
 1

Querying the Web Reconsidered:
Design Principles for Versatile Web Query Languages

François Bry
Institute for Informatics
University of Munich

Germany

Francois.Bry@ifi.lmu.de

Christoph Koch
Computer Science Department
Vienna University of Technology

Austria

koch@dbai.tuwien.ac.at

Tim Furche
Institute for Informatics
University of Munich

Germany

Tim.Furche@ifi.lmu.de

Sebastian Schaffert
Institute for Informatics
University of Munich

Germany

Sebastian.Schaffert@ifi.lmu.de

Liviu Badea
National Institute for Research and

Development in Informatics
Bucharest, Romania

badea@ici.ro

Sacha Berger
Institute for Informatics
University of Munich

Germany

Sacha.Berger@ifi.lmu.de

ABSTRACT

A decade of experience with research proposals as well as
standardized query languages for the conventional Web and the
recent emergence of query languages for the Semantic Web call
for a reconsideration of design principles for Web and Semantic
Web query languages. This article first argues that a new
generation of versatile Web query languages is needed for solving
the challenges posed by the changing Web: We call versatile those
query languages able to cope with both Web and Semantic Web
data expressed in any (Web or Semantic Web) markup language.
This article further suggests that (well-known) referential
transparency and (novel) answer-closedness are essential features
of versatile query languages. Indeed, they allow queries to be
considered like forms and answers like form-fillings in the spirit
of the “query-by-example” paradigm. This article finally suggests
that the decentralized and heterogeneous nature of the Web
requires incomplete data specifications (or “incomplete queries”)
and incomplete data selections (or “incomplete answers”): the
form-like query can be specified without precise knowledge of the
queried data and answers can be restricted to contain only an
excerpt of the queried data.

1. INTRODUCTION
After a decade of experience with research proposals as well as
standardized query languages for the conventional Web and
following the recent emergence of query languages for the
Semantic Web a reconsideration of design principles for Web and
Semantic Web query languages is called for.

The “Semantic Web” is an endeavor widely publicized in 2001 by
an influential but also controversial article from Tim Berners-Lee,
James Hendler, and Ora Lassila [Berners-Lee et al., 2001]. The
“Semantic Web” vision is that of the current Web which consists
of (X)HTML and documents in other XML formats extended by
metadata specifying the meaning of these documents in forms
usable by both human beings and computers.

One might see the Semantic Web metadata added to today’s Web
documents as “semantic indices” similar to encyclopedias. A
considerable advantage over paper-printed encyclopedias is that
the relationships expressed by Semantic Web metadata can be

followed by computers, very much like hyperlinks, and be used
for drawing conclusion using automated reasoning methods:

“For the Semantic Web to function, computers must
have access to structured collections of information
and sets of inference rules that they can use to conduct
automated reasoning.” [Berners-Lee et al., 2001]

A number of formalisms have been proposed in recent years for
representing Semantic Web metadata, e.g., RDF [Klyne et al.,
2004], Topic Maps [ISO, 1999], and OWL [Bechhofer et al.,
2004]. Whereas RDF and Topic Maps provide merely a syntax for
representing assertions on relationships like “a text T is authored
by person P”, schema or ontology languages such as RDFS
[Brickley et al., 2004] and OWL allow to state properties of the
terms used in such assertions, e.g., that no “person” can be a
“text”. Building upon descriptions of resources and their schemas
(as detailed in the “architectural road map” for the Semantic Web
[Berners-Lee, 1998]), rules expressed in e.g., SWRL [Horrocks et
al., 2004] or RuleML [Boley et al., 2002], allow the specification
of actions to be taken, knowledge to be derived, or constraints to
be enforced.

Essential for realizing this vision is the integrated access to all
kinds of data represented in any of these representation
formalisms or even in standard Web languages such as (X)HTML,
SVG. Considering the large amount and the distributed storage of
data already available on the Web, the efficient and convenient
access to such data becomes the enabling requirement for the
Semantic Web vision. It has been recognized that reasonably
high-level, declarative query languages are needed for such
efficient and convenient access, as they allow to separate the
actual data storage from the view of the data a query programmer
operates on. This paper presents a novel position on design
principles for guiding the development of query languages that
allow access to both standard and Semantic Web data. The
authors believe, it is worthwhile to reconsider principles that have
been stated almost a decade ago for query languages such as
XML-QL [Deutsch et al., 1998] and XQuery [Boag et al., 2004],
then agnostic of the challenges imposed by the emerging
Semantic Web.

Three principles are at the core of this article:

 2

• As discussed above, the same query language should
provide convenient and efficient access to any kind of
data expected to be found on the Semantic Web, e.g., to
documents written in (X)HTML as well as to RDF
descriptions of these documents and even to ontologies. Only
by intertwining data from all the different layers of the
Semantic Web, that vision can be realized in its full potential.

• Convenience for the user of the query language requires the
reuse of knowledge obtained in another context. Therefore,
the query language should be based upon the principles
of referential transparency and answer-closedness (cf.
Section 2.4 below) realized by rules and patterns.
Together, these principles allow (1) for querying existing
and constructing new data by a form-filling approach
(similar to, but arguably more expressive than, the query-by-
example paradigm [Zloof, 1975]), and (2) for basic
reasoning capabilities including the provision of different
views of the same data, even represented in different Web
formalisms.

• The decentralized and heterogeneous nature of the Web
requires query languages that allow queries and answers
to be incomplete: In queries, only known parts of the
requested information are specified, similar to a form leaving
other parts incomplete. Conversely, the answer to a query
may leave out uninteresting parts of the matching data.

It is worth noting that the above stated core principles and the
more detailed discussion of the design principles in Section 2 are
describing general principles of query languages, rather than
specific issues of an implementation or storage system. Therefore,
implementation issues, such as processing model (in-memory vs.
database vs. data stream) or distributed query evaluation, are not
discussed in this article. Rather, the language requirements are
considered independently of such issues, but allow for further
extensions or restrictions of the language, if necessary for a
particular setting or application.

These design principles result for a large part from experience in
the design of Web query languages by the authors, in particular
from the experience in designing the Web query language Xcerpt
[Schaffert and Bry, 2004].

2. DESIGN PRINCIPLES
The rest of this paper is organized around thirteen design
principles deemed essential for versatile Web query languages:
starting with principles concerning the dual use of a query
language for both Web and Semantic Web data (Section 2.1) and
the specific requirements on how to specify data selection
(Section 2.2) and the make-up of an answer (Section 2.3), further
principles regarding declarativity and structuring of query
programs (Section 2.4) and reasoning support (Section 2.5) and
finally those regarding the relation of querying and evolution
(Section 2.6) are outlined.

2.1 Versatility: Data, Syntax, and Interface
2.1.1 A Query Language for both, the Standard Web
and the Semantic Web
A hypothesis of this paper is that a common query language for
both conventional Web and Semantic Web applications is
desirable (this requirement for a Web query language has also
been expressed by other authors, e.g., in [Olken and McCarthy,
1998]). There are two reasons for this hypothesis:

First, data is not inherently “conventional Web data” or “Semantic
Web data” in many cases. Instead, it is the usage that gives data a
“conventional Web” or “Semantic Web” status. Consider for
example a computer science encyclopedia. It can be queried like
any other Web document using a Web query language. If its
encyclopedia relationships (formalizing expressions such as “see”,
“see also”, “use instead” commonly used in traditional
encyclopedia) are marked up, e.g., using XLink or any other ad
hoc or generic formalism as one might expect from an online
encyclopedia, then the encyclopedia can also be used as
“Semantic Web data”, i.e. as metadata, in retrieving computer
science texts (e.g., the encyclopedia could relate a query referring
to “Linux” to Web content referring to “operating systems of the
90s”) or enhance the rendering of Web contents (e.g. adding
hypertext links from some words to their definitions in the
encyclopedia).

Second, Semantic Web applications will most likely combine and
intertwine queries to Web data and to metadata (or Semantic Web
data) in all possible manners. There is no reason to assume that
Semantic Web applications will rely only on metadata or that
querying of conventional Web data and Semantic Web data will
take place in two (or several) successive querying phases referring
each to data of one single kind. Consider again the computer
science encyclopedia example. Instead of one single
encyclopedia, one might use several encyclopedias that might be
listed in a (conventional Web) document. Retrieving the
encyclopedias requires a conventional Web query. Merging the
encyclopedias is likely to call for specific features of a Semantic
Web query language. Enhancing the rendering of a conventional
Web document using the resulting (merged) encyclopedia is likely
to require (a) conventional Web queries (for retrieving
conventional Web documents and the addresses of the relevant
encyclopedias), (b) Semantic Web queries (for merging the
encyclopedias), (c) mixed conventional and Semantic Web
queries (for adding hypertext links from words defined in the
(merged) encyclopedia).

2.1.2 Integrated View of Standard and Semantic Web
Data: Graph data
Both XML (and semi-structured data in general), as
predominantly used on the (standard) Web, and RDF, the
envisioned standard for representing Semantic Web data, can be
represented in a graph data model. Although XML is often seen as
a tree model only (cf. XML Information Set [Cowan and Tobin,
2004] and the XQuery data model [Fernandez et al., 2004]), it
does provide nonhierarchical relations, e.g., by using ID/IDREF
links or XLink [DeRose et al., 2001].

Similar to the proposal for an integrated data model and (model-
theoretic) Semantics of XML and RDF presented in [Patel-
Schneider and Simeon, 2002], a query language for both standard
and Semantic Web must be able to query any such data in a
natural way. In particular, an abstraction of the various linking
mechanisms is desirable for easy query formulation: One
approach is the automatic dereferencing of ID/IDREF-links in
XML data, another the unified treatment of typed relations
provided both in RDF and XLink.

The restriction to hierarchical (i.e., acyclic) relations is not
realistic beyond the simplest Semantic Web use cases. Even if
each relation for itself is acyclic, inference based not only on
relations of a single type must be able to cope with cycles.
Therefore, a (rooted) graph data model is called for.

 3

2.1.3 Three Syntaxes: XML, Compact Human-
Readable, and Visual
While it is desirable that a query language for the (conventional
and/or Semantic) Web has an XML syntax, because it makes it
easier to exchange query programs on the Web and to manipulate
them using the query language, a second, more compact syntax
easier for humans to read and write is desirable. Therefore, two
textual syntaxes should be provided: a purely term-oriented XML
syntax and another one which combines term expressions with
non-term expressions like most programming languages. This
other syntax should be more compact than the XML syntax and
better readable for human beings. Both syntaxes should be
interchangeable (the translation being a low cost process).

Third, a visual syntax can greatly increase the accessibility of the
language, in particular for non-experts. This visual syntax should
be a mere rendering of the textual language, a novel approach to
developing a visual language with several advantages: It results in
a visual language tightly connected to the textual language,
namely it is a rendering of the textual language. This tight
connection makes it possible to use both, the visual and the textual
language, in the development of applications. Last but not least, a
visual query language conceived as a hypertext application is
especially accessible for Web and Semantic Web application
developers.

2.1.4 Modeling, Verbalizing, and Visualizing
Authoring and Modeling. Authoring correct and consistent
queries often requires considerable effort from the query
programmer. Therefore, semi-automated or fully-automated tool
support both for authoring and for reading and understanding
queries is essential.

Verbalization. For verbalizing queries, as well as their in- and
output, some form of controlled natural language processing is
promising and can provide an interface to the query language for
untrained users. The importance of such a seemingly free-form,
“natural” interface for the Web is demonstrated by the wide-
spread success of Web search engines.

Visualization. As discussed above, a visualization based on
styling of queries is highly advantageous in a Semantic Web
setting. As demonstrated in [Berger et al., 2003], it can also serve
as a foundation for interactive features such as authoring of
queries. On this foundation, more advanced authoring tools, e.g.,
for verification and validation of queries, can be implemented.

2.2 Data Selection: Pattern based, Incomplete
Every query language has to define means for accessing or
selecting data. This section discusses principles for data selection
in a Web context.

2.2.1 Pattern Queries
Patterns (as used, e.g., in Xcerpt [Schaffert and Bry, 2004] and
XML-QL [Deutsch et al., 1998]) provide an expressive and yet
easy-to-use mechanism for specifying the characteristics of data
sought for. In contrast to path expressions (as used, e.g., in XPath
[Clark and DeRose, 1999] and languages building upon it), they
allow an easy realization of answer-closedness in the spirit of
“query by example” query languages. Query patterns are
especially well suited for a visual language because they give
queries a structure very close to that of possible answers. One
might say that query patterns are like forms, answers like form
fillings.

2.2.2 Incomplete Query Specifications
Incomplete queries specify only part of the data to retrieve: e.g.
only some of the children of an XML element (referring to the
tree representation of XML data called “incompleteness in
breadth”) or an element at unspecified nesting depth (referring to
the tree representation of XML data called “incompleteness in
depth”). Such queries are important on the conventional Web
because of its heterogeneity: one often knows only part of the
structure of the XML documents to retrieve.

Incomplete queries specifying only part of the data to retrieve are
also important on the Semantic Web. There are three reasons for
this: first, “Semantic Web data” such as RDF or Topic Map data
might be found in different (XML) formats that are in general
easier to compare in terms of only some salient features. Second,
the merging of “Semantic Web data” is often done in terms of
components common to distinct data items. Third, most Semantic
Web data standards allow data items with optional components. In
addition, query languages for the conventional and Semantic Web
should ease retrieving only parts of (completely or incompletely
specified) data items.

2.2.3 Incomplete Data Selections
Because Web data is heterogeneous in its structure, one is often
interested in “incomplete answers”. Two kinds of incomplete
answers can be considered. First, one might not be interested in
some of the children of an XML (sub-) document retrieved by a
query. Second, one might be interested in some child elements if
they are available but would accept answers without such
elements.

An example of the first case would be a query against a list of
students asking for the name of students having an email address
but specifying that the email address should not be delivered with
the answer.

An example of the second case would be a query against an
address book asking for names, email addresses, and if available
cellular phone numbers.

But, the limitation of an answer to “interesting” parts of the
selected data is helpful not only for XML data. A common desire
when querying descriptions of Web sites, documents, or other
resources stored in RDF is to query a “description” of a resource,
i.e., everything related to the resource helping to understand or
identify it. In this case, one might for example want to retrieve
only data related by at most n relations to the original resource
and also avoid following certain relation types not helpful in
identifying a resource.

2.2.4 Polynomial Core
The design principles discussed in this document point towards a
general-purpose, and due to general recursion most likely Turing-
complete, database programming language. However, it is
essential that for the most frequently used queries, small upper
bounds on the resources taken to evaluate queries (such as main
memory and query evaluation time) can be guaranteed. As a
consequence, it is desirable to identify an interesting and useful
fragment of a query language for which termination can be
guaranteed and which can be evaluated efficiently.

When studying the complexity of database query languages, one
distinguishes between at least three complexity measures, data
complexity (where the database is considered to be the input and
the query is assumed fixed), query complexity (where the
database is assumed fixed and the query is the input), and

 4

combined complexity, which takes both the database and the
query as input and expresses the complexity of query evaluation
for the language in terms of the sizes of both [Vardi, 1982].

For a given language, query and combined complexity are usually
much higher than data complexity. (In most relational query
languages, by one exponential factor harder, e.g. in PSPACE vs.
LOGSPACE-complete for first-order queries and EXPTIME-
complete vs. PTIME-complete for Datalog, cf. [Abiteboul et al.,
1995].) On the other hand, since data sizes are usually much
larger than query sizes, the data complexity of a query language is
the dominating measure of the hardness of queries.

One complexity class which is usually identified with efficiently
solvable problems (or queries) is that of all problems solvable in
polynomial time. PTIME queries can still be rather inefficient on
large databases. Another, even more desirable class of queries
would thus be that of those queries solvable in linear time in the
size of the data.

Database theory provides us with a number of negative results on
the complexity of query languages that suggest that neither
polynomial-time query complexity nor linear-time data
complexity are feasible for data-transformation languages that
construct complex structures as the result. For example, even
conjunctive relational queries are NP-complete with respect to
query complexity [Chandra and Merlin, 1977]. Conjunctive
queries can only apply selection, projection, and joins to the input
data, all features that are among the requirements for query
languages for the Semantic Web. There are a number of structural
classes of tractable (polynomial-time) conjunctive queries, such as
those of so-called “bounded tree-width” (cf. [Flum et al., 2002])
or “bounded hypertree-width” (cf. [Gottlob et al., 2002]), but
these restrictions are not transparent or easy to grasp by users.
Moreover, even if such restrictions are made, general data
transformation queries only need very basic features (such as joins
or pairing) to produce query results that are of super-linear size.
That is, just writing the results of such queries is not feasible in
linear time.

If one considers more restrictive queries that view data as graphs,
or more precisely, as trees, and which only select nodes of these
trees, there are a number of positive results. The most important is
the one that monadic (i.e., node-selecting) queries in monadic
second-order logic on trees are in linear time with respect to data
complexity [Courcelle, 1990] (but have non-elementary query
complexity [Grohe and Schweikardt, 2003]). Reasoning on the
Semantic Web naturally happens on graph data, and results for
trees remain relevant because many graphs are trees. However,
the linear time results already fail if very simple comparisons of
data values in the trees are permitted.

Thus, the best we can hope for in a data transformation query
language fragment for reasoning on the Semantic Web is PTIME
data complexity. This is usually rather easy to achieve in query
languages, by controlling the expressiveness of higher-order
quantification and of recursion. In particular the latter is relevant
in the context of the design principles laid out here. A PTIME
upper bound on the data complexity of recursive query languages
is achieved by either disallowing recursion or imposing an
appropriate monotonicity requirement (such as those which form
the basis of PTIME data complexity in standard Datalog or
Datalog with inflationary fix-point semantics [Abiteboul et al.,
1995]).

Finding a large fragment of a database programming language and
determining its precise complexity is an important first step.
However, even more important than worst-case complexity
bounds is the efficiency of query evaluation in practice. This leads
to the problem of query optimization. Optimization is usually also
best done on restricted query language fragments, in particular if
such fragments exhibit alternative algebraic, logical, or game-
theoretic characterizations.

2.3 Answers: Arbitrary XML, Ranked
2.3.1 Answers as Arbitrary XML Data
XML is the lingua franca of data interchange on the Web. As a
consequence, answers should be expressible in every possible
XML application. This includes both text without mark-up and
freely chosen mark-up and structure. This requirement is obvious
and widely accepted for conventional Web query languages.
Semantic Web query languages, too, should be capable of
delivering answers in every possible XML application so as to
make it possible for instance to mediate between RDF and XTM
(an XML serialization of Topic Maps, cf. [Pepper and Moore,
2001]) data or to translate RDF data from one RDF syntax into
another RDF syntax.

2.3.2 Answer Ranking and Top-k Answers
In contrast to queries posed to most databases, queries posed to
the conventional and Semantic Web might have a rather
unpredictable number of answers. As a consequence, it is often
desirable to rank answers according to some application-
dependent criteria. It is desirable that Web and Semantic Web
query languages offer (a) basic means for specifying ranking
criteria and, (b) for efficiency reasons, evaluation methods
computing only the top-k answers (i.e., a given number k of best-
ranked answers according to a user-specified ranking criterion).

2.4 Query Programs: Declarative, Rule based
The following design principles concern the design of query
programs beyond the data selection facilities discussed in Section
2.2.

2.4.1 Referential Transparency
This property means that, within a definition scope, all
occurrences of an expression have the same value, i.e., denote the
same data. Referential transparency is an essential, precisely
defined trait of the rather vague notion of “declarativity”.

Referential transparency is a typical feature of modern functional
programming languages. For example, evaluating the expression
f 5 in the language Haskell will always yield the same value
(assuming the same definition of f is used). Contrast with
languages like C or Java: the expression f(5) might yield
different results every time it is called because its definition
depends on constantly changing state information.

Referentially transparent programs are easier to understand and
therefore easier to develop, maintain, and optimize as referential
transparency allows query optimizers to dynamically rearrange
the evaluation order of (sub-) expressions, e.g., for evaluating in a
“lazy manner” or computing an optimal query evaluation plan.
Therefore, referential transparency surely is one of the essential
properties a query language for the Web should satisfy.

2.4.2 Answer-Closedness
We call a query language “answer-closed” if replacing a sub-
query in a compound query by a possible (not necessarily actual)
single answer always yields a syntactically valid query. Answer-

 5

closed query languages ensure in particular that every data item,
i.e. every possible answer to some query, is a syntactically valid
query. Functional programs can—but are not required to—be
answer-closed. Logic programming languages are answer-closed
but SQL is not. E.g., the answer person(a) to the Datalog
query person(X) is itself a possible query, while the answer
“name = ‘a’ ” to the SQL query SELECT name FROM
person cannot (without significant syntactical changes) be used
as a query. Answer-closedness, is the distinguishing property of
the “query by example” paradigm [Zloof, 1975], even though it is
called differently there, separating it from previous approaches for
query languages. Answer-closedness eases the specification of
queries because it keeps limited the unavoidable shift in syntax
from the data sought for and the query specifying these data.

To illustrate the importance of answer-closedness in the Web
context, assume an XML document containing a list of books with
titles, authors, and prices (cf. for instance the XML Query Use
Case XMP [Chamberlain et al., 2003]). The XPath [Clark and
DeRose, 1999] query

/bib/book/title/text()

selects the (text of) titles of books, while a similar query in the
(answer-closed) language Xcerpt [Schaffert and Bry, 2004] is

bib {{ book {{ title { var T } }} }}.

XPath does not allow to substitute, e.g., the string “Data on the
Web” for the query and is thus not answer-closed. In Xcerpt, on
the other hand, the following is both an answer to the above query
and a perfectly valid query in itself:

bib {{ book {{ title { "Data on the Web" } }} }}

Answer-closedness is useful, e.g., when joining several
documents. For instance, a query could first select book titles in a
person’s favorite book list and then substitute these titles in the
query above:

and {
 my-favorite-books {{ title { var T } }},
 bib {{ book {{ title { var T } }} }}
}

2.4.3 Rule-Based, Chaining, and Recursion
Rule-Based. Rules are understood here as means to specify novel,
maybe virtual, data in terms of queries, i.e., what is called “views”
in (relational) databases, regardless of whether this data is
materialized or not. Views, i.e., rule-defined data, are desirable for
both conventional and Semantic Web applications. There are three
reasons for this:

First, view definitions or rules are a means for achieving the so-
called “separation of concerns” in query programs, i.e., the
stepwise specifications of data to retrieve and/or to construct. In
other words, rules and view definitions are a means for
“procedural abstraction”, i.e., rules (view definitions, resp.) are
the Prolog and Datalog (SQL, resp.) counterpart of functions
and/or procedures.

Second, rules and view definitions give rise to easily specifying
inference methods needed, e.g., by Semantic Web applications.

Third, rules and view definitions are means for “data mediation”.
Data mediation means translating data to a common format from
different sources. Data mediation is needed both on today’s Web
and on the emerging Semantic Web because of their
heterogeneity.

Backward and Forward Chaining. On the Web, backward
chaining, i.e., computing answers starting from rule heads, is in
general preferable to forward chaining, i.e., computing answers
from rule’s bodies. While forward chaining is in general
considered to be more efficient then backward chaining, there are
many situations where backward chaining is necessary, in
particular when dealing with Web data. For example, a query
might dynamically query Web pages depending on the results of
previous queries and thus unknown in advance. Thus, a forward
chaining evaluation would require to consider the whole Web,
which is clearly unfeasible.

Recursion. On the Web, recursion is needed at least

• for traversing arbitrary-length paths in the data structure,

• for querying on the standard Web when complex
transformations are needed,

• for querying on the Semantic Web when inference rules are
involved.

Note that a free recursion is often desirable and that recursive
traversals of XML document as offered by the recursive
computation model of XSLT 1.0 are not sufficient.

2.4.4 Separation of Queries and Constructions
Two standard and symmetrical approaches are widespread, as far
as query and programming languages for the Web are concerned:

• Queries or programs are embedded in a Web page or Web
page skeleton giving the structure of answers or data returned
by calls to the programs.

• Parts of a Web page specifying the structure of the data
returned to a query or program evaluation are embedded in
the queries or programs.

It is a hypothesis of this paper that both approaches to queries or
programs are hard to read (and, therefore, to write and to
maintain).

Instead of either approach, a strict separation of queries and
“constructions”, i.e., expressions specifying the structure of
answers, is desirable. With a rule-based language, constructions
are rule heads and queries are rule bodies. In order to relate a
rule’s construction to a rule’s query, (logic programming)
variables can be employed.

As discussed in Section 2.13, the construction of complex results
often requires considerable computation. The separation of
querying and construction presented here allows for the separate
optimization of both aspects, allowing easier adoption of efficient
evaluation techniques.

2.5 Reasoning Capabilities
Versatility (cf. Section 2.1) allows access to data in different
representation formats, thereby addressing format heterogeneity.
However in a Web context, data will often be heterogeneous not
only in the chosen representation format but also in terms,
structure, etc. Reasoning capabilities offer a means for the query
author to deal with heterogeneous data and to infer new data.

2.5.1 Specific Reasoning as Theories
Many practical applications require special forms of reasoning:
for instance, efficient equality reasoning is often performed using
the so-called paramodulation rule instead of the equality axioms
(transitivity, substitution, and symmetry). Also, temporal data

 6

might require conversions between different time zones and/or
calendar systems that are expressed in a simpler format and more
efficiently performed using arithmetic instead of logical axioms.
Finally, reasoning with intervals of possible values instead of
exact values, e.g., for appointment scheduling, is conveniently
expressed and efficiently performed with constraint programming.

For this reason, it is desirable that a query language for the
(conventional and Semantic) Web can be extended with so-called
“theories” implementing specific forms of reasoning.

Such “theory extensions” can be realized in two manners:

First, a theory can be implemented as an extension of the run time
system of the query language with additional language constructs
for using the extension.

Second, a theory can be implemented using the query language
itself and made available to users of this query language through
program libraries. In this case, theories are implemented by rules
and queries. Based upon, e.g., the XML syntax of the query
language (cf. 2.12) such rule bases can then be queried using the
query language itself and maintained and updated by a reactive
language such as XChange [Bry and Pătrânjan, 2005].

2.5.2 Querying Ontologies and Ontology-aware
Querying
In a Semantic Web context, ontologies can be used in several
alternative ways: First, they can be dealt with by a specialized
ontology reasoner (the main disadvantage being the impossibility
of adding new domain-specific constructs). Second, they can be
regarded as descriptions to be used by a set of rules implementing
the Semantics of the constructs employed by the ontology. (This
is similar to a meta-interpreter and may be slow.) Alternatively,
the ontology may be “compiled” to a set of rules.

As discussed in the previous point, the query language should
allow for both approaches: extending the query language by
specific theory reasoners for a certain ontology language, e.g.,
OWL-DL, as well as the ability to use rules written in the query
language as means for implementing (at least certain aspects) of
an ontology language. Examples for such aspects are the
transitivity of the subsumption hierarchy represented in many
ontologies or the type inference based on domain and range
restrictions of properties.

The latter approach is based upon the ability to query the ontology
together with the data classified by the ontology. This is possible
due to the first design principle. Stated in terms of ontologies, we
believe that a query language should be designed in such a way
that it can query standard Web data, e.g., an article published on a
Web site in some XML document format, meta-data describing
such Web data, e.g., resource descriptions in RDF stating author,
usage restrictions, relations to other resources, reviews, etc., and
the ontology that provides the concepts and their relations for the
resource description in RDF.

2.6 Querying and Evolution
When considering the vision of the Semantic Web, the ability to
cope with both quickly evolving and rather static data is crucial.
The design principles for a Web query language discussed in the
remainder of this section are mostly agnostic of changes in the
data: only a “snapshot” of the current data is considered for
querying; synchronization and distribution issues are transparent
to the query programmer.

In many cases, such an approach is very appropriate and allows
the query programmer to concentrate on the correct specification
of the query intent. However, there are also a large number of
cases where information about changes in the data and the
propagation of such and similar events is called for: e.g., in event
notification, change detection, and publish-subscribe systems.

For programming the reactive behavior of such systems, one often
employs “event-condition-action”- (or ECA-) rules. We believe
that the specification of both queries on occurring events (the
“event” part of ECA-rules) and on the condition of the data, that
should hold for a specific action to be performed, should be
closely related to or even embed the general purpose query
language whose principles are discussed in this article (cf. the
reactive language XChange [Bry and Pătrânjan, 2005] integrating
the query language Xcerpt [Schaffert and Bry, 2004]).

3. RELATED WORK
Although there have been numerous approaches for accessing
Web data, few approaches consider the kind of versatility asked
for by the design principles presented in this article. This section
briefly discusses how the design principles introduced above
relate to selected query languages for XML and RDF data, but
does not aim at a full survey over current Web query languages as
presented, e.g., in [Furche et al., 2004].

3.1 Versatility
Most previous approaches to Web query languages beyond
format-agnostic information retrieval systems such as search
engines have focused on access to one particular kind of data
only, e.g., to XML, or RDF data. Therefore such languages fall
short of realizing the design principles on versatility described in
Section 2.1. Connected to the realization that the vision of a
“Semantic Web” requires joint access to XML and RDF data,
versatility (at least when restricted to these two W3C
representation standards) has been increasingly recognized as a
desirable if not necessary characteristic of a Web query language,
e.g., in [Patel-Schneider and Simeon, 2002]. The charter of the
W3C working group on RDF Data Access even asks “for RDF
data to be accessible within an XML Query context [… and] a
way to take a piece of RDF Query abstract syntax and map it into
a piece of XML Query” [Prud’hommeaux, 2004].

This recognition, however, has mostly lead to approaches where
access to RDF data is added to already established XML query
languages: [Robie et al., 2001] proposes a library of XQuery
accessor functions for normalizing RDF/XML and querying the
resulting RDF triples. Notably, the functions for normalizing and
querying are actually implemented in XQuery. In contrast,
TreeHugger [Steer, 2003] provides a set of (external) extension
functions for XSLT (1.0) [Clark, 1999]. Both approaches suffer
from the lack of expressiveness of the XQuery and XSLT data
model when considering RDF data: XQuery and XSLT consider
XML data as tree data where references (expressed using
ID/IDREF or XLink) have to be resolved explicitly, e.g., by an
explicit join or a specialized function. Therefore, [Robie et al.,
2001] maps RDF graphs to a flat, triple-like XML structure
requiring explicit, value-based joins for graph traversal.
TreeHugger maps the RDF graph to an XML tree, thus using the
more efficient structural access where possible, however requiring
special treatment of RDF graphs that are not tree shaped. None of
these approaches fulfills the design principles proposed in Section
2.1 entirely, but they represent important steps in the direction of
a versatile Web query language.

 7

3.2 Data Selection
For the remainder of the design principles, Web query languages
specialized for a certain representation format such as XML or
RDF are worth considering. One of the most enlightening views
on the state-of-the-art in both XML and RDF query languages is a
view considering how data selection is specified in these
languages. Both data formats allow structured information and
data selection facilities emphasize the selection of data based on
its own structure and its position in some context, e.g., an XML
document or an RDF graph. For specifying such structural
relations, three approaches can be observed:

(1) purely relational, where the structural relations are represented
simply as relations, e.g., child(CONTEXT, X) ∋
descendant(X, Y) for selecting the descendants of a child of
some node CONTEXT. This style is used in several RDF query
languages, e.g., the widely used RDQL [Seaborne, 2004] and
current drafts of the upcoming W3C RDF query language
SPARQL [Prud’hommeaux and Seaborne, 2004]. For XML
querying, this style has proven convenient for formal
considerations of, e.g., expressiveness and complexity of query
languages. In actual Web query languages it can be observed only
sparsely, e.g., in the Web extraction language Elog [Baumgartner
et al., 2001].

(2) path-based, where the query language allows several structural
relations along a path in the tree of graph structure to be expressed
without explicit joins, e.g., child::*/descendant::* for
selecting the descendants of childs of the context. This style,
originating in object-oriented query languages, is used in the most
popular XML query languages such as XPath [Clark and DeRose,
1999], XSLT [Clark, 1999], and XQuery [Boag et al., 2004], but
also in a number of other XML query languages, e.g., in
XPathLog [May, 2004] that shows that this style of data selection
can also be used for data updates. Several ideas to extend this
style to RDF query languages have been discussed (e.g., [Palmer,
2003]), but only RQL [Karvounarakis et al., 2004] proposes a full
RDF query language using path expressions for data selection.

(3) pattern-based, as discussed in Section 2.2.1. This style is used,
e.g., in XML-QL [Deutsch et al., 1998] and Xcerpt [Schaffert and
Bry, 2004], but is also well established for relational databases in
the form “query-by-example” and Datalog.

Most Web query languages consider to some extent incomplete
query specifications as Web data is inherently inconsistent and
few assumptions about the schema of the data can be guaranteed.
However, only few query languages take the two flavors of
incomplete data selection discussed in Section 2.2.3 into account
(e.g., Xcerpt [Schaffert and Bry, 2004] and SPARQL
[Prud’hommeaux and Seaborne, 2004]).

Polynomial cores have been investigated most notably for XPath
(and therefore by extension XQuery [Boag et al., 2004] and XSLT
[Clark, 1999]), the results are presented, e.g., in [Gottlob et al.,
2003] and [Segoufin, 2003].

3.3 Answers
Naturally, most XML query languages can construct answers in
arbitrary XML. This is, however, not true of RDF query
languages, many of which such as RDQL [Seaborne, 2004] do not
even allow the construction of arbitrary RDF, but rather outputs
only (n-ary) tuples of variable bindings.

Answer ranking and top-k answers have historically rarely been
provided by the core of Web query languages, but rather have
been added as an extension, see e.g., [Amer-Yahia et al., 2004], a

W3C initiative on adding full-text search and answer ranking to
XPath and XQuery [Boag et al., 2004]. In relational databases, on
the other hand, top-k answers are a very common language
feature.

3.4 Query Programs
Declarativity and referential transparency have long been
acknowledged as important design principles for any query
language, as a declaratively specified query is more amenable to
optimization while also easing query authoring in many cases.

Most of the Web query languages claim to be declarative
languages and, oftentimes, to offer a referentially transparent
syntax. In the case of XQuery [Boag et al., 2004], the referential
transparency of the language is doubtful due to side effects during
element construction. For instance, the XQuery let $x = <a/>
return $x is $x, where is is the XQuery node comparator,
i.e., tests whether two nodes are identical, evaluates to true,
whereas the query <a/> is <a/> evaluates to false, although it
is obtained from the first query by replacing all occurrences of $x
with its value.1 The reason for this behavior lies in the way
elements are constructed in XQuery: In the first query a single
(empty) a is created, which is (of course) identical to itself.
However, in the second case, two a elements are constructed,
which are not identical (and therefore the node identity
comparison using is fails). Interestingly, this behavior is related
to XQuery’s violation of design principle 2.4.4, that stipulates that
querying and construction should be separated in a query
language.

In contrast to referential transparency, answer-closedness can not
be observed in many Web query languages. With the exception of
Xcerpt [Schaffert and Bry, 2004], Web query languages provide,
if at all, only a limited form of answer-closedness, where only
certain answers can also be used as queries.

Related to answer-closedness is the desire to be able to easily
recognize the result of a query. This can be achieved by a strict
separation of querying and construction, where the construction
specifies a kind of form filled with data selected by the query.
Such a strict separation is not used in most XML query languages,
but can be observed in many RDF query languages, e.g., RDF and
SPARQL, due to the restricted form of construction considered in
these languages (following a similar syntax as SQL, but restricting
the SELECT clause to, e.g., lists of variables).

Section 2.4.3 proposes the use of (possibly recursive) rules for
separation of concern, view specification. This has been a popular
choice for Web query languages (e.g., XSLT [Clark, 1999], Algae
[Prud’hommeaux, 2004]), in particular when combined with
reasoning capabilities (e.g., in TRIPLE [Sintek, 2002], XPathLog
[May, 2004]).

3.5 Reasoning Capabilities
Reasoning capabilities are, as discussed in Section 2.5, very
convenient means to handle and enrich heterogeneous Web data.
Nevertheless, the number of XML query languages featuring
built-in reasoning capabilities is rather limited, examples being
XPathLog [May, 2004] and Xcerpt [Schaffert and Bry, 2004]. In
contrast, several RDF query languages provide at least limited
forms of reasoning (e.g., for computing the transitive closure of
arbitrary relations), e.g., TRIPLE [Sintek, 2002], Algae

1 This has been pointed out, in a slight variation, by Dana Florescu

on the XML-DEV mailing list.
http://lists.xml.org/archives/xml-dev/200412/msg00228.html

 8

[Prud’hommeaux, 2004]. Some RDF query languages also
consider ontology-aware querying with RDFS [Brickley et al.,
2004] as ontology language. For XML query languages, this has
not been considered at length.

4. CONCLUSION AND OUTLOOK
In this paper, design principles for (Semantic) Web query
languages have been derived from the experience with previous
conventional Web query language proposals from both academia
and industry as well as recent Semantic Web query activities.

In contrast to most previous proposals, these design principles are
focused on versatile query languages, i.e., query languages able to
query data in any of the heterogeneous representation formats
used in both the standard and the Semantic Web.

As argued in Section 3, most previous approaches to Web query
languages fail to address the design principles discussed in this
article, most notably very few consider access to heterogeneous
representation formats.

Currently, the Web query language Xcerpt [Schaffert and Bry,
2004] that already reflects many of these design principles is
being further refined to a true versatile query language along the
principles outlined in this article.

We believe that versatile query languages will be essential for
providing efficient and effective access to data on the Web of the
future: effective as the use of data from different representation
formats allows to serve better answers, e.g., by enriching,
filtering, or ranking data with metadata available in other
representation formats. Efficient as previous approaches suffer
from the separation of data access by representation formats
requiring either multiple query languages or hard to comprehend
and expensive data transformations.

ACKNOWLEDGMENTS
We would like to thank Claude Kirchner (LORIA, Nancy, France)
and Wolfgang May (Göttingen University, Göttingen, Germany)
for providing numerous valuable comments on how to improve
both presentation and content of an early draft of this article. We
would also like to thank the anonymous reviewers for insightful
comments on how to strengthen the arguments presented in this
article.

This research has been funded by the European Commission and
by the Swiss Federal Office for Education and Science within the
6th Framework Programme project REWERSE number 506779
(cf. http://rewerse.net).

REFERENCES
[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V.

(1995). Foundations of Databases, Addison-Wesley.

[Amer-Yahia et al., 2004] Amer-Yahia, S., Botev, C., Buxton, S.,
Case, P., Doerre, J., McBeath, D., Rys, M., and
Shanmugasundaram, J. (2004). XQuery and XPath Full-Text.
W3C, Working Draft.

[Alferes et al., 2004] Alferes, J. J., May, W., and Bry, F. (2004).
Towards generic query, update, and event languages for the
Semantic Web. In Proc. Workshop on Principles and Practice
of Semantic Web Reasoning, LNCS 3208. SpringerVerlag.

[Baumgartner et al., 2001] Baumgartner, R., Flesca, S., and
Gottlob, G. (2001). The Elog Web Extraction Language. In
Proc. of Int. Conf. on Logic Programming, Artifical
Intelligence, and Reasoning (LPAR), pages 548–560.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler,
J., Horrocks, I., McGuinness, D., Patel-Schneider, P., and
Stein, L. (2004). OWL Web Ontology Language—Reference.
W3C, Recommendation.

[Berger et al., 2003] Berger, S., Bry, F., and Schaffert, S. (2003).
A Visual Language for Web Querying and Reasoning. In
Proc. Workshop on Principles and Practice of Semantic Web
Reasoning, LNCS 2901. SpringerVerlag.

[Berners-Lee, 1998] Berners-Lee, T. (1998) Semantic Web Road
Map. W3C.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and
Lassila, O. (2001). The Semantic Web—A new form of Web
content that is meaningful to computers will unleash a
revolution of new possibilities. Scientific American.

[Boag et al., 2004] S. Boag, D. Chamberlin, M. Fernandez, D.
Florescu, J. Robie, and J. Simeon, editors (2004). XQuery 1.0:
An XML Query Language.W3C, Working Draft.

http://www.w3.org/TR/xquery/
[Boley et al., 2002] Boley, H., Grosof, B., Sintek, M., Tabet, S.,

and Wagner, G. (2002). RuleML Design. RuleML Initiative.

http://www.ruleml.org/indesign.html
[Brickley et al., 2004] Brickley, D., Guha, R., and McBride, B.,

eds., (2004). RDF Vocabulary Description Language 1.0:
RDF Schema. W3C, Recommendation.

[Bry et al., 2004a] Bry, F., Drabent, W., and Maluszynski, J.
(2004a). On Subtyping of Treestructured Data—A Polynomial
Approach. In Proc. Workshop on Principles and Practice of
Semantic Web Reasoning, LNCS 3208. SpringerVerlag.

[Bry et al., 2004b] Bry, F., Furche, T., Pătrânjan, P.-L., and
Schaffert, S. (2004b). Data Retrieval and Evolution on the
(Semantic) Web: A Deductive Approach. In Proc. Workshop
on Principles and Practice of Semantic Web Reasoning,
LNCS 3208. SpringerVerlag.

[Bry et al., 2004c] Bry, F., Schaffert, S., and Schröder, A.
(2004c). A contribution to the Semantics of Xcerpt, a Web
Query and Transformation Language. In Proc. Workshop
Logische Programmierung.

[Bry and Pătrânjan, 2005] Bry, F. and Pătrânjan, P.-L. (2005).
Reactivity on the Web: Paradigms and Applications of the
Language XChange. In ACM Symposium on Applied
Computing (SAC).

[Chamberlin et al., 2003] Chamberlin, D., Fankhauser, P.,
Florescu, D., Marchiori, M., and Robie, J., eds., (2003). XML
Query Use Cases. W3C, Recommendation.

[Chandra and Merlin, 1977] Chandra, A. K., and Merlin, P. M.
(1977). Optimal Implementation of Conjunctive Queries in
Relational Data Bases. In Proc. ACM Symposium on Theory
of Computing (STOC).

[Clark, 1999] Clark, J. (1999). XSL Transformation (XSLT)
Version 1.0. W3C, Recommendation.

[Clark and DeRose, 1999] Clark, J. and DeRose, S. (1999). XML
Path Language (XPath) Version 1.0, W3C, Recommendation.

[Courcelle, 1990] Courcelle, B. (1990). Graph Rewriting: An
Algebraic and Logic Approach. In Leeuwen, J. v. (1990).
Handbook of Theoretical Computer Science, Elsevier Science
Publishers B.V., vol. 2, chapter 2, pages 193–242.

[Cowan and Tobin, 2004] Cowan, J. and Tobin, R. (2004). XML
Information Set (Second Edition). W3C, Recommendation.

 9

[DeRose et al., 2001] DeRose, S., Maier, E., and Orchard, D., eds.
(2001). XML Linking Language (XLink) Version 1.0. W3C,
Recommendation.

[Deutsch et al., 1998] Deutsch, A., Fernandez, M., Florescu, D.,
Levy, A., and Suciu, D. (1998). XML-QL: A Query Language
for XML. W3C.

[Fernandez et al., 2004] Fernandez, M., Malhotra, A., Marsh, J.,
Nagy, M., and Walsh, N. (2004). XQuery 1.0 and XPath 2.0
Data Model. W3C, Working Draft.

[Flum et al., 2002] Flum, J., Frick, M., and Grohe, M. (2002).
Query Evaluation via Tree-Decompositions. In Journal of the
ACM, 49(6).

[Furche et al., 2004] Furche, T., Bry, F., Schaffert, S., Orsini, R.,
Horrocks, I., and Bolzer, O. (2004). Survey over Existing
Query and Transformation Languages. Deliverable I4-D1,
REWERSE.

http://rewerse.net/I4/deliverables#D1
[Grohe and Schweikardt, 2003] Grohe, M. and Schweikardt, N.

(2003). Comparing the Succinctness of Monadic Query
Languages over Finite Trees. In Proc. of Workshop on
Computer Science Logic (CSL).

[Gottlob et al., 2002] Gottlob, G., and Leone, N., and Scarcello, F.
(2002). Hypertree Decompositions and Tractable Queries. In
Journal of Computer and System Sciences, 64(3).

[Gottlob et al., 2003] Gottlob, G., Koch, C., and Pichler, R.
(2003). The Complexity of XPath Query Evaluation. In Proc.
ACM Symposium on Principles of Database Systems.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P., Boley,
H., Tabet, S., Grosof, B., and Dean, M. (2004). SWRL: A
Semantic Web Rule Language—Combining OWL and
RuleML. W3C, Member submission.

[ISO, 1999] (1999) ISO/IEC 13250 Topic Maps. International
Organization for Standardization, International Standard.

[Karvounarakis et al., 2004] Karvounarakis, G., Magkanaraki, A.,
Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.,
and Tolle, K. (2004). RQL: A Functional Query Language for
RDF. In Gray, P., King, P., and Poulovassilis, A., editors, The
Functional Approach to Data Management, chapter 18, pages
435–465. SpringerVerlag.

[Klyne et al., 2004] Klyne, G., Carroll, J. J., and McBride, B.
(2004). Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C, Recommendation.

[May, 2004] May, W. (2004). XPath-Logic and XPathLog: A
Logic-Programming Style XML Data Manipulation
Language. In Theory and Practice of Logic Programming,
3(4):499–526

[Olken and McCarthy, 1998] Olken, F. and McCarthy, J. (1998).
Requirements and Desiderata for an XML Query Language.
In W3C QL’98 – Query Languages 1998.

[Palmer, 2003] Palmer, S. B. (2003). Pondering RDF Path.

http://infomesh.net/2003/rdfpath/
[Patel-Schneider and Simeon, 2002] Patel-Schneider, P. and

Simeon, J. (2002). The Yin/Yang Web: XML Syntax and
RDF Semantics. In Proc. International World Wide Web
Conference.

[Pepper and Moore, 2001] Pepper, S. and Moore, G., eds., (2001).
XML Topic Maps (XTM) 1.0. TopicMaps.org, Specification.

[Prud’hommeaux, 2004] Prud’hommeaux, E. ed., (2004). RDF
Data Access Working Group Charter. W3C.

http://www.w3.org/2003/12/swa/dawg-charter
[Prud’hommeaux, 2004] Prud’hommeaux, E. (2004). Algae RDF

Query Language. W3C.

http://www.w3.org/2004/05/06Algae/
[Prud’hommeaux and Seaborne, 2004] Prud’hommeaux, E. and

Seaborne, A. (2004). SPARQL Query Language for RDF.
W3C, Working Draft.

http://www.w3.org/TR/rdf-sparql-query/
[Robie et al., 2001] Robie, J., Garshol, L. M., Newcomb, S.,

Fuchs, M., Miller, L., Brickley, D., Christophides, V., and
Karvounarakis, G. (2001). The Syntactic Web: Syntax and
Semantics on the Web. Markup Languages: Theory and
Practice, 3(4):411–440.

[Schaffert and Bry, 2004] Schaffert, S. and Bry, F. (2004).
Querying the Web Reconsidered: A Practical Introduction to
Xcerpt. In Proc. Extreme Markup Languages.

[Seaborne, 2004] Seaborne, A. (2004). RDQL—A Query
Language for RDF. W3C, Member Submission.
http://www.w3.org/Submission/2004/SUBM-RDQ-20040109/

[Segoufin, 2003] Segoufin, L. (2003) Typing and querying XML
documents: some complexity bounds, In Proc. ACM
Symposium on Principles of Database Systems.

[Sintek, 2002] Sintek, M. (2002). TRIPLE—A Query, Inference,
and Transformation Language for the Semantic Web. In Proc.
International Semantic Web Conference.

[Steer, 2003] Steer, D. (2003). TreeHugger 1.0 Introduction.

http://www.semanticplanet.com/2003/08/rdft/spec
[Vardi, 1982] Vardi, M. Y. (1982). The Complexity of Relational

Query Languages. In Proc. ACM Symposium on Theory of
Computing (STOC).

[Wilk and Drabent, 2003] Wilk, A. and Drabent, W. (2003). On
Types for XML Query Language Xcerpt. In Proc. Workshop
on Principles and Practice of Semantic Web Reasoning,
LNCS 2901. SpringerVerlag.

[Zloof, 1975] Zloof, M. (1975). Query By Example. In Proc.
AFIPS National Computer Conference.

