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Abstract

Answer set programming (ASP for short) is a declarative problem solving
framework that has been recently attracting the attention of researchers for its ex-
pressiveness and for its well-engineered and optimized implementations. Still,
state-of-the-art answer set solvers have huge memory requirements, because the
ground instantiation of the input program must be computed before the actual rea-
soning starts. This prevents ASP to be effective on several classes of problems.
In this paper we integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sortedlogic programs with cardinal-
ity constraints. We prove some theoretical results, introduce a provably sound and
complete algorithm, and report experimental results showing that our approach can
solve problem instances with significantly larger domains.

1 Introduction

Nonmonotonic reasoning was initially introduced for commonsense reasoning and rea-
soning about action and change [14, 18, 15]. It was later applied to model a variety of
combinatorial problems, where nonmonotonic logics proved to be powerful represen-
tation formalisms [5]. One of the most promising results in this respect, is a declarative
problem solving framework calledanswer set programming(ASP for short), with well-
engineered and optimized implementations [13, 16, 7]. The most popular ASP lan-
guages are basically extensions of function-free logic programs (a.k.a. Datalog) where
negation as failure is interpreted according to thestable model semantics[8, 9]. From
the expressiveness point of view, ASP languages are able to encode efficiently and
uniformly all search problems within the first two levels of the polynomial hierarchy
[12, 3]. Moreover, answer set solvers are proving to be competitive with other reason-
ers on several benchmarks [19], and are being used successfully as planners and plan
verifiers in the RCS/USA Advisor system [1, 17], a decision support system for NASA
shuttle controllers (http://krlab.cs.ttu.edu/˜marcy/RCS/ ).

Still, state-of-the-art answer set solvers have a major limitation: they use huge
amounts of memory, because the ground instantiation of the input program must be
computed before the actual reasoning starts. This problem is mitigated to some extent
through intelligent grounding techniques that partially evaluate program rules when
possible, thereby deleting some rule instances that are surely not applicable. However,
this technique is not effective enough on some classes of programs, including several
programs for reasoning about actions and change.
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In this paper we integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sortedlogic programs with cardinality
constraints[19] whose signature can be partitioned into: (i) a set of so-calledregular
predicatesover domains whose size can be handled by a standard answer set solver;
(ii) a set ofconstrainedpredicates that can be handled by a constraint solver in a way
that does not require grounding (so larger domains can be allowed here); (iii) a set
of predicates—calledmixed predicates—that create a “bridge” between the above two
partitions.

Then reasoning can be implemented by having an answer set solver interact with a
constraint solver. A critical aspect is the form that the definitions of mixed predicates
may take. If they were completely general, then that part of the program would be
just as hard to reason with as unrestricted programs because mixed predicates may
range over arbitrary domains. Accordingly, the framework introduced in this paper
supports restricted definitions for mixed predicates, that can be either functions from
“regular” to “large” domains (strong semantics) or slightly weaker mappings where
each combination of “regular” values must be associated to at least one vector of values
from “large” domains (weak semantics).

We study the relationships between strong and weak semantics, and introduce an
algorithm for computing the strong semantics efficiently under the simplifying assump-
tion that mixed predicates do not occur in the scope of negation. Moreover, we report
experimental results providing preliminary evidence that our approach can solve prob-
lem instances with significantly larger domains. In this first paper we focus only on the
comparison with a standard answer set programming approach.

The paper is organized as follows. The next section is devoted to preliminaries.
Then, in Section 3, we introduce the class of programs we deal with, and prove some of
their theoretical properties. The algorithm for reasoning on these programs is described
and proved to be correct and complete in Section 4. Section 6 reports the experiments
and Section 7 concludes the paper with a final discussion and possible directions for
future work.

2 Preliminaries

We adopt a sorted first-order language based on a given signatureΣ. Lettersx, y, z
range over variables,a, b, c range over constant symbols, lettersf , g, h over function
symbols, and lettersp, q, r over predicate symbols. LetS be a finite set ofsorts. And
assume asort specificationis given, that is, a functionsort mapping:

• each constantc onto a setsort(c) ⊆ S;

• each variablex onto a (single) sortsort(x) ∈ S;

• eachn-ary function symbolf onto a tuplesort(f) = 〈S1, . . . , Sn+1〉 ∈ Sn+1;

• eachn-ary predicate symbolp onto a tuplesort(p) = 〈S1, . . . , Sn〉 ∈ Sn.

Note that sorts may overlap because constants may be associated to two or more sorts.

Example 2.1 A sort steps, modelling plan steps, may contain the integer constants in
the interval[0, 10], while a sorttime, modelling time points, may contain the integer
constants in[0, 600000].
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All the other terms have a unique sort. Intuitively, insort(f), Si is the sort of thei-th
argument off (1 ≤ i ≤ n) andSn+1 is the sort of the output. Similarly, insort(p), Si

is the sort of thei-th argument of predicatep (1 ≤ i ≤ n).
Terms and atoms are defined accordingly. Each variablex with sort(x) = S and

each constantc such thatS ∈ sort(c) are terms of sortS. Each expressionf(t1, . . . , tn)
such thatsort(f) = 〈S1, . . . , Sn, S〉 and eachti is a term of sortSi is a term of sortS.
Nothing else is a term. We writet : s to state that termt belongs to sorts.

All expressionsp(t1, . . . , tn) such thatsort(p) = 〈S1, . . . , Sn〉 and eachti is a
term of sortSi are atoms. Literals are either atoms (positive literals) or expressions of
the formnotA whereA is an atom (negative literals).

A variable substitution over{x1, . . . , xn} is a function mapping each variablexi

onto a term ofsort(xi). The notions of instance and ground instantiation are defined as
usual from the above notion of (typed) substitution. The ground instantiation of a set
of expressionsE will be denoted byground(E).

Given a logic programP consisting ofnormal rulesA ← L anddenials← L,
whereL is a collection of literals, thestable modelsof P [8] are defined as follows.

We first need a notion of programreductP I , whereI is a set of ground atoms. The
reductP I is obtained fromground(P ) by removing:

• all the rules and constraints with a literalnotB in their body, s.t.B ∈ I;

• all negative literals from the remaining rules and constraints.

Note thatP I is a set of Horn clauses. Therefore, ifP I is consistent, then it has a unique
minimal Herbrand model, that will be denoted bylm(P I).

Now I is astable modelof P if and only if I = lm(P I).
The most popular answer set frameworks are based on the above notions of pro-

gram and semantics, and extensions thereof. Answer sets are identified with stable
models; each answer set represents a possible solution to the given problem instance
(programs may have no stable models, as well as multiple stable models). One impor-
tant extension consists ofcardinality constraints[19], that in their simplest version are
expressions of the form

l{A}u

whereA is an atom,l andu are integers. Roughly speaking,l{A}u forces the answer
sets of the given program to contain a numbern of instances ofA, such thatl ≤ n ≤ u
(u may be omitted in case there is no upper bound). The complete framework is more
general. It allows for cardinality constraints in rule bodies andweight constraints,
that generalize cardinality constraints and allow programmers to express preferences
and optimization criteria on problem solutions. For a general and precise definition
of cardinality and weight constraints, the reader is referred to [19]. They are fully
supported by SMODELS.

3 Constrained Programs

The sorts of constrained programs are partitioned intoregular andconstrainedsorts.
Intuitively, regular sorts are small enough to be handled by standard answer set solvers,
while constrained sorts are large enough to require reasoners that do not instantiate the
corresponding variables.

Variables and constants are calledregular or constrainedaccording to their sorts.
A function f is regular (resp. constrained) if all the sorts insort(f) are regular (resp.
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constrained). Functionf is mixed if sort(f) comprises both regular and constrained
sorts. Predicate symbols are classified in a similar way.

In this paper we assume that the output sort of all functions is a constrained sort.
The reason is that most answer set solvers do not (yet) support function symbols, while
constraint solvers do (functions are typically standard arithmetic functions).

According to the above classification, signatureΣ is partitioned intoΣr, Σc and
Σm, wherer, c andm stand forregular, constrainedandmixedrespectively.

The atoms overΣr, Σc, andΣm are referred to asr-atoms,c-atoms, andm-atoms
respectively. Similarly for literals. The parameters of anm-atom whose sorts are
constrained (regular) will be often referred to asc-parameters (r-parameters).

We assume thatc-predicates have a predefined interpretation, and that the equality
predicate is ac-predicate. The intended interpretation ofc-predicates will be repre-
sented by a set of ground atomsMc (the set of all true groundc-atoms).

Regular predicates can be defined with normal programs, as in standard ASP. The
definitions of mixed predicates are restricted, instead. Let an atom befree if its argu-
ments are all pairwise distinct variables. For all free atomsA we writeA(~xr, ~xc) to
state that ther-variables (resp.c-variables) ofA are those in~xr (resp.~xc). We denote
with A(~a,~b) the instance ofA such that~xr is replaced by~a and~xc with~b.

In this paper we deal with two possible semantics of mixed predicates.1 Under the
weak semantics, for all free mixed atomsA(~xr, ~xc) there is an implicit axiom

∀~xr∃~xc.A(~xr, ~xc) , (1)

that can be expressed by including into the program a cardinality constraint1{A(~a, ~xc)}
for each sequence of ground arguments~a of the appropriate type and length.2

Under thestrong semantics, for all free mixed atomsA(~xr, ~xc) there is an implicit
axiom

∀~xr∃!~xc.A(~xr, ~xc) , (2)

that can be encoded in a similar way with a suitable set of cardinality constraints like
1{A(~a, ~xc)}1.

Moreover, constrained programs may contain constraints that relate all kinds of
predicates (regular, constrained, and mixed).

Definition 3.1

1. Aregular rule(r-rule) is a rule of the formA← B or← B whereA is anr-atom
andB is a collection ofr-literals.

2. A (proper)constraintis a rule of the form← B whereB is a collection of
arbitrary literals, including at least one nonregular literal.

3. Aconstrained program, P , is the union of a set of regular rules,R(P ), and a set
of constraints,C(P ).

Example 3.2 In our running example (a planning and scheduling problem) we have
two regular sorts:step (representing plan steps) andaction. We writestep : 0..10 to
state that the constantsc with step ∈ sort(c) are those in the integer interval[0, 10].
Analogously, we may writeaction : a1, . . . , an to enumerate all possible actions.

1A more general approach is described in the final discussion.
2In SMODELS this can be done with a single rule having a cardinality constraint in the head. A similar

remark applies to the encoding of (2). We refer the reader to [19] for more details.
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The regular signatureΣr contains only one relationo overaction × step. Intuitively,
o(A,S) means that actionA occurs at stepS. The regular partR(P ) containsn rules
that force at least one action to be executed at each step and a denial that forbids con-
current actions. Fori = 1, . . . , n:

o(ai, S)← not o(a1, S), . . . , not o(ai−1, S), not o(ai+1, S), . . . , not o(an, S).

Moreover,R(P ) contains a denial that forbids concurrent actions:

← o(A,S1), o(A,S2), not eq(S1, S2).

eq(X, X).

The constraint signatureΣc comprises the sorttime : 0..600000 with the standard
arithmetic functions:+,−, | | etc., and relations:>,≥, etc.

The mixed signatureΣm comprises a relationtime(S, T ) associating each plan
stepS to at least one time pointT under the weak semantics (exactly one under the
strong semantics).

The following constraintsC(P ) ensure that time is assigned to steps monotonically
and that each step is associated to exactly one time point (the latter is needed only under
the weak semantics);

← time(S1, T1), time(S2, T2), S1 < S2, T1 ≥ T2.

← time(S, T1), time(S, T2), T1 6= T2.

Moreover, one can specify a minimal duration for each action, e.g., 3 time units fora1

← o(a1, S1), time(S1, T1), o(A2, S2), time(S2, T2), |T2− T1| < 3 . (3)

Formally, the semantics of constrained programs is a specialization of the stable
model semantics for logic programs with weight constraints, taking into account the
intended interpretationMc of Σc and the implicit semantics of mixed predicates.

We first need a generalization of the programreductP I , whereP is now a con-
strained program andI a set of ground atoms. The reductP I is obtained fromground(P )
by removing:

• all the rules and constraints with a literalnotB in their body, s.t.B ∈ I ∪Mc;

• all rules and constraints with ac-atomA in their body, such thatA 6∈Mc;

• all negative literals andc-atoms from the remaining rules and constraints.

Note thatP I is a set of Horn clauses also under the generalized definition. Therefore,
if P I is consistent, then it has a unique minimal Herbrand modellm(P I). Like the
standard notion of reduct,P I results from the evaluation of negative literals against
I. Moreover, the generalized notion evaluates all the constrained literals w.r.t. their
intended semanticsMc .

Definition 3.3 A weak answer setof a constrained programP is a set of ground atoms
M = Mr ∪Mm satisfying the following conditions:

AS1 Mr is a set ofr-atoms andMm is a set ofm-atoms;
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AS2 R(P )Mr is consistent andMr = lm(R(P )Mr );

AS3 each constraint(← ~L) ∈ ground(C(P )) contains a literalLi false inM ;

AS4 for each freem-atomA(~xr, ~xc), and for each vector ofr-constants~a of the ap-
propriate length,Mm contains at least one instance ofA(~a, ~xc).

A strong answer setof a constrained programP is a weak answer setM = Mr ∪
Mm satisfying the following additional condition:

AS5 for each freem-atomA(~xr, ~xc), and for each vector ofr-constants~a of the ap-
propriate length,Mm containsat mostone instance ofA(~a, ~xc).

Note that AS2 basically states thatMr is a stable model of the regular part ofP .

Remark 3.4 We might have alternatively specified the semantics of a constrained pro-
gramP as the stable models of the program obtained by extendingP with Mc and
with the cardinality constraints that encode (1) and (2). Then AS1-AS5 might have
been proved as theorems. This requires an extension of thesplitting set theorem[11].
The details have been worked out in [2] and are omitted here due to space limitations.

Theorem 3.5 (Strong vs. Weak semantics)LetP be a constrained program in which
m-atoms never occur in the scope of negation. For each weak answer setM of P ,
there exists a strong answer setM ′ of P such thatM ′ ⊆ M andM \M ′ is a set of
m-atoms.

Proof. Let M be a weak answer set ofP . ThenM = Mr ∪Mm is a set of ground
atoms andM satisfies the properties AS1, AS2, AS3, AS4.

Let K1(M), K2(M), . . ., Kn(M) be the subsets ofM s.t., for each1 ≤ i ≤ n,
Ki(M) = {A(~a,~b) : A(~a,~b) ∈ Mm is a ground instance ofA(~a, ~xc)}. Note that no
Ki(M) is empty becauseM satisfies the property AS4.

If there exists at least onei (1 ≤ i ≤ n) s.t. the setKi(M) has cardinality greater
than one, then letma ∈ M be a ground m-atom belonging toKi(M). Note that, by
construction,ma must belong to only one of the setsK1(M), K2(M), . . ., Kn(M).
Becausema is not the unique element ofKi(M), thenM ′ = M \ {ma} must satisfy
the property AS4.

MoreoverM ′ satisfies the property AS3. In fact, for each constraint(← ~L) ∈
ground(C(P )), eitherma doesn’t occur in~L, and then the value of eachLi is the
same inM ′ thanM , or ma occurs in~L and so(← ~L) contains one more literal false
in M ′ thanM because negative m-literals don’t occur in~L.

MoreoverM ′ andM have the same r-literals and thenM ′ satisfies also the prop-
erties AS1 and AS2. ThenM ′ is a weak answer set ofP asM is.

By iterating the same process starting fromM ′ we can obtain a setM∗ s.t. all sets
K1(M∗), K2(M∗), . . ., Kn(M∗) contain only one element. For the same reasons of
M ′, M∗ is still a weak answer set ofP andM \M∗ is a set of m-atoms by construction.
Note thatM∗ is a strong answer set ofP because it satisfies also the property AS5.

Note that the assumption on negative m-atoms is satisfied by our running example.

Corollary 3.6 Under the hypothesis of Theorem 3.5, the strong answer sets ofP are
the minimal weak answer sets ofP .
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Corollary 3.7 Under the hypothesis of Theorem 3.5, the strong and weak skeptical
semantics ofP (i.e., the intersection of the strong, resp. weak answer sets) coincide.

In the light of the above corollaries, we shall focus on the strong semantics, which is a
way of computing a “representative” class of answer sets.

4 Computing strong answer sets

In this section we introduce a nondeterministic algorithm for computing strong answer
sets. The actual implementation used in the experiments is derived from the nondeter-
ministic algorithm by adding backtracking. The algorithm we introduce can be applied
to constrained programs where mixed predicates have only positive occurrences. More
general approaches require further work (cf. Section 7).

Our algorithm computesstrong kernels, that is, compact representations of a (po-
tentially large) set of strong answer sets.

Definition 4.1

1. A strong completionof a set of ground atomsI is a setI ∪ J such that:

• J is a set of ground m-atoms;

• for each free m-atomA(~xr, ~xc) and each vector of r-constants~a of the
appropriate length,I ∪ J contains exactly one instance ofA(~a, ~xc).

2. A strong kernelof a constrained programP is a set of ground atomsK with at
least one strong completion, and such that all the strong completions ofK are
strong answer sets ofP .

In general,K is the intersection of exponentially many strong answer sets ofP . Since
all strong completions ofK are strong answer sets, it is trivial to generate any particular
answer set includingK, givenK itself.

The algorithm that integrates answer set solving and constraint solving is formu-
lated in terms of a generic answer set solver and a generic constraint solver. The for-
mer, called ASGEN, takes as input a regular programP and a set of ground literals
S. Intuitively, ASGEN is an incremental solver, andS is the previous partial attempt
at constructing an answer set forP . The solver may either fail to further extendS to
an answer set ofP , or it may return a refined attemptS′. So we assume that ASGEN

enjoys of following formal properties:

1. ASGEN(P, S) returns either NULL or a setS′ of ground r-literals consistent
with P .

2. If ASGEN(P, S) returns a setS′ thenS ⊂ S′.

3. If ASGEN(P, S) returns a complete setS′ thenS′ is an answer set ofR(P ); here,
by completewe mean that each ground r-literal occurs inS′, either positively or
negatively.

4. ASGEN is nondeterministically complete, that is for each answer setS of P
there exists an integern ≥ 0 s.t. at least one computation of ASGENn(∅) returns
S.
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Note that this formulation is compatible with virtually any strategy for interleaving
the answer set construction and constraint solving. Note also that as a special case,
ASGEN may immediately return complete sets (upon success) like SMODELS.

The only requirements on the constraint solver are that it should be sound and non-
deterministically complete for each set of c-clausesχ. In other words, all substitutions
σ returned by the constraint solver should be solutions ofχ (i.e.,χσ should be satisfi-
able), and for each solutionσ of χ, there should be a computation that returnsσ.

The constraint solver is applied to a partially evaluated version of the constraints.
To specify the partial evaluation procedure we need some auxiliary notation.

For each constraintc =← B, we denote byreg(c), con(c), andmix(c), respec-
tively, the collections of regular, constrained and mixed literals belonging toB.

We say that a substitutionγ is r-groundingiff γ replaces eachr-variable with a
groundr-term and leaves the other variables unchanged.

Definition 4.2 Thepartial r-evaluationof a set of constraintsC w.r.t. a set of ground
literalsS, denoted byPE(C,S), is defined by

PE(C,S) = {(← mix(c), con(c))γ | c ∈ C, γ r-grounding, andreg(c)γ ⊆ S} .

Note that the members ofPE(C,S) contain nor-atoms and nor-variables, because the
former have been simplified away and the latter have been replaced withr-constants.
Note also that in this process some constraints may disappear, asreg(c) may match no
literals inS. Intuitively, S is to be provided by the answer set solver.

The constraint processing algorithm applies to anormalizedversion ofPE(C,S),
denoted byPEn(C,S), satisfying the following properties:

N1 Nom-literal occurring inPEn(C,S) contains two or more occurrences of the same
variable;

Moreover, for all freem-atomsA(~xr, ~xc),

N2 If both A(~a, ~yc) andA(~a, ~zc) occur inPEn(C,S), then~yc = ~zc.

N3 If both A(~a, ~yc) andA(~b, ~zc) occur inPEn(C,S) and~a 6= ~b, then~yc and~zc have
no variables in common.

Note that condition N2 is the opposite of the classic standardization apart approach. N2
and N3 together require the vectors ofc-variables to be in one-to-one correspondence
with the vectors of regular arguments. Condition N1 can be fulfilled by introducing
equationsxi = xj in con(c) when needed. Condition N2 and N3 can be fulfilled by
variable renaming.

Example 4.3 In the running example, wheneverS contains the pairo(a1, 1), o(ai, 2),
constraint (3) yields the partially evaluated constraint

← time(1, T1), time(2, T2), |T2− T1| < 3.

After normalization, and assuming this particular constraint has not been modified, for
all the atomstime(1, x) occurring inPEn(C(P ), S), we havex = T1. In this way—
roughly speaking—any solution to the constraints is forced to fulfil the property (2) of
strong semantics.
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Algorithm 1
CASPSOLVER (P )

1: Inputs: P = R(P ) ∪ C(P ): a constrained program with no negativem-literals.
2: Outputs: either a strong kernel ofP or FAIL
3: begin
4: S := ∅;
5: loop
6: S := ASGEN(R(P ), S);
7: if S = NULL then
8: FAIL;
9: else

10: C := PEn(C(P ), S);
11: if

∧
c∈C ¬con(c) has no solutionthen

12: FAIL;
13: else ifS is completethen
14: choosea solutionσ of

∧
c∈C ¬con(c);

15: Let M(C) be the set of mixed literals inC;
16: return S ∪M(C)σ;
17: end

We are now ready to prove soundness and completeness for Algorithm 1.

Theorem 4.4 If a non-failed run of Algorithm 1 returns a set of literalsK, thenK is
a strong kernel ofP .

Proof. Let K be a set returned by a non-failed run of Algorithm 1.
In order to prove thatK is a strong kernel ofP , we have to prove that for each set

of m-atomsJ , if K∪J is a strong completion ofK thenK∪J is a strong answer set of
P . That is, we need to prove thatK ∪ J satisfies the properties AS1, AS2, AS3, AS4,
AS5, whenK ∪ J satisfies the properties of the definition 4.1 of strong completion.

If a runr of the algorithm returns a setK thenK = S∪M(C)σ whereS is a stable
model ofR(P ) andM(C)σ is a set of ground m-atoms. ThenK∪J = S∪M(C)σ∪J
satisfies the properties AS1 (becauseM(C)σ ∪ J is still a set of ground m-atoms) and
AS2.

Suppose thatK∪J doesn’t satisfy the property AS3. Then there exists a constraint
c = (← ~L) ∈ ground(C(P )) s.t. all literalsLi in ~L are true inK∪J . If c = (← ~L) ∈
ground(C(P )) then there exists a constraintc′ ∈ C(P ) and a ground substitutionγ =
γrγc of c′ s.t. c = c′γ andγr is r-grounding. If~L is true inK ∪J thenreg(c) ⊆ S and
then← (mix(c′))γr, (con(c′))γr ∈ PE(C(P ), S). Becausecon(c) = (con(c′))γ =
(con(c′))γrγc andmix(c) = (mix(c′))γ = (mix(c′))γrγc are true inK ∪ J , then
γc is not a solution of¬(con(c′))γr. Then the solutionσ of

⋃
c∈C ¬con(c) choosen

at the step 14 of the algorithm cannot be factorized inσ = σ1γcσ2 (whereσ1 andσ2

are substitution possibly empty). Consequently,mix(c) = (mix(c′))γrγc cannot be
added toK at the step 16, while(mix(c′))γrσ is added toK. Because, by hypotheses,
K ∪ J is a strong completion ofK then(mix(c′))γrγc cannot belong neither toJ . So
mix(c) is false inK ∪ J and this is a contradiction. ThenK ∪ J satisfies the property
AS3.

By the definition of strong completion,K ∪ J satisfies also the properties AS4 and
AS5. ConsequentlyK ∪ J is a strong answer set ofP .

9



Theorem 4.5 For each strong answer setM of P there exists a run of Algorithm 1 that
returns a strong kernelK ⊆M .

Proof. By the definition 3.3, ifM is a strong answer set ofP thenM = Mr∪Mm and
M satisfies the properties AS1, AS2, AS3, AS4, AS5. According to properties AS1
and AS2,Mr is a stable model ofR(P ). Then, by the properties ofASGen, there
exists a set of runs,RUN , of the algorithm that execute with success the test at the step
13 on the setMr. For eachr ∈ RUN , if r doesn’t return FAIL, thenr returns a set
K = Mr ∪M(C)σ that, by the soundness of the algorithm, is a strong kernel ofP .

Now, we must only prove that there always exists anr ∈ RUN that at the step
14 chooses a solutionσ of

⋃
c∈C ¬con(c) s.t. K ⊆ M . FromM = Mr ∪Mm and

K = Mr ∪M(C)σ follows thatK ⊆M iff M(C)σ ⊆Mm.
So it is needed to prove that there must always exists a solutionσ s.t. M(C)σ ⊆

Mm. If such a substitutionσ exists thenσ can be nondeterministically chosen by a run
r ∈ RUN .

Let Mcfree be a set of all r-grounded m-atoms ofC(P ). ThenMm = Mcfreeγ

whereγ is a ground substitution ofMcfree such that for eachA(~a, ~x′) andA(~a, ~x′′),
A(~a, ~x′)γ = A(~a, ~x′′)γ. Immediately follows thatM(C) ⊆ Mcfree. We can always
factorizeγ in γ = σρ whereσ is a ground substitution ofM(C). ThenM(C)σ ⊆
Mcfreeσρ, but it is also need thatσ is a solution of

⋃
c∈C ¬con(c).

Suppose thatσ is not a solution of
⋃

c∈C ¬con(c). Then there exists a constraint
c ∈ C s.t. (con(c))σ is true inM . Thenmix(c) ∈ M(C), becausec ∈ C, and
mix(c)σ ∈ Mm, becauseM(C) ⊆ Mcfree. By construction ofC, there exists a
constraintc′ ∈ ground(C(P )) s.t. reg(c′) ⊆ S and mix(c′) = (mix(c))σ and
con(c′) = (con(c))σ. This implies that the constraintc′ is not true inM because its
body is true inM , but this is a contradiction becauseM is a strong answer set ofP .

Then there exists a solutionσ of
⋃

c∈C ¬con(c) s.t.M(C)σ ⊆Mm.

5 The CASP prototype

The CASP prototype is a simplified implementation of Algorithm 1, based on the an-
swer set solver SMODELS [16]. CASP is meant to be an exploratory prototype, built
with off-the-shelf components. While this strategy accelerated prototype deployment,
it prevented us from exploiting the potential interleaving of answer set solving and con-
straint solving, supported by Algorithm 1. In this first prototype, the answer set solver
always returns a complete answer set, so the loop in Algorithm 1 makes always one
iteration.

Let P be the input program. WhenP has a strong answer set, CASP returns a
strong kernel forP , plus auxiliary information useful for analyzing the behavior of
the system including the number of atoms, conjunctions, disjunctions, and variables
occurring in

∧
c∈C ¬con(c).

CASP consists of a script CASPSCRIPT that first runs the answer set solver on
R(P ). Then for each answer setS of R(P ), CASPSCRIPT calls a GNU Prolog con-
straint logic program with finite domains, that implements steps 10-16 of Algorithm 1.
In case of failure (step 12), CASPSCRIPTdoes not always fail; ifR(P ) has more stable
models, CASPSCRIPT feeds the next one to the Prolog module.

The finite domain (FD) constraint solver of GNU Prolog is an instance of the Con-
straint Logic Programming scheme introduced by Jaffar and Lassez in 1987 [10] and
is based on theCLP(FD) framework [6]. Constraints are defined on FD variables
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and solved by means of arc-consistency (AC) techniques [20]. Arc consistency is not a
complete inference mechanism; it ensures only that all solutions (if any) are in the cur-
rent variable domains. In general, some variable assignments over the current domains
are not solutions. Therefore, a final solution generation and checking phase is needed.
In many cases, though, the domains produced by arc consistency are tight enough to
speed up significantly the computation of solutions.

6 Experimental Results

We experimented with a few variants of the constrained program illustrated in the ex-
amples. Of course, this can only be regarded as a preliminary evaluation. Still, the
example we choose is of significant interest. Programs similar to our running example
have been used in the USA Advisor project, related to NASA missions [1, 17], and
for protocol verification [4]. In both cases memory requirements happened to cause
problems.

We did not insist much on the performance of the answer set solver, because
there exists a rich body of literature on experimental evaluations and benchmarking of
SMODELS. We focused on the performance of the constraint solver as

∧
c∈C ¬con(c)

and the number of disjunctions occurring in it grow.
The tests have been run on a Pentium(R) M processor 1.5GHz, with 1Mb cache

and 512Mb core memory.
Recall that the example has two regular sorts,actionandstep, and one constrained

sorttime. We started by encoding the planning and scheduling problem as an SMODELS

program with weight constraints [19]. In particular, the implicit semantics of mixed
predicates has been encoded with the weight constraint

1{time(S, T) : time(T)}1 : step(S) . (4)

This constraint says that for all stepsS there exists exactly one time pointT satisfying
time(S, T ).

Sort time is the interval of integers[0 − 600000]. These values are determined by
the following requirement: scheduling should cover plans at least one week long with
the granularity of seconds.

With 2 actions and 2 steps, the front-end of SMODELS (lparse), responsible of the
ground instantiation of the program and its simplification, did not terminate within
95 minutes and was killed (the main reasoning process was never reached). On the
same program (without weight constraints, which are implicit in the strong semantics)
CASP solves up to 10 steps in about 30 seconds. If the time domain is increased to
6 million points, thenlparsecrashes (probably because of exceeding memory needs),
while CASP solves up to 10 steps in less than 2 minutes.

The details of the experiment with 6 million time points are given in Figure 1.
Columnsteprepresents the corresponding regular sort, the fieldsatoms, var, conj, and
disj, respectively, show the number of atoms, variables, conjunctions and disjunctions
of the formula

∧
c∈C ¬con(c) fed to the constraint solver. Fieldattemptsis related to

the number of backtracks; it counts the number of stable models of the regular part fed
into the Prolog module before the first strong kernel is found. Finally, columnSmodels
reports the time needed by Smodels to compute the stable models of the regular part,
and columntimeshows the overall time needed to produce the first strong kernel.

The results with600, 000 time points are reported in Figure 2. In this experiment
constraints are trivial. Basically, they only assign a minimal length to each action

11



Figure 1: test-1 results

Figure 2: test-2 results

execution, so they are always satisfiable, for all action sequences chosen by the answer
set solver, and without any backtracking.

Now, if we make constraints more difficult by posing upper bounds on the entire
plan execution (so that constraints cannot be trivially satisfied and some backtracking
is needed), we obtain the results illustrated in Figure 3. The time needed for constraint
solving significantly increases. In future work, it will be interesting to explore different
constraint solution strategies on a wider selection of examples.

7 Conclusions

Preliminary experimental results show that the integration of answer set programming
and constraint solving techniques may significantly enhance the applicability range
of ASP. A simple planning and scheduling problem can be naturally formulated and
solved, while one of the most powerful state-of-the-art answer set solvers cannot even
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Figure 3: test-3 results

reach the main reasoning phase. Our method shares with constraint logic programming
frameworks the ability of returning answers that may be compact representations of
exponentially many distinct problem solutions, each of which can be easily extracted
from the answer.

This work can be extended along several directions. First of all we are looking for
more classes of examples of practical interest to extend our experimentation.

A second line of research concerns the interplay of the two solvers. A tighter
integration of answer set generation and constraint solving may anticipate inconsis-
tency detection, thereby improving failure handling. It would be interesting to ex-
plore dependency-directed forms of backtracking. Such a refined system should be
compared through benchmarking to planners and schedulers based on different logics
and reasoning methods (for a collection of pointers to such approaches, seehttp:
//www.aaai.org/AITopics/html/planning.html ).

We mentioned that constrained programs are basically a subclass of weight con-
straint programs. It may be possible to extend the class of weight constraints supported
by our approach, e.g., by using different bounds (e.g., mixing weak and strong seman-
tics), and by dropping the requirement that for all freem-atomsA and all vector of
r-constants~a, answer sets must contain at least one instance ofA(~a, ~xc). Many of
our results can be adapted under the assumption that for all distinct weight constraints
l1{A1}u1 andl2{A2}u2 in a program,A1 andA2 are not unifiable.

Moreover, it would be nice to support negative mixed literals. Unfortunately, our
approach cannot be easily adapted; the solutions we have explored so far require blind
grounding over constrained domains, which is exactly what should be avoided.
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