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ABSTRACT 

A decade of experience with research proposals as well as 
standardized query languages for the conventional Web and the 
recent emergence of query languages for the Semantic Web call 
for a reconsideration of design principles for Web and Semantic 
Web query languages. This article first argues that a new 
generation of versatile Web query languages is needed for solving 
the challenges posed by the changing Web: We call versatile those 
query languages able to cope with both Web and Semantic Web 
data expressed in any (Web or Semantic Web) markup language. 
This article further suggests that (well-known) referential 
transparency and (novel) answer-closedness are essential features 
of versatile query languages. Indeed, they allow queries to be 
considered like forms and answers like form-fillings in the spirit 
of the “query-by-example” paradigm. This article finally suggests 
that the decentralized and heterogeneous nature of the Web 
requires incomplete data specifications (or “incomplete queries”) 
and incomplete data selections (or “incomplete answers”): the 
form-like query can be specified without precise knowledge of the 
queried data and answers can be restricted to contain only an 
excerpt of the queried data. 

1. INTRODUCTION 
After a decade of experience with research proposals as well as 
standardized query languages for the conventional Web and 
following the recent emergence of query languages for the 
Semantic Web a reconsideration of design principles for Web and 
Semantic Web query languages is called for.  

The “Semantic Web” is an endeavor widely publicized in 2001 by 
an influential but also controversial article from Tim Berners-Lee, 
James Hendler, and Ora Lassila [Berners-Lee et al., 2001]. The 
“Semantic Web” vision is that of the current Web which consists 
of (X)HTML and documents in other XML formats extended by 
metadata specifying the meaning of these documents in forms 
usable by both human beings and computers.  

One might see the Semantic Web metadata added to today’s Web 
documents as “semantic indices” similar to encyclopedias. A 
considerable advantage over paper-printed encyclopedias is that 
the relationships expressed by Semantic Web metadata can be 

followed by computers, very much like hyperlinks, and be used 
for drawing conclusion using automated reasoning methods:  

“For the Semantic Web to function, computers must 
have access to structured collections of information 
and sets of inference rules that they can use to conduct 
automated reasoning.” [Berners-Lee et al., 2001] 

A number of formalisms have been proposed in recent years for 
representing Semantic Web metadata, e.g., RDF [Klyne et al., 
2004], Topic Maps [ISO, 1999], and OWL [Bechhofer et al., 
2004]. Whereas RDF and Topic Maps provide merely a syntax for 
representing assertions on relationships like “a text T is authored 
by person P”, schema or ontology languages such as RDFS 
[Brickley et al., 2004] and OWL allow to state properties of the 
terms used in such assertions, e.g., that no “person” can be a 
“text”. Building upon descriptions of resources and their schemas 
(as detailed in the “architectural road map” for the Semantic Web 
[Berners-Lee, 1998]), rules expressed in e.g., SWRL [Horrocks et 
al., 2004] or RuleML [Boley et al., 2002], allow the specification 
of actions to be taken, knowledge to be derived, or constraints to 
be enforced. 

Essential for realizing this vision is the integrated access to all 
kinds of data represented in any of these representation 
formalisms or even in standard Web languages such as (X)HTML, 
SVG. Considering the large amount and the distributed storage of 
data already available on the Web, the efficient and convenient 
access to such data becomes the enabling requirement for the 
Semantic Web vision. It has been recognized that reasonably 
high-level, declarative query languages are needed for such 
efficient and convenient access, as they allow to separate the 
actual data storage from the view of the data a query programmer 
operates on. This paper presents a novel position on design 
principles for guiding the development of query languages that 
allow access to both standard and Semantic Web data. The 
authors believe, it is worthwhile to reconsider principles that have 
been stated almost a decade ago for query languages such as 
XML-QL [Deutsch et al., 1998] and XQuery [Boag et al., 2004], 
then agnostic of the challenges imposed by the emerging 
Semantic Web.  

Three principles are at the core of this article: 
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• As discussed above, the same query language should 
provide convenient and efficient access to any kind of 
data expected to be found on the Semantic Web, e.g., to 
documents written in (X)HTML as well as to RDF 
descriptions of these documents and even to ontologies. Only 
by intertwining data from all the different layers of the 
Semantic Web, that vision can be realized in its full potential. 

• Convenience for the user of the query language requires the 
reuse of knowledge obtained in another context. Therefore, 
the query language should be based upon the principles 
of referential transparency and answer-closedness (cf. 
Section 2.4 below) realized by rules and patterns. 
Together, these principles allow (1) for querying existing 
and constructing new data by a form-filling approach 
(similar to, but arguably more expressive than, the query-by-
example paradigm [Zloof, 1975]), and (2) for basic 
reasoning capabilities including the provision of different 
views of the same data, even represented in different Web 
formalisms. 

• The decentralized and heterogeneous nature of the Web 
requires query languages that allow queries and answers 
to be incomplete: In queries, only known parts of the 
requested information are specified, similar to a form leaving 
other parts incomplete. Conversely, the answer to a query 
may leave out uninteresting parts of the matching data. 

It is worth noting that the above stated core principles and the 
more detailed discussion of the design principles in Section 2 are 
describing general principles of query languages, rather than 
specific issues of an implementation or storage system. Therefore, 
implementation issues, such as processing model (in-memory vs. 
database vs. data stream) or distributed query evaluation, are not 
discussed in this article. Rather, the language requirements are 
considered independently of such issues, but allow for further 
extensions or restrictions of the language, if necessary for a 
particular setting or application. 

These design principles result for a large part from experience in 
the design of Web query languages by the authors, in particular 
from the experience in designing the Web query language Xcerpt 
[Schaffert and Bry, 2004]. 

2. DESIGN PRINCIPLES 
The rest of this paper is organized around thirteen design 
principles deemed essential for versatile Web query languages: 
starting with principles concerning the dual use of a query 
language for both Web and Semantic Web data (Section 2.1) and 
the specific requirements on how to specify data selection 
(Section 2.2) and the make-up of an answer (Section 2.3), further 
principles regarding declarativity and structuring of query 
programs (Section 2.4) and reasoning support (Section 2.5) and 
finally those regarding the relation of querying and evolution 
(Section 2.6) are outlined.  

2.1 Versatility: Data, Syntax, and Interface 
2.1.1 A Query Language for both, the Standard Web 
and the Semantic Web 
A hypothesis of this paper is that a common query language for 
both conventional Web and Semantic Web applications is 
desirable (this requirement for a Web query language has also 
been expressed by other authors, e.g., in [Olken and McCarthy, 
1998]). There are two reasons for this hypothesis:  

First, data is not inherently “conventional Web data” or “Semantic 
Web data” in many cases. Instead, it is the usage that gives data a 
“conventional Web” or “Semantic Web” status. Consider for 
example a computer science encyclopedia. It can be queried like 
any other Web document using a Web query language. If its 
encyclopedia relationships (formalizing expressions such as “see”, 
“see also”, “use instead” commonly used in traditional 
encyclopedia) are marked up, e.g., using XLink or any other ad 
hoc or generic formalism as one might expect from an online 
encyclopedia, then the encyclopedia can also be used as 
“Semantic Web data”, i.e. as metadata, in retrieving computer 
science texts (e.g., the encyclopedia could relate a query referring 
to “Linux” to Web content referring to “operating systems of the 
90s”) or enhance the rendering of Web contents (e.g. adding 
hypertext links from some words to their definitions in the 
encyclopedia). 

Second, Semantic Web applications will most likely combine and 
intertwine queries to Web data and to metadata (or Semantic Web 
data) in all possible manners. There is no reason to assume that 
Semantic Web applications will rely only on metadata or that 
querying of conventional Web data and Semantic Web data will 
take place in two (or several) successive querying phases referring 
each to data of one single kind. Consider again the computer 
science encyclopedia example. Instead of one single 
encyclopedia, one might use several encyclopedias that might be 
listed in a (conventional Web) document. Retrieving the 
encyclopedias requires a conventional Web query. Merging the 
encyclopedias is likely to call for specific features of a Semantic 
Web query language. Enhancing the rendering of a conventional 
Web document using the resulting (merged) encyclopedia is likely 
to require (a) conventional Web queries (for retrieving 
conventional Web documents and the addresses of the relevant 
encyclopedias), (b) Semantic Web queries (for merging the 
encyclopedias), (c) mixed conventional and Semantic Web 
queries (for adding hypertext links from words defined in the 
(merged) encyclopedia). 

2.1.2 Integrated View of Standard and Semantic Web 
Data: Graph data 
Both XML (and semi-structured data in general), as 
predominantly used on the (standard) Web, and RDF, the 
envisioned standard for representing Semantic Web data, can be 
represented in a graph data model. Although XML is often seen as 
a tree model only (cf. XML Information Set [Cowan and Tobin, 
2004] and the XQuery data model [Fernandez et al., 2004]), it 
does provide nonhierarchical relations, e.g., by using ID/IDREF 
links or XLink [DeRose et al., 2001]. 

Similar to the proposal for an integrated data model and (model-
theoretic) Semantics of XML and RDF presented in [Patel-
Schneider and Simeon, 2002], a query language for both standard 
and Semantic Web must be able to query any such data in a 
natural way. In particular, an abstraction of the various linking 
mechanisms is desirable for easy query formulation: One 
approach is the automatic dereferencing of ID/IDREF-links in 
XML data, another the unified treatment of typed relations 
provided both in RDF and XLink. 

The restriction to hierarchical (i.e., acyclic) relations is not 
realistic beyond the simplest Semantic Web use cases. Even if 
each relation for itself is acyclic, inference based not only on 
relations of a single type must be able to cope with cycles. 
Therefore, a (rooted) graph data model is called for. 
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2.1.3 Three Syntaxes: XML, Compact Human-
Readable, and Visual 
While it is desirable that a query language for the (conventional 
and/or Semantic) Web has an XML syntax, because it makes it 
easier to exchange query programs on the Web and to manipulate 
them using the query language, a second, more compact syntax 
easier for humans to read and write is desirable. Therefore, two 
textual syntaxes should be provided: a purely term-oriented XML 
syntax and another one which combines term expressions with 
non-term expressions like most programming languages. This 
other syntax should be more compact than the XML syntax and 
better readable for human beings. Both syntaxes should be 
interchangeable (the translation being a low cost process). 

Third, a visual syntax can greatly increase the accessibility of the 
language, in particular for non-experts. This visual syntax should 
be a mere rendering of the textual language, a novel approach to 
developing a visual language with several advantages: It results in 
a visual language tightly connected to the textual language, 
namely it is a rendering of the textual language. This tight 
connection makes it possible to use both, the visual and the textual 
language, in the development of applications. Last but not least, a 
visual query language conceived as a hypertext application is 
especially accessible for Web and Semantic Web application 
developers. 

2.1.4 Modeling, Verbalizing, and Visualizing  
Authoring and Modeling. Authoring correct and consistent 
queries often requires considerable effort from the query 
programmer. Therefore, semi-automated or fully-automated tool 
support both for authoring and for reading and understanding 
queries is essential.  

Verbalization. For verbalizing queries, as well as their in- and 
output, some form of controlled natural language processing is 
promising and can provide an interface to the query language for 
untrained users. The importance of such a seemingly free-form, 
“natural” interface for the Web is demonstrated by the wide-
spread success of Web search engines. 

Visualization. As discussed above, a visualization based on 
styling of queries is highly advantageous in a Semantic Web 
setting. As demonstrated in [Berger et al., 2003], it can also serve 
as a foundation for interactive features such as authoring of 
queries. On this foundation, more advanced authoring tools, e.g., 
for verification and validation of queries, can be implemented. 

2.2 Data Selection: Pattern based, Incomplete 
Every query language has to define means for accessing or 
selecting data. This section discusses principles for data selection 
in a Web context. 

2.2.1 Pattern Queries 
Patterns (as used, e.g., in Xcerpt [Schaffert and Bry, 2004] and 
XML-QL [Deutsch et al., 1998]) provide an expressive and yet 
easy-to-use mechanism for specifying the characteristics of data 
sought for. In contrast to path expressions (as used, e.g., in XPath 
[Clark and DeRose, 1999] and languages building upon it), they 
allow an easy realization of answer-closedness in the spirit of 
“query by example” query languages. Query patterns are 
especially well suited for a visual language because they give 
queries a structure very close to that of possible answers. One 
might say that query patterns are like forms, answers like form 
fillings. 

2.2.2 Incomplete Query Specifications 
Incomplete queries specify only part of the data to retrieve: e.g. 
only some of the children of an XML element (referring to the 
tree representation of XML data called “incompleteness in 
breadth”) or an element at unspecified nesting depth (referring to 
the tree representation of XML data called “incompleteness in 
depth”). Such queries are important on the conventional Web 
because of its heterogeneity: one often knows only part of the 
structure of the XML documents to retrieve.  

Incomplete queries specifying only part of the data to retrieve are 
also important on the Semantic Web. There are three reasons for 
this: first, “Semantic Web data” such as RDF or Topic Map data 
might be found in different (XML) formats that are in general 
easier to compare in terms of only some salient features. Second, 
the merging of “Semantic Web data” is often done in terms of 
components common to distinct data items. Third, most Semantic 
Web data standards allow data items with optional components. In 
addition, query languages for the conventional and Semantic Web 
should ease retrieving only parts of (completely or incompletely 
specified) data items. 

2.2.3 Incomplete Data Selections 
Because Web data is heterogeneous in its structure, one is often 
interested in “incomplete answers”. Two kinds of incomplete 
answers can be considered. First, one might not be interested in 
some of the children of an XML (sub-) document retrieved by a 
query. Second, one might be interested in some child elements if 
they are available but would accept answers without such 
elements. 

An example of the first case would be a query against a list of 
students asking for the name of students having an email address 
but specifying that the email address should not be delivered with 
the answer. 

An example of the second case would be a query against an 
address book asking for names, email addresses, and if available 
cellular phone numbers.  

But, the limitation of an answer to “interesting” parts of the 
selected data is helpful not only for XML data. A common desire 
when querying descriptions of Web sites, documents, or other 
resources stored in RDF is to query a “description” of a resource, 
i.e., everything related to the resource helping to understand  or 
identify it. In this case, one might for example want to retrieve 
only data related by at most n relations to the original resource 
and also avoid following certain relation types not helpful in 
identifying a resource. 

2.2.4 Polynomial Core 
The design principles discussed in this document point towards a 
general-purpose, and due to general recursion most likely Turing-
complete, database programming language. However, it is 
essential that for the most frequently used queries, small upper 
bounds on the resources taken to evaluate queries (such as main 
memory and query evaluation time) can be guaranteed. As a 
consequence, it is desirable to identify an interesting and useful 
fragment of a query language for which termination can be 
guaranteed and which can be evaluated efficiently. 

When studying the complexity of database query languages, one 
distinguishes between at least three complexity measures, data 
complexity (where the database is considered to be the input and 
the query is assumed fixed), query complexity (where the 
database is assumed fixed and the query is the input), and 
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combined complexity, which takes both the database and the 
query as input and expresses the complexity of query evaluation 
for the language in terms of the sizes of both [Vardi, 1982]. 

For a given language, query and combined complexity are usually 
much higher than data complexity. (In most relational query 
languages, by one exponential factor harder, e.g. in PSPACE vs. 
LOGSPACE-complete for first-order queries and EXPTIME-
complete vs. PTIME-complete for Datalog, cf. [Abiteboul et al., 
1995].) On the other hand, since data sizes are usually much 
larger than query sizes, the data complexity of a query language is 
the dominating measure of the hardness of queries. 

One complexity class which is usually identified with efficiently 
solvable problems (or queries) is that of all problems solvable in 
polynomial time. PTIME queries can still be rather inefficient on 
large databases. Another, even more desirable class of queries 
would thus be that of those queries solvable in linear time in the 
size of the data. 

Database theory provides us with a number of negative results on 
the complexity of query languages that suggest that neither 
polynomial-time query complexity nor linear-time data 
complexity are feasible for data-transformation languages that 
construct complex structures as the result. For example, even 
conjunctive relational queries are NP-complete with respect to 
query complexity [Chandra and Merlin, 1977]. Conjunctive 
queries can only apply selection, projection, and joins to the input 
data, all features that are among the requirements for query 
languages for the Semantic Web. There are a number of structural 
classes of tractable (polynomial-time) conjunctive queries, such as 
those of so-called “bounded tree-width” (cf. [Flum et al., 2002]) 
or “bounded hypertree-width” (cf. [Gottlob et al., 2002]), but 
these restrictions are not transparent or easy to grasp by users. 
Moreover, even if such restrictions are made, general data 
transformation queries only need very basic features (such as joins 
or pairing) to produce query results that are of super-linear size. 
That is, just writing the results of such queries is not feasible in 
linear time. 

If one considers more restrictive queries that view data as graphs, 
or more precisely, as trees, and which only select nodes of these 
trees, there are a number of positive results. The most important is 
the one that monadic (i.e., node-selecting) queries in monadic 
second-order logic on trees are in linear time with respect to data 
complexity [Courcelle, 1990] (but have non-elementary query 
complexity [Grohe and Schweikardt, 2003]). Reasoning on the 
Semantic Web naturally happens on graph data, and results for 
trees remain relevant because many graphs are trees. However, 
the linear time results already fail if very simple comparisons of 
data values in the trees are permitted. 

Thus, the best we can hope for in a data transformation query 
language fragment for reasoning on the Semantic Web is PTIME 
data complexity. This is usually rather easy to achieve in query 
languages, by controlling the expressiveness of higher-order 
quantification and of recursion. In particular the latter is relevant 
in the context of the design principles laid out here. A PTIME 
upper bound on the data complexity of recursive query languages 
is achieved by either disallowing recursion or imposing an 
appropriate monotonicity requirement (such as those which form 
the basis of PTIME data complexity in standard Datalog or 
Datalog with inflationary fix-point semantics [Abiteboul et al., 
1995]).  

Finding a large fragment of a database programming language and 
determining its precise complexity is an important first step. 
However, even more important than worst-case complexity 
bounds is the efficiency of query evaluation in practice. This leads 
to the problem of query optimization. Optimization is usually also 
best done on restricted query language fragments, in particular if 
such fragments exhibit alternative algebraic, logical, or game-
theoretic characterizations. 

2.3 Answers: Arbitrary XML, Ranked 
2.3.1 Answers as Arbitrary XML Data 
XML is the lingua franca of data interchange on the Web. As a 
consequence, answers should be expressible in every possible 
XML application. This includes both text without mark-up and 
freely chosen mark-up and structure. This requirement is obvious 
and widely accepted for conventional Web query languages. 
Semantic Web query languages, too, should be capable of 
delivering answers in every possible XML application so as to 
make it possible for instance to mediate between RDF and XTM 
(an XML serialization of Topic Maps, cf. [Pepper and Moore, 
2001]) data or to translate RDF data from one RDF syntax into 
another RDF syntax. 

2.3.2 Answer Ranking and Top-k Answers 
In contrast to queries posed to most databases, queries posed to 
the conventional and Semantic Web might have a rather 
unpredictable number of answers. As a consequence, it is often 
desirable to rank answers according to some application-
dependent criteria. It is desirable that Web and Semantic Web 
query languages offer (a) basic means for specifying ranking 
criteria and, (b) for efficiency reasons, evaluation methods 
computing only the top-k answers (i.e., a given number k of best-
ranked answers according to a user-specified ranking criterion). 

2.4 Query Programs: Declarative, Rule based 
The following design principles concern the design of query 
programs beyond the data selection facilities discussed in Section 
2.2. 

2.4.1 Referential Transparency 
This property means that, within a definition scope, all 
occurrences of an expression have the same value, i.e., denote the 
same data. Referential transparency is an essential, precisely 
defined trait of the rather vague notion of “declarativity”. 

Referential transparency is a typical feature of modern functional 
programming languages. For example, evaluating the expression 
f 5 in the language Haskell will always yield the same value 
(assuming the same definition of f is used). Contrast with 
languages like C or Java: the expression f(5) might yield 
different results every time it is called because its definition 
depends on constantly changing state information. 

Referentially transparent programs are easier to understand and 
therefore easier to develop, maintain, and optimize as referential 
transparency allows query optimizers to dynamically rearrange 
the evaluation order of (sub-) expressions, e.g., for evaluating in a 
“lazy manner” or computing an optimal query evaluation plan. 
Therefore, referential transparency surely is one of the essential 
properties a query language for the Web should satisfy. 

2.4.2 Answer-Closedness 
We call a query language “answer-closed” if replacing a sub-
query in a compound query by a possible (not necessarily actual) 
single answer always yields a syntactically valid query. Answer-
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closed query languages ensure in particular that every data item, 
i.e. every possible answer to some query, is a syntactically valid 
query. Functional programs can—but are not required to—be 
answer-closed. Logic programming languages are answer-closed 
but SQL is not. E.g., the answer person(a) to the Datalog 
query person(X) is itself a possible query, while the answer 
“name = ‘a’ ” to the SQL query SELECT name FROM 
person cannot (without significant syntactical changes) be used 
as a query. Answer-closedness, is the distinguishing property of 
the “query by example” paradigm [Zloof, 1975], even though it is 
called differently there, separating it from previous approaches for 
query languages. Answer-closedness eases the specification of 
queries because it keeps limited the unavoidable shift in syntax 
from the data sought for and the query specifying these data. 

To illustrate the importance of answer-closedness in the Web 
context, assume an XML document containing a list of books with 
titles, authors, and prices (cf. for instance the XML Query Use 
Case XMP [Chamberlain et al., 2003]). The XPath [Clark and 
DeRose, 1999] query  

/bib/book/title/text() 

selects the (text of) titles of books, while a similar query in the 
(answer-closed) language Xcerpt [Schaffert and Bry, 2004] is  

bib {{ book {{ title { var T } }} }}. 

XPath does not allow to substitute, e.g., the string “Data on the 
Web” for the query and is thus not answer-closed. In Xcerpt, on 
the other hand, the following is both an answer to the above query 
and a perfectly valid query in itself: 

bib {{ book {{ title { "Data on the Web" } }} }} 

Answer-closedness is useful, e.g., when joining several 
documents. For instance, a query could first select book titles in a 
person’s favorite book list and then substitute these titles in the 
query above: 

and {  
   my-favorite-books {{ title { var T } }},  
   bib {{ book {{ title { var T } }} }} 
} 

2.4.3 Rule-Based, Chaining, and Recursion 
Rule-Based. Rules are understood here as means to specify novel, 
maybe virtual, data in terms of queries, i.e., what is called “views” 
in (relational) databases, regardless of whether this data is 
materialized or not. Views, i.e., rule-defined data, are desirable for 
both conventional and Semantic Web applications. There are three 
reasons for this: 

First, view definitions or rules are a means for achieving the so-
called “separation of concerns” in query programs, i.e., the 
stepwise specifications of data to retrieve and/or to construct. In 
other words, rules and view definitions are a means for 
“procedural abstraction”, i.e., rules (view definitions, resp.) are 
the Prolog and Datalog (SQL, resp.) counterpart of functions 
and/or procedures. 

Second, rules and view definitions give rise to easily specifying 
inference methods needed, e.g., by Semantic Web applications. 

Third, rules and view definitions are means for “data mediation”. 
Data mediation means translating data to a common format from 
different sources. Data mediation is needed both on today’s Web 
and on the emerging Semantic Web because of their 
heterogeneity.  

Backward and Forward Chaining. On the Web, backward 
chaining, i.e., computing answers starting from rule heads, is in 
general preferable to forward chaining, i.e., computing answers 
from rule’s bodies. While forward chaining is in general 
considered to be more efficient then backward chaining, there are 
many situations where backward chaining is necessary, in 
particular when dealing with Web data. For example, a query 
might dynamically query Web pages depending on the results of 
previous queries and thus unknown in advance. Thus, a forward 
chaining evaluation would require to consider the whole Web, 
which is clearly unfeasible. 

Recursion. On the Web, recursion is needed at least 

• for traversing arbitrary-length paths in the data structure, 

• for querying on the standard Web when complex 
transformations are needed, 

• for querying on the Semantic Web when inference rules are 
involved. 

Note that a free recursion is often desirable and that recursive 
traversals of XML document as offered by the recursive 
computation model of XSLT 1.0 are not sufficient. 

2.4.4 Separation of Queries and Constructions 
Two standard and symmetrical approaches are widespread, as far 
as query and programming languages for the Web are concerned: 

• Queries or programs are embedded in a Web page or Web 
page skeleton giving the structure of answers or data returned 
by calls to the programs. 

• Parts of a Web page specifying the structure of the data 
returned to a query or program evaluation are embedded in 
the queries or programs. 

It is a hypothesis of this paper that both approaches to queries or 
programs are hard to read (and, therefore, to write and to 
maintain). 

Instead of either approach, a strict separation of queries and 
“constructions”, i.e., expressions specifying the structure of 
answers, is desirable. With a rule-based language, constructions 
are rule heads and queries are rule bodies. In order to relate a 
rule’s construction to a rule’s query, (logic programming) 
variables can be employed. 

As discussed in Section 2.13, the construction of complex results 
often requires considerable computation. The separation of 
querying and construction presented here allows for the separate 
optimization of both aspects, allowing easier adoption of efficient 
evaluation techniques. 

2.5 Reasoning Capabilities 
Versatility (cf. Section 2.1) allows access to data in different 
representation formats, thereby addressing format heterogeneity. 
However in a Web context, data will often be heterogeneous not 
only in the chosen representation format but also in terms, 
structure, etc. Reasoning capabilities offer a means for the query 
author to deal with heterogeneous data and to infer new data. 

2.5.1 Specific Reasoning as Theories 
Many practical applications require special forms of reasoning: 
for instance, efficient equality reasoning is often performed using 
the so-called paramodulation rule instead of the equality axioms 
(transitivity, substitution, and symmetry). Also, temporal data 
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might require conversions between different time zones and/or 
calendar systems that are expressed in a simpler format and more 
efficiently performed using arithmetic instead of logical axioms. 
Finally, reasoning with intervals of possible values instead of 
exact values, e.g., for appointment scheduling, is conveniently 
expressed and efficiently performed with constraint programming.  

For this reason, it is desirable that a query language for the 
(conventional and Semantic) Web can be extended with so-called 
“theories” implementing specific forms of reasoning.  

Such “theory extensions” can be realized in two manners:  

First, a theory can be implemented as an extension of the run time 
system of the query language with additional language constructs 
for using the extension.  

Second, a theory can be implemented using the query language 
itself and made available to users of this query language through 
program libraries. In this case, theories are implemented by rules 
and queries. Based upon, e.g., the XML syntax of the query 
language (cf. 2.12) such rule bases can then be queried using the 
query language itself and maintained and updated by a reactive 
language such as XChange [Bry and Pătrânjan, 2005]. 

2.5.2 Querying Ontologies and Ontology-aware 
Querying 
In a Semantic Web context, ontologies can be used in several 
alternative ways: First, they can be dealt with by a specialized 
ontology reasoner (the main disadvantage being the impossibility 
of adding new domain-specific constructs). Second, they can be 
regarded as descriptions to be used by a set of rules implementing 
the Semantics of the constructs employed by the ontology. (This 
is similar to a meta-interpreter and may be slow.) Alternatively, 
the ontology may be “compiled” to a set of rules. 

As discussed in the previous point, the query language should 
allow for both approaches: extending the query language by 
specific theory reasoners for a certain ontology language, e.g., 
OWL-DL, as well as the ability to use rules written in the query 
language as means for implementing (at least certain aspects) of 
an ontology language. Examples for such aspects are the 
transitivity of the subsumption hierarchy represented in many 
ontologies or the type inference based on domain and range 
restrictions of properties. 

The latter approach is based upon the ability to query the ontology 
together with the data classified by the ontology. This is possible 
due to the first design principle. Stated in terms of ontologies, we 
believe that a query language should be designed in such a way 
that it can query standard Web data, e.g., an article published on a 
Web site in some XML document format, meta-data describing 
such Web data, e.g., resource descriptions in RDF stating author, 
usage restrictions, relations to other resources, reviews, etc., and 
the ontology that provides the concepts and their relations for the 
resource description in RDF. 

2.6 Querying and Evolution 
When considering the vision of the Semantic Web, the ability to 
cope with both quickly evolving and rather static data is crucial. 
The design principles for a Web query language discussed in the 
remainder of this section are mostly agnostic of changes in the 
data: only a “snapshot” of the current data is considered for 
querying; synchronization and distribution issues are transparent 
to the query programmer. 

In many cases, such an approach is very appropriate and allows 
the query programmer to concentrate on the correct specification 
of the query intent. However, there are also a large number of 
cases where information about changes in the data and the 
propagation of such and similar events is called for: e.g., in event 
notification, change detection, and publish-subscribe systems. 

For programming the reactive behavior of such systems, one often 
employs “event-condition-action”- (or ECA-) rules. We believe 
that the specification of both queries on occurring events (the 
“event” part of ECA-rules) and on the condition of the data, that 
should hold for a specific action to be performed, should be 
closely related to or even embed the general purpose query 
language whose principles are discussed in this article (cf. the 
reactive language XChange [Bry and Pătrânjan, 2005] integrating 
the query language Xcerpt [Schaffert and Bry, 2004]). 

3. RELATED WORK 
Although there have been numerous approaches for accessing 
Web data, few approaches consider the kind of versatility asked 
for by the design principles presented in this article. This section 
briefly discusses how the design principles introduced above 
relate to selected query languages for XML and RDF data, but 
does not aim at a full survey over current Web query languages as 
presented, e.g., in [Furche et al., 2004]. 

3.1 Versatility 
Most previous approaches to Web query languages beyond 
format-agnostic information retrieval systems such as search 
engines have focused on access to one particular kind of data 
only, e.g., to XML, or RDF data. Therefore such languages fall 
short of realizing the design principles on versatility described in 
Section 2.1. Connected to the realization that the vision of a 
“Semantic Web” requires joint access to XML and RDF data, 
versatility (at least when restricted to these two W3C 
representation standards) has been increasingly recognized as a 
desirable if not necessary characteristic of a Web query language, 
e.g., in [Patel-Schneider and Simeon, 2002]. The charter of the 
W3C working group on RDF Data Access even asks “for RDF 
data to be accessible within an XML Query context [… and] a 
way to take a piece of RDF Query abstract syntax and map it into 
a piece of XML Query” [Prud’hommeaux, 2004].  

This recognition, however, has mostly lead to approaches where 
access to RDF data is added to already established XML query 
languages: [Robie et al., 2001] proposes a library of XQuery 
accessor functions for normalizing RDF/XML and querying the 
resulting RDF triples. Notably, the functions for normalizing and 
querying are actually implemented in XQuery. In contrast, 
TreeHugger [Steer, 2003] provides a set of (external) extension 
functions for XSLT (1.0) [Clark, 1999]. Both approaches suffer 
from the lack of expressiveness of the XQuery and XSLT data 
model when considering RDF data: XQuery and XSLT consider 
XML data as tree data where references (expressed using 
ID/IDREF or XLink) have to be resolved explicitly, e.g., by an 
explicit join or a specialized function. Therefore, [Robie et al., 
2001] maps RDF graphs to a flat, triple-like XML structure 
requiring explicit, value-based joins for graph traversal. 
TreeHugger maps the RDF graph to an XML tree, thus using the 
more efficient structural access where possible, however requiring 
special treatment of RDF graphs that are not tree shaped. None of 
these approaches fulfills the design principles proposed in Section 
2.1 entirely, but they represent important steps in the direction of 
a versatile Web query language.  
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3.2 Data Selection 
For the remainder of the design principles, Web query languages 
specialized for a certain representation format such as XML or 
RDF are worth considering. One of the most enlightening views 
on the state-of-the-art in both XML and RDF query languages is a 
view considering how data selection is specified in these 
languages. Both data formats allow structured information and 
data selection facilities emphasize the selection of data based on 
its own structure and its position in some context, e.g., an XML 
document or an RDF graph. For specifying such structural 
relations, three approaches can be observed:  

(1) purely relational, where the structural relations are represented 
simply as relations, e.g., child(CONTEXT, X) ∋ 
descendant(X, Y) for selecting the descendants of a child of 
some node CONTEXT. This style is used in several RDF query 
languages, e.g., the widely used RDQL [Seaborne, 2004] and 
current drafts of the upcoming W3C RDF query language 
SPARQL [Prud’hommeaux and Seaborne, 2004]. For XML 
querying, this style has proven convenient for formal 
considerations of, e.g., expressiveness and complexity of query 
languages. In actual Web query languages it can be observed only 
sparsely, e.g., in the Web extraction language Elog [Baumgartner 
et al., 2001].  

(2) path-based, where the query language allows several structural 
relations along a path in the tree of graph structure to be expressed 
without explicit joins, e.g., child::*/descendant::* for 
selecting the descendants of childs of the context. This style, 
originating in object-oriented query languages, is used in the most 
popular XML query languages such as XPath [Clark and DeRose, 
1999], XSLT [Clark, 1999], and XQuery [Boag et al., 2004], but 
also in a number of other XML query languages, e.g., in 
XPathLog [May, 2004] that shows that this style of data selection 
can also be used for data updates. Several ideas to extend this 
style to RDF query languages have been discussed (e.g., [Palmer, 
2003]), but only RQL [Karvounarakis et al., 2004] proposes a full 
RDF query language using path expressions for data selection. 

(3) pattern-based, as discussed in Section 2.2.1. This style is used, 
e.g., in XML-QL [Deutsch et al., 1998] and Xcerpt [Schaffert and 
Bry, 2004], but is also well established for relational databases in 
the form “query-by-example” and Datalog.  

Most Web query languages consider to some extent incomplete 
query specifications as Web data is inherently inconsistent and 
few assumptions about the schema of the data can be guaranteed. 
However, only few query languages take the two flavors of 
incomplete data selection discussed in Section 2.2.3 into account 
(e.g., Xcerpt [Schaffert and Bry, 2004] and SPARQL 
[Prud’hommeaux and Seaborne, 2004]).  

Polynomial cores have been investigated most notably for XPath 
(and therefore by extension XQuery [Boag et al., 2004] and XSLT 
[Clark, 1999]), the results are presented, e.g., in [Gottlob et al., 
2003] and [Segoufin, 2003]. 

3.3 Answers 
Naturally, most XML query languages can construct answers in 
arbitrary XML. This is, however, not true of RDF query 
languages, many of which such as RDQL [Seaborne, 2004] do not 
even allow the construction of arbitrary RDF, but rather outputs 
only (n-ary) tuples of variable bindings. 

Answer ranking and top-k answers have historically rarely been 
provided by the core of Web query languages, but rather have 
been added as an extension, see e.g., [Amer-Yahia et al., 2004], a 

W3C initiative on adding full-text search and answer ranking to 
XPath and XQuery [Boag et al., 2004]. In relational databases, on 
the other hand, top-k answers are a very common language 
feature.  

3.4 Query Programs 
Declarativity and referential transparency have long been 
acknowledged as important design principles for any query 
language, as a declaratively specified query is more amenable to 
optimization while also easing query authoring in many cases.  

Most of the Web query languages claim to be declarative 
languages and, oftentimes, to offer a referentially transparent 
syntax. In the case of XQuery [Boag et al., 2004], the referential 
transparency of the language is doubtful due to side effects during 
element construction. For instance, the XQuery let $x = <a/> 
return $x is $x, where is is the XQuery node comparator, 
i.e., tests whether two nodes are identical, evaluates to true, 
whereas the query <a/> is <a/> evaluates to false, although it 
is obtained from the first query by replacing all occurrences of $x 
with its value.1 The reason for this behavior lies in the way 
elements are constructed in XQuery: In the first query a single 
(empty) a is created, which is (of course) identical to itself. 
However, in the second case, two a elements are constructed, 
which are not identical (and therefore the node identity 
comparison using is fails). Interestingly, this behavior is related 
to XQuery’s violation of design principle 2.4.4, that stipulates that 
querying and construction should be separated in a query 
language. 

In contrast to referential transparency, answer-closedness can not 
be observed in many Web query languages. With the exception of 
Xcerpt [Schaffert and Bry, 2004], Web query languages provide, 
if at all, only a limited form of answer-closedness, where only 
certain answers can also be used as queries.  

Related to answer-closedness is the desire to be able to easily 
recognize the result of a query. This can be achieved by a strict 
separation of querying and construction, where the construction 
specifies a kind of form filled with data selected by the query. 
Such a strict separation is not used in most XML query languages, 
but can be observed in many RDF query languages, e.g., RDF and 
SPARQL, due to the restricted form of construction considered in 
these languages (following a similar syntax as SQL, but restricting 
the SELECT clause to, e.g., lists of variables).  

Section 2.4.3 proposes the use of (possibly recursive) rules for 
separation of concern, view specification. This has been a popular 
choice for Web query languages (e.g., XSLT [Clark, 1999], Algae 
[Prud’hommeaux, 2004]), in particular when combined with 
reasoning capabilities (e.g., in TRIPLE [Sintek, 2002], XPathLog 
[May, 2004]).  

3.5 Reasoning Capabilities 
Reasoning capabilities are, as discussed in Section 2.5, very 
convenient means to handle and enrich heterogeneous Web data. 
Nevertheless, the number of XML query languages featuring 
built-in reasoning capabilities is rather limited, examples being 
XPathLog [May, 2004] and Xcerpt [Schaffert and Bry, 2004]. In 
contrast, several RDF query languages provide at least limited 
forms of reasoning (e.g., for computing the transitive closure of 
arbitrary relations), e.g., TRIPLE [Sintek, 2002], Algae 

                                                                    
1 This has been pointed out, in a slight variation, by Dana Florescu 

on the XML-DEV mailing list.  
http://lists.xml.org/archives/xml-dev/200412/msg00228.html 
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[Prud’hommeaux, 2004]. Some RDF query languages also 
consider ontology-aware querying with RDFS [Brickley et al., 
2004] as ontology language. For  XML query languages, this has 
not been considered at length. 

4. CONCLUSION AND OUTLOOK 
In this paper, design principles for (Semantic) Web query 
languages have been derived from the experience with previous 
conventional Web query language proposals from both academia 
and industry as well as recent Semantic Web query activities.  

In contrast to most previous proposals, these design principles are 
focused on versatile query languages, i.e., query languages able to 
query data in any of the heterogeneous representation formats 
used in both the standard and the Semantic Web.  

As argued in Section 3, most previous approaches to Web query 
languages fail to address the design principles discussed in this 
article, most notably very few consider access to heterogeneous 
representation formats. 

Currently, the Web query language Xcerpt [Schaffert and Bry, 
2004] that already reflects many of these design principles is 
being further refined to a true versatile query language along the 
principles outlined in this article. 

We believe that versatile query languages will be essential for 
providing efficient and effective access to data on the Web of the 
future: effective as the use of data from different representation 
formats allows to serve better answers, e.g., by enriching, 
filtering, or ranking data with metadata available in other 
representation formats. Efficient as previous approaches suffer 
from the separation of data access by representation formats 
requiring either multiple query languages or hard to comprehend 
and expensive data transformations. 
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