendar systems are essentially certain sets of partitionings. The Gregorian
calendar, for example, can be modelled by defining suitable partitionings for
years, months, weeks, days, hours, minutes and seconds. Since the CTTN–
system has a global reference time, and there is always a mapping between
the coordinate system of a partitioning and the global reference time, it
is possible to navigate between different granularities of the same calendar
system, and between different granularities of different calendar systems.

There is, however, more information associated with calendar systems.
Date strings, for example, must be parsed in a calendar specific way. The
fact, that we count months and weeks from number 1, but hours, minutes
and seconds from number 0, must be encoded in a calendar specific parser
for date strings.

If longer historical periods in a particular region of the world are to be
covered, it may even be necessary to combine two or more calendar systems.
In the western world it is the Julian and the Gregorian calendar system
which have been used over the past 2000 years. Therefore the real calendar

28 Hans Jürgen Ohlbach

system is not either the Julian or the Gregorian system, but a combination
of both.

By these and a few other reasons, ‘calendar system’ is not a concept
in the PartLib library, but in a separate component of the CTTN–system.
Therefore calendar systems are not further mentioned in this chapter.

7 Global and Local Reference Time

The global reference time GRT corresponds directly to UTC time. With
the introduction of a local reference time LRT for each partitioning it is
possible to deal with leap seconds and time zones. The purpose is that the
algorithms for the different partitions can just use the local reference time,
and do not need to deal with leap seconds and time zones.

The transition from GRT to LRT is done in two steps. The first step
deals with the leap seconds and the second step deals with time zones. The
transition from LRT to GRT goes the other way round.

A correction function for leap seconds is defined first. The function lsG(t)
defined below (‘G’ for ‘global’) computes the accumulated leap seconds un-
til the global reference time point t. The function lsL(t) (‘L’ for ‘local’)
also computes the accumulated leap seconds, but until the ‘local’ reference
time point t. lsG(t) is used for the transition from GRT to LRT, whereas
lsL(t) is used for the other direction. Unfortunately, it is computationally
difficult to derive one version from the other. It is much more efficient when
both functions are generated from a table of leap second corrections. (see
http://www.ptb.de/de/org/4/43/432/ssec.htm).

DEFINITION 27 (Correction Function for Leap Seconds). If t is a time
point in the global reference time then lsG(t) computes the accumulated
number of leap seconds until t.

If t is a time point in a reference time where the leap second corrections
have already been done then lsL(t) computes the accumulated number of
leap seconds until t.

EXAMPLE 28 (Correction Function for Leap Seconds). The first 10 leap
seconds were introduced for the last minute in 1971. The reference time
for the regular end of this minute is 63072000. Therefore lsG(t) = 0 for all
t ≤ 63072000 and lsG(63072000 + n) = n for 0 ≤ n ≤ 10.

lsG(t) remains constant with value 10 from t = 63072010 until t =
94694410. lsG(94694411) = 11, because another leap second was intro-
duced in the last minute of 1972.

lsL(t) = 0 for all t ≤ 63072000 as well, but lsL(63072001) = 10.
lsL(94694400) = 10 and lsL(94694401) = 11 etc.

Time zones are characterised by an offset between the local time and the

The PartLib Library 29

time at the 0-meridian. For example, if at the 0-meridian it is 0 o’clock
then the offset to the time zone of Germany is 1 hour, i.e. in Germany it is
already 1 am. The time zone offset is in this case +3600 seconds, and the
local reference time is 3600 seconds ahead of the global reference time.

DEFINITION 29 (Transition between GRT and LRT). Given the correction
functions lsG and lsL for leap seconds (Def. 27) and a time zone offset tzo,
we define

LRT (t) =def t + tzo− lsG(t).

for a global reference time t. LRT (t) computes the local reference time from
the global reference time.

The function

GRT (t) =def t − tzo + lsL(t)

computes the global reference time from the local reference time.

8 Specification of Partitionings

A partitioning is usually an infinite sequence of intervals, and these intervals
need not be of the same length. Therefore it is not possible to specify such
a partitioning by just enumerating its partitions.

Three basically different ways to specify partitionings are presented, and
it is shown how a specification corresponds to a partitioning and an asso-
ciated coordinate mapping. Since partitions themselves are not explicitly
represented in PartLib, but only time points and coordinates, it is suffi-
cient to give for each type of specification of a partitioning P corresponding
definitions of the ‘start of partition’ function sopC(i) and the ‘partition co-
ordinate’ function pc(t). sopC(i) maps a coordinate i to the starting point of
the corresponding partition and pc(t) maps a time point t to the coordinate
of the partition containing t.

The ‘start of partition’ function determines the partitioning completely
because

pi =def [sopC(i), sopC(i + 1)[.

The ‘partition coordinate’ function pc(t) is then derivable:

(1) P.pc(t) =def min
i

(P.sopC(i) ≤ t < P.sopC(i)).

This way, however, pc(t) can only be computed through search, which is
extremely inefficient. Therefore we give a more efficient definition of pc(t)
in each case. In most cases the algorithm for pc(t) tries at first a good guess
i′ for the coordinate, and then searches in the neighbourhood of i′ until the
condition (1) is satisfied.

30 Hans Jürgen Ohlbach

8.1 Algorithmic Partitionings

The first type of partitionings is mainly used for modelling the basic time
units of calendar systems, years, months etc. The specification consists of an
average length of the partitions, a correction function and an offset against
time point 0.

DEFINITION 30 (Specification of Algorithmic Partitionings).
Algorithmic partitionings are specified by the components (avl, po, cf, DF)
where

1. avl is the average length of a partition, given in the finest time unit;

2. po is an offset for the partition with coordinate 0, also given in the
finest time unit,

3. cf(i) is a correction function, and

4. DF is a date format. The date format is needed for the shiftPD
function.

The correction function cf(i) computes for a partition with coordinate i the
difference between the reference time of the beginning of the partition with
coordinate i, and the estimated beginning i · avl.

DEFINITION 31 (The Function sopC for Algorithmic Partitionings).
The algorithmic partitioning P which is specified by the components
(avl, po, cf, DF) (Def. 30) has the following ‘start of partition’ function:

P.sopC(i) =def GRT (i · avl + cf(i) + po).

Partitionings whose partitions have constant length in the local reference
time only need a correction function that returns the constant 0. This is
the case for seconds, minutes, and hours. It is no longer the case for days if
daylight saving time regulations are taken into account.

EXAMPLE 32 (Basic Time Units for the Gregorian Calendar).
The specification of the basic time units as algorithmic partitionings for the
Gregorian Calendar are:

second: average length: 1, offset: 0, correction function: λ(n)0.

minute: average length: 60, offset: 0, correction function: λ(n)0.

hour: average length: 3600, offset: 0, correction function: λ(n)0.

day: average length: 86400, offset: 0, correction function: −3600 · h if the
day i is during the daylight saving time period, 0 otherwise.
The number h is usually 1 (for 1 hour). Exceptions are, for example, the
year 1947 in Germany, where in the night of 1947/5/11 the clock was set

The PartLib Library 31

forward a second time by 1 hour such that the offset against standard time
was 2 hours.

week: average length: 604800, offset -259200, correction function: again,
this function has to return an offset of −3600 · h for the weeks during the
daylight saving time periods.

month: average length: 2592000 (30 days), offset 0, correction function:
this function has to deal with the different length of the months and the
daylight saving time regulations.

year: average length: 31536000 (365 days), offset 0, correction function:
this function has to deal with leap years only. The effects of daylight saving
time regulations are averaged out over the year.

The ‘partition coordinate’ function pc(t) maps a reference time point t to
the coordinate of the partition containing t. For algorithmic partitionings
this function is more complicated than sopC(i) because it needs to use the
correction function cf(i), which takes a coordinate as input, and this is the
coordinate which is yet to be computed. Therefore the basic idea for the
algorithm is to use a fixed point iteration which calls sopC(i) for guessed
coordinates until the resulting time point matches the given time point. The
algorithm is described rather informally, but the key steps should become
clear.

DEFINITION 33 (The Function pc(t) for Algorithmic Partitionings). Let t
be a local reference time point for the given partitioning P = (avl, po, cf, DF).
The algorithm for pc(i) starts with a first guess i =def t/avl for the coordinate
of the partition containing t. Since this guess is wrong in general, there is
a first iteration which brings i closer to the correct solution:

Starting with an initial value for i′, a fixed point iteration is performed
until i′ falls under a certain threshold2: Let r =def sopC(i). If r ≥ t let
r′ =def sopC(i − 1) and compute i′ =def (r − t)/(r − r′) to get a better estimate
i =def i− i′ for the correct coordinate. If r < t, i is increased in a similar way3.

The second phase of the algorithm is simpler: the correct coordinate
is searched by just decreasing or increasing i by 1, until sopC(i) ≤ t <
sopC(i + 1) holds. The result of the function pc(t) is then the coordinate i
for which this condition holds.

During the first phase, the algorithm performs big jumps to get very
close to the correct solution. In the second phase it does the fine tuning
by searching in the neighbourhood of the coordinate which was computed

2The threshold in the implementation is 3. The initial value for i
′ can be any number

greater than the threshold. i
′ = 10 is fine.

3This version of the fixed point iteration is slightly simplified. It can happen that i
′

oscillates around the correct i. If this happens, the iteration is immediately stopped.

32 Hans Jürgen Ohlbach

in the first phase. This phase guarantees that the result is correct, i.e. it
satisfies the condition (1) for pc(t). The algorithm converges in very few
(usually < 10) steps to the correct solution even if the average length of
the partitions is quite different to their individual length.

We can now define the date oriented shift function for algorithmic parti-
tionings. The idea of it was already explained in Section 4.2.

DEFINITION 34 (Date Oriented shiftPD for Algorithmic Partitionings).
The function P.shiftPD(t, m) where t is a GRT time point, m is a real
number and P is an algorithmic partitioning (sec. 8.1) with date format
DF = P0, . . . performs the following steps:

1. Let d = d1/ . . . /dk =def DF.date(t) (Def. 17);

2. i, d and m are now modified destructively:
while(m 6= 0 and i ≤ k)

(a) di =def di + bmc

(b) if(i < k)
t =def DF.T imePoint(d) (Def. 18)
m =def (m − bmc) · Pi+1.lengthP (Pi.sopT (t), Pi.eopT (t))
i =def i + 1.

3. the result of P.shiftPD(t, m) is now DF.T imePoint(d).

Although the shiftPD function gives intuitive results in most cases, it has
a number of drawbacks. One of them was already mentioned: shiftPD has
not much to do with the lengthP function. Measuring the shifted distance
with the lengthP function does usually not give the expected results.

Another drawback is that shifting a time point t first by m1 partitions,
and then by m2 partitions may not be the same as shifting t by m1 + m2

partitions. This holds only if m1 and m2 are integers. A counter example
for the case that m1 and m2 are factional values is:

EXAMPLE 35 (Counterexample). Suppose we want to shift the time point
0 twice by 1.5 months. The date for 0 is 0/0/0. Since February 1970 has 28
days, a shift by 1.5 months ends up at 0/1/14. Another shift by 1 month
yields 0/2/14. This is in March. March has 31 days. Therefore a shift by
0.5 months means a shift by 15.5 days. We end up at 0/2/29/12. This is
different to the result of a direct shift by 3 months: 0/3/0.

Nevertheless, the shiftPD is usually preferable. A striking example which
illustrates the difference between shiftPD and shiftPL is such a simple thing
as a shift by 1 day. If it is 5 pm, a shift by 1 day should end up at 5 pm next

The PartLib Library 33

day. This is the case with the shiftPD function, even if during the night,
standard time has been changed to daylight savings time. In contrast, the
shiftPL function yields a very odd result in this case.

Other periodic temporal notions which can be modelled by algorith-
mic partitionings are, for example, sunrises and sunsets, moon phases, the
church year which starts with Easter, etc. The specification for the west-
ern version of Easter would be: average length: 31536000 (1 year), offset:
7516800 (1970/3/29) and a correction function which actually computes the
precise date of Easter (see for example [Dershowitz and Reingold, 1997]).
The specification of all these partitionings must be accompanied by an ap-
propriate shiftPD function.

The specification of the algorithmic partitionings requires the correction
function cf(i), and this is a piece of code. Therefore algorithmic partition-
ings are usually hard coded in the application program. This is different for
the remaining partitioning types. They can be specified purely symbolically.
Therefore one can read their specification from a file or a database at run
time. This makes the system very flexible.

8.2 Duration Partitionings

Duration partitionings are specified by an anchor time and a sequence of
‘durations’. For example, I could define ‘my weekend’ as a duration parti-

tioning with anchor time 2004/7/23, 4 pm (Friday July, 23rd, 2004, 4 pm)
and durations: (‘8 hour + 2 day’, ‘4 day + 16 hour’). The first inter-
val would be labelled ‘weekend’, and the second interval would be labelled
‘gap’.

DEFINITION 36 (Specification of a Duration Partitioning).
A duration partitioning is specified by the tuple (tA, (D0 . . .Dn−1), shift)
where

1. tA is the anchor time point (in the global reference time);

2. D0 . . . Dn−1 is a list of durations (Def. 25);

3. shift is a shift function for durations (Def. 26).

The coordinates for a duration partitioning are such that the first partition
after the anchor time point has coordinate 0. The next picture illustrates
the situation.

-
tA tA + D0 tA + D0 + D1tA − Dn−1

0 1 2-1

34 Hans Jürgen Ohlbach

The durations in the specification of a duration partitioning can be very
irregular. Therefore there is not much of a chance to realize a ‘start of
partition’ function sopC other than by just looping i times over D0 . . . Dn−1.

DEFINITION 37 (The Function sopC for Duration Partitionings).
The duration partitioning P which is specified by the data
(tA, (D0 . . . Dn−1), shift) (Def. 36) has the following ‘start of partition’
function:

sopC(i) =def ti

where ti is determined by shifting the anchor time point tA i times:

Let t0 =def tA.

if(i ≥ 0): for j = 1, . . . , i: tj =def D(j−1) mod n
.shift(tj−1). (Def. 26)

if(i < 0): for j = 1, . . . ,−i: tj =def −D(n−j) mod n
.shift(tj−1).

Notice that the shift function for durations uses the shiftPD function (Sec.
4.1). Because two shifts by m1 and m2 partitions are not necessarily the
same as one shift by m1 + m2 partitions (Ex. 35) , this has an effect on the
meaning of duration partitionings. A duration partitioning with a duration
‘1.5 month + 1.5 month’ is not the same as a duration partitioning with a
duration ‘3 month’.

Because there is no further assumption about the durations in the spec-
ification of duration partitionings, there is not much chance to optimise
the ‘partition coordinate’ function pc either. Therefore the definition (1) is
taken as algorithm for pc.

The shiftPD function cannot be optimised either. It also loops over the
duration D0 . . . Dn−1 and calls the shift function for durations as often as
necessary.

DEFINITION 38 (shiftPD for Duration Partitionings).
Let P = (tA, (D0 . . . Dn−1)) be a duration partitioning. The P.shiftPD(t, m)
function for a time point t and a real number m performs the following steps:

Let (k remainder l) =def m/n.

If m ≥ 0:

if (m ≥ 1): for i = 0, . . . , bmc − 1 let t =def D
i mod n

.shift(t)

let t =def t + (m − bmc) · (Dbmc mod n
).shift(t) − t).

If m < 0:

for i = 0, . . . ,−bmc − 1 let t =def −D
n−1−(i mod n).shift(t)

let t =def t + (m − bmc) · (t − D(bmc mod n).shift(t).

The result of P.shift(t, m) is now the modified t.

The PartLib Library 35

8.3 Regular Partitionings

A special case of a duration partitioning is when all durations are of the form
‘n P ’ and the partitioning P is the same in all durations. For this case there
are more efficient ways than looping over lists of durations. Therefore, and
because many partitionings are of this type, it makes sense to treat them
in a special way.

A typical example is the notion of a semester at a university. In the Mu-
nich case, the dates could be: anchor time: October 2000. The shifts are:
6 months (with label ‘winter semester’) and 6 months (with label ‘summer
semester’). This defines a partitioning with partition 0 starting at the an-
chor time, and then extending into the past and the future. The partition
with coordinate 0 in this example is the winter semester 2000/2001.

DEFINITION 39 (Specification of Regular Partitionings). A regular parti-
tioning is specified by the triple (tA, U, (s0 . . . sn−1), shift) where

1. tA is the anchor time point (in the global reference time)

2. U is a partitioning, the time unit for the shifts;

3. s0 . . . sn−1 is a list of real numbers, the shifts; shift is a shift function
for partitionings.

The partitions of regular partitionings are obtained by shifting the anchor
point tA first by s0 time units U , and then by s0 + s1 time units U etc.

-
tA

0 1 2-1

tA − sn−1U tA + s0U tA + (s0 + s1)U

This picture illustrates a subtle, but important difference to duration par-
titionings. The partition boundaries for duration partitions are computed
by successively applying the shift function for the corresponding durations.
The shift function for durations uses internally the date oriented shiftPD
function, for which shift(shift(t, m1), m2) 6= shift(t, m1 +m2) may be the
case.

In contrast to this the partition boundaries for regular partitions are
computed by first adding the shifts together, and then shifting the anchor
time in one single step. Both versions yield the same results for integer
shifts. This is not guaranteed if the shifts are fractional.

DEFINITION 40 (The Function sopC for Regular Partitionings). The reg-
ular partitioning P which is specified by the data (tA, U, (s0 . . . sn−1), shift)

36 Hans Jürgen Ohlbach

(Def. 39) has the following ‘start of partition’ function:

sopC(i) =def U.shift(tA, s(i))

where s(i) =def k · Σn−1
j=0 sj +

{

Σl
j=0sj if i ≥ 0

Σl−1
j=0sj otherwise

and (k remainder l) =def i/n.

EXAMPLE 41. Let the anchor date be 2000/1, and let the shifts be 3,4,5
months.

sopC(5) is calculated as follows:
5/3 = 1 remainder 2.
i′ = 1 · (3 + 4 + 5) + (3 + 4) = 19.
This means 2000/1 is to be shifted by 19 month, and we end up at the
beginning of 2001/7.

sopC(−5) is calculated as follows:
−5/3 = −2 remainder 1.
i′ = −2 · (3 + 4 + 5) + 3 = −21.
This means 2000/1 is to be shifted by -21 month, and we end up at the
beginning of 1998/3.

The ‘partition coordinate’ function pc turns the reference time into a coor-
dinate i of the time unit U and then uses the difference between i and the
coordinate of the anchor time to compute the number of shifts which are
necessary to get from the anchor time to the reference time. This is the
coordinate of the partition containing t.

DEFINITION 42 (The Function pc for Regular Partitionings).
Let (tA, U, (s0 . . . sn−1), shift) be the specification of a regular partitioning.
Let t be a local reference time point.
Let i =def U.pc(t) − U.pc(tA) and (k remainder l) =def i/Σn−1

j=0 sj .

Let P.pc(t) =def k · n + maxi≥0((Σ
i
j=0sj) ≤ l).

EXAMPLE 43. Let the anchor date be 2000/1, and let the shifts be 3.5,4.5,5.5
months.

Let t be such that i =def U.pc(t) − U.pc(tA) = 21.
k remainder l = i/(3.5 + 4.5 + 5.5) = 1 remainder 7.5.
P.pc(t) = 1 · 3 + 1 = 4. This is the partition between month 17 and 21.5.

Now let t be such that i =def U.pc(t) − U.pc(tA) = −21.
k remainder l = −21/13.5 = −2 remainder 8.
P.pc(t) = −2 · 3 + 2 = −4.

The PartLib Library 37

This is the partition between month -23.5 and -19.

shiftPD:

The shiftPD function for regular partitionings is explained informally with
the following example: Suppose we have a specification of trimesters in the
following way: Anchor date: 2000/10, trimesters: 3,4,5 months.

We want to shift a time point t by 8.5 trimesters. The following steps
are necessary

1. 8/3 = 2 remainder 2. That means, first a shift of 2 full cycles of
3+4+5 = 12 months is performed, and we end up at a time point t1.

2. The index i′ of the partition containing t1 is computed, suppose it
is 1, i.e. t1 lies in the first trimester. In order to get two trimesters
further, a shift of 3 + 4 = 7 months is necessary, and we end up at
time point t2 which is in the third trimester.

3. The third trimester has 5 month. 5 · 0.5 = 2.5, i.e. we shift t2 by
another 2.5 month.

DEFINITION 44 (shiftPD for Regular Partitionings).
Let P = (tA, U, (s0, . . . , sn−1), shift) be a regular partitioning (Def. 39).
The function P.shiftPD(t, m) performs the following steps:

1. Let (k remainder l) =def bmc/n
Let t1 =def U.shift(t, k · Σn−1

j=0 sj).

2. Let i′ =def tP1 .
Let t2 =def U.shift(t, Σl−1

j=0s(i′+j) mod n
).

3. Return U.shift(t2, (m − bmc) · s(i′+l) mod n
).

Further examples for periodic temporal notions which can be encoded as
regular partitionings are decades, centuries, the British financial year which
starts April 1st, the dates of a particular lecture, which is every week at the
same time etc.

8.4 Date Partitionings

Date Partitionings are specified by providing the boundaries of the parti-
tions as concrete dates.

An example could be the dates of the Time conferences: 1994/5/4 Time94
1994/5/5 gap 1995/4/26 Time95 1995/4/27 gap 1996/5/19 Time96 1996/5/21
gap 1997/5/10 Time97 1997/5/12 gap 1998/5/16 Time98 1998/5/18 gap
1999/5/1 Time99 1999/5/3 gap 2000/7/7 Time00 2000/7/10 gap 2001/6/14

38 Hans Jürgen Ohlbach

Time01 2001/6/17 gap 2002/7/7 Time02 2002/7/10 gap 2003/7/8 Time03
2003/7/11 gap 2004/7/1 Time04 2004/7/4.

Another example could be the seasons: 2000/3/21 spring 2000/6/21 sum-
mer 2000/9/23 autumn 2000/12/21 winter 2001/3/21.

In the introduction I explained the trick how to turn these finitely many
dates into an infinite partitioning: the differences between two subsequent
dates are turned into durations. The durations are then used to extrapolate
the partitioning into the infinity.

The seasons example above shows that this makes really sense. The time
difference between the dates can be expressed as durations ‘3 month’ for
spring, ‘3 month + 2 day’ for summer, ‘3 month - 2 day’ for autumn and ‘3
month’ for winter. The extrapolation of this now yields the seasons for the
whole time line. This works even for the leap years, in which winter is one
day longer. This is covered by the duration ‘3 month’ for winter, which is
one day longer in leap years.

DEFINITION 45 (Specification of Date Partitionings). A date partitioning
is specified as a list dates d0, . . . , dn in a date format DF .

The dates can very easily be turned into durations: Suppose the date for-
mat is DF =defP0, The difference between two dates di = di,0/di,1/ . . . and
di+1 = di+1,0/di+1,1/ . . . yields the following duration: (di+1,0 − di,0, P0),
(di+1,1−di,1, P1), . . ., and this is sufficient to specify a duration partitioning.
The anchor time is given by DF.timePoint(d0).

Notice that the coordinate calculation for duration partitionings which
applies the shift function for durations, and this uses the date oriented
shift function for partitionings, undos the above subtractions. Therefore it
reconstructs exactly the original dates.

8.5 Folded Partitionings

Another basic type of partitionings are folded partitionings. We explained
already the bus timetable example. The bus timetable changes from season
to season. The best way to specify this, would be to specify the seasons first,
and for each season to specify the particular bus timetable. The ‘folded
partitioning’ specification operation takes as input a frame partitioning, for
example the seasons, and a sequence of component partitionings, for example
the four different bus timetables. It maps the component partitionings
automatically to the right frame partition, such that from the outside the
whole thing looks like an ordinary partitioning.

DEFINITION 46 (Folded Partitioning). A folded partitioning P is specified
by a frame partitioning F and a finite list P0, . . . , Pn−1 of component parti-

tionings. The component partitionings must meet the following condition:

The PartLib Library 39

The partitions of the component partitionings must be aligned with the par-
titions of the frame partition. That means, for i = 0, . . . , n− 1, the start of
each frame partition must be the start of a component partition in Pi, and
the end of each frame partition must be the end of a component partition
in Pi;

A folded partitioning is called constant iff each frame partition with co-
ordinate i contains the same number of component partitions as the frame
partition with coordinate i mod n.

The condition is in principle not necessary, but if it is not met, it com-
plicates the algorithms enormously. It excludes, for example, that ‘week’
can be used as component partitioning when the frame partition is ‘year’.
‘month’, however, can be used because years start and end with a month.

The figure below gives an idea how the coordinates for the folded parti-
tioning are obtained from the coordinates of the frame partitioning and the
component partitionings.

-

-

-

-

-

0 1 2

P0

P1

P2

0 1 4 5 6 72 3 P

frame partitioning

folded partitioning

The algorithms for the ‘partition coordinate’ function pc and for the ‘start
of partition’ function sopC are much more efficient if the partitioning is
constant, i.e. the number of component partitions per frame partition of
each component partitioning Pi does not change over time. In this case
it is possible to compute the total number of component partitions up to
the beginning of a given frame partition by a few multiplications and addi-
tions. If the partitioning is not constant, one must iterate through all frame
partitions and add the corresponding numbers together.

The bus timetable example is typical for a folded partitioning which is
not constant. This is due to the leap years. Since the winter is one day
longer in a leap year, the bus timetable in this winter has more partitions
than in the other winters. An example for a constant folded partitioning

40 Hans Jürgen Ohlbach

could be the definition of working hours with shifts. In the first week I may
have a morning shift, in the second week an evening shift, and in the third
week a night shift. The number of partitions labelled ‘working hour’ and
‘gap’ would not change in this case.

The ‘partition coordinate’ function pc needs an auxiliary function
partitionsUpTo, which computes for a frame coordinate the number of par-
titions up to the beginning of this frame partition. More precisely: for a
positive frame coordinate frco, partitionsUpTo computes the number of
component partitions from frame partition 0 (inclusive) up to the beginning
of frame partition with coordinate frco, and for negative frame coordinates,
it computes the negated number of component partitions from frame parti-
tion -1 (inclusive) down to and including the frame partition with coordinate
frco.

We define this function for constant folded partitionings and for non-
constant folded partitionings separately.

DEFINITION 47 (partitionsUpTo for constant folded partitionings). Let P
be a constant folded partitioning with component partitionings P0 . . . , Pn−1.

We define the function partitionsUpTo(frco) where frco is a coordinate
in the frame partitioning as follows:

For i = 0, . . . , n − 1 let partitions(i) be the number of component parti-
tions per frame partition Pi. Since the partitioning is constant, it is sufficient
to compute these numbers for the first n frame partitions.

Let cycle =def Σn−1
i=0 partitions(i).

Let frco/n = blocks remainder rest.
Now we have:

partitionsUpTo(frco) =def blocks ∗ cycle + Σrest−1
i=0 partitions(i).

DEFINITION 48 (partitionsUpTo for normal folded partitionings). Let P
be a folded partitioning with frame partitioning F and component parti-
tionings P0 . . . , Pn−1.

We define the function partitionsUpTo(frco) where frco is a coordinate
in the frame partitioning as follows:

If frco ≥ 0 let from =def 0 and to =def frco − 1.
If frco < 0 let from =def frco + 1 and to =def−1.

Let n =def Σto
i=fromP

i mod n
.pc(F.eopC(i)) − P

i mod n
.pc(F.sopC(i)).

If (frco ≥ 0) let partitionsUpTo(frco) =def n.
If (frco < 0) let partitionsUpTo(frco) =def −n.

Now we can define the ‘partition coordinate’ function pc(t). It uses the
partitionsUpTo function to get the number of partitions up to the frame
partition containing t, and then computes the remaining partitions locally
with the corresponding component partitioning.

The PartLib Library 41

DEFINITION 49 (The Function pc for Folded Partitionings). Let P be a
folded partitioning with frame partitioning F and component partitionings
P0, . . . , Pn−1. Let t be a global reference time point.

Let frco =def F.pc(t) be the frame coordinate for time point t.

We have:

pc(t) =def partitionsUpTo(frco) +
P

frco mod n
.pc(t) − P

frco mod n
.pc(F.sopC(frco))

The ‘start of partition’ function sopC needs an auxiliary function
frameCoordinate(co) = (frco, rist), which computes for a given coordi-
nate of a partition (i) the coordinate of the frame partition which contains
this partition and (ii) the coordinate of the first component partition within
this frame partition. There are again different definitions for constant folded
partitionings and for normal folded partitionings.

DEFINITION 50 (frameCoordinate for Constant Folded Partitionings).
Let P be a constant folded partitioning with component partitionings P0 . . . ,
Pn−1.

We define the function frameCoordinate(co) where co is a P -coordinate
as follows:

For i = 0, . . . , n − 1 let partitions(i) be the number of component parti-
tions per frame partition Pi.

Let cycle =def Σn−1
i=0 partitions(i).

Let co/cycle = blocks remainder rest

Let frco =def blocks · n be the coordinate of the first frame partition p0

in the partitions p0, . . . , pn−1 which correspond to P0, . . . , Pn−1, and where
one of the pi contains the component partition with coordinate co.

Let i=defmaxi(Σ
i
k=0partitions(k) ≤ rest) be the offset from frco, such that

frco + i is the coordinate of the frame partition containing the component
partition with coordinate co.

This way we get

frameCoordinate(co) =def (frco + i, blocks · cycle + Σi
k=0partitions(k)).

DEFINITION 51 (frameCoordinate for Normal Folded Partitionings). Let
P be a constant folded partitioning with frame partitioning F and compo-
nent partitionings P0 . . . , Pn−1.

We define the function frameCoordinate(co), where co is a P -coordinate
as follows:

42 Hans Jürgen Ohlbach

If co ≥ 0 let
frco =def maxi(Σ

i
k=0Pk mod n

.pc(F.eopC(k))
− P

k mod n
.pc(F.sopC(k)) ≤ co)

first =def Σfrco
k=0 P

k mod n
.pc(F.eopC(k)) − P

k mod n
.pc(F.sopC(k)) ≤ co)

If co < 0 let
frco =def −maxi(Σ

i
k=1P−k mod n

.pc(F.eopC(−k))

−P
−k mod n

.pc(F.sopC(−k)) ≤ co)

first =def Σ−frco
k=1 P−k mod n

.pc(F.eopC(−k))

−P−k mod n
.pc(F.sopC(−k)) ≤ co)

This way we get

frameCoordinate(co) =def (frco, first).

The ‘start of partition’ function sopC is now defined as follows:

DEFINITION 52 (The Function sopC for Folded Partitionings).
Let P be a folded partitioning with frame partitioning F and component
partitionings P0, . . . , Pn−1. Let co be a coordinate of P .

Let (frco, first) =def frameCoordinate(co)

Let border = F.sopC(frco) be the left boundary of the frame partition
containing the component partition with coordinate co.

Now we define

sopC(co) =def P
frco mod n

.sopC(P
frco mod n

.pc(border) + (co − first))

All operations on folded partitionings are straightforward if the coordi-
nates involved remain within a single frame partition. The corresponding
operation on the corresponding component partition can be used in this
case. If the coordinates, however, cross the border of a frame partition then
a special treatment is necessary. We explain this for the shiftPD(t, m)
function. All other functions are similar.

The shiftPD(t, m) function for folded partitionings is straightforward if
the shifted time point still remains in the same frame partition. In this case
it is sufficient to use the shiftPD function of the corresponding component
partitioning. If this shift crosses the border of the frame partition then the
relative distance to this border is subtracted from m, and then shiftPD is
called recursively for the border time point and the reduced m-value.

DEFINITION 53 (shiftPD for Folded Partitionings). Let P be a folded par-
titioning with frame partitioning F and component partitionings P0, . . . , Pn−1.
Let t be a time point and m a real number.

P.shiftPD(t, m) performs the following steps:

1. Let co =defF.pc(t) be the coordinate of the frame partition containing t.

The PartLib Library 43

2. Let C =def P
co mod n

the component partitioning assigned to the parti-
tion containing t.

3. Let s =def C.shiftPD(t, m) be the shifted time point.

4. If s is still in the same frame partition as t, return s.

5. If s is not the in the same frame partition, let m′ be the relative
distance between t and the end t′ (if m > 0) or the start t′ (if m < 0)
of the frame partition containing t.

6. Call P.shiftPD(t′, m − m′) recursively.

9 Summary

The basic ideas of the PartLib library for representing periodic temporal
notions are explained in this chapter. We use partitionings of the real num-
bers as basic mathematical structures. The partitionings can be labelled
with symbolic names. The labels can be used for various purposes, in par-
ticular for defining granules, i.e. clusters of partitions which belong together
semantically.

The approach proposed in this chapter is a mix of algorithmic and sym-
bolic specifications. The basic time units are realized as algorithmic par-
titionings where the details of the calendar system is hard-coded in the
correction functions. All other periodic temporal notions are specified sym-
bolically as regular, duration or folded partitionings. This seems to be a
good compromise between the efficiency of compiled code for the difficult
parts of calendar systems, and the flexibility of symbolic specifications for
application specific parts.

The PartLib library is an open source C++ system. The details of its
interface are explained in [Ohlbach, 2005d].

BIBLIOGRAPHY
[Berners-Lee et al., 1999] T. Berners-Lee, M. Fischetti, and M. Dertouzos. Weaving the

Web: The Original Design and Ultimate Destiny of the World Wide Web. Harper,
San Francisco, September 1999. ISBN: 0062515861.

[Bettini and R.D.Sibi, 2000] C. Bettini and R.D.Sibi. Symbolic representation of user-
defined time granularities. Annals of Mathematics and Artificial Intelligence, 30:53–
92, 2000. Kluwer Academic Publishers.

[Bettini et al., 1998] Claudio Bettini, Curtis E. Dyreson, William S. Evans, Richard T.
Snodgrass, and X. Sean Wang. Temporal Databases, Rreseach and Practice, volume
1399 of LNCS, chapter A Glossary of Time Granularity Concepts, pages 406–413.
Springer Verlag, 1998.

[Bettini et al., 2000] Claudio Bettini, Sushil Jajodia, and Sean X. Wang. Time Granu-
larities in Databases, Data Mining and Temporal Reasoning. Springer Verlag, 2000.

44 Hans Jürgen Ohlbach

[Bettini et al., 2004] Claudio Bettini, Sergio Mascetti, and X. Sean Wang. Mapping
calendar expressions into periodical granularities. In C. Combi and G. Ligozat, ed-
itors, Proc. of the 11th International Symposium on Temporal Representation and
Reasoning, pages 87–95, Los Alamitos, California, 2004. IEEE.

[Bry et al., 2004] François Bry, Frank-André Rieß, and Stephanie Spranger. CaTTS:
Calendar Types and Constraints for Web Applications. research report, PMS-FB-
2004-24 PMS-FB-2004-24, Institute for Informatics, University of Munich, 2004.

[Cukierman and Delgrande, 1998] Diana R. Cukierman and James P. Delgrande. Ex-
pressing time intervals and repetition within a formalization of calendars. Computa-
tional Intelligence, 14(4):563–597, 1998.

[Cukierman and Delgrande, 2004] Diana R. Cukierman and James P. Delgrande. The
SOL time theory: A formalization of structured temporal objects and repetition.
In C. Combi and G. Ligozat, editors, Proc. of the 11th International Symposium on
Temporal Representation and Reasoning, pages 71–34, Los Alamitos, California, 2004.
IEEE.

[Cukierman, 2003] Diana R. Cukierman. A Formalization of Structured Temporal Ob-
jects and Repetition. PhD thesis, Simon Franser University, Vancouver, Canada, 2003.

[Dershowitz and Reingold, 1997] Nachum Dershowitz and Edward M. Reingold. Calen-
drical Calculations. Cambridge University Press, 1997.

[Dyreson et al., 2000] Curtis E. Dyreson, Wikkima S. Evans, Hing Lin, and Richard T.
Snodgrass. Efficiently supporting temporal granularities. IEEE Transactions on
Knowledge and Data Engineering, 12(4):568–587, 2000.

[Egidi and Terenziani, 2004] Lavinia Egidi and Paolo Terenziani. A lattice of classes of
user-defined symbolic periodicities. In C. Combi and G. Ligozat, editors, Proc. of
the 11th International Symposium on Temporal Representation and Reasoning, pages
13–20, Los Alamitos, California, 2004. IEEE.

[Goralwalla et al., 2001] I.A. Goralwalla, Y. Leontiev, M.T. Ozsu, D. Szafron, and
C. Combi. Temporal granularity: Completing the picture. Journal of Intelligent
Information Systems, 16(1):41–63, 2001.

[Kline et al., 1999] Nick Kline, Jie Li, and Richard Snodgrass. Specifying multiple cal-
endars, calendric systems and field tables and functions in timeadt. Technical Report
TR-41, Time Center Report, May 1999.

[Leban et al., 1986] B. Leban, D. Mcdonald, and D.Foster. A representation for collec-
tions of temporal intervals. In Proc. of the American National Conference on Artificial
Intelligence (AAAI), pages 367–371. Morgan Kaufmann, Los Altos, CA, 1986.

[Niezette and Stevenne, 1993] M. Niezette and J. Stevenne. An efficient symbolic repre-
sentation of periodic time. In Proc. of the first International Conference on Informa-
tion and Knowledge Management, volume 752 of Lecture Notes in Computer Science,
pages 161–169. Springer Verlag, 1993.

[Ning et al., 2002] Peng Ning, X. Sean Wang, and Sushil Jajodia. An algebraic represen-
tation of calendars. Annals of Mathematics and Artificial Intelligenc, 36(1-2):5–38,
September 2002. Kluwer Academic Publishers.

[Ohlbach and Gabbay, 1998] Hans Jürgen Ohlbach and Dov Gabbay. Calendar logic.
Journal of Applied Non-Classical Logics, 8(4), 1998.

[Ohlbach, 2000] Hans Jürgen Ohlbach. Calendar logic. In I. Hodkinson D.M. Gabbay
and M. Reynolds, editors, Temporal Logic: Mathematical Foundations and Computa-
tional Aspec ts, pages 489–586. Oxford University Press, 2000.

[Ohlbach, 2005a] Hans Jürgen Ohlbach. Computational treatment of tempo-
ral notions – the CTTN-system. Research Report PMS-FB-2005-30, Inst.
für Informatik, LFE PMS, University of Munich, June 2005. URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-30.

[Ohlbach, 2005b] Hans Jürgen Ohlbach. Fuzzy time intervals – the FuTI-library. Re-
search Report PMS-FB-2005-26, Inst. für Informatik, LFE PMS, University of Mu-
nich, June 2005. URL: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-26.

The PartLib Library 45

[Ohlbach, 2005c] Hans Jürgen Ohlbach. GeTS – a specification language
for geo-temporal notions. Research Report PMS-FB-2005-29, Inst.
für Informatik, LFE PMS, University of Munich, June 2005. URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-29.

[Ohlbach, 2005d] Hans Jürgen Ohlbach. Modelling periodic temporal notions by labelled
partitionings of the real numbers – the PartLib library. Research Report PMS-FB-
2005-28, Inst. für Informatik, LFE PMS, University of Munich, June 2005. URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-28.

[Soo and Snodgrass, 1992] Michael D. Soo and Richard T. Snodgrass. Mixed calendar
query language support for temporal constants. Technical Report TR 92-07, Dept. of
Computer Science, Univ. of Arizona, February 1992.

Hans Jürgen Ohlbach
Institut für Informatik, Universität München

Oettingenstr. 67
D-80538 München, Germany

E-mail: ohlbach@lmu.de

