
Computers & Security (2005) 24, 192e207

www.elsevier.com/locate/cose
Performance of the Java security manager

Almut Herzog*, Nahid Shahmehri

Department of Computer and Information Science, Linköping University, 581 83 Linkoping, Sweden

Received 7 April 2004; revised 11 August 2004; accepted 18 August 2004

KEYWORDS
Java;
Performance;
Security;
Security Manager;
Access controller;
Permission;
Policy;
CPU execution time

Abstract The Java Security Manager is one major security feature of the Java
programming language. However, in many Java applications the Security Manager is
not enabled because it slows execution time. This paper explores the performance
of the Java Security Manager in depth, identifies the permissions with the worst
performance and gives advice on how to use the Security Manager in a more
efficient way.
Our performance test shows that the CPU execution time penalty varies between

5% and 100% per resource access statement. This extreme range is due to the fact
that some resource accesses are costly (such as file and socket access) and
therefore hide the performance penalty for the access control check almost
completely. The time penalty is much more noticeable with access to main memory
resources (such as Java objects).
In order to achieve reasonable response times, it is of utmost importance to tune

garbage collection because the Java Security Manager creates short-lived objects
during its permission check. Also, the order of permissions in the policy file can be
important.
ª 2004 Elsevier Ltd. All rights reserved.
Introduction

Java is a popular programming language, especially
in web applications, including applet and servlet
technology. Java was designed for use on the
Internet and contains strong support for containing
untrusted code in a secure environment. One
feature of Java’s security architecture is the

* Corresponding author.
E-mail addresses: almhe@ida.liu.se (A. Herzog), nahsh@ida.

liu.se (N. Shahmehri).
0167-4048/$ - see front matter ª 2004 Elsevier Ltd. All rights rese
doi:10.1016/j.cose.2004.08.006
Security Manager. The Security Manager enforces
the so-called Java sandbox, a reference monitor in
which untrusted code can perform without harming
other Java code, the Java virtual machine or the
underlying operating system. Stepping out of the
sandbox can be allowed if a policy exists that gives
code additional access rights. The Security Man-
ager is an optional feature; applet containers use
it, but, by default, Java applications do not.

There is evidence that Java programs perform
more slowly when the Java Security Manager is
enabled (Venkatakrishnan et al., 2002; Herzog and
rved.

mailto:almhe@ida.liu.se
mailto:nahsh@ida.liu.se
mailto:nahsh@ida.liu.se
http://www.elsevier.com/locate/cose

Performance of the Java security manager 193
Shahmehri, 2002). This is often used as an argu-
ment for not using the Security Manager at all or
for the use of byte code editing (Pandey and
Hashii, 1999). However, no hard data are available
as to the actual performance penalty. Sun Micro-
systems Inc. formulates their findings as follows:
‘‘We’ve seen some applications where turning off
the security manager has helped to a small extent
(3e5%) and others where it hasn’t helped at all’’
(Sun Microsystems, 2004). IBM refers to the per-
formance of their own Java virtual machine in
equally vague terms: ‘‘.the installation of a secu-
rity manager imposed a significant overhead
(greater than 30 percent) to the execution of an
important benchmark’’ (Triplett, 2001). Both sour-
ces refer to the performance overhead for a com-
plete application.

However, not every Java statement is subject to
access control by the Security Manager; file access,
socket access and screen access, etc. typically are
(if the Security Manager is enabled). CPU-intense
calculations are not. Thus, depending on the type
of application, the performance findings with or
without Security Manager will be very different.
This work explores the performance overhead
incurred by the Java Security Manager on single
Java statements that are subject to access control
by the Security Manager. For example, how long
does a file access take with and without the
Security Manager. We show where and why time
is spent in the Java statement that is subject to
access control by the Java Security Manager and
what that means to applications that aim at
making use of the Security Manager.

The following questions are answered:

� What is the memory penalty incurred by
running an access check?

� What is the time penalty incurred by running an
access check?

� How is performance influenced by
e the number of protection domains on the

call stack?
e the size of the policy file?
e different permissions, e.g. FilePermissions

or SocketPermissions? Is each permission
check of the same complexity?

e different policies? Is there e.g. a difference
in performance if the currently installed
policy contains wildcards?

� What should be considered when an applica-
tion makes use of the Security Manager?

The tests were performed with the SUN Java 2
Software Development Kit (J2SDK) 1.4.2 because
its source code is available for analysis. Findings
for this Java implementation may not be applica-
ble to Java Virtual Machines of other vendors.

The structure of the paper is as follows. The
next section contains an introduction to the
Java security model and especially the Security
Manager. Then the performed tests and platform
are described which is followed by the results.
Further the advice to application developers that
want to make use of the Security Manager is
presented. Last section concludes the paper.
Appendix contains test data from the Solaris suite.

The Java Security Manager

The Java Security Manager is part of the Java
security model, also named Java sandbox. Its goal
is to provide ‘‘a very restricted environment in
which to run untrusted code’’ (Gong, 1997). While
the sandbox was originally designed to contain
applets, as of Java 1.2 it is also used to provide
a secured environment for any Java application.

The following parts make up the Java sandbox
(Oaks, 2001; McGraw and Felten, 1999) (see also
Fig. 1):

1. The bytecode verifier ensures at runtime that
Java class files follow the rules of the Java
language and helps enforce memory protec-
tions.

2. The class loader finds the bytecode for a par-
ticular class at runtime and defines the name-
spaces seen by different classes. The class
loader protects the integrity of the Java
security system in such a way that the security
system cannot be replaced by untrusted
classes.

3. The access controller allows or restricts access
to protected resources by checking if a needed

Operating System

Bytecode Verifier Class Loader

Security Manager

Access Controller

Security Package

Key Database

Policy File

Java Class File

Java Virtual Machine

Figure 1 Java security architecture. The bytecode
verifier checks the validity of Java class files. The class
loader finds needed classes. The security manager wraps
the access controller that decides whether user code has
access to protected resources or not. The decision is
based on the contents of the policy file. Signed user code
is authenticated by the access controller using the
security package and the key database.

194 A. Herzog, N. Shahmehri
permission exists or is implied by the currently
installed policy. The policy contains positive
permissions per codebase or signer (see Fig. 4).
The access controller is only invoked if a Secu-
rity Manager is installed. The Security Manager
is a wrapper for the access controller. It is also
the handle for programmers to implement
different security policies but does also contain
certain hard-coded policies, e.g. the policy
that only system threads are subject to access
control. The Security Manager is installed by
a command line option to the Java virtual
machine or by issuing System.set Security

Manager (new Security Manager()) within
a Java class. It is possible to subclass the
Security Manager, but the access controller is
a final class.

4. The security package helps authenticate signed
Java classes.

5. The key database contains a set of keys that
are used by the access controller to verify the
digital signature of a signed class file.

In this paper, we work exclusively with the
Security Manager and access controller and their
impact on the execution time of a Java applica-
tion. It is obvious from a code inspection that the
use of the Security Manager must incur a perfor-
mance penalty. Fig. 2 shows an example of how
access to a protected resource, here the system
properties, is controlled using the Security
Manager.

If a Security Manager exists in the Java virtual
machine (the check is done in line 5 of Fig. 2),
resource access is only granted after the access
check in line 6 has returned successfully. If the
check is unsuccessful a security exception is raised
by the method in line 6 and the method is aborted
before the actual resource access that occurs in
line 8.

However, the checkPropertyAccess()-method in
line 6 of Fig. 2 is not as simple as it looks. It hides
a long call chain as displayed in Fig. 3. In Fig. 3,
indentation and the numbers followed by colons in
front of the method names indicate the call level.

1 public final class System {
2 ...
3 public static String getProperty(String key) {
4 ...
5 if (securitymgr != null) {
6 securitymgr.checkPropertyAccess(key);
7 }
8 return props.getProperty(key);
9 }
10 }

Figure 2 Java code for accessing the protected
resource of a system property.
For instance, the top level java.lang.Security

Manager.check Property Access contains two
calls, namely those indicated by 2:, java.util.

Property Permission.CinitD and java.lang.

Security Manager.check Permission. The Proper-
tyPermission constructor CinitD creates the per-
mission that is to be checked. This permission is
then passed to java.lang.Security Manager.

check Permission (in line 9 and below) where
the main work is done.

The actual access decision is made when the
current policy, parsed from a policy file, is com-
pared with the needed permission (cf. line 18 and
below). A typical policy file with positive permis-
sions is shown in Fig. 4.

Permissions stem from two abstract classes.
Java defines the abstract superclass java.secur-

ity.Permission and an abstract subclass java.

security.Basic Permission. BasicPermissions do
not normally contain action strings such as read,
write, listen, resolve (see Fig. 4) but consist of
a target name only (as play in the audio permission
of Fig. 4). An exception is the PropertyPermission
that is a BasicPermission with target and action
strings. Examples of direct subclasses of Basic
Permissions are AudioPermission, AWTPermission,
PropertyPermission, and RuntimePermission. Di-
rect subclasses of java.security.Permission are
AllPermission, FilePermission, PrivateCredential-
Permission, ServicePermission, SocketPermission
and UnresolvedPermission. Refer to the Java
documentation at http://java.sun.com/j2se/
1.4.2/docs/api/index.html for more details on
permissions.

Policy checking needs to be done for every
protection domain on the call stack (Gong and
Schemers, 1998). If, for example, library x.jar calls
a method in y.jar that wants to open a socket,
both x.jar and y.jar need to have the appropriate
SocketPermission to succeed.

Permissions, protection domains and the
contents of the policy file were important varia-
bles in our performance test of the Security
Manager.

Test design

The tests were performed on a SUN Ultra SPARC 5,
running Solaris 8 with 4 GB of RAM and four CPUs,
using the SUN Java 2 Software Development Kit
(J2SDK) 1.4.2 for the tests and its source code for
code inspections. Running on a single CPU Solaris
machine lead to many operating system artifacts in
the time measurements. The tests were repeated

http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/index.html

Performance of the Java security manager 195
1 1: java.lang.SecurityManager.checkPropertyAccess
2 2: java.util.PropertyPermission.<init>
3 3: java.security.BasicPermission.<init>
4 4: java.security.BasicPermission.init
5 5: java.lang.String.charAt
6 4: java.security.Permission.<init>
7 3: java.util.PropertyPermission.init
8 3: java.util.PropertyPermission.getMask
9 2: java.lang.SecurityManager.checkPermission
10 3: java.security.AccessController.checkPermission
11 4: java.security.AccessController.getStackAccessControlContext
12 4: java.security.AccessControlContext.optimize
13 5: java.security.AccessController.getInheritedAccessControlContext
14 4: java.security.AccessControlContext.checkPermission
15 5: java.security.AccessControlContext.getDebug
16 5: java.security.ProtectionDomain.implies
17 6: java.security.Policy.getPolicyNoCheck
18 6: sun.security.provider.PolicyFile.implies
19 7: sun.security.provider.PolicyInfo.getPdMapping
20 7: java.util.Collections\$SynchronizedMap.get
21 8: java.util.WeakHashMap.get
22 ...
23 7: java.security.Permissions.implies
24 8: java.security.Permissions.getPermissionCollection
25 9: java.util.HashMap.get
26 ...
27 8: java.util.PropertyPermissionCollection.implies
28 9: java.util.HashMap.get
29 ...

Figure 3 Call chain for checking access to system properties.
on a 2.4 GHz Intel Xeon machine running Debian
Linux 3.0 (1 GB of RAM, one CPU).

For checking the performance we used an
operating system tool and a Java tool. The oper-
ating system tool was the Solaris truss utility for
tracing system calls and measuring elapsed CPU
time in system and user code (and time on Linux
and time on Solaris to verify truss times). This tool
was used for exact timing. The Java tool was the
JVM-built-in hprof tool that makes use of the
JVMPI (Java Virtual Machine Profiling Interface)
for measuring CPU time spent in methods and
threads. hprof is accessible through a command
line option to the Java Virtual Machine. We also
made use of PerfAnal (Meyers, 1999) to analyse
the output generated by hprof in a graphical
user interface. The Java tools were used for
counting method invocation calls and bottleneck
identification.

There were two major test suites. One was
a test for checking different permission against
different policies using the call java.lang.Secur-
ityManager.checkPermission(). This test shows
the time for a permission test without actual
resource access in order to identify those permis-
sions that are time-consuming to check. The other
test monitored actual resource access under the
control of the Security Manager and thus shows the
normal use of the Security Manager.

All tests were run for one and two protection
domains on the call stack. In order to arrive at
significant CPU execution times, an access check
or resource access would run in a loop. Each check
was done with 20 samples and repetitions ranging
between one and 20,000 or one and 50,000. The
upper limit was chosen with respect to memory
consumption to avoid garbage collection during
the tests. Each test case was also run once with
the hprof sample option and once with the hprof

times option. Each test case contains a CPU con-
sumer method that is constant for each repetition.
This was intended to facilitate the comparison of
grant codeBase "file:/sw/jars/example1.jar" {
permission javax.sound.sampled.AudioPermission "play";
permission java.util.PropertyPermission "java.*", "read";
permission java.io.FilePermission "/tmp/-", "read,write";
permission java.net.SocketPermission "localhost:9000", "listen,resolve";

};

grant signedBy "bob" {
permission java.security.AllPermission;

};

Figure 4 Typical Java policy file with one set of permissions for the code base at /sw/jars/example1.jar and full
permissions for all code signed by bob.

196 A. Herzog, N. Shahmehri
execution times in hprof with a known method
(Section ‘Comments on hprof’ shows that this did
not work).

All test cases were also run once with forced
garbage collection at the beginning and the end of
the Java program. Verbose output of the garbage
collector then showed statistics about allocated
and freed memory during program run. Memory
statistics were also verified by running the test case
with the -Xaprof option (Shirazi, 2003).

In the first test suite we tested the check for the
following permissions: AWTPermission, Runtime-
Permission, DelegationPermission, PropertyPer-
mission and the more complex FilePermission,
PrivateCredentialPermission, ServicePermission
and SocketPermission. Thus, the tested permis-
sions comprise two classically BasicPermissions
(AWT and Runtime), one more complex (Property)
and all of the explicitly used complex subclasses of
java.security.Permission. The remaining Basic-
Permissions are subclasses of BasicPermission with
no distinct behaviour of their own; their behaviour
is therefore the same as that of AWT- or Runtime-
Permission. Thus all significantly different permis-
sions were evaluated.

Each permission check was run against different
policies. In the first test case, only one permission
instance of one class would appear in the policy file,
i.e. there would be only one entry for a SocketPer-
mission, PropertyPermission and so on, and that
entry would be the neededmatch as an exactmatch
(RuntimePermission("exitVM")). The second test
case would be the same but with a wildcard match
(RuntimePermission("*")). We also tested the per-
missions against a policywhere the codewas granted
all permissions (java.security.AllPermission). In
a second step, the permissions were checked against
(a) a long policy file containing numerous entries for
each permission class, both exact matches and
wildcard matches and (b) an even longer policy file
withpermissions for 54 codebases and a total of 4521
permissions but exact matches for the needed
permissions.

In the second test suite the resource accesses
listed below were timed with and without a Secu-
rity Manager. This was to see how an actual
resource access, as in a real program, is influen-
ced by the absence or presence of a Security
Manager.

� Java-defined resources
e Policy access using Policy.getPolicy()

which makes use of the BasicPermission
SecurityPermission. Policy access is an oper-
ation performed in memory, no access to
operating system specific code is needed.
e Property access using System.getProper-

ty(prop) which makes use of the basic (but
special) permission PropertyPermission. This
is also an access check done in memory but
the PropertyPermission is more complex.

e Redirecting output using System.setOut

(System.out) which makes use of the
BasicPermission RuntimePermission. This is
another BasicPermission to verify findings
from policy access.

� Java-mediated operating system resources that
make use of advanced permissions
e file access using new FileInputStream

(filename),
e socket access using new ServerSocket

(port).

These resource accesses were tested with the
same policies as described with the first test suite.
Thus the resource access test suite has also
examples of both basic and advanced permissions.

Results

In the following, we present the results of our
performance tests. Data are found in Tables 3e6.
Complete test data as well as the test programs
are available at www.ida.liu.se/~almhe.

Memory penalty

Using the Security Manager incurs a memory pen-
alty of at least 40 bytes per resource access check
(see Table 1). These 40 bytes are used for an
access control object and a protection domain
object. The memory startup penalty for using the
Security Manager can be as low as 14 kB but is
dependent on the size of the policy files that are
needed. Policy files are not parsed at Java Virtual
Machine startup but when the first resource access
occurs. A large policy file needs a lot of memory.
The long policy file with 54 code bases and 4521
permissions uses only 300 kB on disk but needs
1900 kB in memory.

Apart from this memory allocation during policy
parsing, memory is also allocated in the constructor
of the permission object that is about to be
checked. As that permission object is created only
once regardless of the number of protection do-
mains on the call stack, having a second protection
domain seldom uses more than 8 bytes of memory
(which are spent on a larger protection domain
object). Only PrivateCredentialPermissions and
PropertyPermissions allocate memory during their

http://www.ida.liu.se/~almhe

Performance of the Java security manager 197
Table 1 Memory allocation in bytes for one resource access with and without Security Manager (SM) and with
different policies

Test case Protection domains Allocated objects
One Two

Policy
No SM 0 0
SM with any policy 40 48 AccessControlContext (ACC), ProtectionDomain (PD)

Setout
No SM 0 0
SM with any policy 64 72 RuntimePermission, ACC, PD

Property
No SM 0 0
SM with any policy 72 80 PropertyPermission, ACC, PD
Partial wildcard 393 722 4(8) String, 2(4) StringBuffer, 3(6) char[],

PropertyPermission, ACC, PD
File

No SM 80 80
SM with any policy 184 192 File, FilePermission, FilePermissionCollection, ACC, PD

Socket
No SM 228 228
AllPermission, wildcard 480 488 3 String, StringBuffer, char[], SocketPermission, int[],

ACC, PD
Exact 504 512 4 String, StringBuffer, char[], SocketPermission, int[],

ACC, PD
Many codebases 574 582 5 String, StringBuffer, 2 char[], SocketPermission, int[],

ACC, PD
Enorm-exact 739 747 6 String, 2 StringBuffer, 4 char[], 3 byte[], SocketPermission,

int[], ACC, PD
PrivateCredentialPermission only data from the permission check are used, no actual

resource access
No SM Not applicable
AllPermission 40 48 Permission created at program start, ACC, PD
Wildcard 136 240 3(6) HashmapIterators, ACC, PD
Other policies 232 432 6(12) HashmapIterators, ACC, PD

The policy check on the top row of the table shows the minimum memory consumption for the Security Manager consisting of
allocations for an access control context object and a protection domain object. Any startup memory penalty is omitted. Only
objects relevant to the Security Manager are shown in the column Allocated Objects. Numbers in italics indicate that memory is
allocated per protection domain.
implies()-methods,1 which is invoked per protec-
tion domain (see Table 1).

The memory consumption of all BasicPermis-
sions is about 64 bytes. This is so because Basic-
Permissions (with the exception of the
PropertyPermission) consist of one, often con-
stant, target. Some BasicPermissions are created
only once during the lifetime of the Java Virtual
Machine as static objects and need not be

1 The implies()-method, implemented by each permission,
decides whether a given permission contains or implies another
permission and thus makes the actual access control decision.
For instance, FilePermission(‘‘/tmp/*’’, ‘‘read,write’’) implies
FilePermission(‘‘/tmp/a’’, ‘‘read’’) but FilePermission(‘‘/sw/
emacs’’, ‘‘read’’) does not imply FilePermission(‘‘/sw/java’’,
‘‘read’’).
allocated for subsequent checks (for example
the policy access permission in the first row of
Table 1).

However, the memory consumption of complex
permissions (e.g. file, socket, PrivateCredential-
Permission) is related to the length of the string
that represents the target of the permission that is
to be checked. The FilePermission with target
‘‘/tmp/a’’ consumes less memory than the
same FilePermission with target ‘‘/tmp/abc/def/
ghi/jkl’’. Thus, the values in Table 1 for those
permissions are only examples. The actual memory
consumption depends on the specific permission
passed to the access check.

Unlike target strings, actions are constant
strings that are converted to a mask of type int

upon the construction of the permission and no

198 A. Herzog, N. Shahmehri
Solaris Linux

0 10000 20000 30000 40000 50000
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of Repetitions

C
P

U
 E

xe
cu

tio
n

T
im

e
(m

s)

No SM
AllPermission
Wildcard
Exact
Enorm−Exact
Many CodeBases

0 10000 20000 30000 40000 50000
100

200

300

400

500

600

700

800

900

1000

Number of Repetitions

C
P

U
 E

xe
cu

tio
n

T
im

e
(m

s)

No SM
AllPermission
Wildcard
Exact
Enorm−Exact
Many CodeBases

Figure 5 Typical performance for policy access containing a constant CPU consumer method for Solaris (left) and
Linux (right). An AllPermission performs fastest of all permissions. Exact match and wildcard match are approximately
equal. Enorm-exact contains other exact security permissions and is slightly slower. Worst is the exact match in
a policy file with 54 code bases and 4521 permissions due to the high startup penalty. Note the remarkable difference
of factor 5 for the absolute execution times between the two platforms. The more erratic curve for Linux may come
from the higher resolution of its y-axis and/or from the shorter execution times that may be more difficult to measure
with good precision.
subsequent operations are done on the strings.
Thus, action strings do not have any impact on
memory consumption.

Time penalty

Test data from two Unix platforms (Solaris and
Debian Linux) show a great difference in absolute
execution times but a great similarity in relative
times (cf. Fig. 5). In the following, wewill therefore
use relative times (compare test cases with each
other). We are rather confident that results on
other operating systems will show similar relative
results because very little platform dependent code
is used in the Security Manager. However, the
results are probably not applicable to Java imple-
mentations other than the used J2SDK from Sun.
IBM’s implementation, for instance, uses caching of
permissions and has a special ‘‘handling of file name
representation to avoid the high cost of file name
canonicalization unless needed’’ (Triplett, 2001)
that would result in quite different test results.

Using a Security Manager with the fastest of all
permissions, namely the AllPermission, non-oper-
ating system resource accesses have an execution
time that is approximately 100% slower than
without the Security Manager enabled. However,
time-consuming operating system accesses such as
opening a file or opening a socket are not much
influenced by the presence or absence of a Security
Manager. File access is 30% times slower and
socket opening is only 5% times slower under an
AllPermission compared with no Security Manager.
When run with permissions other than the All
Permission, these execution times increase (but
not much) depending on the permission and the
effective policy. Note that these results must not
be applied to a whole application. The test only
used single resource access statements while
a complete application would contain a lot of code
that is unaffected by the absence or presence of
a Security Manager.

It is noteworthy that a lengthy or even huge
policy file does not impair the finding of a matching
permission once the startup penalty has worn off.
However, if there are many permissions of the
same kind in one grant statement in the policy file
(as in our ‘‘enorm-exact’’ test cases in Tables 3e6),
performance is influenced by that number and
sometimes by the order of the permissions in the
policy file. A comparison of the performance for
different policies is shown in Fig. 5 for access to the
policy object protected by a SecurityPermission.

The additional execution time for a resource
access statement under a Security Manager is spent
mostly in java.security.AccessController.get

StackAccessControlContext (see line 11 in
Fig. 3), a costly native method. The native code is
not very platform-specific; it simply performs an
operation on the passed objects that must be
performed outside of the Java sandbox.

Time is also spent finding the matching permis-
sion collection in the policy object (which is filled

Performance of the Java security manager 199
1 1: java.lang.SecurityManager.checkPermission
2 2: java.security.AccessController.checkPermission
3 3: java.security.AccessController.getStackAccessControlContext
4 3: java.security.AccessControlContext.optimize
5 4: java.security.AccessController.getInheritedAccessControlContext
6 3: java.security.AccessControlContext.checkPermission
7 4: java.security.AccessControlContext.getDebug
8 4: java.security.ProtectionDomain.implies
9 5: java.security.Policy.getPolicyNoCheck
10 5: sun.security.provider.PolicyFile.implies
11 6: sun.security.provider.PolicyInfo.getPdMapping
12 6: java.util.Collections\$SynchronizedMap.get
13 7: java.util.WeakHashMap.get
14 8: java.util.WeakHashMap.getTable
15 ...
16 6: java.security.Permissions.implies

Figure 6 Call chain for system property access with AllPermission policy.
with data from the policy files upon the first
resource access) and checking its permissions
against the needed permission. The difference in
execution time for different permissions comes
from this latter part and depends largely on the
implementation of the implies()-method of the
different permissions and permission collections.

Different permissions
All permissions except the PrivateCredentialPer-
mission have approximately the same execution
time when checked against an exact match or
wildcard match with only one matching permission
in the policy. The PrivateCredentialPermission is
almost 40% slower than the average of the other
permissions for exact matches and 20% slower for
wildcard matches.

Full wildcard matching takes on average 95% of
the time of an exact match, and is thus a bit faster
than exact matching. This is so because full wild-
card permissions are detected at policy parsing
time and remembered in a private variable. This
private variable is checked prior to any other
checks in the respective permission collection.

Partial wildcard matches such as Property

Permission ("user.*", "read") or Socket

Permission ("*.google.com:*", "resolve") per-
form slightly slower than exact matches. In the
case of the PropertyPermission the increased
execution time is related to the fact that strings
are allocated for a partial wildcard match. This is
not so for other partial permissions where the
extra time is exclusively spent in the implies()-
method of the respective permission (in String-
and HashMap-operations).

All permissions exhibit the same execution time
when run against an AllPermission policy. At first
glance, it is surprising that the permission check is
not much faster when run against an AllPermission
policy. However, when one compares the call chain
for an exact match (cf. Fig. 3) with the AllPermis-
sion call chain of Fig. 6, one notices that most of
the calls are identical. Only the end is shortened.
Instead of checking for implications in the Property
Permission collection (line 27 in Fig. 3), the
AllPermission is found in java.security.Permis-

sions.implies (line 16 in Fig. 6) and the permis-
sion check returns successfully from there.

Permissions and permission collections
The execution time of the important implies()-
method (see line 8 in Fig. 6 or line 16 in Fig. 3)
depends eventually on the implementation of the
implies()-method in the actual permission and on
the implies()-method of the actual permission
collection.

Permission collections are needed to success-
fully resolve permissions that are disseminated
over more than one permission grant. If e.g.
a SocketPermission is needed that allows connect
as well as accept, one permission in the policy
could allow the connect, another could allow the
accept, and together they grant the needed
permission.

A matching permission in the policy is found
by making use of permission collections and the
contained permissions.

Example. If a piece of code from the code base
/sw/jars/bob.jar wants to connect to the host
www.ida.liu.se on port 9000 it needs the permis-
sion p1Z new SocketPermission (‘‘http://www.
ida.liu.se:9000’’, ‘‘connect’’). For the policy file
in Fig. 7 the finding of the needed granted
permission follows the following pattern: the
collection of all SocketPermissions (as shown in
Fig. 7) are acquired in java.security.Permis-

sions.implies(). In the implies()-method of the
SocketPermission collection, the implies()-method

http://www.ida.liu.se
http://www.ida.liu.se:9000
http://www.ida.liu.se:9000

200 A. Herzog, N. Shahmehri
grant codeBase "file:/sw/jars/bob.jar" {
...
permission java.net.SocketPermission "localhost:1024-", "accept";
permission java.net.SocketPermission "localhost:80", "listen";
permission java.net.SocketPermission "www.ida.liu.se:*", "accept,connect";
permission java.net.SocketPermission "www.google.com:*", "accept,connect";
permission java.net.SocketPermission "www.vivisimo.com:*", "accept,connect";
permission java.net.SocketPermission "www.isy.liu.se:*", "accept,connect";
permission java.net.SocketPermission "*.sun.com:*", "accept,connect";
...

};

Figure 7 Part of a policy file with SocketPermissions. Full host names such as www.google.com are resolved to
check if they result in the same IP-address as the needed permission.
of each granted permission is called on p1 until
a positive match is found.

The implies()-method for a SocketPermission is
extremely complex in that it not only does a textual
comparison between the needed and the granted
permission but also tries to resolve hostnames in
a DNS-lookup.

When searching for matching SocketPermis-
sions, the order of the SocketPermissions in the
policy file are important. Frequent hits should
therefore be put at the end of the permission list
for that code base in the policy file. This avoids
time-consuming DNS look-ups that try to match the
needed permission to the granted permission.
In the example above, all full hostnames (www.
isy.liu.se, www.vivisimo.com, www.google.com)
are resolved in order to check if they result in
the same IP-address as the needed www.ida.liu.se.

SocketPermissions have a long history of being
complicated and difficult to handle because of
their interaction with the DNS server. Table 2 gives
references to SocketPermission problems in the
Java bug database.

Table 2 References to SocketPermission problems
in the Java bug database at http://developer.java.
sun.com/developer/bugParade/

Bug ID Description

4155463 Clients get access errors when
loading applets through proxies.

4320895 SocketPermission.implies()
broken when IP not accessible.

4414825 SocketPermission.implies seems
wrong for unresolvable hosts.

4975882 Reverse DNS calls in
SocketPermission undesirable.

5004073 Impossible to use Security
Manager with unstable DNS.
Another complex permission is the PrivateCre-
dentialPermission. Even though it makes use of
a standard permission hashmap for finding an exact
match (if any), the implies()-method is extremely
time-consuming even in an exact match policy
with only one matching entry. An allocation of
257 bytes for each permission check (all memory
consumed by hash map iterators) contributes to
the long execution time. Full wildcard matching
performs somewhat better since it ‘‘only’’ needs
eight iterator objects to verify the permission
instead of 18(!) for an exact match.

None of the other permissions have equally
complex and time-consuming implies()-methods.
The BasicPermission implementation uses a quick
hash map lookup in the implies()-method of the
BasicPermission collection to check if a needed
permission is granted. Thus, the order in the policy
file is not important for BasicPermissions. The
PropertyPermission collection provides for both
wild card matching and action string matching in
its implies()-method and is thus slightly more
complex. PropertyPermissions, ServicePermissions
and FilePermissions are traversed in the reverse
order of their appearance in the policy file.
Frequent hits should thus be placed at the end of
the permission list in the policy file to shorten
execution time.

Protection domains
When an object x from library x.jar invokes
a method of an object y from library y.jar and y
accesses a resource that is protected by the
Security Manager, both x.jar and y.jar must have
permission to do so. This means that the pro-
tection domain of both x.jar and y.jar must be
checked for the needed permission. Thus, adding
call chains certainly has an impact on the perfor-
mance of the Security Manager.

Adding a second protection domain without
a Security Manager prolongs the CPU execution
time by about 3%. A second protection domain
with the Security Manager prolongs the CPU

: href#
http://www.isy.liu.se
http://www.vivisimo.com
http://www.google.com
http://www.ida.liu.se
http://developer.java.sun.com/developer/bugParade/
http://developer.java.sun.com/developer/bugParade/
http://www.google.com

Performance of the Java security manager 201
execution time on average by 5% compared to the
execution with one protection domain. Least
impact is noticed for full wildcard matches (1%).
The largest impact is noticed for exact matches
(9%). The worst exact match is the SocketPermis-
sion with an increase of 18%. The AllPermission
incurs the same increase in CPU execution
time as when run without Security Manager,
namely 3%.

Policy file
The policy file is read from disk and parsed into
a policy object the first time a policy decision is
needed. If the policy file is long, this first access
takes considerable time. For instance, running
a simple AWTPermission check for one protection
domain once against a policy that contains per-
missions for 54 code bases with a total of 4251
permissions takes 1940 ms (on Solaris). However, it
takes 4780 ms for 20,000 runs (on Solaris). This
means that even at 20,000 repetitions 40% of the
execution time is spent in startup.

Java virtual machine options

Each permission check was repeated a few thou-
sand times to arrive at significant execution times.
It was thus mandatory to suppress garbage collec-
tion during time measurements because the per-
formance of the garbage collector was not
interesting at this point. Increasing the heap size
to a minimum (and maximum) of 128 MB was
sufficient for our tests. To provide for the many
‘‘young deaths’’, i.e. objects that die soon after
their creation, the young generation size was
increased to half of the heap (options to the Java
Virtual Machine: -Xmx128m -Xms128m -XX:New

RatioZ1).

Prior to this adjustment, when using the Java
Virtual Machine default settings, heavy garbage
collection was occurring at all times, making time
measurements useless and taking a lot of time.
Memory tuning is thus especially advisable when
running the Java Virtual Machine with a Security
Manager. Useful help on monitoring and tuning
garbage collection can be found in a Sun white
paper (Sun Microsystems, 2003). This paper is not
specific to the Security Manager; it applies to any
application that has performance problems due to
excessive invocations of the garbage collector.

Comments on hprof

When choosing the measurement tools for the test,
there were high hopes for the Java built-in hprof
tool that promised time measurements on a per-
method basis. However, it was soon noticed that
time measurements with the hprof tool could not
be used to determine the performance without
hprofdeither in a relative or absolute manner;
i.e. there is no simple, reliable relation between
the execution time measured with hprof and the
execution time measured with operating system
tools truss or time. This is because the perfor-
mance of hprof depends on the needed depth of
profiling and the number of method calls on the
stackdand not solely on the performance of the
application that is profiled. The more methods
that are called by the application and its called
subroutines, the longer the execution takes in
hprof. However, in our test cases it held true that
applications A (fast as measured with an operating
system timer), B (medium), and C (slow) will
perform accordingly in hprof but not with the
same proportions. Consequently, the presented
test results rely on the operating system tools
truss or time for time measurements.

However, hprof is useful for identifying bottle-
necks. The hprof times option shows the exact
number of times a method was invoked while the
hprof sample option allows visual call chain anal-
ysis with the PerfAnal tool.

Advice to application developers

This section contains advice for application devel-
opers that work on applications that would benefit
from the access control provided by the Security
Manager (e.g. that run code from more or less
untrusted sources). The suggestions do not only
make use of the performance findings but includes
also related items.

� Find out if the target application contains a lot
of access to Security Manager-mediated re-
sources or not. This is best done by subclassing
the Security Manager with a class that does
nothing but count the times the checkPermis-
sion()-method of the Security Manager was
invoked and possibly keep track of the permis-
sions that were about to be checked. The
application should then be tested for a suita-
ble length of time and the collected data
evaluated.

� The Security Manager should probably not be
enabled if
e there are frequent SocketPermission requests

for many different hosts,

202 A. Herzog, N. Shahmehri
e there are frequent PrivateCredentialPermis-
sion requests,

e the policy files are huge and the application
is restarted too frequently for the startup
penalty to wear off,

e the application contains native library calls
in the jar-file that will be subject to the
Security Manager. Code in native libraries is
beyond the control of the Security Manager,
and guarding the Java layer while the
native code layer has full access is not
reasonable.

e the policy files reside on a file system that
can easily be compromised on the operating
system level,

e maintenance of policy files is too cumber-
some (due to e.g. code changing often, many
different jar-files, etc.),

e all code owners demand (and receive) the
AllPermission for their application,

e the application is already experiencing per-
formance problems. The Security Manager
will certainly not speed up the application.

� The SecurityManager can probably be enabled if
e the previous list does not apply,
e the application makes little use of resources

that are protected by the Security Manager,
e the application uses mostly BasicPermissions,
e there is more heap available in case the heap

size must be increased due to garbage
collection problems,

e the policy file can be tuned so that the most
frequent FilePermissions, PropertyPermis-
sions, ServicePermissions and SocketPermis-
sions can be put at the end.

� When designing and implementing proprietary
permissions that are specific for an application-
defined resource, it is of great importance that
the implies()-method is implemented efficiently
and without allocating memory (if possible).
This is the one bottleneck in the Security
Manager that the application developer can
control.

Conclusion

We have examined the performance of the Secu-
rity Manager for Sun’s Java implementation in
depth. Test results show that there is an execution
time penalty of approximately 100% for Java-
defined resources when the resource access runs
under a Security Manager. The resource access to
operating system resources (files, sockets) is so
expensive that it hides the time penalty of the
Security Manager almost completely.

PrivateCredentialPermissions and SocketPer-
missions perform worst. FilePermissions, though
seemingly complex, perform better than Property
Permissions and rank fine among the BasicPer-
missions. Pure BasicPermissions perform the
best.

All permission checks have the same execution
time under an AllPermission policy, but that
execution time is still closer to the execution time
of a full wildcard match than to the execution time
without Security Manager.

It is useful to tune the policy file so that
frequent matches of the same permission class
are put at the end of the enumeration of permis-
sions of that class.

If the application appears unresponsive, this may
be the result of excessive garbage collections. As
the Security Manager at times creates short-lived
objects it is especially useful to increase the young
generation size and also give the application as
much heap as possible.

In a server environment (e.g. web servers)
where the policy file is possibly large due to many
code bases, it is useful to force parsing of the
policy file at startup time to avoid a costly parsing
when the first permission check occurs.

This performance test shows that the perfor-
mance of the Security Manager may not be as bad
as sometimes assumed and that general state-
ments about the impact of the Security Manager
on a whole application are rather useless. Perfor-
mance depends on the frequency of Security
Manager-related access control and on the type
of permissions that are needed. A performance
boost can be achieved by memory tuning and, to
a lesser degree, the right order of permissions in
the policy file. Using the access control of the Java
Security Manager is a clean and secure design and
should be given priority over other solutions as
long as the hard-coded and built-in resource
checks are sufficient.

Appendix

The gist of the performance data is contained in
the following tables. All data shown here come
from the test suite on the Solaris operating system
using the truss utility. Tables 3 and 4 contain data
from the test of running permissions through
java.lang.SecurityManager.checkPermission()

(test suite 1). Tables 5 and 6 contain data about
execution times for actual resource access (test
suite 2).

Performance of the Java security manager 203
Table 3 CPU execution times in milliseconds on the Solaris operating system for checking different
BasicPermissions (AWTPermission, RuntimePermission, PropertyPermission, DelegationPermission) including the
time used for running a control loop

Test case # Repetitions y Z mxC b

1 10,000 25,000 50,000 m b

P-AWT-one-allperm 670 1180 1930 3260 0.051636 718.09
P-AWT-one-enorm-exact 810 1560 2380 3830 0.057345 942.97
P-AWT-one-exact 760 1520 2320 3710 0.057309 903.41
P-AWT-one-manycb 1940 2520 3510 4780 0.056571 2005.2
P-AWT-one-null 460 870 1250 1970 0.028675 527.85
P-AWT-one-wildcard 720 1450 2380 3530 0.054187 872.89

P-AWT-two-allperm 640 1170 2050 3320 0.052094 758.09
P-AWT-two-enorm-exact 850 1620 2490 3930 0.059927 1010.3
P-AWT-two-exact 790 1600 2520 4020 0.061429 938.03
P-AWT-two-manycb 1900 2680 3520 5060 0.059979 2060.5
P-AWT-two-null 470 840 1250 1960 0.030795 524.38
P-AWT-two-wildcard 810 1460 2430 3830 0.058852 884.83

P-Run-one-allperm 660 1250 2060 3210 0.050364 779.43
P-Run-one-enorm-exact 870 1500 2440 3830 0.057351 953.32
P-Run-one-exact 800 1520 2260 3640 0.056384 910.81
P-Run-one-manycb 1830 2570 3610 4770 0.055865 1997.1
P-Run-one-wildcard 790 1430 2240 3590 0.055205 907.91

P-Run-two-allperm 600 1260 2050 3310 0.052525 769.69
P-Run-two-enorm-exact 800 1740 2430 3810 0.058556 997.95
P-Run-two-exact 790 1640 2360 3920 0.060478 921.32
P-Run-two-manycb 1780 2560 3450 5010 0.064114 1929.5
P-Run-two-wildcard 830 1490 2340 3660 0.056197 911.68

P-Prop-one-allperm 590 1320 1890 3190 0.050712 743.11
P-Prop-one-enorm-exact 830 2020 2340 3720 0.051782 1110.2
P-Prop-one-enorm-partwildcard 870 1680 2710 4120 0.062125 1063.5
P-Prop-one-exact 770 1560 2310 3700 0.05574 931.2
P-Prop-one-manycb 1870 2540 3360 5210 0.058265 1923.8
P-Prop-one-partproperty 780 1610 2450 4190 0.061958 949.55
P-Prop-one-wildcard 720 1450 2300 3710 0.056161 848.3

P-Prop-two-allperm 660 1360 2020 3420 0.052265 765.71
P-Prop-two-enorm-exact 810 1640 2420 3840 0.057029 1026.1
P-Prop-two-enorm-partwildcard 890 1690 2790 4380 0.068878 1063.7
P-Prop-two-exact 800 1500 2510 3930 0.060499 927.47
P-Prop-two-manycb 1900 2690 3480 4930 0.058868 2032.1
P-Prop-two-partproperty 750 1840 2700 4450 0.068681 988.16
P-Prop-two-wildcard 760 1520 2440 3870 0.06001 906.35

P-Deleg-one-allperm 660 1280 2070 3280 0.051112 737.39
P-Deleg-one-enorm-exact 850 1530 2480 3850 0.057652 977.69
P-Deleg-one-exact 810 1490 2620 3770 0.058218 922.11
P-Deleg-one-manycb 1850 2810 3380 4810 0.054488 2072.5

P-Deleg-two-allperm 630 1220 2090 3370 0.052779 718.09
P-Deleg-two-enorm-exact 810 1660 2690 4530 0.070078 962.27
P-Deleg-two-exact 710 1480 2410 4080 0.06293 897.17
P-Deleg-two-manycb 1800 2760 3660 5310 0.064571 2010.9

Note that a delegation permission does not support wildcard matching.

204 A. Herzog, N. Shahmehri
Table 4 CPU execution times in milliseconds on the Solaris operating system for checking subclasses of
java.security.Permission (FilePermission, PrivateCredentialPermission, ServicePermission, SocketPermission)
including the time used for running a control loop

Test case # Repetitions y Z mx C b

1 10,000 25,000 50,000 m b

P-File-one-allperm 640 1210 2090 3290 0.051538 739.6
P-File-one-enorm-exact 800 1540 2280 3630 0.053912 957.87
P-File-one-enorm-partwildcard 980 1570 2420 3690 0.054156 1045.1
P-File-one-exact 760 1430 2260 3600 0.054691 922.67
P-File-one-longfile 770 1460 2500 3780 0.058374 902.02
P-File-one-manycb 1840 2630 3260 4700 0.053881 1999.1
P-File-one-wildcard 830 1470 2340 3660 0.056592 898.47

P-File-two-allperm 600 1240 2050 3290 0.051813 739.39
P-File-two-enorm-exact 810 1600 2460 3820 0.057953 962.54
P-File-two-enorm-partwildcard 890 1650 2590 4060 0.060099 1017
P-File-two-exact 770 1610 2330 3720 0.05587 981.29
P-File-two-longfile 820 1470 3020 4070 0.063039 964.44
P-File-two-manycb 1770 2580 3490 4680 0.057657 1981.4
P-File-two-wildcard 830 1520 2390 3890 0.05961 936.35

P-Priv-one-allperm 650 1280 2010 3280 0.052192 731.33
P-Priv-one-enorm-exact 850 1790 2890 4820 0.077834 971.7
P-Priv-one-enorm-partwildcard 860 1810 3050 4710 0.078151 1042.8
P-Priv-one-exact 810 1680 3070 4770 0.078052 979.58
P-Priv-one-manycb 1920 2810 3960 6280 0.080301 1996.2
P-Priv-one-wildcard 750 1570 2590 4300 0.066042 931.28

P-Priv-two-allperm 630 1340 2050 3340 0.052795 733.41
P-Priv-two-enorm-exact 830 1970 3530 5970 0.099979 1034.2
P-Priv-two-enorm-partwildcard 730 2120 3550 5860 0.099558 1030.9
P-Priv-two-exact 720 1980 3400 5960 0.10174 928.77
P-Priv-two-manycb 1860 3100 4560 7090 0.099309 2082.4
P-Priv-two-wildcard 820 1750 2910 4520 0.072338 995.3

P-Serv-one-allperm 620 1300 2050 3270 0.052119 727.91
P-Serv-one-enorm-exact 800 1490 2480 3920 0.059268 956.35
P-Serv-one-exact 690 1520 2330 3710 0.057335 918.47
P-Serv-one-manycb 1890 2550 3380 4740 0.054945 2028.2
P-Serv-one-wildcard 690 1440 2360 3800 0.056681 851.98

P-Serv-two-allperm 660 1330 1980 3310 0.052831 748.22
P-Serv-two-enorm-exact 810 1590 2600 4490 0.067704 978.76
P-Serv-two-exact 820 1640 2470 3900 0.059605 955.05
P-Serv-two-manycb 1770 2730 3570 5130 0.062971 2016.1
P-Serv-two-wildcard 740 1540 2430 3940 0.06201 909.68

P-Sock-one-allperm 580 1260 2040 3300 0.052104 744.49
P-Sock-one-enorm-exact 810 1690 2460 4140 0.060857 950.89
P-Sock-one-enorm-partwildcard 950 1700 2540 4070 0.064468 1032.1
P-Sock-one-exact 740 1480 2360 4310 0.058608 930.46
P-Sock-one-manycb 1910 2540 3380 4710 0.055719 2007.4
P-Sock-one-wildcard 820 1570 2260 3630 0.054306 952.76
P-Sock-one-wildhost 820 1590 2700 3800 0.056525 1004.9
P-Sock-one-wildsocket 760 1620 2390 3730 0.055345 987.26

P-Sock-two-allperm 630 1350 2230 3430 0.052997 737.87
P-Sock-two-enorm-exact 810 1650 2610 4810 0.071725 933.95
P-Sock-two-enorm-partwildcard 910 1740 2860 4530 0.071231 1069.1
P-Sock-two-exact 870 1570 2480 3950 0.058686 991.85
P-Sock-two-manycb 1840 2700 3600 4970 0.060135 2071.8
P-Sock-two-wildcard 780 1620 2360 4040 0.061522 893.79
P-Sock-two-wildhost 810 1640 2510 3950 0.06053 996.22
P-Sock-two-wildsocket 810 1580 2510 4040 0.062447 953.53

Performance of the Java security manager 205
Table 5 CPU execution times in milliseconds on the Solaris operating system for access to Java-mediated
resources (the policy object, resetting of stdout, access to properties) including the time used for running a control
loop

Test case # Repetitions y Zmx C b

1 10,000 25,000 50,000 m b

R-Pol-one-allperm 630 1420 2240 3390 0.053366 827.22
R-Pol-one-enorm-exact 760 1750 2480 3970 0.06014 1023.1
R-Pol-one-exact 630 1410 2300 3750 0.060748 818.86
R-Pol-one-manycb 1870 2770 3600 5040 0.057423 2097.7
R-Pol-one-null 580 910 1270 2070 0.028525 618.28
R-Pol-one-wildcard 800 1550 2440 3710 0.056281 981.03

R-Pol-two-allperm 650 1390 2350 3530 0.055678 799.42
R-Pol-two-enorm-exact 830 1630 2600 4130 0.062332 1050.2
R-Pol-two-exact 630 1490 2490 3940 0.062582 837.77
R-Pol-two-manycb 1820 2660 3830 5240 0.063517 2079.2
R-Pol-two-null 550 940 1300 2050 0.028 650.45
R-Pol-two-wildcard 800 1570 2430 3780 0.058644 987.17

R-Setout-one-allperm 620 1380 2400 3730 0.059891 747.91
R-Setout-one-enorm-exact 810 1600 2620 4240 0.067096 977.29
R-Setout-one-exact 670 1490 2530 4090 0.068312 788.81
R-Setout-one-manycb 1890 2760 3640 5310 0.066665 2029
R-Setout-one-null 460 810 1310 2100 0.033247 515.46
R-Setout-one-wildcard 780 1690 2510 4050 0.065501 905.74

R-Setout-two-allperm 640 1410 2290 3760 0.061886 768.03
R-Setout-two-enorm-exact 900 1780 2790 4690 0.071143 1008
R-Setout-two-exact 610 1610 2500 4210 0.069429 838.5
R-Setout-two-manycb 1900 2810 3890 5710 0.071174 2050.6
R-Setout-two-null 460 850 1410 2170 0.032519 554.12
R-Setout-two-wildcard 700 1700 2560 4240 0.068727 915.56

R-Prop-one-allperm 560 1290 2220 3890 0.059694 748.08
R-Prop-one-enorm-exact 820 1630 2580 4170 0.064675 983.53
R-Prop-one-enorm-partwildcard 960 2030 2920 4850 0.073361 1173.5
R-Prop-one-exact 650 1510 2350 3760 0.059501 832.41
R-Prop-one-manycb 1840 2510 3540 5110 0.062062 2018.9
R-Prop-one-null 540 830 1290 2080 0.030571 530.92
R-Prop-one-partproperty2 790 1770 2970 4940 0.078951 955.68
R-Prop-one-wildcard 790 1620 2630 4220 0.063756 954.61

R-Prop-two-allperm 640 1480 2370 4210 0.062649 764.18
R-Prop-two-enorm-exact 840 1650 2720 4490 0.070987 974.78
R-Prop-two-enorm-partwildcard 940 1920 3130 5180 0.082878 1081.8
R-Prop-two-exact 670 1500 2590 4420 0.068005 824.09
R-Prop-two-manycb 1880 2820 3690 5650 0.067829 2102.3
R-Prop-two-null 520 900 1260 2120 0.03159 546.89
R-Prop-two-partproperty2 770 1960 3340 5410 0.087839 1048.2
R-Prop-two-wildcard 750 1640 2580 4380 0.068592 947.98
A test case name has the following syntax

[PjR]-[Name:]-[onejtwo]-[Policy jnull]

where P or S denote whether a permission (P) is
tested or a resource (S).Name: denotes a short test
name, either an abbreviation of the tested per-
mission or the resource access statement. one or
two denote the number of protection domains for
which the test was run. Policy denotes the policy
file that was used where null denotes that no
Security Manager was used.

The policies used are described below and can
be accessed at www.ida.liu.se/~almhe.

� allperm: The AllPermission.
� exact: The policy file is short and contains
exactly the needed permissions for each pro-
tection domain.

http://www.ida.liu.se/~almhe

206 A. Herzog, N. Shahmehri
Table 6 CPU execution times in milliseconds on the Solaris operating system for access to operating system
resources (files and sockets) including the time used for running a control loop

Test case # Repetitions y Z mxC b

1 4000 10,000 20,000 m b

R-File-one-allperm 560 3130 5840 11,550 0.51261 754.81
R-File-one-enorm-exact 920 2830 5400 10,690 0.49647 979.59
R-File-one-enorm-partwildcard 790 3030 6140 11,430 0.50432 1025.3
R-File-one-exact 600 3200 5950 10,190 0.4941 940.37
R-File-one-manycb 1930 4190 7810 12,400 0.51256 2121
R-File-one-null 490 1870 4140 8410 0.3904 581.3
R-File-one-tmpasterisk 680 2960 6460 10,840 0.50668 937.03
R-File-one-tmpminuswildcard 780 3140 5850 11,300 0.48819 1012.8
R-File-one-wildcard 760 2760 6340 11,780 0.52126 872.12

R-File-two-allperm 670 3280 5800 11,530 0.50938 820.01
R-File-two-enorm-exact 810 3000 5680 11,460 0.53183 879.25
R-File-two-enorm-partwildcard 830 3190 6510 11,930 0.51274 1059.2
R-File-two-exact 730 2670 5860 12,140 0.5203 828.87
R-File-two-manycb 1940 4360 7400 12,630 0.5146 2180.7
R-File-two-null 510 2240 4730 9100 0.42858 518.97
R-File-two-tmpasterisk 730 3090 5530 10,380 0.47017 1028.3
R-File-two-tmpminuswildcard 730 2990 5640 11,690 0.50916 794.12
R-File-two-wildcard 800 3270 5920 10,790 0.50061 1142.9

R-Sock-one-allperm 640 5170 11,820 20,900 1.0181 1072.3
R-Sock-one-enorm-exact 870 5780 12,250 22,100 1.0782 1544.5
R-Sock-one-enorm-partwildcard 810 5380 12,300 23,390 1.1011 1368.7
R-Sock-one-exact 690 5660 12,090 21,950 1.0421 1341.8
R-Sock-one-manycb 1850 7020 12,710 22,730 1.0441 2495
R-Sock-one-null 550 5000 10,420 20,160 0.94245 848.8
R-Sock-one-wildcard 780 5600 11,520 21,550 0.99932 1431.9
R-Sock-one-wildhost2 760 5400 10,940 20,940 0.98901 1179.8
R-Sock-one-wildsocket 1350 5270 11,910 21,970 1.0241 1298.9

R-Sock-two-allperm 650 5250 11,240 21,650 1.0357 993.99
R-Sock-two-enorm-exact 860 5760 13,080 23,100 1.1082 1413.7
R-Sock-two-enorm-partwildcard 930 6340 12,480 22,990 1.1116 1579.8
R-Sock-two-exact 650 5600 11,830 22,890 1.095 1082.4
R-Sock-two-manycb 1910 6420 13,290 24,090 1.0698 2270.2
R-Sock-two-null 680 4210 9260 20,870 0.99097 336.89
R-Sock-two-wildcard 850 5000 11,400 22,660 1.0713 1160.6
R-Sock-two-wildhost2 780 5750 11,220 20,930 0.99178 1204.1
R-Sock-two-wildsocket 830 5540 11,520 21,120 1.003 1349.6
� wildcard: The policy file is short and contains
the needed permissions for each protection
domain as wildcard permissions.

� enorm-exact: The policy file is 131 lines long
and contains six exact permissions of each used
permission class.

� enorm-partwildcard: The policy file is 146 lines
long and contains about six partial wildcard
permissions for each used class. As partial
wildcards are not supported by all permissions
this is only tested for PropertyPermissions,
FilePermissions, PrivateCredentialPermissions
and SocketPermissions.
� manycb: The policy file contains 54 code
bases and 4521 permissions but the needed
permissions are exact matches. It is like the
exact policy but with more code bases in the
file.

� partproperty, partproperty2: The wildcard pol-
icy file but with one partial match Proper-
tyPermission. Only used for PropertyPermission
and property access tests.

� wildhost, wildhost2, wildsocket: The wildcard
policy file but with one partial match Sock-
etPermission. Only used for SocketPermission
and socket access tests.

Performance of the Java security manager 207
� longfile, tmpasterisk, tmpminus: The wildcard
policy file but with one special FilePermission,
either a-long-path-name/-, /tmp/* or /tmp/-.

All execution times are given in milliseconds. For
each test four timings are supplied. Those are not
average values but what was measured for the
given repetition. The linear formula yZ mx C b
supplies the execution time y for the number of
repetitions x calculated from all 20 measurements
and not only from the supplied four samples.

References

Gong L. Java 2 platform security architecture, !http://java.
sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.
doc.htmlO; 1997.

Gong L, Schemers R. Implementing protection domains in the
Java development kit 1.2. In: Proceedings of the Internet
society symposium on network and distributed system
security (NDSS’98); 1998. p. 125e34.

Herzog A, Shahmehri N. Using the Java sandbox for resource
control. In: Proceedings of the 7th nordic workshop
on secure IT systems (NordSec’02). Karlstad University;
November 2002. p. 135e47.

McGraw G, Felten EW. Securing Java: getting down to business
with mobile code. Wiley & Sons; 1999.

Meyers N. Java programming on Linux. Waite Group Press;
1999.

Oaks S. Java security. 2nd ed. O’Reilly & Associates, Inc;
2001.

Pandey R, Hashii B. Providing fine-grained access control for
Java programs. In: Guerraoui R, editor. Proceedings of the
13th European conference for object-oriented programming
(ECOOP’99). Lecture notes in computer science 1628.
Springer-Verlag; June 1999. p. 449e73.

Shirazi J. Java performance tuning. 2nd ed. O’Reilly &
Associates, Inc; January 2003.

Tuning garbage collection with the 1.42 java virtual machine,
!http://java.sun.com/docs/hotspot/gc1.4.2O; 2003.

FAQ about SUN ONE application server performance, !http:
//java.sun.com/docs/performance/appserver/AppServerPerf
Faq.htmlO; 2004.

Triplett D. Spotlight on Java Performance, !http://www.106.
ibm.com/developerworks/ibm/library/j-berry/O; December
2001.

Venkatakrishnan V, Peri R, Sekar R. Empowering mobile
code using expressive security policies. Proceedings of the
new security paradigms workshop (NSPW’02), ACM Press;
September 2002. p. 61e8.

Almut Herzog received her M.S. in Medical Informatics from
Heidelberg University, Germany, in 1994. Between 1994 and
1999 she worked as a software developer in the area of medical
information systems. She is currently pursuing her Ph.D. studies
at the Department of Computer and Information Science,
Linköping University, Sweden. Her research interest is in
computer security, and specifically Java security and security
policy management.

Nahid Shahmehri received her Ph.D. in 1991, in the area of
programming environments. Since 1994 her research activities
have been concerned with various aspects of engineering
advanced information systems, e.g. security. Examples of
current projects are trust in middleware for peer-to-peer-
based applications and Digital Rights Management for content
and software distribution. She has been a full professor in
Computer Science at Linköping University since 1988. She is
Chairperson of the Swedish Section of the IEEE Chapter for
Computer/Software and subject area editor for database
systems in the Journal of Systems Architecture.

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/docs/hotspot/gc1.4.2
http://java.sun.com/docs/performance/appserver/AppServerPerfFaq.html
http://java.sun.com/docs/performance/appserver/AppServerPerfFaq.html
http://java.sun.com/docs/performance/appserver/AppServerPerfFaq.html
http://www.106.ibm.com/developerworks/ibm/library/j-berry/
http://www.106.ibm.com/developerworks/ibm/library/j-berry/

	Performance of the Java security manager
	Introduction
	The Java security manager
	Test design
	Results
	Memory penalty
	Time penalty
	Different permissions
	Permissions and permission collections
	Protection domains
	Policy file

	Java virtual machine options
	Comments on hprof

	Advice to application developers
	Conclusion
	Appendix
	References

