
CaTTS: Calendar Types and Constraints for Web
Applications

François Bry
University of Munich, Germany

bry@pms.ifi.lmu.de

Frank-André Rieß
University of Munich, Germany

riess@pms.ifi.lmu.de

Stephanie Spranger
University of Munich, Germany

spranger@pms.ifi.lmu.de

ABSTRACT
Data referring to cultural calendars such as the widespread
Gregorian dates but also dates after the Chinese, Hebrew, or
Islamic calendars as well as data referring to professional cal-
endars like fiscal years or teaching terms are omnipresent on
the Web. Formalisms such as XML Schema have acknowl-
edged this by offering a rather extensive set of Gregorian
dates and times as basic data types. This article introduces
into CaTTS, the Calendar and Time Type System. CaTTS
goes far beyond predefined date and time types after the
Gregorian calendar as supported by XML Schema. CaTTS
first gives rise to declaratively specify more or less complex
cultural or professional calendars including specificities such
as leap seconds, leap years, and time zones. CaTTS fur-
ther offers a tool for the static type checking (of data typed
after calendar(s) defined in CaTTS). CaTTS finally offers
a language for declaratively expressing and a solver for effi-
ciently solving temporal constraints (referring to calendar(s)
expressed in CaTTS). CaTTS complements data modeling
and reasoning methods designed for generic Semantic Web
applications such as RDF or OWL with methods specific to
the particular application domain of calendars and time.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—representation languages; D.3.1
[Programming Languages]: Formal Definition and The-
ory—syntax

General Terms
Languages

Keywords
time, calendars, types, Web reasoning

1. INTRODUCTION
Data referring to cultural calendars such as the widespread

Gregorian dates but also dates after the Chinese, Hebrew,
or Islamic calendars as well as data referring to professional
calendars like fiscal years or teaching terms are omnipresent
on the Web. Most likely, they will play an essential role on
the Semantic Web, too. Formalisms such as XML Schema
have acknowledged this by offering a rather extensive set of
Gregorian dates and times as basic data types.

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

CaTTS

CaTTS-DL
CaTTS-CL

CaTTS-TDL CaTTS-FDL

Figure 1: Languages of CATTS.

This article introduces into CaTTS, the Calendar and
Time Type System that goes far beyond predefined date
and time types after the Gregorian calendar. CaTTS con-
sists of two languages, a type definition language, CaTTS-
DL, and a constraint language, CaTTS-CL, of a (common)
parser for both languages, and of a language processor for
each language.

Using the (type) definition language CaTTS-DL, one can
specify in a rather simple manner more or less complex,
cultural or professional calendars [3]. Specificities like leap
seconds, leap years, and time zones can be easily expressed
in CaTTS-DL. Calendars expressed in CaTTS-DL are com-
posable in the sense that the language offers a means for
modules. Thus, one can extend a standard calendar such as
the Gregorian calendar used in Germany with a particular
teaching calendar, e.g. the one of a specific German univer-
sity.

CaTTS-DL gives rise to defining both, calendric data types
specific to a particular calendar – such as “working day”,
“Easter Monday”, “exam week”, or “CS123 lecture” (defin-
ing the times when the Computer Science lecture number
123 takes place) – using the language fragment CaTTS-
TDL (for Type Definition Language) of CaTTS-DL, and
data formats for such data types – such as “5.10.2004”,
“2004/10/05”, or “Tue Oct 5 16:39:36 CEST 2004” – using
the language fragment CaTTS-FDL (for Format Definition
Language) of CaTTS-DL.

The language processor for CaTTS-DL consists of two
software components, a static type checker and a predicate
interpreter. Consider a calendar C specified in CaTTS-
DL and a program P in the language CaTTS-CL, XQuery,
XSLT or any other program P with type annotations re-
ferring to types and/or formats specified in the calendar C.
CaTTS’ static type checker verifies and/or extends the type
annotations in P generating a type checked version P ′ of P :

calendar C program P

@
@R

�
�	CaTTS’ static

type checker

?
type checked version P ′ of P

Consider a type definition T (e.g. “working day” or “exam
week”) from a calendar specified in CaTTS-DL and a data
item D (e.g. “2004/10/05”). CaTTS’ predicate interpreter
detects whether the data item D has type T (e.g. whether
“2004/10/05” is a “working day” or an “exam week” - the
later being probably false):

type definition T data item D

@
@R

�
�	predicate

interpreter

?
yes/no

Both CaTTS-DL and CaTTS-CL provide (the same) pre-
defined functions (e.g. shift forward and backward, during,
and usual arithmetics). Using these functions, one can ex-
press for example, “the second day after working day X” (in
CaTTS: shift X:working day forward 2 day).

CaTTS’ type checker can be used for static type checking
of programs or specifications in any language (e.g. XQuery,
XSLT, XML Schema), using date formats enriched with type
annotations after some calendar specified in CaTTS-DL. In
particular, it is used for the static type checking of temporal
constraint programs in CaTTS-CL, the constraint language
of CaTTS.

Using CaTTS’ constraint language CaTTS-CL, one can
express a wide range of temporal constraints referring to the
types defined in calendar(s) specified in the definition lan-
guage CaTTS-DL. For example, if one specifies in CaTTS-
DL a calendar defining both, the Gregorian calendar (with
types such as “Easter Monday” or “holiday”) and the teach-
ing calendar of a given university (with types such as “work-
ing day”, “CS123 lecture”, and “exam week”), then one can
refer in CaTTS-CL to “days that are neither holidays, nor
days within an examination week” and express constraints
on such days such as “strictly after Easter Monday and be-
fore June”. Thus, using CaTTS-CL one can express real-life,
Web, Semantic Web, and Web service related problems such
as searching for train connections or making appointments
(e.g. for audio or video conferences) over several time zones.

CaTTS provides with a constraint solver for problems ex-
pressed in CaTTS-CL. This solver refers to and relies on
the type predicates generated from a calendar definition in
CaTTS-DL. This makes search space restrictions possible
that would not be possible if the calendar and temporal no-
tion would be specified in a generic formalism such as first-
order logic and processed with generic reasoning methods
such as first-order logic theorem provers.

2. CATTS AND THE SEMANTIC WEB
CaTTS complements data modeling and reasoning meth-

ods such as RDF [15] or OWL [14] designed for generic Se-
mantic Web applications with methods specific to a particu-
lar application domain, that of calendars and time. CaTTS

approach is a form of “theory reasoning” like “paramodula-
tion”. Like paramodulation ensures natural expressing and
efficient processing of equality in resolution theorem proving,
CaTTS makes a user friendly expression and an efficient pro-
cessing of calendric types and constraints possible. CaTTS
departs from time ontologies such as the DAML Ontology
of Time [4] or time in OWL-S [10] as follows:

• CaTTS considerably simplifies the modeling of speci-
ficities of cultural calendars (such as leap years, sun-
based cycles like Gregorian years, or lunar-based cycles
like Hebrew months),

• CaTTS provides both, a static type checker and type
predicates for every CaTTS calendar(s) specification,

• CaTTS comes along with a constraint solver dedicated
to calendar definitions that (1) processes CaTTS type
annotations as constraints and (2) the language of whi-
ch is amenable to CaTTS static type checking.

3. CATTS’ MODEL IN A NUTSHELL
This section is a mathematical prologue that can be skipped

in a first reading.
CaTTS’ notion of time is linear. CaTTS is not intended

for expressing possible futures, hence it is not based on a
“branching time”. Most common-sense, Web and Semantic
Web and many Web service application can be conveniently
modeled in a linear time framework.

CaTTS’ notion of time is purely interval-based, i.e. tem-
poral data of every kind have a duration. This reflects a
widespread common-sense understanding of time according
to which one mostly refer to time interval, not to time points.
E.g. one refers to “2004/10/05”, a day, or to “1st week of Oc-
tober 2004”, a week. Even time point-like data such as 9:25
can be perceived as having a duration, possibly as small as
one second or one millisecond. Considering only time inter-
vals and no time points has two advantages. First, it signif-
icantly simplifies data modeling, an advantage for CaTTS’
users. Second, it simplifies data processing, i.e. static type
checking and constraint reasoning, an advantage for CaTTS’
language processors. However, CaTTS can deal with time
point-like data like the beginning of a week or whether a day
d falls into a week w or not, as well.

In order to formalize CaTTS (time point-less) model, how-
ever, time points have to be considered:

Definition 1. A base time line is a pair (T ,<T) where
T is an infinite set (isomorphic to

�
) and <T is a total order

on T such that T is not bounded for <T . An element t of
T is called time point.

Each CaTTS type definition creates a discrete image of
the time line since CaTTS data types define data items with
durations. E.g. data types “day” and “working day” imply
two (different) images of the time line: days partition the
time line, working days correspond to a portion of the day
partition of the time line. Both images of the time line are
discrete, i.e. isomorphic to � . The notion of time granularity
[2] formalizes such “discretizations” of the time line:

Definition 2. Let (T ,<T) be a base time line. Let G =
{gi | i ∈ � } be a set isomorphic to � . Let’s call the elements
of G granules. A time granularity is a (non-necessarily
total) function G from G in the set of intervals over T such
that for all i, j ∈ � with i < j

1. if G(gi) 6= ∅ and G(gj) 6= ∅ , then for all ti ∈ G(gi) and
for all tj ∈ G(gj) ti <T tj .

2. If G(gi) = ∅, then G(gj) = ∅.

Examples of granules are days, working days, weeks, mon-
ths, holidays, etc. According to Definition 2, two different
granules of a same time granularity do not overlap. The
first condition of Definition 2 induces from the ordering of
the time points (of the base time line) the common-sense
ordering on granules: e.g. the day “10/25/2004” is after the
day “10/24/2004”. The second condition of Definition 2 is
purely technical: it makes it possible to refer to the infinite
set � also for finite sets of granules (e.g. someone’s exam
days during his/her years of study).

Definition 3. Let G be a time granularity and gi, gj ∈ G
granules.
A duration D over G is a number (expressed as an unsigned
integer) of granules of G.

Thus, a duration can be informally understood as a time
interval over a granularity with a given length but with no
specific starting or ending point.

Subtypes are defined in CaTTS in terms of either inclu-
sion or aggregation of time granularities. E.g. a type “work-
ing day” is an inclusion (in the common set-theoretic sense)
of the type “day” since the set of working days is a subset
of the set of days; the type “week” is an aggregation (in
constructive set-theory) of the type “day” since each week
can be defined as a time interval of days.

Definition 4. Let G and H be time granularities. G is
an aggregation subtype of H, denoted G � H, if every
granule of G is an interval over H and every granule of H is
included in (exactly) one granule of G.

Definition 5. Let G and H be time granularities. G is an
inclusion subtype of H, denoted G ⊆ H if every granule
of G is a granule of H.

The two subtype relations, inclusion subtype and aggre-
gation subtype, are corner stones of CaTTS that, to the
best of the knowledge of the authors, have not been pro-
posed elsewhere. As the examples given below show, they
are very useful in modeling calendars. Indeed, they reflect
widespread forms of common-sense reasoning with calendric
data.

Note that � ∪ ⊆ is an order relation on time granularities.
� ∪ ⊆ is defined as follows: G1 � ∪ ⊆ G2 iff G1 � G2

or G1 ⊆ G2. The following formalization of the notion of
“calendar” reflects the central role played by aggregation
and inclusion subtyping in CaTTS:

Definition 6. A calendar C = {G1, . . .Gn} is a finite set
of time granularities such that there exists a Gi ∈ C and for
all Gj ∈ C, i, j ∈ {1...n} and i 66= j Gj is � ∪ ⊆-comparable
with Gi.

The subsequently illustrated set of time granularities de-
fines a calendar; each of the time granularities is � ∪ ⊆-
comparable with the time granularity “second”.

millisecond
�

second
�

day
��

month�

@@⊇ working-day

�
week

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

0 1 2

day

saturday

sunday

weekend day

week

weekend

0 1

-1 0 1

-1 0 1 2 3

0 1 2

Figure 2: Indexing of the types defined in Section 4 (day(1)
is Thursday, January 1, 1970).

4. CATTS-DL: DEFINITION LANGUAGE
Recall that CaTTS’ definition language, CaTTS-DL, con-

sists of a type definition language, CaTTS-TDL, and a date
format definition language, CaTTS-FDL.

CaTTS-TDL provides a set of type constructors for declar-
ing time granularities as subtypes (of predefined or user-
defined) types in terms of predicates, called predicate sub-
types. A subtype in CaTTS specifies (in terms of a pred-
icate) a set, referred to as “predicate set”. The usual set-
theoretic operations (e.g. ∪) can be applied to predicate sets.
In CaTTS, calendars (cf. Definition 6) are themselves typed
by calendar signatures. This makes CaTTS calendar spec-
ifications reusable, maintainable, and easy to extend. In
addition, user-definable calendar functions can be specified
in CaTTS that parameterize calendars. Such functions pro-
vide a means to specify different calendar versions all having
the same calendar signature. CaTTS-FDL provides a means
to specify specific constants, i.e. the data items of predicate
subtypes defined in a CaTTS-TDL calendar definition.

4.1 Reference Time
Each CaTTS implementation has a single predefined (base)

type called reference.1 reference is a time granularity
such as “second” or “hour”, chosen e.g. depending on the
operating system. If the type reference is used in a CaTTS-
DL calendar specification, then all other (user-defined) types
are expressed directly or indirectly in terms of reference,
using CaTTS’ aggregation and/or inclusion subtyping (cf.
Section 3). Note that the use of reference is optional
in some CaTTS-DL calendar specification. If reference

is e.g. the time granularity “second”, a convenient choice
with the Unix operating system, then one can specify (us-
ing CaTTS-DL) further coarser time granularities such as
“day”, “week”, and “year” as well as finer time granulari-
ties such as “millisecond”. The reference type makes conver-
sions among any other types defined in a CaTTS-DL calen-
dar specification (in terms of aggregation and/or inclusion),
and, thus, between different CaTTS-DL calendars possible.

In CaTTS’ prototype implementation, reference is the
time granularity “second” of Unix (UTC seconds with mid-
night at the onset of Thursday, January 1 of year 1970 (Gre-
gorian) as fixed point indexed by 1).

In CaTTS-DL, one defines a type finer than that of refe-
rence as follows:

type mi l l i s e c ond = refinement 1000 @ reference (1) ; 2

The type (time granularity) millisecond is defined as a
thousandth refinement of a second (recall reference is the

1reference is a base type, because it has no internal struc-
ture as far as the type system of CaTTS is concerned.
2In this and the following examples, type identifiers start
with lower case letters.

time granularity “second”). The type millisecond is an-
chored at (denoted @) second 1 (denoted reference(1)),
since millisecond(1) is the first millisecond in the interval
of milliseconds specifying the first second (i.e. reference(1)).
Thus, in CaTTS types such as reference or millisecond

induces clear integer indices of its data items. This indexing
of data items turns out to be extremely useful in practice
(cf. below).

4.2 Predicate Subtypes
Infinite sets are logically encoded by predicates: for any

set A, the predicate p : A → � defines the set of those
elements of A that satisfy p. Such sets are called predi-
cate sets. In type theory, predicate sets are interpreted as
predicate subtypes, particularly used to express dependent
function types [11]. CaTTS uses predicate subtypes in a
different manner and not for theoretical, but instead prac-
tical purposes.

CaTTS uses predicate subtypes as a means to define cal-
endric types. E.g. one can describe the time granularity
“week” as the subset of those time intervals over the time
granularity “day” having a duration of 7 days and beginning
on Mondays. This can be directly expressed in CaTTS-DL
as follows:

type week = aggregate 7 day @ day(−2);

The type week is an aggregation of days such that each data
item is an interval with duration “7 days”. The first week
(i.e. week(1)) is anchored at (denoted @) day(-2), i.e. the
first day of the interval of days aggregated to the data item
week(1). Since day(1) is a Thursday (recall that CaTTS’
implements Unix time with Thursday, January 1, 1970 as
fixed point indexed by 1), day(-2) is a Monday. Any fur-
ther index can be computed relative to this anchor (cf. Fig-
ure 2). Thus, the predicate subtype week:day → � speci-
fies the infinite set of those day time intervals satisfying the
predicate “week” as previously expressed in CaTTS-DL. The
type week is an aggregation subtype of the type day (cf. Def-
inition 4), written week <: day in CaTTS’ syntax, and read
as “week is an aggregation of day”. In CaTTS-DL, aggre-
gation subtypes are constructed by the aggregate construc-
tor, or by the predicates “#<” (“coarser restriction”) and
“#>” (“finer restriction”), set-based operations defined for
CaTTS due to predicative set aggregation. E.g. aggregating
the type weekend day into the type week yielding the type
weekend, a coarser restriction of week to weekend day. The
two set-based aggregation predicates may also be used to de-
fine types having non-convex data items like “working week”
(a coarser restriction of working days, i.e. days that are nei-
ther weekend days nor holidays, into weeks). Note that one
might define aggregations having data items of different du-
rations involving often complex conditions (e.g. Gregorian
or Hebrew months), as well.

One can describe the time granularity “weekend day” as
the subset of those granules of time granularity “day” that
are either Saturdays or Sundays. This can be directly ex-
pressed in CaTTS-DL as follows:

type saturday = se lect day (i) where

relat ive i in week == 6;
type sunday = se lect day(i) where

relat ive i in week == 7;
type weekend day = saturday | sunday ;

The type saturday is a selection of the 6th day relative in
each week. Thus, the predicate subtype saturday:day → �

calendar type STD =
s ig

type second ;
type minute <: second ;
type hour <: minute ;
type day <: hour ;
type week <: day ;
type month <: day ;
type year <: month ;
group day of week c : day ;
type weekend day c : day ;
group hol iday c : day ;

end

Figure 3: Signature of a standard calendar in CaTTS-DL.

specifies the infinite set of those days satisfying the predicate
“saturday” as previously expressed in CaTTS-DL. In the
same manner, the type sunday is defined. Finally, the type
weekend day satisfies either the predicate of type saturday

or (denoted “|”) the predicate of type sunday. The types
saturday, sunday, and weekend day are inclusion subtypes
of the type day (cf. Definition 5), written e.g. weekend day

c : day in CaTTS’ syntax, and read as “weekend day is an
inclusion of day”. In CaTTS-DL, inclusion subtypes are con-
structed by the select constructor by specifying a predicate
as a combination of any operation predefined in CaTTS (cf.
Appendix A for the complete syntax of CaTTS) following
the reserved word where, or by a set-based constructor: “|”
(“or”), “&” (“and”), and “\” (“except”), in fact ordinary
set operations interpreted as predicate subtype constructors
in CaTTS-DL. As illustrated in Figure 2, the indexing of in-
clusion subtypes is successive. The indexing of any inclusion
subtype is however implicitly related to that of its inclusion
supertype, appropriately choosing the data item indexed by
0 relative to that one of the supertype.

Note that weekend days may alternatively be defined as a
group, i.e. a named collection of type definitions in CaTTS-
DL:

group weekend day =
with select day(i) where (relat ive i in week)==j

type saturday where j == 6
type sunday where j == 7

end

Having defined the group weekend day, one can either refer-
ring to data items of the group weekend day, or, more spe-
cific, to data items of one of the types (saturday, sunday)
defined within the group, explicitly defined belonging to a
less specific “kind”, i.e. a group of a CaTTS’ type.

Furthermore, CaTTS provides a polytypic constructor: |
τ | (durations of τ) that describes for any type τ a duration
(cf. Definition 3) whose data items are drawn from τ . For
example, |day| is the type of durations of days.

Note that CaTTS’ type constructors provide a natural
way to obtain periodic events, e.g. the CS123 lecture of-
fered within the summer term 2004 (referred to as ST04) (in
CaTTS X:CS123 lecture during ST04) of type CS123 lec-

ture. Note that periodic events are very frequently consid-
ered in current research. The authors believe that CaTTS
offers a particularly convenient and intuitive manner to spec-
ify periodic events.

4.3 Calendar as Type
The basic entities of CaTTS-DL calendar definitions (cf.

Definition 6) are calendars, calendar signatures, and calen-
dar functions.

4.3.1 Calendars
A calendar is a packaged, finite collection of CaTTS type

definitions and calendar specifications, assigning types to
type identifiers, groups to group identifiers, and calendars
to calendar identifiers, similar to ML structures [9] or XML
documents [13]. The types and calendars specified in a cal-
endar are delimited by the keywords cal and end. The fol-
lowing specification binds a calendar to the identifier Cal.
This calendar defines an environment mapping day, weeken-

d day, week, and weekend to their respective group and
type definitions.

calendar Cal =
cal

type day ;
group weekend day = with select day (i) where

(relat ive i in week) == j
type saturday where j == 6
type sunday where j == 7

end

type week = aggregate 7 day @ day (0) ;
type weekend = week #< weekend day ;

end

Note that day is a user-defined reference type (isomorphic to
the integers) without any further specifications. The identi-
fiers in a calendar are qualified. For example, the qualified
identifier Cal.week refers to the component week in the cal-
endar definition Cal.

4.3.2 Calendar Signatures
Calendar signatures are kinds of “types” for calendars de-

fined in CaTTS-DL, similar to ML [9] signatures or XML
Schema declarations [12]. Calendar signatures specify iden-
tifiers and abstract predicate subtypes in terms of inclusion
or aggregation supertypes for each of the components of a
calendar implementing the signature. The following specifi-
cation binds a calendar signature to the identifier SIG.

calendar type SIG =
s ig

type day ;
group weekend day c : day ;
type week < : day ;
type weekend c : weekend day ;

end

This calendar signature describes those calendars having a
type day, a group weekend day, where each type belong-
ing to must be an inclusion subtype of day and types week

as aggregation subtype of day and weekend as aggregation
subtype of weekend day. Since the calendar Cal introduced
above satisfies this calendar signature, it is said to match
the calendar signature SIG. Note that a defined calendar
usually matches more than one calendar signature, and vice
versa, a calendar signature may be implemented by more
than one calendar. Calendar signatures in CaTTS-DL may
be used to define views of calendars due to ascription, i.e.
specifying less components than implemented in any match-
ing calendar. The non-specified components are thus local
to its calendar specification.

4.3.3 Calendar Functions
Calendar functions are user-defined functions on calen-

dars using a syntax similar to function declarations in many
programming languages. A calendar function CF defining
Hebrew weekend days can be declared in CaTTS as follows:

ca l fun CF(C: SIG) : SIG =
cal

group weekend day = with select C. day(i)
where (relat ive i in C. week) == j

type f r i d ay where j == 5
type saturday where j == 6

end

end

The calendar function CF takes as argument any calendar C

matching the calendar signature SIG, and yields as result
a calendar also matching SIG. When applied to a suitable
calendar, the calendar function CF yields as result the calen-
dar whose group weekend day is that of (Hebrew) weekend
days, i.e. Fridays and Saturdays. Furthermore, any type
definition in C depending on that of weekend day is changed
respectively to the calendar function CF when applied to C.
E.g. applying CF to the previously illustrated calendar defi-
nition Cal yields a “new” group weekend day and the type
weekend is changed, as well. Since the calendar function
CF may be applied to any calendar matching the signature
SIG, the function is polymorph, thus define a parameterized
calendar.

4.4 CaTTS-FDL
With most applications, one would appreciate not to spec-

ify dates and times using indices of the data items of CaTTS
types like day(23) or second(-123), but instead date for-
mats like “5.10.2004”, “2004/10/05”, or “Tue Oct 5 16:39:36
CEST 2004”. CaTTS-FDL provides a means for defining
date formats.

A CaTTS-FDL date format is defined by a sequence of
string constants and/or placeholders, the latter appearing
as variable names optionally followed by a representation
descriptor3. Consider the following example:

format stdfmt : day = y " -" m " -" d where

stdfmt within year (y) ,
stdfmt within M: month ,

m == relat ive index M in year ,
d == relat ive index stdfmt in month ;

This CaTTS-FDL format specification binds the identifier
stdfmt to a standard format for data items of type day.
Both a parser and a render function (i.e. String → day as
well as day → String) can be computed by resolving the
constraints associated with stdfmt. Given “1970-1-1”, we
get that y = 1970, m = 1 and d = 1 and can thus solve the
constraints to get e.g. Gregorian.day(1). Vice versa, given
(Gregorian.)day(1), we find that it is within year(1970),
within M, which is equal to month(1) and is the 1st in a
year, and that day(1) is the 1st in a month, yielding the
same values for y, m and d as above.

Catalogs are collections of formats specifying to which cal-
endar signature these formats can be applied. Such catalogs
may be nested, applying to common scoping rules.

catalog ISO : STD =
cat

(∗ nested ca ta l og for extended ISO formats ∗)
catalog Extended =

cat

format stdfmt : day = y " -" m " -" d where

stdfmt within year (y) ,
stdfmt within M: month ,

m == relat ive index M in year ,
d == relat ive index stdfmt in month ;

end

end

3If none is given, that portion of the format is interpreted
as a variable-length unsigned integer.

import LeapSeconds ;
calendar Gregorian :STD =
cal

type second = reference ;
type minute = aggregate minute (i)

alternate

| i == 1051200 (∗ 1.1.1972 ∗) −> 70 second
| hasLeapSec ?(i) −> 61 second
| otherwise −> 60 second

end @ second (1) ;
type hour = aggregate 6 0 minute @ minute (1) ;
type day = aggregate 2 4 hour @ hour (1) ;
type week = aggregate 7 day @ day(−2);
type month = aggregate month(i)

31 day named january ,
alternate

| ((i div 12) −1970) mod 4 == 0 &&
(((i div 12) −1970) mod 1 0 0 != 0 | |
((i div 12) −1970) mod 400 == 0) −> 29 day

| otherwise −> 28 day
end named february ,
31 day named march ,
30 day named apr i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december @ day (1) ;

type year = aggregate 1 2 month @ month (1) ;
group day of week =

with select day(i) where

(relat ive i in week) == j
type monday where j == 1
type tuesday where j == 2
type wednesday where j == 3
type thursday where j == 4
type f r i da y where j == 5
type saturday where j == 6
type sunday where j == 7

end

type weekend day = saturday | sunday ;
group hol iday = with select day(i) where

(relat ive i in M) == j
type a l l s a i n t s where j == 2 for M = november
type chr i s tmas where j == 25 for M = december

end

end

Figure 4: The Gregorian calendar in CaTTS-DL.

As with calendars, identifiers defined within a catalog are
qualified, e.g. ISO.Extended.stdfmt is the full name of the
above format. Date formats specified in CaTTS-FDL may
be imported into a program in the language CaTTS-CL,
XQuery, or any other language using calendric data typed
after CaTTS-DL calendar specifications by CaTTS’ import
mechanism for formats use format.

4.5 Use Case: Specifying Calendars
To express and find solutions to real-life, Web, Seman-

tic Web, and Web Service related problems such as train
scheduling or making appointments, context-dependent se-
mantics considering both cultural and professional calendars
and time zones is necessary.

Consider the following scenario: A Munich-based business
man needs to schedule a phone conference with a colleague
in Tel Aviv. Besides the various constraints to schedule
the phone conference, the business men use different calen-
dars. Both use the Gregorian calendar to schedule every-
day times and dates, but shifted according to different time
zones. The Tel Aviv-based business man uses the Hebrew
calendar for holidays to be considered, but, for the same
reason, the Munich-based business man uses the Gregorian.

The CaTTS-DL calendar signature in Figure 3, assigned
to the identifier STD, describes standard calendar types and
groups matched by most calendars. second is a non-further
specified type identifier.

The calendar definition given in Figure 4 binds a calen-
dar to the identifier Gregorian such that this calendar must
match the calendar signature STD (denoted Gregorian:STD).
CaTTS allows for importing external libraries using the re-
served word import. The calendar Gregorian imports a li-
brary LeapSeconds, containing, among other things, a boole-
an function hasLeapSec? over minutes. Leap second in-
sertion into UTC-time (recall that reference is the time
granularity of UTC-seconds) started in 1972 (Gregorian);
10 leap seconds have been inserted into the first minute of
the year 1972. In the present CaTTS-DL modeling, the in-
dex of this minute is directly referred to. The type identifier
second is assigned to the predefined base type reference.

The rules for the Gregorian leap month February are ex-
pressed by a suitable combination of operations predefined
in CaTTS. The predefined arithmetic function relative i

in M (used in the group holiday) selects specific data items
i of type day relatively located to each data item in type
M, a local macro variable substituted by a CaTTS-DL type.
Any further type definition is straightforward following the
rules of the Gregorian calendar [5].

The calendar definition given in Figure 5 binds a calen-
dar to the identifier Hebrew such that this calendar must
match the calendar signature STD (denoted Hebrew:STD).
The Hebrew day “23 Tevet 5730”, a Wednesday (yom re-
vii) is the day corresponding to the Unix epoch (“1 Jan-
uary 1970” (Gregorian)). To implement an alignment of
Hebrew regaim4 and halaqim5 (Hebrew partitions of hours)
with CaTTS’ reference type a respective shift (denoted by
the definition of ref) is defined. The type identifiers second
and minute are used to match the Hebrew calendar with the
standard signature STD6. Note that Hebrew weeks start on
Sundays (yom rishon), and that the first month in any He-

4Plural of rega.
5Plural of heleq.
6Whether such an alignment of the Hebrew calendar to the

brew year is Tishri. Since Hebrew leap year computations
depend on the Metonic cycle aligning 19 sun-based years to
235 lunar-based months, the index 1 for Hebrew months is
respectively moved form “Tevet 5730” to “Nisan 5720” by
resetting this month’s index (133) relatively to the index 1
(denoted ˜@133). To simplify the modeling of the Hebrew
calendar in CaTTS-DL, the library HebrewLeapYear, con-
taining the various functions (e.g. isLeapAdarRishon? and
isHebrewLeapYear?) used in the present calendar specifica-
tion is imported. Such functions may however be directly
specified within a CaTTS-DL calendar definition by a user-
defined “macro”. E.g. isLeapAdarRishon? (i.e. the sec-
ond to last month in a Hebrew year which depends on the
Metonic cycle) can be specified by the following two CaTTS-
DL macros:

macro i sLeapAdarRishonInCycle?(i) =
i == 3 6 | | i == 7 3 | | i == 9 8 | | i == 135
| | i == 172 | | i == 209 | | i == 234;

macro isLeapAdarRishon ?(m) =
isLeapAdarRishonInCycle ? ((m mod 235) + 1) ;

All rules implement in the CaTTS-DL definition of the He-
brew calendar are those suggested in [5].

Note that only a few Gregorian and Hebrew holidays are
specified with the two present CaTTS-DL calendars. Fur-
ther can be similarly specified in CaTTS-DL.

Since reference is UTC-time and since UTC-time is ad-
justed to the time zone Greenwich Mean Time (GMT), the
previously mentioned calendars Gregorian and Hebrew cor-
respond to this time zone. Any further calendar C matching
also the calendar signature STD, but which refers to other
time zones can be expressed by a (user-defined) calendar
function, redefining the definition of type day by choosing
suitable anchors for the considered time zones (cf. Figure
6). If the calendar function EET is applied to the calendar
Gregorian or Hebrew, then any (aggregation or inclusion)
subtype of day is respectively changed.

5. CATTS-CL: CONSTRAINT LANGUAGE
CaTTS-CL, CaTTS’ constraint language, is statically ty-

ped after CaTTS-DL type definitions. CaTTS-CL is a lan-
guage to declaratively express a wide range of temporal
and calendric constraint problems. Such problems are then
solved by CaTTS-CL’s constraint solver. Given a CaTTS-
DL specification of the Gregorian calendar (with types such
as “weekend day”) and the teaching calendar of a given
university (with types such as “exam week”), one can re-
fer in CaTTS-CL programs to weekend days. One can fur-
ther express constraints on such days such as “after exam
week” and “before June 2004” (assuming that the used date
formats are specified in CaTTS-FDL). This problem is ex-
pressed in CaTTS-CL as follows:

X: weekend day && X after Y: exam week &&

X before " 2004 -06 "7

The constraint variable X ranges over values of type weekend-
day and Y over exam week. The constraints “after an ex-
amination week” (in CaTTS-CL X after Y:exam week) and
“before June 2004” (in CaTTS-CL X before "2004-06")

STD calendar signature is appropriated or not, does not have
to be discussed here. The present example aims at showing
that it is possible and easy to express with CaTTS.
7In this and the following examples, constraint variables
start with capital letters.

import HebrewLeapYear ;
calendar Hebrew :STD =
cal

type r e f = refinement 114 @ reference (−43199);
type second = aggregate 5 r e f ;
type rega = second ;
type minute = aggregate 7 6 second ;
type he leq = minute ;
type hour = aggregate 1080 minute ;
type day = aggregate 2 4 hour ;
type week = aggregate 7 day @ day(−2);
type month = aggregate month(i)

30 day named nisan ,
29 day named iyyar ,
30 day named s ivan ,
29 day named tammuz ,
30 day named av ,
29 day named e lu l ,
30 day named t i s h r i ,
alternate

| newYearDelay(i) == 2
−> 30 day named long marheshvan

| otherwise −> 29 day named short marheshvan
end named marheshvan ,
alternate

| newYearDelay(i) > 0
−> 30 day named l o n g k i s l e v

| otherwise −> 29 day named s h o r t k i s l e v
end named k i s l ev ,
29 day named tevet ,
30 day named shevat ,
alternate

| isLeapAdarRishon ?(i) −> 30 day
named ada r r i shon

| otherwise none

end ,
29 day named ada r shen i @ day(−21) ˜@ 133 ;

type adar = adar r i shon | adar−shen i ;
type year = aggregate

alternate year (i)
| isHebrewLeapYear?(i) −> 13 month
| otherwise −> 12 month

end @ month (7) ˜@ 5730 ;
group day of week =

with select day(i) where

(relat ive i in week) == j
type yom rishon where j == 1
type yom sheni where j == 2
type yom she l i sh i where j == 3
type yom rev i i where j == 4
type yom hamishi where j == 5
type yom shish i where j == 6
type yom shabbat where j == 7

end

type weekend day = yom shish i | yom shabbat ;
group hol iday = with select day(i) where

(relat ive i in M) == j
type yom kippur where j == 10 for M = t i s h r i
type passover where j == 15 for M = nisan

end

end

Figure 5: The Hebrew calendar in CaTTS-DL.

(∗CET: Central European Time , GMT + 1 , Munich∗)
calendar function CET(C:STD) : STD =
cal

type day = aggregate 2 4 C. hour @ C. hour (2) ;
end

(∗EET: Eastern European Time , GMT + 2 , Tel Aviv∗)
calendar function EET(C:STD) : STD =
cal

type day = aggregate 2 4 C. hour @ C. hour (3) ;
end

Figure 6: Calendars in different time zones in CaTTS-DL.

are straightforwardly expressed as illustrated. The con-
straints of CaTTS-CL are given in Appendix A.

CaTTS-CL provides function symbols for data items of
types defined in CaTTS-DL, value constructors for time in-
tervals and durations, arithmetic functions, and condition-
als. CaTTS-CL’s constraint symbols are common equation
symbols, Allen’s 13 interval relations [1], and the symbol “:”
for type annotations. The complete syntax (of all CaTTS
language fragments including CaTTS-CL) is given in Ap-
pendix A.

The constraint X:τ assigns to a variable X a finite do-
main over values of type τ (defined in CaTTS-DL). Note
that the function symbols provided with CaTTS-CL are es-
sentially the same as those provided with CaTTS-DL. Fur-
thermore, the constraint symbols provided with CaTTS-CL
have the same names as the predicate symbols provided
with CaTTS-DL because type defining predicates and con-
straints are both boolean functions. However, there is an
elementary difference between a CaTTS-CL constraint and
a CaTTS-DL predicate: a constraint specifies the proper-
ties and relationships among partially unknown “objects”.
All possible solutions satisfying the constraint are computed
by the constraint solver. In contrast, a predicate specifies
the condition(s) to be satisfied by the elements belonging
to some predicate subtype. E.g. the type defining predicate
“holiday” specifies the infinite set of all holidays, and the
constraint “X:holiday” computes the (infinite) set of all hol-
idays. Thus, the values satisfying any CaTTS-CL constraint
are computed, whereas a predicate only specifies the infinite
set of values of some CaTTS-DL predicate subtype without
performing any computations.

A CaTTS-CL program is a finite collection of CaTTS-CL
constraints. Calendars defined in CaTTS-TDL are referred
to by the use calendar construct, data formats defined in
CaTTS-FDL are referred to by the use format construct,
and external libraries are referred to by the import con-
struct. The constraints specified in a CaTTS-CL program
are delimited by the reserved words prog and end.

5.1 Use Case (Continued): Multi-Calendar Ap-
pointment Scheduling

Turning attention back to the two business men schedul-
ing a phone conference (cf. Section 4.5) during the 1st week
in October 2004, they specify the necessary constraints in
a CaTTS-DL program (cf. Figure 7). The day, the phone
conference might take place should be a Monday, Tuesday,
Wednesday, or Thursday in Tel Aviv. The conference itself
(denoted by the variable Conf) has a maximal duration of 1
hour, and it should be between 9 a.m. and 5 p.m. consider-
ing both time zones involved in this scenario. Furthermore,
the telephone conference should take place in the first week
of October 2004.

6. STATIC TYPE CHECKING AND CON-
STRAINT REASONING SUMMARIZED

This section briefly summarizes the characteristics of CaT-
TS’ language processors. A static type checker to ensure the
behavior and semantics of calendric data and constraints,
and a constraint solver to reason with such data.

6.1 Static Type Checker
In programming languages such as ML [9] static type

checking is used as a “lightweight formal method” (i.e. merely
syntactically tractable) for program analyses ensuring cor-
rect behavior of programs and/or systems w.r.t. some spec-
ification. CaTTS, however, uses static type checking for
semantic restrictions of inherent ambiguous and/or impre-
cise calendric data and constraints ensuring correct inter-
pretation of CaTTS-CL programs w.r.t. some CaTTS-DL
calendar specification.

For space reasons, the typing and subtyping relations of
CaTTS’ static type checker cannot be presented in this arti-
cle. First experimental results with a prototype implemen-
tation of CaTTS’ type checker point to a good efficiency
(i.e. type checking is polynomial). Further investigations
concerning efficiency as well as soundness and completeness
results are undergo.

6.2 Constraint Solver
CaTTS’ constraint solver essentially works on arbitrary

finite domains with type annotations after calendars defined
in CaTTS-DL. It departs from constraint systems over finite
domains [6] due to (i) typed constraint variables, and (ii)
constraint variables that may range either over single values
or over intervals of values; thus, reasoning over (possibly
periodic) intervals. The constraint solver refers to and relies
on the type predicates generated from a calendar definition
in CaTTS-DL. This makes search space restrictions possible,
and furthermore, obtains the semantics of calendric data and
constraints introduced with CaTTS-DL type definitions.

7. RELATED WORK
CaTTS complements data type definition languages and

data modeling and reasoning methods for the Semantic such
as XML Schema [12], RDF [15], and OWL [14]: XML Schema
provides a considerably large set of predefined time and date
data types dedicated to the Gregorian calendar whereas
CaTTS enables user-defined data types dedicated to any
calendar. RDF and OWL are designed for generic Seman-
tic Web applications. In contrast, CaTTS provides with
methods specific to particular application domains, that of
calendars and time.

CaTTS departs from time ontologies such as the KIF time
ontology [8], the DAML time ontology [4], and time in OWL-
S [10] in many aspects.

CaTTS considerably simplifies the modeling of specifici-
ties of cultural calendars (such as leap years, sun-based cy-
cles like Gregorian years, or lunar-based cycles like Hebrew
months) as well as the modeling of professional calendars of-
ten involving “gaps” in time (e.g. “working day”), “gapped”
data items (e.g. data items of type “working week”), and
periodic events (e.g. “CS123 lecture”) due to predicate sub-
types.

The well-known advantages of statically typed languages
such as error detecting, language safety, efficiency, abstrac-
tion, and documentation whereas the two latter obtain par-
ticular interest due to overloaded semantics of calendric data
apply to CaTTS, as well. Beyond this, CaTTS’ static type
checker provides both meta-type checking of predicate sub-
type definitions in CaTTS-DL and type checking of con-
straints in CaTTS-CL, obtaining the semantics of different
time granularities even for reasoning with their granules.

CaTTS comes along with a constraint solver dedicated
to calendar definitions in CaTTS-DL; this dedication makes
considerable search space restrictions, hence gains in effi-

program TelConference =
use calendar unqualified Gregorian ;
use calendar Hebrew , CET(C) , EET(C) ;
use format unqualified ISO . Extended ;

prog

Conf : hour during X: week && X during " 2004 -10 " && relat ive index X in october == 1 &&
relat ive index Conf in CET(Gregorian) . day >= 9 &&
relat ive index Conf in CET(Gregorian) . day <= 17 &&
relat ive index Conf in EET(Gregorian) . day >= 9 &&
relat ive index Conf in EET(Gregorian) . day <= 17 &&
Conf during EET(Gregorian) . (monday | tuesday | wednesday | thursday)

end

Figure 7: A scheduling problem in CaTTS-CL.

ciency, possible.
While (time) ontologies follow the (automated reason-

ing) approach of “axiomatic reasoning”, CaTTS is based
on a (specific) form of “theory reasoning”, an approach
well-known through paramodulation. Like paramodulation
ensures efficient processing of equality in resolution theo-
rem proving, CaTTS provides the user with convenient con-
structs for calendric types and efficient processing of data
and constraints over those types.

CaTTS inherently differs from specification languages for
events and temporal expressions in natural language text
such as TimeML [7]. TimeML is a language for annotating
temporal information in text corpora whereas CaTTS is de-
signed as a statically typed language specialized in calendar
and time modeling and reasoning, addressed to Semantic
Web applications and Web Services.

8. CONCLUSIONS
This article has introduced CaTTS, consisting of

• CaTTS-DL, a definition language, itself consisting of

– CaTTS-TDL, a type definition language and

– CaTTS-FDL, a date format definition language

• CaTTS-CL, a constraint language typed by CaTTS-
DL definitions.

CaTTS’ predicate subtype constructors allow for defining
arbitrary time granularities as types in CaTTS-DL. The two
subtype relations aggregation subtype of and inclusion sub-
type of provide means for conversions between those types
during constraint reasoning with calendric data of those
types, particularly in CaTTS-CL. CaTTS’ polytypic con-
structors provide a convenient and intuitive manner to spec-
ify periodic events. Interpreting calendars as types and their
parameterization ensures maintenance and reuse of calen-
dars, where the “type” of a calendar provides a summary of
that calendar.

CaTTS facilitates the modeling and efficient processing
of calendar and time data in Web and Semantic Web appli-
cations and Web Services, especially compared to ontology-
based modeling and reasoning.

9. REFERENCES
[1] J. F. Allen. Maintaining Knowledge about Temporal

Intervals. Communications of the ACM,
26(11):832–843, 1983.

[2] C. Bettini, S. Jajodia, and S. X. Wang. Time
Granularities in Databases, Data Mining, and
Temporal Reasoning. Springer-Verlag, 2000.

[3] F. Bry and S. Spranger. Towards a Multi-calendar
Temporal Type System for (Semantic) Web Query
Languages. In Proc. 2nd Int. Workshop Principles and
Practice in Semantic Web Reasoning, LNCS 3208.
Springer-Verlag, 2004.

[4] DARPA Agent Markup Language. A DAML Ontology
of Time, 2002.

[5] N. Dershowitz and E. Reingold. Calendrical
Calculations: The Millennium Edition. Cambridge
University Press, 2001.

[6] T. Frühwirth and S. Abdennadher.
Constraint-Programmierung. Springer-Verlag, 1997.

[7] B. Ingria and J. Pustejovsky. TimeML: A Formal
Specification Language for Events and Temporal
Expressions. 2004.

[8] Knowledge Systems Laboratories, Stanford. Time
Ontology in KIF, 1994.

[9] R. Milner, M. Tofte, and R. W. Harper. The
Definition of Standard ML. MIT Press, 1990.

[10] F. Pan and J. R. Hobbs. Time in OWL-S. In Semantic
Web Services, AAAI Spring Symposium Series, 2004.

[11] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[12] W3C, World Wide Web Consortium. XML Schema
Part 2: Datatypes, 2001.

[13] W3C, World Wide Web Consortium. Extensible
Markup Language (XML) 1.0 (Third Edition), 2004.

[14] W3C, World Wide Web Consortium. OWL Web
Ontology Language Overview, 2004.

[15] W3C, World Wide Web Consortium. RDF Primer,
2004.

APPENDIX
A. SYNTAX OF CATTS

A.1 Identifiers
t ∈ TyVar type identifiers long
c ∈ CalId calendar identifiers long
s ∈ CalSigId calendar signature identifiers
f ∈ CalFunId calendar function identifiers
p ∈ ProgId program identifiers

For each class of identifiers X marked “long” there is a
class longX of long identifiers; if x ranges over X then longx

ranges over longX. The syntax of the long identifiers is given
by the following:

longx ::= long identifiers:
x identifier
c1.cn.x qualified identifier n ≥ 1

The long identifiers constitute a link between declarations
and calendars.

A.2 Grammar
CaTTS grammar, including the syntactic forms for both

language formalisms CaTTS-DL and CaTTS-CL is given in
a BNF-like notation (〈. . . 〉denote n ≤ 0 repetitions).

e ::= exprs:
k constant
n ty duration, n ∈ �
binOp e e binary op
unOp e unary op
alternate x:ty 〈| e → e〉 alternate
ce constraints

ce ::= constraints:
x variable
x:ty domain constraint
ce iRel ce interval relation
ce aRel ce arithm. relation
ce && ce conjunction

binOp ::= shift forward | shift backward |
relative to | + | − | relative in |
∗ | \ | mod | div |
max | min

unOp ::= duration of | begin of | end of | index
iRel ::= equals | before | after | starts |

started by | finishes | finished by |
during | contains | meets | met by |
overlaps | overlapped by

aRel ::= == | <= | < | > | >= | ! =

ty ::= types:
longt type identifier
reference reference
refinement n @ e refine, n ∈ �
aggregate e〈,e〉@ e aggregation
select x:ty where e〈e〉 inclusion
|ty| duration
ty & ty〈& ty〉 conjunction
ty | ty〈| ty〉 disjunction
ty \ ty except
ty #< ty coarser-restrict
ty #> ty finer-restrict

dcl ::= decls:
type t = ty type
group t = wspec group
dcl;dcl sequential

wspec ::= with specs:
with ty 〈type t
where e;e for t1=t2〉

caldcl ::= calendar decls:
dcl declaration
calendar calbind calendar

empty
caldcl;caldcl sequential

calbind ::= calendar binds:
c〈(:sige)〉= cale

cale ::= calendar exprs:
cal caldcl end generative
longc identifier
f(cale) function application

fundcl ::= fun decls:
cal fun funbind generative

empty
fundcl;fundcl sequential

funbind ::= fun binding:
f(c:s):s’ = cale

sigdcl ::= s decls:
calendar type sigbind generative

empty
sigdcl;sigdcl sequential

sigbind ::= s bindings:
s = sige

sige ::= s exprs:
sig spec end generative
s identifier

spec ::= specs:
type t <: ty aggregation
type t c : ty inclusion
group t c : ty group
calendar c:sige calendar
spec;spec sequential

progdcl ::= p decls:
ce constraint
use calendar〈unqualified〉
longc1 ...longcn; n ≥ 1
import〈unqualified〉
lib1 ...libn; n ≥ 1
use format〈unqualified〉
cate1 ...caten; n ≥ 1
program progbind generative
empty
progdcl;progdcl sequential

progbind ::= p binds:
p proge

proge ::= p exprs:
prog progdcl end declaration
p identifier

catdcl ::= cat decls:
catalog catbind generative
format fid:ty = d where e format

empty
catdcl;catdcl sequential

catbind ::= cat binds:
cd〈:s〉= cate

cate ::= cat exprs:
cat catdcl end generative

cd identifier
cate.cd qual id
catalog cd catalog

