
Semantic Service Markup with SESMA

Joachim Peer
MCM Institute University of St. Gallen

Blumenbergplatz 9
9000 St. Gallen, Switzerland

joachim.peer@unisg.ch

ABSTRACT
This paper presents the XML based service markup format
SESMA. The proposed language aims to increase the us-
ability of semantic Web service descriptions by presenting
a compact syntax, providing convenient support for nonde-
terministic services and by aligning the annotation format
with industry standards like WSDL and BPEL. The present
paper describes the design goals of the language, contrasts
it with existing work, gives an overview of syntax and se-
mantics of the language and illustrates it by a collection of
examples.

Categories and Subject Descriptors
H.3.5 [Information Systems]: INFORMATION STOR-
AGE AND RETRIEVAL On-line Information Services[Data
sharing]; I.2.4 [Computing Methodologies]: ARTIFICIAL
INTELLIGENCE Knowledge Representation Formalisms and
Methods[Semantic networks]

Keywords
semantic Web services, annotation, XML, WSDL, BPEL

1. INTRODUCTION
Web services are distributed software components that

can be exposed and invoked over the internet using stan-
dard protocols. This concept was put forward by major IT
companies like Microsoft, IBM and Sun as a Web-compatible
solution for distributed computing, with the particularly at-
tractive property of being a vendor neutral approach, cre-
ated around a collection of open standards, such as WSDL,
SOAP, UDDI and BPEL.

Web services communicate with their clients and with
other Web services by sending XML based messages over
the internet. The signatures of the operations a Web service
offers and the message formats it supports form its syntacti-
cal interface, which is commonly captured by a Web Service
Description Language (WSDL [7]) document.

WSDL allows for decoupling abstract descriptions of ser-
vice types (called port types) from concrete service instances.
Therefore, a single port type description can be used to de-
scribe the interface of several services. This allows for the
definition of standardized service interfaces : Participants
with a common interest can jointly reach agreements on

Submitted to the WSS workshop at WWW’05

the semantics of those descriptions. Based on such agree-
ments, client applications may be crafted to use the Web ser-
vices, and complex processes involving several services may
be composed, for instance using the BPEL4WS [3] process
description language.

A limitation of this approach becomes immanent when
services diverge from the initial agreements. For instance,
when a service changes its implementation (e.g. to refine
its service offerings), its semantics and probably its syntac-
tic interface will change. Since there is no formal machine
interpretable connection defined between the semantics and
the syntactic interface, human intervention is needed to de-
cide whether the service is still compatible with the agreed
semantics or not.

The root of this problem is that the descriptions are mono-
lithic in the sense that the semantics of the descriptions is
implicitly hidden in the syntactic structure.

A way of addressing this problem is to decouple the se-
mantics from the syntax. This can be done by annotating
the service interface with a syntax-independent specification
of the service’s meaning and behavior. This descriptions
should have a formal foundation, such that it is eligible for
automated processing.

However, among the lessons learned from earlier attempts
of formal software component description is that it is crit-
ically important to impose restrictions on the description
framework to maintain practical usability: The formal de-
scription language must be simple and intuitive enough to
be successfully applied by users in the software industry and
its intrinsic computational complexity must be kept low.

Our approach is to view service descriptions as assemblies
of simple coarse grained building blocks with well established
semantics, glued together using a very reduced logical for-
malism. The modesty of the logical formalism forces anno-
tators to find agreements over the basic semantic building
blocks instead of creating arbitrarily fine grained world ax-
iomatizations that are too complex to reason with. We think
that this middle ground between fine grained axiomatic se-
mantic markup and purely syntactic monolithic descriptions
serves the needs of Web agent- and Web service-developers
best.

The remainder of this paper is structured as follows: Sec-
tion 2 describes related work and the motivation for SESMA.
Sect. 3 provides an overview of the proposed format. Sec-
tion 4 then describes the core of SESMA, the functional
profile of service and processes and Sect. 5 describes the
nonfunctional profile. In Section 6 a formal account of the
precise meaning of the language constructs is given, followed



by a couple of examples in Sect. 7 and a summary in Sect. 8.

2. EXISTING WORK AND MOTIVATION
In the following we will briefly describe the two major

semantic Web service efforts already in place and then mo-
tivate our proposal.

2.1 OWL-S
A very influential work in the area of semantic Web ser-

vice description is OWL-S [6]. OWL-S is an ontology for
service description based on the Web Ontology Language
(OWL [1]). The OWL-S ontology consists of the following
three parts: (i) a service profile can be used to provide de-
scriptions that contains a high level description of the anno-
tated service, its operations and parameters. This informa-
tion aims to support service advertising and discovery. (ii)
OWL-S defines the process model ontology, which can be
used to describe a service in more detail. Service operations
are modeled as atomic processes, which can have any num-
ber of inputs, outputs, preconditions (which must all hold in
order for the process to be successfully invoked) and effects
(that will hold after carrying out a service). Outputs and
effects can depend on conditions that must hold at the time
the process is performed. Moreover, atomic processes can
be embedded in more complex process structures, i.e. com-
posite processes, which combine atomic processes and other
composite processes using workflow control constructs like
sequence, selection, iteration and concurrency. (iii) OWL-
S defines a grounding ontology, which provides vocabulary
to define bridges between semantic OWL-S annotations and
concrete service instances.

2.2 WSMO
Another major Web service framework is the Web Ser-

vice Modeling Ontology (WSMO [9]). WSMO relies on four
major components inspired by the Web Service Modeling
Framework (WSMF [2]):

(i) it defines a framework for ontologies, which can contain
concepts, relations, functions, instances and axioms to de-
scribe various domains on abstract or concrete levels. (ii) it
defines an ontology for service description. This ontology en-
compasses a collection of recommended non-functional prop-
erties, a capability description and an interface description.
The capability description allows to specify services using
preconditions, assumptions, postconditions and effects, sim-
ilar to OWL-S’ notion of inputs, preconditions, outputs and
effects. An interface description defines choreographies and
orchestrations, which are communication patterns that de-
scribe the client’s interaction with the defined service and
with other services in order to achieve the specified func-
tionality. (iii) WSMO provides a standard representation
of goals. These elements allow to specify the client’s objec-
tives when invoking a Web Service. (iv) WSMO introduces
the concept of mediators, which allow to specify transforma-
tions between related goals, ontologies and services. Media-
tors can be defined to resolve heterogeneity problems and to
enable interoperability between heterogeneous vocabularies
and services.

2.3 The SESMA Design Goals
Why is there a need for the SESMA approach, with these

comprehensive frameworks already in place? The motiva-
tion behind SESMA was the desire for a simple, easy to

use annotation format that allows a tight integration with
the existing Web service standards WSDL, SOAP, BPEL
and XML. This high level goal encompasses several design
aspects. In particular, SESMA should:

• provide an XML based syntax; XML is well suited to
provide declarative markup, is widely spread in the
developer community and has strong tool support.

• provide important modeling constructs like logical vari-
ables and formulas as first class citizens that fit well
into the language framework, both syntactically and
conceptually.

• provide precisely defined semantics : In this paper we
describe a state transition system-based model that
provides the precise semantics of SESMA descriptions.

• provide support for nondeterministic services : SESMA
allows to define conditions that are evaluated directly
after a service execution to determine whether or not
the desired effects have occurred.

• be truly complementary to existing standards :
SESMA does not aim to reinvent any of the existing
Web service description and Web service process de-
scription standards (e.g. WSDL, BPEL4WS). SESMA
only provides markup to annotate those description
formats, in order to support automatic reasoning over
service and process descriptions.

• be extensible, i.e. usable beyond the current standards
WSDL, BPEL and SOAP: To this end, we exploit the
XML namespace framework which allows us to keep
SESMA open for future requirements.

While design goals such as precisely defined semantics,
support for nondeterministic services and extensibility are
also relevant to OWL-S and WSMO, SESMA differs from
the existing approaches regarding several other criteria:
OWL-S, for instance, gives a strong priority to flexibility
and Semantic Web standard compliance; it builds on top of
RDF and OWL, which is considerable more complex to use
than XML, especially when add-ons like SWRL are consid-
ered.

Another difference between SESMA and the OWL-S and
WMSO approaches is that SESMA does not provide any
constructs for explicitly modeling composite processes. In-
stead, SESMA allows to annotate existing process descrip-
tions, e.g. BPEL descriptions, to leverage the process infor-
mation (control flows, data flows) that are already present in
the (BPEL) document. SESMA annotations are only added
to give the complementary information about the seman-
tics (e.g. preconditions and effects) of Web services pro-
cesses and their components. In contrast, OWL-S uses its
own process modeling ontology, and WSMO provides an Ab-
stract State Machine-based process framework for modeling
choreographies and orchestrations.

3. OVERVIEW OF THE SESMA FORMAT
In principle, SESMA annotations can be used to markup

all kinds of computational entities on the internet. Currently
WSDL based Web services and BPEL based processes are
the supported targets of SESMA annotations. The labeled
arrows in Fig. 1 illustrate the relations between SESMA and



the Web service and process description standards WSDL
and BPEL:

SESMA
Annotation

WSDL
Service

Description

WSDL
Process
Interface

BPEL
Process

Definition

presents

(1)
(3)

(2)

Figure 1: SESMA, WSDL and BPEL

1. SESMA can be used to annotate service descriptions
based on WSDL.

2. SESMA can be used to annotate WSDL based process
interfaces, i.e. documents that describe the public op-
erations and message formats of a BPEL process.

3. SESMA can be used to directly annotate fragments of
BPEL process definitions.

A SESMA annotation consists of two parts: a functional
profile, which describes the operational aspects of the ser-
vice (or process) and a non-functional profile which allows
for semantic annotation of the service (or process) as a whole
(e.g. information about the provider, quality of service guar-
antees)

The XML fragment below shows the skeleton of a SESMA
Web service annotation:

<annotation target="WSDL-1.1"
xmlns:wsdl="http://schema.org/sesma/wsdl"
wsdl:url="http://some.com/GigashopService?wsdl"
wsdl:serviceName="GigashopServiceService">

<!-- the annotated operations -->
<functional-profile>

...
</functional-profile>

<!-- other properties of the service -->
<nonfunctional-profile>

...
</nonfunctional-profile>

</annotation>

To distinguish the various different target formats, SESMA
provides an attribute target for its top level element anno-
tation. The value of that attribute is set according to the
target format described, e.g. target=’WSDL-1.1’ in case of
WSDL 1.1. and target=’BPEL4WS-1.1’ in case of the cur-
rent BPEL version. Software agents can inspect this value
to determine the exact type of service or process description
format they are dealing with, to find out whether they can
process this format or not.

Further, SESMA uses qualified namespaces to provide re-
trieval information related to the target format, e.g. wsdl:url
refers to the URL where the annotated WSDL file can be
found and wsdl:serviceName to refer to the name of the an-
notated service.

Analogously, the qualified attribute bpel:url refers to the
URL of the annotated BPEL document and bpel:name refers
to the name of the annotated process.

It is assumed that the semantic Web agent retrieves the
referred documents, correctly interprets the syntactic de-
scriptions they inclose1, then parses the semantic annota-
tions provided by the SESMA document and finally puts
the complementary pieces together to get the complete pic-
ture of the annotated Web service or process.

In the following, we describe the core part of SESMA, i.e.
the markup constructs for expressing the functional aspects
of Web services and processes.

4. THE FUNCTIONAL PROFILE
The functional profile provides information about the se-

mantics of annotated computational entities and their ac-
tivities. Two types of basic activities are supported:

• A service operation is a basic atomic activity a service
provides; depending on the transmission model of the
operation, it can be invoked by the client (e.g. request-
response or one-way messages) or it can be started by
the service (e.g. notification messages).

• A process activity is a subset of a process definition.
Process activities can be atomic (i.e. service invoca-
tions) or structured (e.g. sequence of activities, selec-
tions, iterations, concurrent executions).

For the rest of this document, we will use the term activity
to refer to both service operations and process activities.

As shown in Fig. 2, every activity may be described by
an optional precondition and a number of results, whereby
a result may be described either by an effect or a knowledge
effect formula. Each result may optionally have a secondary
precondition and a success condition. Each activity has a
number of variable groundings. The meaning of all these
constructs will be informally described in the next para-
graphs.

1

*

Activity Result

Effect

Success-
condition

0..1

1

Secondary
Precondition

1

0..1

Functional
Profile

1 *

SESMA
Annotation

0..1
1

Precondition
0..1 1

Non-functional
profile

Knowledge-
effect

Variable
grounding

1

*

0..1 1

Figure 2: The functional profile of a service

Each activity that should be made available to semantic
Web agents needs to be marked up, using an <act-def>

1Naturally the agent must be aware of the meaning of the
technology specific information in order to make use of it.



element. Below we show an example of an annotation of a
WSDL-based operation, which is identified by its name and
WSDL port type:

<act-def wsdl:name="activateUser"
wsdl:portType="RSAFuncsSoapPT">

<!-- precondition
and result formulas -->

</act-def>

If the activity to be described is part of a BPEL process,
then SESMA provides two ways of pointing to the annotated
process activity:

• If the process activity is explicitly named by a unique
name attribute in the BPEL document, then the bpel:name
attribute can be used to refer to the annotated process
activity.

• If the process activity has no unique name, then the at-
tribute bpel:path can be used, which contains an XPointer [8]
expression identifying activity to be annotated.

For instance, if the process activity to be annotated is
the second top-level sequence-element in the process, the
following expression can be written:

<act-def bpel:path="process/sequence[1]">
<!-- precondition
and result formulas -->

</act-def>

4.1 Markup of Formulas
Before we go on to discuss the (precondition and result)

constructs used to annotate activities, we discuss the markup
of logical formulas used to build those constructs.

4.1.1 Atomic Formulas

<s:user-credentials
username="?user"
password="?pwd" />

Atomic formulas represent logical relations and are writ-
ten as XML elements: The namespace-qualified name (QName)
of the XML element represents the predicate of the relation;
the attributes of the XML element represent the relation’s
parameters. In the context of the semantic Web, the predi-
cate can be interpreted as the concept defining the relation
and the parameters can be seen as the properties of the con-
cept instance(s), as pointed out by [5].

For instance, in the example above, the concept user-

credentials in a namespace s is used, and statements in-
volving the properties username and password are made.
The concepts and properties may be defined using arbitrary
schema languages. The only imposed requirement is that
the object instances classified by the schema language need
to be uniquely identifiable and can be described by a col-
lection of property values (i.e. relations with other objects);
languages like RDF Schema and OWL fulfill this require-
ment.

Variables must start with a question mark ’?’ in order
to distinguish them from constants. Complex formulas are
built by combining atomic formulas with the logical con-
structors described below.

4.1.2 Negation

<not>
<s:logged-in user="?user"/>

</not>

A negation of a formula (both atomic and complex ones)
is constructed by wrapping the formula to be negated into
a <not> element.

4.1.3 Conjunctions

<and>
<s:logged-in user="?user"/>
<s:in-catalog item="?item"/>

</and>

The conjunction of two or more formulas is constructed
by placing the formulas inside an element <and>.

4.1.4 Disjunction

<or>
<s:has-credit-card type="visa"/>
<s:has-credit-card type="mastercard"/>

</or>

The disjunction of two or more formulas is constructed by
placing the formulas inside an element <or>.

4.1.5 Implication

<imply>
<!-- antecedent -->
<s:in-catalog item="?item"/>
<!-- consequence -->
<s:sell item="?item"/>

</imply>

A logical implication antecedent ⇒ consequence is con-
structed by placing the antecedent and the consequence into
an element <imply>, whereby the antecedent is the first
child, and the consequence formula is the second child of
the <imply> element.

A similar construct is the <when> construct. The differ-
ence is that the antecedent of the <imply> construct refers to
the current state of the world, while the <when> construct is
only used in result formulas and its antecedent refers to the
state before the activity was carried out. A more detailed
formal account of these issues is given in Sect. 6.

4.1.6 Universal Quantification

<forall>
<!-- list of quant. variables -->
<var name="?item" />
<when>
<s:in-cart service="gservice.com" item="?item"

count="?cnt" />
<s:possess client="$client" item="?item"/>
</when>

</forall>

The universal quantification of a formula can be expressed
by placing the formula into an element <forall>. Each
variable to be quantified has to be put into an element <var>
with a required attribute name representing the name of the
variable.



The reader may have noticed that certain parameters in
the examples above have a leading dollar sign, e.g. $client.
These identifiers represent constants which need to be re-
placed at runtime by the actual value. For instance, the
identifier $client would need to be replaced by the URI of
the agent that actually invokes the activity. Another identi-
fier that may be useful in certain situations is $timestamp,
which is to be substituted at runtime by the current time.

4.2 Preconditions of Activities
A precondition is a formula that describes the require-

ments that must hold upon service execution in order to
achieve any of the activities’s results. If a precondition is
not fulfilled and an activity is still executed, the results are
undefined.

The following example shows a precondition that states
that the activity can only be carried out on a Monday and
if the caller is a member of MyCompany. The namespace
prefixes n and m are referring to some external vocabularies.

<precondition xmlns:n="http://biz.org/voc"
xmlns:m="http://my.com/def">

<and>
<n:day-of-week day="Monday"/>
<n:have-membership member="$client"

organisation="m:MyCompany"/>
</and>

</precondition>

4.3 Effects of Activities
An agent that invokes an activity with a valid precondi-

tion, can expect that the effect formula will evaluate to true
in the world state after the activity is executed, as long as
no success condition exists (cf. Sect. 4.6 below) and as long
as no error occurs.

For instance, to describe the effect of an activity that pur-
chases an item from an e-commerce site, the following an-
notation could be created, representing the transfer of own-
ership over the item:

<effect>
<s:possess owner="$client" item="?item"/>

</effect>

4.4 Knowledge Effects of Activities
Very common in Web Service environments are effects

that provide the caller some information but do not have
world-altering effects. To model these kinds of effects, the
markup element <knowledge-effect> is provided.

As an example, consider the following knowledge effect
below; the meaning of this effect is that the price ?p of the
requested item ?item gets known to the agent who invokes
the activity without changing the world state. A formal ac-
count of the semantics of knowledge-effects is given in Sec-
tion 6.

<knowledge-effect>
<s:price-of item="?item" price="?p" />

</knowledge-effect>

An activity can have (several) combined effects and knowl-
edge effects. This allows, for instance, to model an activity
that provides information (⇒ knowledge effect) and charges
for the information (⇒ effect with side effects, e.g. deposi-
tion of money).

4.5 Secondary Preconditions of Results
While preconditions as presented above in Sect. 4.2 de-

scribe conditions that are required for an activity as a whole
(i.e. for all of its possible results), secondary preconditions
describe conditions that are required just for a specific result
(i.e. effect or knowledge effect)

To illustrate this, let us assume that an activity has a
precondition P and two results A and B, whereby A has a
secondary precondition SPA and B has no such secondary
precondition. Under these circumstances the result A can
only be expected if (P ∧ SPA) holds, whereas B does only
require P to hold.

Below we show how a secondary precondition is attached
to a result definition:

<effect>
<!-- 2nd-ary precondition -->
<secondary-precondition>

...
</secondary-precondition>
<!-- the effect -->
...

</effect>

The separation of conditions into preconditions and sec-
ondary preconditions is a syntactic means to avoid redun-
dant markup.

4.6 Success Conditions of Results
The success of an activity may be undetermined until the

execution is actually over. For instance, an operation that
sends e-mail messages may return an error report in case
the message could not be delivered.

To provide agents with a tool to cope with this kind of
nondeterministic behavior, we provide a success-condition

construct that is attached to an activity’s result formula.
Unlike the other conditions described above, a success-
condition can be represented by any type of expression lan-
guage that is supported by the agent and capable of return-
ing a Boolean value. The interpreter required to evaluate
the expression needs to be specified by the attribute lang.

As an example, consider the success condition of the effect
formula shown below; the expression language is Java(TM),
and the statement tells the agent that the execution was
successful if the value of output variable ?status equals the
string c200, representing some status code. A value different
than c200 would yield a return value of false, indicating that
the specified effect of the activity was not achieved2.

<effect>
<success-condition lang="java">

outputs.get("?status").equals("c200")
</success-condition>

<!-- effect formula follows here -->
...

</effect>

It should be clearly distinguished between the concept of
success conditions described in this section and the concept
of preconditions and secondary preconditions described in
Sect. 4.5: A (secondary) precondition states that an effect
occurs only if its condition is true prior to service execution.

2Note that the example assumes an API that allows to ac-
cess the values of the outputs via a data structure outputs



In contrast, a success condition does not need to be true
before service execution, but it must be true after service
execution, to allow the effect to occur legally. This will be
elaborated formally in the Sect. 6.

4.7 Grounding the Variables
In the previous sections we used variables in logical for-

mulas to characterize the semantics of activities. We quietly
assumed that the actual variables will be bound to actual
values during runtime, i.e. when a user sends a message to
a service or when a service responds to the user.

To provide semantic Web agents with the means to create
the correct variable bindings at runtime, we need to specify
the location of each of the variables in the input and output
messages of activities.

4.7.1 Inputs
Variables whose values are defined by the input the agent

sends to the service are defined within an element <input>:

<input>
<var name="?to" wsdl:part="ToAddress"/>
<var name="?from" wsdl:part="FromAddress"/>
<var name="?subject" wsdl:part="Content"

wsdl:path="Subject"/>
<var name="?msg" wsdl:part="Content"

wsdl:path="Message"/>
</input>

4.7.2 Outputs
In analogy to inputs, output definitions specify the con-

nection between the data pieces of the service output and
the logical variables used in the annotation.

In the example below, three data pieces are identified and
connected to the variables ?x, ?c and ?p, referring to the id,
color and price of some Item.

<output>
<var name="?x" wsdl:part="result"

wsdl:path="Item/id"/>
<var name="?c" wsdl:part="result"

wsdl:path="Item/color"/>
<var name="?p" wsdl:part="result"

wsdl:path="Item/price"/>
</output>

As shown in the examples above, an (input or output)
variable is introduced by an element var and its name is
defined by an attribute name. In case the underlying de-
scription format is WSDL, we use an attribute wsdl:part

to connect the variable to the correct WSDL message part
and we use an optional attribute wsdl:path to specify the
XPATH of the referenced piece of data within the given mes-
sage part (if the message is a complex one).

This way, pieces of data sent from and to the service can
be connected to variables used in the various formulas used
to describe the activities semantics.

5. THE NON-FUNCTIONAL PROFILE
In addition to the functional profile, each service or pro-

cess can be described by a non-functional profile that may
be used to provide additional data about it (e.g. creator,
provider, quality of service guarantees).

The nonfunctional (qualitative) profile consists of an ar-
bitrary number of entries, whereby each entry is given by a

unique key and a number of values for that key. This table-
based schema is both easy to use and extensible. We do not
define any mandatory entries nor do we specify syntax or
semantics of possible entry types.

Instead of plain (unstructured) text, URIs of standardized
concepts may be used to describe the qualitative profile en-
tries, which is the added value of semantic annotation over
text based description, since it simplifies the automatic eval-
uation. As an example, a non-functional profile of a travel
planning service could look as follows:

<!ENTITY owl-s "http://www.daml.org/services/owl-s/1.1">
<!ENTITY travel "http://some.com/business-onto">
<nonfunctional-profile

xmlns:owl-s="&owl-s;#Profile.owl">
<entry key="owl-s:serviceName>

<value>Joe’s Travel-o-Rama</value>
</entry>
<entry key="owl-s:serviceCategory">
<value>&travel;#TravelAgency</value>
<value>&travel;#TravelInsurance</value>
</entry>

</nonfunctional-profile>

6. FORMAL SEMANTICS OF THE LAN-
GUAGE

This section provides a formal specification of the seman-
tics of the SESMA language. We start by defining the se-
mantics of SESMA formulas, then we describe the idealistic
worlds assumed in our considerations, followed by a descrip-
tion of the intended semantics of SESMA preconditions, suc-
cess conditions, effects and knowledge-effects.

6.1 Semantics of Formulas
The SESMA markup relies on logical formulas to express

the characteristics of activities, for instance the precondition
and effect formulas.

The syntax of formulas in SESMA was informally pre-
sented by example in the Sect. 4. A formal presentation
of the syntax is provided by the BNF grammar obtainable
from3. To define the semantics of the formulas used to de-
scribe preconditions and effects, we provide a model theo-
retic specification.

First, we introduce an interpretation I which is a triple
(∆, I[c], I[p]) with:

• ∆ being a non-empty set, the “universe”.

• a function I[c] ⊆ ∆0, which maps every constant sym-
bol (i.e. 0-ary function symbol) to an element in ∆.

• a function I[p] ⊆ ∆n, which maps every n-ary predi-
cate symbol p to an n-ary relation ∆n of the domain.

Since SESMA formulas can contain variables, we need to
supplement interpretations with variable assignments, i.e.
valuations. A valuation for a set of variables V regarding a
universe ∆ is a function α : V → ∆.

Given an interpretation I and a valuation α, we define a
function Iα for the interpretation of terms:

• Iα[X] = α(X), for all X ∈ V,

• Iα[c] = I[c], for all constant symbols c.

3http://elektra.mcm.unisg.ch/sesma/ebnf.txt



Now that we have defined how terms (i.e. variables and
constants) are evaluated in Iα, we proceed to inductively
define the evaluation of SESMA formulas. These definitions
are summarized in Tab. 1. We use the following conventions:
(i) The symbols A and B refer to well formed SESMA for-
mulas. (ii) If a formula F is true in an interpretation Iα, we
say that Iα is a model of F and we write Iα |= F .

6.2 Representing World State
We assume that the world is represented in terms of state

descriptions. A state can be seen as a database of exten-
sional knowledge, i.e. of ground atomic formulas. Formally,
we define a world state s as a conjunction of atomic formulas
F1 ∧ ... ∧ Fn. Consequently, for each Fi in s holds s |= Fi,
with 1 ≤ i ≤ n.

As illustrated by Fig. 3, we distinguish between the global
state s of a world and the state knowledge sA of an agent
A who reasons about this world. We assume that sA ⊆ s.
This means that an agent may have incomplete knowledge,
but we do not assume that it has wrong knowledge.

sA

s

s'A

s'

eff
actact

<URI,Pre,Res,Var>

preact

(a) World prior to
execution of activity  act

(b) World after the
execution of activity  act

Figure 3: The world and its dynamics are repre-
sented by states and state transitions

We assume that the state remains the same over time un-
less explicitly changed by an activity. For instance, if an
agent checks the availability of a product at time t1, then it
assumes that the retrieved information is still valid at some
point t2 < t1, as long as it did not invoke an activity that
might have changed this fact in between; this assumption is
called the invocation and reasonable persistence (IRP) as-
sumption [4].

However, if an activity with effects is successfully exe-
cuted, the system progresses from the state s to a successor
state s′. This is illustrated by Fig. 3: The state s fulfills
the precondition preact, then activity act is carried out, and
the world progresses from s to s′, which satisfies the effect
eff act.

6.3 Semantics of Activities
In the SESMA model, each service or process consists of a

set of activities. Each activity can be written as a quadruple
act = 〈URI, Prec, Res, V ar〉, where URI(act) is a unique
identifier of the activity, Prec(act) is the optional precon-
dition formula of the activity, Res(act) is the set of pot.
results of the activity and Var(act) are the variables used in
the precondition and result formulas.

Each result r ∈ Res(act) can be either an effect or a
knowledge effect ; each r may have a secondary precondition
SP (r) and a success condition SC(r).

6.3.1 Conversation Data Sets
Conversation data sets capture the relevant data tokens

that are exchanged between clients and services at runtime.

Conversation data sets are an important prerequisite for
evaluating SESMA formulas.

A conversation data set is a set of substitutions {θ1, ...θn}.
We denote a substitution as a finite set of the form θ =
{x1/t1, ..., xn/tn}, where each xi is a distinct variable and
each ti is a constant, such that xi 6= ti. Note that the vari-
ables of an activity act are defined in the set V ar(act) (cf.
Sect. 4.7). A substituted formula Fθ is a variant of formula
F where all variables x in F are replaced by a constant c if
there is an element x/c ∈ θ.

Let us consider the role of conversation data sets and sub-
stitutions in service execution:

• Substituting input variables: When invoking an activ-
ity act, the agent specifies the values certain input vari-
ables should have. This specification is represented by
a conversation data set I. Each substitution θ in I con-
tains at most one term ti for every variable Xi of the
input variables defined for the activity (cf. Sect. 4.7).

• Substituting output variables: Analogously, the values
returned by the service are captured by a conversation
data set O, which contains one or more substitutions
ϑ, depending on the type of activity.

Some activities (e.g. the getPrice operation in the
example in Sect. 7) return just a single substitution,
while other operations (e.g. the getItemList opera-
tion in the same example) return a set of substitutions.
Each substitution contains at most one term to for ev-
ery variable Xo of the output variables defined for the
operation (cf. Sect. 4.7).

Let us illustrate this by some examples: For a particular
invocation of an operation getPrice, the user might define
the following input data set I={{?item/MousePad }}, and
the service might return an output data set O={{?price/4.00}}.
An operation getItemList, on the other hand, may return
a data set O below, whereby the variables ?item, price?,
?title, ?desc are defined in the markup of the operations (cf.
Sect. 4.7).

O = { {?item/2243, ?title/"MousePad", ?price/1.95
?desc/"Plastic mouse-pad, red"},

{?item/2332, ?title/"SuperMouse", ?price/24.00
?desc/"wireless (IR) mouse for PC and MAC"} }

Next, we define how conversation data sets can be com-
bined. We need combined conversation data sets to materi-
alize effects (cf. Sect. 6.3.4). We start by defining the combi-
nation of substitutions: Given two substitutions θ = {x1/t1,
..., xk/tk} and ϑ = {xm/tm, ..., xn/tn}, we define the joint
substitution θ+ϑ = {x1/t1, ..., xk/tk, xm/tm, ..., xn/tn}. Given
an input data set I and an output data set O, we define the
combined conversation data set C = I ⊗ O as follows: For
each θ ∈ I and each ϑ ∈ O, C contains an element θ + ϑ.

6.3.2 Evaluating Preconditions
The precondition is evaluated against the state s, whereby

the values in the conversation data set I provide the substi-
tutions for the variables in the precondition. A precondition
P is satisfied iff s |= Pθ holds, for every substitution θ in
the input data set I.

Since the agent is only aware of the subset sA of s it must
test the precondition against sA. As long as the agent can



Name Formula construct F Semantics: Iα |= F...
Atomic For-
mula

<P a1 = t1, ..., an = tn /> iff (Iα[t1], ..., Iα[tn]) ∈ Iα[P ],
whereby P is the name of a predicate

Negation <not>A</not> iff (Iα 2 A)
Conjunction <and>A B</and> iff (Iα |= A) and (Iα |= B)
Disjunction <or>A B</or> iff (Iα |= A) or (Iα |= B)
Implication <imply>A B</imply> iff (Iα 2 A) or (Iα |= B)
Universal <forall> iff for every variable assignment α′

Quantification <var name="X"/> A differing from α in at most
</forall> the value it assigns to x, Iα′ [A]

is true

Table 1: The semantics of SESMA formulas

calculate the truth value of the precondition using the liter-
als in sA, it can conclude that the precondition is satisfied
by s as well. However, if the agent has to resort to closed
world assumption, i.e. if it assumes sA 2 L+ for some pos-
itive literal L+ /∈ sA, then there is the possibility that the
evaluation against sA differs from the evaluation against s.

6.3.3 Success Conditions
As already discussed, the success of a Web service oper-

ation may be undetermined until the execution is actually
over; more generally, it is not clear a priori which of the re-
sults defined for the operation do occur. To provide agents
with a tool to cope with this kind of uncertainty, the SESMA
markup schema provides a construct success-condition

which can be attached to each of the operation’s results (cf.
Sect. 4.6).

To decide which effects really occurred after an activity
act was invoked, the success-conditions SC(r) of the results
r ∈ Res(act) need to be evaluated by the evaluation function

eval(SC(r), sA, I, O) 7→ {>,⊥}
The inputs of the evaluation function are the success con-
dition SC of the result r whose success is evaluated, the
pre-execution state sA , the input data set I and the out-
put data set O. The output of the evaluation function is a
Boolean value, reflecting whether or not a defined result did
indeed occur and if the result formula can be materialized.
The calculus used to determine the result depends on the
language attribute specified by the user (cf. Sect. 4.6).

If no success condition is defined for a result r, then eval
returns true by default.

6.3.4 Materializing Effects
If an activity is executed (and if no error occurred), then

the state s′A can be calculated by adding the materialized
effects whose optional success condition did not evaluate to
false.

An effect formula E is materialized iff s′ |= Eϑ holds for
every ϑ in the combined data set I⊗O. We write A |= B iff
every interpretation I that is a model of A is also a model
of B.

These prerequisites allow us to specifiy the semantics of
the when construct, which is only found in result formulas,
not in precondition formulas: After a transition from state
s to state s′, the expression “<when>A B</when>” is true in
state s′ if and only if (s 2 Aθ) or (s′ |= Bϑ) holds for all
θ ∈ I and ϑ ∈ (I ⊗ O), assuming that A and B are well
formed SESMA formulas.

Having formally defined all relevant language constructs
of SESMA, we can proceed to formally describe the truth
value of an arbitrary atom A in a state using the function

val : P × S 7→ {>,⊥}
which defines for each predicate in the sets of predicates P
and for each state in the set of possible states S whether or
not the predicate is true in that state. Given a state transi-
tion from state s to s′ by invocation of activity act involving
the conversation data sets I and O, the function is defined
as follows:

val(s′, A) =





>, if s |= Pre(act)θ for every θ ∈ I
and if there is a result r ∈ Res(act)
and ∃ϑ ∈ (I ⊗O) such that rϑ |= A
and s |= SP (r)θ for every θ ∈ I
and eval(SC(r), sA, I, O) = >

⊥, if s |= Pre(act)θ for every θ ∈ I
and if there is a result r ∈ Res(act)
and ∃ϑ ∈ (I ⊗O) such that rϑ |= ¬A
and s |= SP (r)θ for every θ ∈ I
and eval(SC(r), sA, I, O) = >

val(s, A), elsewhere.

The first case states that A is true in the new state s′

if (i) the precondition formula (whose variables are substi-
tuted by the input values) is satisfied by the pre-execution
state s and if (ii) A is a consequence of a result formula
r (whose variables are substituted by the input and out-
put values) and if (iii) the optional secondary precondition
SC(r) is true in s and if (iv) the evaluation function eval
returns true after service execution. Analogously, the sec-
ond case describes that A is not true in the new state, if
¬A is a consequence of a result of the operation. The third
case describes the situation where A is not affected by the
execution of the operation, which addresses the frame prob-
lem of logical action descriptions. The definition does not
deal with contradictory result definitions (e.g. having both
P and ¬P as an effect).

6.3.5 Semantics of Knowledge effects
From the agent’s perspective, a knowledge effect is treated

(and materialized) just like a normal effect. Nevertheless –
as already pointed out in Sect. 4.4 – there is a difference,
which is worth some additional elaboration: A knowledge
effect KE of an activity describes an effect without side ef-
fects, i.e. it does not contribute to any changes occurring
between s and s′, but it may alter the world view sA of the
agent: the statement

[(s′ |= KEϑ) ⇒ (s′A |= KEϑ)]∧[(s′ 2 KEϑ) ⇒ (s′A 2 KEϑ)]



sA

s s'

act
<Pre,K-Eff>

(a) World prior to
execution of activity  act

(b) World after the
execution of activity  act

s'A

P
P

Figure 4: Meaning of a Knowledge Effect

holds, for every ϑ ∈ (I ⊗O).
Figure 4 visualizes the meaning of a knowledge effect. The

activity that triggers the transition depicted in Fig. 4 has
a knowledge effect P . The agent is not aware of it in the
state sA, but after execution of the activity, P is known to
the agent in state s′A.

7. ILLUSTRATING EXAMPLES
In the following we present examples of SESMA based

service and process markup; the domain of the examples
is an e-shopping domain, where several services offer vari-
ous operations to retrieve information about goods and to
purchase those goods.

We start by illustrating the semantic markup of a shop-
ping mall service megashop.com and we describe how the
precondition, result and success-condition formulas guide
the interaction between agents and the described service.
The WSDL description of the megashop.com-service can be
found online at4. The service offers three operations, which
are described below:

• buyItem: This operation expects a product ID, as de-
fined by an EAN number, and a credit card number
and expiration date as inputs. As a result, the owner-
ship of the product will be transferred to the client.

• getPrice: This operation takes an EAN number of a
commodity good as input and returns the price of it.

• getItemList: This operation does not have any in-
puts; when called, it returns the list of products in
the catalog of the service. For each product, the EAN
number, title and a description are presented.

7.1 The SESMA Annotation of the Service
The following SESMA description captures the semantics

of the service (and its operations) relevant to our examples:

<annotation
xmlns:wsdl="http://schemata.org/sws/wsdl"
xmlns:s="http://foo.com/preds#"
wsdl:url="http://sws.mcm.unisg.ch:8080/axis/services/
MegashopService?wsdl"
targetNamespace="http://sws.mcm.unisg.ch:8080/axis/
services/MegashopService/"
wsdl:serviceName="MegashopServiceService"
xmlns="http://schemata.org/sws/sesma">
<functional-profile>

<!-- buy an item -->
<act-def wsdl:name="buyItem"

wsdl:portType="MegashopService">

4
http://sws.mcm.unisg.ch:8080/

axis/services/MegashopService?wsdl

<input>
<var name="?item" wsdl:part="ean"/>
<var name="?cc" wsdl:part="ccNr" />
<var name="?ccexp" wsdl:part="ccExpDate" />

</input>
<precondition>

<and>
<s:have-creditcard owner="$client" nr="?cc"

expires="?ccexp"/>
<s:in-catalog vendor="megashop.com"

item="?item"/>
</and>

</precondition>
<output>

<var name="?result" wsdl:part="buyItemReturn"/>
</output>
<effect>

<!-- to be checked after invocation -->
<success-condition lang="beanshell">
!("no".equals(output.get("?result")))

</success-condition>
<!-- the desired effect -->
<s:possess owner="$client" item="?item"/>

</effect>
</act-def>
<!-- get price quote -->
<act-def wsdl:name="getPrice"

wsdl:portType="MegashopService">
<input>

<var name="?item" wsdl:part="ean" />
</input>
<output>

<var name="?p" wsdl:part="getPriceReturn"/>
</output>
<knowledge-effect>

<s:price-at vendor="megashop.com"
item="?item" price="?p" />

</knowledge-effect>
</act-def>
<!-- retrieve content of product catalog -->
<act-def wsdl:name="getItemList"

wsdl:portType="MegashopService">
<output>

<var name="?item" wsdl:part="getItemListReturn"
wsdl:path="Item/ean"/>

<var name="?title" wsdl:part="getItemListReturn"
wsdl:path="Item/title" />

<var name="?desc" wsdl:part="getItemListReturn"
wsdl:path="Item/description"/>

</output>
<knowledge-effect>

<forall>
<var name="?item" />
<and>

<s:in-catalog vendor="megashop.com"
item="?item" />

<s:has-title item="?item"
title="?title" />

<s:has-description item="?item"
description="?desc" />

</and>
</forall>

</knowledge-effect>
</act-def>

</functional-profile>
</annotation>

Note that at runtime, all occurrences of $client will be
substituted by the agent’s ID.

7.2 Ontology Concepts Used in the Samples
In the following, we describe the concepts used by the

SESMA document shown above.



7.2.1 Concepthave-Credit-Card
This concept represents the relation between agents (in

this case, Web service users) and their credit cards.

Property-
Name

Description

client the Agent who is the credit card holder.
nr the Credit Card.
expires the expiration date of the credit card.

7.2.2 Conceptpossess
This concept represents the relation between agents and

(commodity) goods. This construct is used to represent the
(transfer of) ownership during Web service transactions.

Property-
Name

Description

client the agent who legally possesses the entity
item.

item the entity possessed by the agent.

7.2.3 Conceptprice-at
This concept represents at which price services offer goods

for sale.

Property-
Name

Description

service the service who offers the item.
item the item offered by the service.
price the price at which the item is offered by the

service.

7.2.4 Concepthas-title
This concept represents the relation between wholesale

goods and their title.

Property-
Name

Description

item the item.
title the title of the item.

7.2.5 Concepthas-description
This concept represents the relation between wholesale

items and their descriptions.

Property-
Name

Description

item the item.
title a description of the item.

7.2.6 Conceptin-catalog
This relation represents whether an item is offered by a

service (i.e. “listed in the catalog”) or not.

Property-
Name

Description

service the service who offers the item.
item the item offered by the service.

7.2.7 Conceptuser-credentials
This concept represents authentication data to be used by

clients to log in at services.

Property-
Name

Description

client the client who is authenticated by the data
captured by this relation.

service the service where the client can use this
data for authentication.

uid the username.
pwd the password.

7.3 Examples of Client-Service Interplay
In the following, we illustrate how the information cap-

tured in the SESMA description from Sect. 7.1 can be used
to guide the interaction between an automated client and
the annotated service. The service has the ID megashop.com

and is described by the markup shown above in Sect. 7.1;
the identity of the client is given by the ID id.org/JohnDoe.

7.3.1 Example 1: Querying the price of a product
Let us assume the following world state s, described by

atomic formulas5

<n:in-catalog vendor="megashop.com" item="123" />
<n:in-catalog vendor="megashop.com" item="234" />
<n:has-title item="123" title="USB Mouse" />
<n:has-title item="234" title="USB Keyboard" />
<n:has-description item="123"

description="transparent USB mouse" />
<n:has-description item="234"

description="transparent USB keyboard"/>
<n:price-at vendor="megashop.com" item="123" price="99" />
<n:price-at vendor="megashop.com" item="234" price="49" />
<n:have-creditcard owner="id.org/JohnDoe"

nr="32432434" expires="12/2005" />

Further, let us define a subset sA of s, which represents
the knowledge of the agent:

<n:have-creditcard owner="id.org/JohnDoe" nr="32432434"
expires="12/2005" />

Let us now assume that the agent wants to retrieve the
price of the product “123” at vendor “megashop.com”. To
this end, the agent plans to call the operation getPrice.
Since getPrice does not have a defined precondition, the
request can be submitted without further considerations.

The input variable “?item” gets bound to “123”, the ID
of the product whose price is queried. Therefore, the con-
versation data set I for this operation call looks as follows:
I = {{?item/123}}.

After invoking the operation, the agent receives the ser-
vice’s response. The agent uses the definition of the out-
put variable ?p to extract the conversation data set O =
{{?p/99}} from the response. The combined data set I ⊗O
is {?item/123, ?p/99}.

Since no error occurred and no success condition is defined
for getPrice, the defined effect can materialize now, i.e. the
effect formula, substituted by the contents of I⊗O, is added
to the agent’s knowledge base:

<n:price-at vendor="megashop.com" item="123" price="99" />

7.3.2 Example 2: Asking for a product list
Suppose the agent wants to retrieve a list of the goods sold

by megashop. To this end, the agent considers the operation

5the formulas are qualified by the namespace n of the con-
cept definitions from Sect. 7.2.



getItemList, which can again be executed without further
checks, because no precondition is defined for it. Hence, the
agent invokes the operation, which does not have any input
data, i.e. the conversation data set I is empty.

The service then returns a SOAP document that contains
descriptions of the products currently in stock. Using the
information captured in the <output> section of the opera-
tion’s SESMA annotation, the agent can determine the fol-
lowing conversation data set O:

O = { {?item/123, ?title/"USB Mouse",
?desc/"transparent USB mouse"}
{?item/234, ?title/"USB Keyboard",
?desc/"transparent USB keyboard" } }.

Since I is empty, the data set I ⊗ O is simply O. Again,
no error occurred and no success condition exists; therefore,
the effect of this operation can be materialized: For each
element ϑ ∈ (I ⊗ O), a substitution of the knowledge effect
formula is created and added to the agent’s fact base:

<n:in-catalog vendor="megashop.com" item="123" />
<n:in-catalog vendor="megashop.com" item="234" />
<n:has-title item="123" title="USB Mouse" />
<n:has-title item="234" title="USB Keyboard" />
<n:has-description item="123"

description="transparent USB mouse" />
<n:has-description item="234"

description="transparent USB keyboard"/>

Note that s has not been modified yet, because only oper-
ations with knowledge-effects, not effects, have been invoked
so far.

7.3.3 Example 3: Purchasing a product
Suppose that the agent now wishes to purchase item “123”,

the transparent USB mouse. To this end, the agent plans
to call the operation buyItem. Before it calls the opera-
tion, the agent first tests whether the precondition formula
P of the operation is satisfied by the current state, i.e. it
test whether s |= Pθ holds, with I = {{?item/123, ?cc =
32432434, ?expires = 12/2005}}, the conversation data set
for the request. The fact base sA satisfies the precondition
and the agent submits the request to the service.

Again, the response of the service is parsed using the in-
formation found in the <output> variable definition. The
output conversion data set extracted from the service re-
sponse is O = {{?result/ok}}. Before the effect of the oper-
ation can be taken for granted, the success condition needs
to be evaluated:

<success-condition lang="Java">
!("no".equals(output.get("?result")))

</success-condition>

Since ?result, which is bound to “ok”, does not equal
“no”, the Java(TM)-based evaluation of the fragment re-
turns true, which means that the defined effect has indeed
occured and can be added to the fact base.

The data sets I ⊗O, which is used to substitute the vari-
ables in the effect formula is: {{?item/123, ?cc = 32432434,
?expires = 12/2005, ?result/ok}}. Therefore the following
atom is added to the new world state s′:

<s:possess owner="id.org/JohnDoe" item="123" />

7.4 Example of a process annotation
In the following example we illustrate how to annotate

BPEL processes in SESMA. Consider the following example
of a business process: The process takes an order from a
client which contains the IDs of a collection of products to be
purchased, along with authentication credentials and credit
card data.

The process defines the following behavior: The actor first
logs in at the defined Web service gigashop.com. Then, it
puts all desired items into the virtual shopping cart of the
service, and then it finalizes the transaction by invoking the
Web services’ checkout method. After successful execution
of the process, the user owns the desired collection of goods.

invoke
login

BPEL Process
purchaseProcess

- register
- login

- addToCart
- checkOut

Web Service
GigaShopService

invoke
addToCart

invoke
checkOut

User Agent

Order

executes
process

invokes
service

Figure 5: Example Web service process

An illustration of the process is depicted in Fig. 5. The
WSDL and BPEL definitions of the process can be retrieved
from6. The process can be annotated as follows:

<annotation target="BPEL4WS-1.1"
xmlns="http://schemata.org/sws/sesma"
xmlns:wsdl="http://schemata.org/sws/wsdl"
xmlns:s="http://foo.com/preds#"
wsdl:url="http://sws.mcm.unisg.ch:8080/axis/

services/GigashopService?wsdl"
wsdl:serviceName="GigashopServiceService"
bpel:url="http://localhost:8080/bpel/purchase_process.bpel"
bpel:name="ShoppingProcess">
<import-voc url="http://schemata.org/preds_shopping.xml"/>
<functional-profile>

<act-def name="startPurchaseProcess"
wsdl:portType="purchaseProcessPT">
<input>

<var name="?item" wsdl:part="items"
<var name="?uid" wsdl:part="username" />
<var name="?pwd" wsdl:part="password" />
<var name="?cc" wsdl:part="ccNr" />
<var name="?ccexp" wsdl:part="ccExpDate" />

</input>
<precondition>

<and>
<s:have-creditcard nr="?cc" expires="?ccexp"/>
<s:user-credentials client="$client"

server="gigashop.com"
username="?uid" password="?pwd" />

</and>
</precondition>
<effect>

<forall>
<var name="?item" />
<when>

6
http://elektra.mcm.unisg.ch/sesma/process-example.html



<s:in-catalog vendor="gigashop.com"
item="?item" />

<s:possess owner="$client" item="?item" />
</when>

</forall>
</effect>

</act-def>
</functional-profile>

</annotation>

As described in the SESMA annotation, the precondition
of the process are (i) the credentials to access the retailer
service and (ii) the availability of credit card data. The effect
of the process is that all ordered goods are in possession of
the agent after the execution, given that the goods are in
the catalog of the retailer service.

In this example, the WSDL-defined operation
startPurchaseProcess serves as the interface to the BPEL
based process definition; if such a description is not avail-
able, then it would be possible to refer directly to the main
sequence of the process:

<act-def bpel:path="/process/sequence[0]">
<!-- markup of the sequence -->

</act-def>

Similarly, other process fragments (e.g. the while loop)
could be selectively targeted via the respective XPointer ex-
pression in bpel:path.

8. SUMMARY
In this paper we presented the SESMA markup format

proposed for semantic Web service and process annotation.
The aim of the SESMA effort is to deliver a markup for-

mat that provides the language constructs needed to de-
fine the semantics of services and processes in a developer
friendly manner: This encompasses not only a concise XML
based syntax and convenient support for nondeterministic
operations but also a well defined alignment with main-
stream standards like BPEL to avoid unnecessary overlaps
with those standards.

The present paper gave an overview of SESMA’s syntax
and a detailed account of its semantics. It also discussed how
SESMA annotations can be used to characterize Web service
operations and process activities in a machine interpretable
way and it presented a collection of illustrating examples.

9. REFERENCES
[1] M. Dean, D. Connolly, F. van Harmelen, J. Hendler,

I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. OWL web ontology language 1.0
reference.

[2] D. Fensel and C. Bussler. The web service modeling
framework wsmf. Electronic Commerce Research and
Applications, 1(2):113–137, 2002.

[3] IBM, Microsoft, and BEA. Business process execution
language for web services, version 1.0, 2002.

[4] S. McIlraith and T. Son. Adapting golog for
programming in the semantic web, 2001.

[5] N. Noy and A. Rector. Defining N-ary Relations on the
Semantic Web: Use With Individuals. W3C Technical
Report (Working Draft), 2004.

[6] OWL-S Coalition. OWL Web Services 1.1,
http://www.daml.org/services/, 2004.

[7] W3C. Web Services Description Language (WSDL)
Version 1.2, 2002.

[8] W3C. XML Pointer Language (XPointer), 2002.

[9] WSMO Working Group. Web Service Modeling
Ontology (WSMO), http://www.wsmo.org, 2004.


