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Abstract

Calendar data such as dates are probably more than any other data domain a subject to
interpretation. Calendars are human abstractions of the physical flow of time predominately
depending on culture, especially religion and history. They allow for measuring time in
different units like day, week, working day, and also teaching term. The vision of the Semantic
Web is to enrich the current Web with well-defined meanings and to enable computers to
meaningfully process such data. This paper contributes to the Semantic Web vision with
a generic modeling language called CaTTS. Using CaTTS, one can easily define arbitrary
calendars. The language provides with CaTTS-TDL, a tool to define calendars and CaTTS-
FDL, a tool to define calendar data, in particular dates to give calendar data well-defined
meanings. Furthermore, CaTTS provides a way to enable computers to meaningfully process
the calendar data. Thus, CaTTS brings important cultural artefacts, the calendars, on the
(Semantic) Web.

1 Importance of Calendars in Cultures

Calendar data such as dates are probably more than any other data domain a subject to inter-
pretation, in almost any case depending on culture. E.g. the date “12/02/2005” is interpreted
in France as 12th February 2005 while it is interpreted as 2nd December 2005 in the US. Many
traditional Web sites and pages refer explicitly or implicitly to such calendar data. On the current
Web, such data can hardly be interpreted by computers. The vision of the Semantic Web is to en-
rich the current Web with well-defined meaning and to enable computers to meaningfully process
such data. This paper contributes to the Semantic Web vision with a generic modeling language
called CaTTS [2, 3]. Using CaTTS, one can easily define arbitrary calendars including rather com-
plicated ones. CaTTS provides with CaTTS-TDL, a tool to define calendars and CaTTS-FDL, a
tool to define calendar data, in particular dates. Furthermore, CaTTS provides a way to enable
computers to meaningfully process calendar data. A thesis underlying the work reported about in
this article is that calendars are more conveniently expressed with dedicated language constructs
and that calendar data and expressions are more efficiently processed with dedicated reasoning
methods than with “axiomatic reasoning” of ontology languages like RDF and OWL.

Calendars are human abstractions of the physical flow of time. They allow for measuring time
in different units like day, week, working day, and also teaching term predominately depending on
culture, especially religion and history. E.g. the working days of a professional calendar used in
some country are defined according to the days in the underlying cultural calendar used. Exam-
ples of cultural calendars are the Gregorian, the Julian, the Hebrew, the old and new Japanese
calendars, and the old and new Chinese calendars.

Although people in Europe and in Japan both use the Gregorian calendar to measure time, to
make appointments, or to schedule travels, the Gregorian calendar used in Japan and European
countries present more (often rather subtle) differences than one might think at first: E.g. Christ-
mas Day means December 25 in Greece, but January 7 in Russia, although, Greece and Russia are
both dominated by the same (Christian Orthodox) religion. However, in Russia the Christmas Day
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is determined according to the Julian calendar while in Greece this day is determined according
to the Gregorian calendar which is used in both countries in everyday life. Furthermore, Russia,
Greece, and all other Christian Orthodox countries calculate Easter according to the Julian cal-
endar although the Gregorian calendar is used for specifying other religious celebrations. Another
particularity concerning (religious) holidays arises in Germany: people in Bavaria do not work on
Epiphany (6th January) while people in Schleswig-Holstein work on this day. The rational is that
legal holidays are defined at the German federal level, not at the state level, i.e. Epiphany is a legal
holiday in Bavaria but not in Schleswig-Holstein. Yet another curiosity concerns German universi-
ties and technical institutes: while at a technical institute a lecture would be announced by a time
slot like “8:15 to 9:45”, at a university a lecture with the same time slot would be announced “8:00
to 10:00 c.t.”. The abbreviation c.t., Latin for “cum tempore”, defines a time shift by a quarter of
an hour. Beyond different interpretations of dates or holidays, the common-sense understanding
of some calendar expressions vary: in Western countries like France or the US, ‘Friday evening’
denotes the eve of Friday but in some Islamic countries, the eve of Thursday. Furthermore, years
are numbered differently in Japan and China than in European countries (and not in the same
way in Japan, continental China, and Taiwan). E.g. December 24, 1926 is referred to in Japan as
Taishō 15, the 12th month, the 24th day, while December 25, 1926 is Shōwa 1, the 12th month,
the 25th day.1 The rationale is that, following the old Chinese practice, years are numbered in
the Japanese calendar after the era name. These era names are chosen by each emperor as a kind
of governing slogan. The slogan of the present Japanese emperor, whose reign started on January
8th, 1989, Heisei has the meaning ”creating peace”. Often enough, however, the meanings of
these era names being Chinese compounds are quite ambiguous and therefore often open – even if
unsaid – new interpretations according to changing situations. Shōwa, the era which started 1926,
can mean ”brilliant Japan” as well as ”radiant peace”. Since in modern times it had become the
habit not to change the governing slogan during one emperor’s reign, this possibility to reread the
meaning nevertheless permitted a new start even under the reign of still the same emperor. An
emperor is so closely linked to his governing slogan, that instead of using his name, which would
be actually a taboo, he is usually referred to as the emperor with the name of his era, i.e. Shōwa
tennō, Heisei tennō etc.

These era names on one hand show a perception of time which is, as can be repeatedly found
in Asia, circular. A parallel of this perception can also be found in the western view of the year.
In the Asian, i.e. predominantly the Chinese, cultural sphere, however, even the year is separated
in several circles, depending on the respective system of beliefs. In a country like Japan all these
calendrical systems overlap, so it can be quite complicated and confusing to correctly refer to
a day. Therefore, fixing a day for a certain occasion can be quite difficult and many calendars
have to be consulted. To plan a wedding on a day, when - as it is done repeatedly during the
year - the entrance of Buddha into Nirvana is commemorated, for example is supposed to be
very unsuspicious. To avoid that, even until today most Japanese couples will consult a Buddhist
priest.

This shows on the other hand that calendar systems manifest - as is the case with the era
names as well - a great deal of inherent power. To become able to be in charge of time - even if it
might be only your own - time has to be modeled. Watches and calendars as common devices can
therefore also be seen as one step to personal independence as well as to equal communication.
With the growing of a merchant class in pre-modern Japan such devices for common usage became
more and more on demand, as there were a sine qua non for monetary acts. But since the calendar
system that days was so complicated - for example the long and short months changed each year
- and involved so much power, to print calendars was a strict state monopoly. To circumvent this
law different modes of riddle like modeling calendars in prints, so called e-goyomi, were invented.
The length of the months and often even the year was interwoven with the overall picture of
the respective prints. Even though these calendars were strictly forbidden, due to their playful

1Even though for designating the months in Japanese now their mere numbers are mainly used,there exist other
names that evoke the old calender. I.e. by mentioning the first month, e.g. Japanese automatically think of spring,
because in the past the first month denoted the beginning of spring. This can still be seen in different greetings for
the New Year, where ”spring” is frequently used.
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approach during the 18th and 19th century private editions were soon en vogue as well as coveted
collection articles. Two examples will show how they work.

Figure 1: Japanese calendar illustrations [1], (a) p. 105 and (b) p.102.

At the first glance, Figure 1(a) illustrates only a good luck charm for New Year, showing the
God of Good Fortune, Ebisu, together with a red snapper, tai2. However, the thread loosely laid
around the fishing rod tells us in hardly legible letters the year, the 3rd year in the era Meiwa
(1766), a dog-year, while the numbers for the long months are hidden in the folds of the garment
of the God of Fortune and the numbers for the short months in the outline of the fish.

Figure 1(b) is one of the popular bijin-e, pictures of beautiful women, of the year 1824. Sub-
tracted by the beauty the spectator hardly notices the delicate numbers headed by the character
for ”large” - this signifying that the following numbers are the long months - at the corpus of the
shamisen (the musical instrument), the woman is holding in her hands.

2 Importance of Cultural Calendars for the Semantic Web

A programming language or a query language to be used in an inter-cultural context, e.g. on the
Web, for retrieving data or offering world-wide services for processing temporal data should be
aware of differences between cultural calendars: for example, scheduling the phone conference of
three persons in France, Greece, and Japan, the language used to calculate a possible time slot has
to consider the personal and professional time constraints of the persons. Furthermore, everyone’s
calendar data should be better expressed in the cultural calendar and time zone the person is used
to. Calendar data casting (e.g. between Japanese and Gregorian year numbering) that must be
performed for calculations should be invisible to the users.

Thus, so as to make it possible for every user to express calendar data in the calendar he/she is
used to, the Calendar and Time Type System CaTTS [2, 3] has been developed. CaTTS consists
of two languages, a type definition language, CaTTS-DL, and a constraint language, CaTTS-CL, of
a (common) parser for both languages, and of a language processor for each language (cf. Figure
1). This article exemplifies CaTTS-DL’s means to specify in a rather simple manner more or
less complex cultural (and also professional) calendars. With CaTTS-DL, cultural differences of

2Interestingly enough, this is still another of the so popular rebuses in Japanese culture: tai (the name of the
fish) is seen as an abbreviation for ”omedetai” (to bring blessings upon s.o.).

CaTTS

CaTTS-DL
CaTTS-CL

CaTTS-TDL CaTTS-FDL

Figure 2: Sublanguages of CATTS.
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calendar Gregorian =
cal

type second ;
type minute = aggregate 60 second @ second ( 1 ) . . . type week = aggregate 7 day @ day ( 1 ) ;
type month = aggregate

31 day named january ,
alternate month( i )
| ( i div 1 2 ) mod 4 == 0 &&

(( i div 1 2 ) mod 4 0 0 ! = 1 0 0 | | ( i div 1 2 ) mod 400 == 0) −> 29 day
| otherwise −> 28 day

end named february , . . . , 3 1 day named december @ day ( 1 ) ;
type year = aggregate 12 month @ month ( 1 ) ;
group ho l iday = with select day ( i ) where t rue end ;

end

Figure 3: The standard Gregorian calendar in CaTTS-DL.

c a l enda r f unc t i on French Gregor ian (C: Sig ) =
cal

group ho l iday = with select C. day ( i ) where P
(∗ Tuesday in the carn iva l time : ∗)

type mardi gras for P =
C. day ( i ) equals sh i f t g r e g e a s t e r ( j ) backward 47 C. day

(∗ Easter : ∗)
type paques for P = C. day ( i ) equals g r e g e a s t e r ( j )

(∗ nat iona l day : ∗)
type f e t e n a t i o n a l e for P = relative i in C. j u l y == 14

(∗ Christmas : ∗)
type noe l for P = relat ive i in C. december == 25

end
end

Figure 4: An excerpt of the French-Gregorian calendar in CaTTS-DL.

commonly used calendars can be conveniently modeled without redundantly re-specifying common
aspects: calendars modeled in CaTTS-DL are composable in the sense that the language offers
a means for modules. For example, the standard Gregorian calendar can be extended with a
particular national calendar specifying national holidays. Furthermore, particularities like leap
seconds3, leap years, and time zones can be easily expressed in CaTTS-DL.

CaTTS-DL consists of two language fragments, CaTTS-TDL (for type definition language),
to specify calendric data types specific to a particular calendar like “working day”, “New Year’s
Eve”, “Japanese year”, or “spring”, and CaTTS-FDL (for format definition language), to specify
date formats for such data types like “Fri Jan 21 CEST 2005”, “31/12/2004”, “Shōwa 64-nen”, or
“Spring 2004”.

CaTTS-DL’s language processor is a static type checker. Static type checking (i.e. at compile
time to check whether or not expressions or definitions in a program obey the typing rules of
the language without any evaluation taking place) is a well-established formal method to ensure
program and system behavior and to enforce high-level modularity properties [5]. CaTTS’s type
checker can be used for static type checking of programs or specifications in any language (e.g.
XQuery, XSLT, XML Schema), using dates and temporal events enriched with type annotations
after some calendar specified in CaTTS-DL. In particular, it is used for the static type checking
of temporal constraint programs in CaTTS-CL, the constraint language of CaTTS. Oversimpled,
CaTTS static type checker works as follows. Consider a calendar C specified in CaTTS-DL and a
program P with type annotations referring to types and/or formats specified in the calendar C.
CaTTS’ static type checker verifies and/or extends the type annotations in P generating a type
checked version P ′ of P .

CaTTS’ static type checker ensures context-aware processing of calendric data types (e.g.
whether Christmas Day must be interpreted as December 25 or January 7) when such data is used
for programming or querying. Furthermore, CaTTS’ type checker prevents from semantically

3Leap seconds are intercalated seconds added to keep physical time in phase with earth rotation.
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import Ju l i an ;
c a l enda r f unc t i on Greek Gregorian (C: Sig ) =
cal

macro s h i f t e d e p a c t ( greg y ) = (14 + 11∗ ( greg y mod 1 9 ) ) mod 3 0 ;
macro j u l i a n y e a r ( greg y ) = i f greg y > 0 then greg y else greg y − 1;
macro j u l i a n ap r i l 1 9 t h ndx ( j u l y ) = k where day (k ) during Ju l i an . year ( j u l y ) &&

relative index day (k ) in Ju l i an . a p r i l == 19;
macro paschal moon ( greg y ) = day (k ) where j u l y == ju l i a n y e a r ( greg y ) &&

k == ju l i a n ap r i l 1 9 t h ndx ( j u l y ) − s h i f t e d e p a c t ( greg y ) ;
group ho l iday = with select C. day ( i ) where P

(∗ Monday in the carn iva l time : ∗)
type ka t h a r i d e f t e r a for P =

day ( i ) equals sh i f t pascha ( j ) backward 47 C. day
(∗ Easter : ∗)

type pascha for P = day ( i ) within year (y) && sunday ( j ) after paschal moon (y )
&& day ( i ) equals min( sunday ( j ) )

(∗ Greek Independence Day : ∗)
type ime r a an exa r t i s i a s for P = relative i in C. march == 25

(∗ Christmas : ∗)
type chr i s tougenna for P = relat ive i in C. december == 25

end
end

Figure 5: An excerpt of the Greek-Gregorian calendar in CaTTS-DL.

imprecise specifications (e.g. to shift a day forward by a month). Of course, one could (probably
easily) extend the language CaTTS if such form of imprecision is wished.

3 Modeling Cultural Calendars in CaTTS

This Section exemplifies the modeling of cultural calendars in France, Greece, and Japan according
to a commonly used standard Gregorian calendar using CaTTS-DL.

A Standard Gregorian Calendar. The modeling of a standard Gregorian calendar indepen-
dent of any cultural particularities in CaTTS-DL (cf. Figure 3) is considered in the following.
A CaTTS calendar specification begins with the keyword calendar and ends with the keyword
end. The calendar specification given in Figure 3 binds a calendar to the identifier Gregorian
(i.e. the name of the calendar that can be referred to). This CaTTS-DL calendar specification
consists of a set of calendar data type definitions (each identified by the keyword type followed
by some user-defined name) and a group definition (identified by the keyword group followed by
some user-defined name). Groups can be used to collect a set of type definitions having some
intended relationship. The first type defined is second. It has no further properties. The CaTTS
system interprets such a type definition simply as an indexed set isomorphic to the integers. If
the programmer wants to relate his/her type definition for seconds to a real flow of time, he/she
can use CaTTS’ pre-defined type reference. reference is the calendar unit “second” of Unix
(UTC seconds with midnight at the onset of Thursday, January 1 of year 1970 (Gregorian) as
fixed point indexed by 1). The type definition of the type minute is derived from that of the type
second. The CaTTS language processor interprets this type definition as an aggregation subtype
of the type second such that each of its elements comprises 60 seconds4 (denoted aggregate 60
second) and that the minute that has number 1, i.e. minute(1) comprises all seconds between
second(1) in second(60) (minute(2) those between second(61) and second(120), etc. (de-
noted @ second(1)). Such a type definition allows the CaTTS language processor to compute the
seconds contained in a specific minute, i.e. to cast elements from one type to those of another. Any
further type definition follows the same pattern. The definitions are straightforward following the
rules of the Gregorian calendar [4]. Since Gregorian months have different lengths, a CaTTS type
month is defined with a repeating pattern of the twelve months. The months February, which is
one day longer in each Gregorian leap year is defined by an additional pattern which specifies the

4In CaTTS-DL, it is possible to define a type minute that considers leap seconds, as well.
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c a l enda r f unc t i on Japanese Gregor ian (C: Sig ) =
cal
group ho l iday = with select C. day ( i ) where P

(∗ spr ing begin : ∗)
type setsubun for P = relative i in C. february >= 3 &&

relative i in C. february <= 4
(∗ emperor ’ s b i r thday : ∗)

type showa for P = relat ive i in
select C. a p r i l ( i ) where C. a p r i l ( i ) after C. " 1926 " &&

C. a p r i l ( i ) before C. " 1989 " == 29
type h e i s e i for P = relat ive i in

select C. december ( i ) where C. december ( i ) after C. " 1988 " == 23
end
group f e s t i v a l = with select C. day ( i ) where P

(∗ s tar f e s t i v a l : ∗)
type tanabata for P = relative i in C. j u l y == 7
type sh i ch i go san for P = relat ive i in C. november == 15

end
end

Figure 6: The Japanese-Gregorian calendar in CaTTS-DL.

leap year rule for the Gregorian calendar using the CaTTS language construct alternate...end.
The group holiday just selects all days. It is further specified for each of the following cultural
calendars.

Note that particularities like time zones can be easily expressed in a CaTTS-DL calendar
specification. Calendar specifications of other cultural calendars in CaTTS-DL, in particular the
Islamic and Hebrew calendars are given in [2, 3].

Culture-specific Calendars based on the Gregorian. A specification of the Gregorian cal-
endar including some French holidays in CaTTS-DL is given in Figure 45. In order not to re-
specify the previously specified Gregorian calendar, we define a CaTTS calendar function with
name French Gregorian and apply this function to the standard Gregorian calendar (denoted
calendar function French Gregorian(C:Sig)6). The resulting CaTTS-DL calendar specifica-
tion contains any definitions of the standard Gregorian calendar (cf. Figure 3) and re-defines
the definition of the group holiday: a group is delimited by the keywords with and end. The
keyword with is followed by a select...where construct (i.e. a CaTTS’ constructor to defined
inclusion subtypes) used to select specific elements form a type (here form type day). The name P
is bound in each of the type definitions within the group to the “conditions” that must be fulfilled
by the elements of the types defined. The French national holiday and the Christmas Day are
defined using CaTTS’ relative construct (denoted relative i in M where i is the index of an
element of a type defined in CaTTS-DL and M is a type defined in CaTTS-DL. In the case for the
French national holiday, the relative construct is used to select from every July that day element
which is relatively to July the 14th (denoted relative i in july == 14). Easter is defined by
a user-defined CaTTS’ function (denoted greg easter; not given here for space reasons). Any
selected day must by a day in this function (denoted day(i) equals greg easter(j)). The most
important day of Carnival in France, the Tuesday which is always 47 days before Easter is defined
by a backward shift of easter by 47 days. Any selected day must then equal that special Tuesday
(denoted day(i) equals shift greg easter(j) backward 47 day).

In the same way as we have previously defined a Gregorian calendar specific to France, we
define one specific to Greece including some important Greek holidays in CaTTS-DL (cf. Figure
5). The same CaTTS language constructs are used with the difference that Easter is computed
by another function defining Orthodox Easter7.

5CaTTS’ prototype only supports ASCII for identifiers as any other programming or modeling language.
6This notation C:Sig just allows for applying the calendar function to any CaTTS-DL calendar specification C

(in the present case Gregorian) of type Sig. Calendar typing is introduced in [2].
7The algorithm for computing Orthodox Easter given in Figure 5 in CaTTS-DL is a standard algorithm taken

from [4]. Note that a function for computing Easter in the French calendar (cf. Figure 4) can be defined similarly
in CaTTS-DL
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And finally, in the same way, we specify a Japanese calendar depending on the standard
Gregorian calendar in CaTTS-DL (cf. Figure 6). The Japanese Gregorian calendar specifies in
addition to a re-definition of the group holiday (of the standard Gregorian calendar in Figure
3) a further group named festival. The later defines some important Japanese festivals, in
particular Tanabata (the star festival) and Shichigosan.8 For the type definition in these two
groups CaTTS relative construct is used again. The particularities are considered in the follow-
ing: since spring begin is celebrated on February 3 and 4, two relative expressions are conjuncted
(denoted relative i in february >= 3 && relative i in february <= 4). Another public
holiday is the birthday of the emperor (tennō no tanjōbi). However, this notion naturally changes
with the emperors. From 1926 until 1989, when the Shōwa tennō passed away, the 29th April
was celebrated as the emperor’s birthday9, but from then on changed to December 23rd, the
birthday of the new Heisei tennō. These birthdays are defined by finite types selecting those 29th

Aprils between 1926 an 1989 (denoted relative i in select C.april(i) where C.april(i)
after C."1926" && C.april(i) before C."1989" == 29) for the era named Shōwa, and se-
lecting those 23rd Decembers which are after 1988 for the era named Heisei (denoted relative i
in select C.december(i) where C.december(i) after C."1988" == 23). Note that select
december(i) where december(i) after "1988" is a local CaTTS-DL type definition without
binding an identifier to the type.

As in the different Western calendars, there are also holidays with differing dates in the
Japanese calendar, e.g. the seijin no hi (the day of Coming of Age). All young people who
turn twenty years old in that year are celebrated always on the second Monday in January.

Culture-specific Date Formats. Apart from calendars themselves, formats used to render
dates of the types of such calendars also depend on culture, especially on common-sense use. E.g.
the order of units in a date format is frequently determined by the natural language they are used
in, e.g.

(US) “November fifth, two thousand three” → “11/5/2003”
(F) “Le cinq novembre deux mille trois” → “5/11/2003”
(D) “Fünfter November Zweitausenddrei” → “5.11.2003”
(J) “Nisensannen jūichigatsu itsuka” → “2003.11.5”

Roughly speaking, formats could be (and are in CaTTS-FDL) constructed from numbers and
delimiters, both of which are of arbitrary representation and order. CaTTS-FDL supports defini-
tion of any such format in an elegant and intuitive manner.

In CaTTS-FDL, formats are collected in catalogs. Figure 7 exemplifies the definition of a
catalog called SampleCatalog.10 This catalog contains three different formats, namely US, French,
JapDot and JapRomaji11.

Every format is introduced by the keyword format immediately followed by an identifier and
a type annotation, then by a format descriptor (consisting of a series of string constants and/or
identifiers, the latter optionally12 followed by <representation>) and finally by a list of constraints13

relating the format to the intended value. Inside these constraints, the identifier of the format
serves as a constraint variable representing the value of the format.

The formats given in figure 7 merely differ in delimiters (/ vs. .) and order (m-d-y vs. d-m-y
vs. y-m-d), except for JapRomaji which has an additional constraint for r. Given some day(x) we
can render it according to JapRomaji by resolving the appropriate constraints, i.e. find the year

8“Shichi Go San” means ”Seven Five Three”. On Shichigosan girls of age three and seven and boys of age three
and five are celebrated and it is prayed for their good health and growth.

9Note that each old emperor’s birthday continues to be a public holiday under a different name. Shōwa tennō’s
birthday in today’s calendar is e.g. referred to as the Green Day (midori no hi).

10The calendar type signature given in this specification allows for rendering and reading dates referring to any
CaTTS-DL calendar of type Sig (i.e. Gregorian as well as any result of one the given calendar functions).

11We’re implementing a format using rōmaji for sake of printer compatability. Using kanji would be equally
possible due to Unicode.

12Giving no representation leads to interpreting that portion of the format a plain unsigned number.
13There’s no difference – apart from precedence – between && and a comma. As a convention, we use && for

conjugating constraints belonging to the same value (year, month or day number).
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catalog SampleCatalog =
cat
format US: day = m "/" d "/" y where

US within year (y ) ,
US within M: month && m == relat ive index M in year ,

d == relat ive index US in month ;
format French : day = d "/" m "/" y where

French within year (y ) , . . .
format JapDot : day = y "." m "." d where . . .
format JapRomaji : day = y " nen " m " gatsu " d DayReading where

JapRomaji within year (y ) ,
JapRomaji within M: month && m == relat ive index M in year ,

d == relat ive index JapRomaji in month ,
DayReading reads i f d <= 10 | | d mod 10 == 4 then " ka " else " nichi " ;

end

Figure 7: A sample catalog of various formats in CaTTS-FDL.

number y the day lies within, then find the month M the day lies within and equate M’s relative
index in a year to m, equate the day number d to the relative index of day(x) in a month, and
finally choose r to read ”(tsuitachi)”, ”ka” or ”nichi”, depending on the value of d.

4 Conclusion

Considering the calendars of France, Greece, and Japan this article has presented a (novel) tool,
CaTTS, for modeling cultural calendars.

CaTTS is type formalism for calendars and temporal data. CaTTS provides with dedicated
language constructs to conveniently model calendars and dedicated reasoning methods to efficiently
process calendar data, especially static type checking. The basic principle of CaTTS’ static type
checker is predicate subtyping [2] according to (novel) time granularity inclusion and aggregation
introduced for and with CaTTS. Predicate subtyping is used to define calendric data types repre-
senting time granularities [3], conversions between those data types, and a means to specify date
formats for the elements of such data types. CaTTS-CL, CaTTS’ constraint language, is statically
typed after CaTTS-DL type definitions. CaTTS-CL is a language to declaratively express a wide
rang range of temporal and calendric constraint problems over finite time intervals. CaTTS-DL
is already prototypically implemented. A prototype implementation of a constraint solver is in
development.

A future goal is to integrate CaTTS (i.e. the definition language CaTTS-DL with its static
type checker and CaTTS-CL with its constraint solver) into a (Semantic) Web query language
like Xcerpt [6], thus contributing to the so-called “internationalization” of the Web, i.e. making
important cultural artefacts present on the Web.
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