
Ten Theses on Logic Languages for the Semantic Web

François Bry1 and Massimo Marchiori2

1 University of Munich (http://pms.ifi.lmu.de/)
2 University of Venice and W3C (http://www.w3.org/People/Massimo/)

Abstract

This articles discusses the logic, or logic-based, languages required for a full deployment of the
Semantic Web. It presents ten theses addressing (1) the kinds of logic languages needed, (2) data
and data processing, (3) semantics, and (4) engineering and rendering issues.

1 Languages

Thesis 1 (Diversity) The Semantic Web requires logic languages of different kinds: (1) three
kinds of reasoning, or deductive, languages, viz. (1.1) constructive rules (or views), (1.2) normative
rules (or integrity constraints), (1.3) descriptive specifications (or ontologies), and (2) reactive
rules.

Constructive rules,1 called ‘views’ in databases, specify how to derive new data from data
already available. Constructive rules typically involve data selection and grouping. Constructive
rules are often, but not always, expressed as implications of the form new-data⇐ query. Examples
of constructive rules are SQL views, Datalog or pure Prolog clauses,2 and XSLT templates. Queries
after XQuery can be seen as constructive rules with intertwined query and new-data parts. CSS
rules can also be seen as constructive rules: CSS selectors are a kind of queries, declaration-
blocks (or {}-blocks) specify how new, styled, data are constructed. RDFS semantic rules are
further examples of constructive rules. Inference rules3 used in specifying proof systems, are also
constructive rules (cf. infra Thesis 8).

Normative rules, called ‘integrity constraints’ in databases, express conditions that data must
fulfill, e.g. ISBN numbers uniquely characterize books, and that must be checked when data are
updated. Data schemas, especially tree grammars in their various disguises, e.g. DTD, XML
Schema, RelaxNG, etc., express normative rules.4 Normative rules can be expressed as denials
and evaluated like constructive rules. A denial is a rule of the form false ⇐ query where the
head false, or error(...), etc., denotes a violation of a requirement req and the denial’s body
query expresses a negation of this requirement, i.e. query ≡ ¬req. E.g. the following denial
expresses that ISBN numbers uniquely characterize book titles: error(ISBN) ⇐ book(Title1,
ISBN) ∧ book(Title2, ISBN) ∧ Title1 6= Title2.

Descriptive specifications specify data types and relationships between data types without nec-
essarily referring to actual data. They are used in software specifications, data schemas, and
ontologies. They are often expressed in logics5 corresponding to classical logic fragments with re-
stricted quantifications of the forms ∀x : s F [x] and ∃x : s F [x] restricting the variable x to some
sort, class, entity, etc. s. Such quantifications can be expressed in classical logic as ∀x s(x) ⇒ F [x]
and ∃x s(x) ∧ F [x], resp. using a conveniently defined unary predicate symbol s.

It is worth noting that, in many cases, the distinction between normative rules (integrity con-
straints) and descriptive specifications (ontologies) subtly depends on the use. Consider a system
of rules expressing some regulation, e.g. under which conditions students are allowed to register for
courses. In drawing conclusions from the regulation, or in verifying that it is consistent or non-
redundant, the regulation is used as a descriptive specification – certain forms of reasoning such

1The name stresses that consequences from such rules can be drawn in constructive logic, i.e. without relying on
excluded middle or refutation.

2I.e. Prolog clauses without imperative predicates.
3E.g. modus ponens: If both A and A⇒ B are provable, then B is provable.
4However, variables in grammars differ from logic variables, since different occurrences of a same grammar variable

represent different data instances.
5E.g. sorted logics and description logics.

1

http://pms.ifi.lmu.de/
http://www.w3.org/People/Massimo/


as excluded middle and refutation make sense and might even be indispensable. In verifying that
student registrations to courses enforce the regulation, the regulation is used as integrity constraint
– excluded middle and refutation do not make sense.6

Reactive rules specify how a data store can be modified depending on the current state of
the store and, in some languages, on events. Reactive rules commonly have one of the forms if
condition then action and on event if condition then action. Rules of the first kind are
called production rules,[3] rules of the second, ECA (short for Event-Condition-Action) rules. In
production and ECA rules, condition is an (atomic or compound) query to the data store similar
to a body of a constructive or normative rule, and action is an atomic (i.e. single) or compound
update of the data store (typically consisting of insertions, removal, and/or changes in a data item).
In an ECA rule, event denotes an event query, i.e. a query to events received so far. An event
query can be atomic, i.e. refer to a single event, or compound, i.e. refer to composite events. In
the following, the condition of a production or ECA rule is called standard query so as to stress its
similarity with the body of a constructive or normative rule.7

Thesis 2 (Negation) Non-monotonic negation8 is the negation of choice for constructive rules
(views), normative rules (integrity constraints), and reactive rules. Monotonic negation may, but
must not, be offered in constructive, normative, and reactive rules. Monotonic negation is the
negation of choice for descriptive specifications (ontologies).

Non-monotonic negation, cf. [7] for selected articles, is the negation of choice for constructive
rules (views) because data constructions depends on both, available and non-available data. Since
normative rules can be expressed as constructive rules (cf. supra Thesis 1), non-monotonic negation
is also the negation of choice for normative rules. Non-monotonic negation is the negation of choice
for reactive rules, too, for both ‘event queries’ (i.e. the event parts of ECA rules) and ‘standard
queries’ (i.e. the condition parts of production or ECA rules) refer to the presence or absence of
data, events resp.

Monotonic negation is the negation of choice for descriptive specifications because descriptive
specifications do not refer to actual data, e.g. the flights listed in a time table, but instead to
meta-level specifications, e.g. conditions flights must fulfill, the negation needed in descriptive
specifications does not have to refer to the absence or non-availability of such data.

Recall (cf. supra Thesis 1) that the same rule can be used as a normative specification (integrity
constraint) or descriptive specification (ontologie). As a consequence, the choice of a negation
semantics, monotonic or non-monotonic, does not necessarily depend on the syntax of negation.

Thesis 3 (Coherency and Inter-Operability) Inter-operable logic languages of the var-
ious kinds should be striven for. Inter-operability is sustained by the following forms of coherency:
syntax coherency, rendering coherency, reasoning coherency, and explanation coherency.

Syntax coherency means that expressions from different languages with similar meanings are
expressed similarly. Rendering coherency means that expressions from different languages are
(visually or verbally) rendered (cf. infra Thesis 10) similarly, possibly using the same rendering
methods or tools. Reasoning coherency means that similar forms of reasoning applied on different
languages, e.g. for deriving new data using constructive rules, for computing the closure of RDF
specifications, or for checking normative rules, are performed using similar reasoners. Reasoning
coherency is desirable both for programmers and language design, and implementation. An im-
portant aspect of reasoning coherency is to have a common semantics for non-monotonic negation
in constructive, normative, and reactive rule languages. Explanation coherency means that similar
forms of reasoning are explained, by explanation tools, relaying on similar explanation paradigms.

2 Data and Data Processing

Thesis 4 (Data Distribution and Versatility, and Meta-Level Reasoning) A logic
language for the Semantic Web must access data everywhere on the Web; be ‘data versatile’, i.e.
capable of accessing data and meta-data in any common Web Semantic Web format – especially

6One might object that Prolog, or a Prolog-like proof-system, can used for integrity checking, integrity constraints
been expressed as denials, and that the proof method of Prolog, SLD resolution, is a refutation method. In fact, as
opposed to general resolution, SLD resolution can be re-expressed in constructive logic [8], i.e., without referring to
refutation.

7[13] further discusses how constructive and reactive rules, called ‘passive’ and ‘active’ resp., relate.
8The negation used in concluding that flights not mentioned in a time table do not exist.

2



XML, RDF, Topic Maps, and OWL, as well as the formats of Semantic Web logic languages –,
and capable of some forms of meta-level reasoning

There has already been a number of peas in favour of data versatile query languages, e.g. [19].
Meta-level reasoning poses interesting, but not impossible, challenges. Meta-level reasoning

has bad reputation among Computational Logicians, however, conveniently, e.g. constructively,
restricted, cf. [6] meta-level reasoning is semantically as safe, and practically as useful as higher-
order functions in Functional Programming. Note that meta-level reasoning is already present,
though in a limited form, on the Semantic Web: RDF Schema, the “RDF Vocabulary Description
Language”, is itself an RDF Vocabulary for describing terms in an RDF vocabulary.

Thesis 5 (Reasoning Paradigms) Constructive and normative rules (views and integrity
constraints) should be evaluable by both forward chaining9 and backward chaining10, backward chain-
ing being the reasoning paradigm of choice. Descriptive specifications (ontologies) call for (non-
constructive) reasoning, including excluded middle11, non-contradiction12 and refutation13. The
reasoning paradigms of Semantic Web logic languages should support grouping, aggregation, theory
reasoning, and non-monotonic negation.14

On the Web, forward chaining is well-suited only for well-defined and closed sets of Web sites.
Queries referring directly, or indirectly (through sub-queries triggered by constructive rules at
queried Web sites) to a set of Web sites that cannot be statically15 recognized, cannot be evaluated
by forward chaining. Indeed, with such queries, forward chaining would require to compute inter-
mediate results from all possible Web sites.Thus, on the web, backward chaining is the reasoning
paradigm of choice for constructive and normative rules.

Theory reasoning, a term coined after Mark Stickel’s ‘theory resolution’ [20], denotes enhancing
a general purpose reasoning method with special reasoners where convenient, e.g., reasoning on
bank accounts with a basic arithmetic ‘theory reasoner’ instead of the Peano axioms of Arithmetic.

Thesis 6 (Event Processing) Event broadcasting is undesirable on the Web. Events can
be exchanged between Web sites using a push, or a pull model. Pushed events can be sent as data
streams, calling for streamed query evaluation methods. Evaluating event queries, e.g. the event
parts of ECA rules, calls for event driven query evaluation methods.

On the Web, events can not be broadcasted, i.e. indiscriminately sent to all sites, because this
would result in too high a traffic. Events can be exchanged on the Web sites via either push, i.e.
events are sent by the emitters to specific recipients, or pull methods, i.e. each site publishes the
events it emits, together with the event’s recipients, on a ‘blackboard’ which is repeatedly queried
by the potential recipient sites. Such queries are called continuous. With the push model, event
can be sent as ‘data streams’ [4]. Continuous queries [22, 1, 17, 18], data streams [4], and event
queries [5, 2] require specific query evaluation methods.

3 Semantics

Thesis 7 (Declarative Semantics) Logic languages for the Semantic Web, except reactive
rule languages, should have declarative semantics defined as ‘Tarski-style model theories’.

Tarski-style models [12], i.e., the models of classical logic, are expressed in terms of so-called
‘valuation functions’ that are defined recursively on a formula’s structure. They make possible to
evaluate a formula independently of other formulas. Therefore, they are easy to understand, and
they do not require complex operational semantics.16

Production and ECA rules amount to imperative programming, hence they are inherently not
amenable to declarative semantics. However, (1) declarative semantics are possible and desirable
for the ‘standard query’ and ‘event query’ languages used in production or ECA rules languages,

9Also called bottom-up reasoning.
10Also called top-down reasoning.
11At least one of A and ¬A is true.
12At most one of A and ¬A is true.
13If under the assumption A, a contradiction, i.e. B and ¬B for some B, can be derived, then ¬A is proven.
14Preferably with a semantics understandable without PhD in Logic!
15I.e. before query evaluation.
16Note that most declarative semantics for non-monotonic negation that do not assume stratified, or stratifiable, rules,

e.g. the stable [11] and well-founded [10] semantics, do not have Tarski-style model theories.

3



and (2) a formal semantics amenable to reasoning on production and ECA rule programs is possible
(and desirable!).

Thesis 8 (Operational Semantics) The operational semantics of a logic language is con-
veniently expressed with constructive and normative rules. Backtracking is useful for a fine tuning
of proof construction in implementing logic languages.17

The operational semantics of a logic language or reasoner is usually and conveniently expressed
in terms of inference rules of the form:

Premise1 . . . Premisen

Conclusion

Inference rules can be seen as constructive rules in a meta-language specifying proofs for formulas
of the object-level language. Thus, a constructive rules are subjacent to (the procedural semantics
of) every rule language and reasoners. This observation has led to successful uses of the run-time
system [21] of Prolog or of the Prolog language itself [14] for implementing efficient theorem provers.
Normative rules, too, are convenient in specifying the procedural semantics of rule languages and
reasoners for expressing constraints on the proof, or search, space. Reactive rule can be convenient
in implementing logic languages and reasoners.18

4 Engineering and Rendering

Thesis 9 (Language Engineering) Logic languages for the Semantic Web should be referen-
tially transparent, strongly closed, have Web formats, and modern type systems.19 The specification
of abstract machines should be striven for.

Referential transparency, i.e. within a same declaration scope two occurrences of a same expres-
sion have the same meaning, is desirable because it is the trait of declarativity. Closure, i.e. the
data returned by a program are like, e.g. have formats similar to, the data accessed by programs
in the same language. Strong closure means that the data returned by a program can be further
processed by this same program. Strong closure is desirable because it eases structuring programs
in sub-programs. Web formats, especially XML formats such as RuleML formats, are desirable
for rule languages because they eases inter-changing programs on the Web, e.g., for Web services
applications. Abstract data types and static type checking are desirable for Semantic Web reasoning
and reactive languages as they are for any other programming languages: “Well typed programs do
not go wrong.” [16] Abstract machines are desirable because they are essential for wide-spreading
languages.

Thesis 10 (Visual and Verbal Rendering) Logic languages for the Semantic Web should
have visual and verbal renderings.

Declarative languages are especially well-suited to visual rendering and visual rendering is very
appealing to potential users of logic languages for the Semantic Web, as the many systems for
graphical rendering and/or visualization of business rules amply demonstrate.

Programs used on the Web and Semantic Web should be verbalizable, i.e. the rules or formulas
they consist of should be expressible in a controlled language [15, 9], i.e. in a non-ambiguous lan-
guage resembling natural language. Rules, e.g. expressing policy specifications and trust, verbalized
in a controlled language would considerably help wide-spreading the (verbal as well as non-verbal
forms of the) languages they are expressed in.

Acknowledgments. The ideas expressed in this article have been significantly influenced
by the research project REWERSE (Reasoning on the Web with Rules and Semantics, http:
//rewerse.net). The authors thank their colleagues of REWERSE for many fruitful discussions

17Backtracking is however undesirable as a programming concept for high-level logic languages like the logic languages
needed on the Semantic Web because it destroys the language’s declarativity. The operational paradigm(s) desirable
for a Semantic Web logic languages can be equivalently called ‘backtracking-free logic programming’ or ‘set-oriented
functional programming’. It is worth noting almost of the query languages proposed for RDF are of this kind.

18Since constructive and reactive rule languages can be used in specifying and implementing logic languages and
reasoners, some claim that a single language of such a kind would be sufficient for the Semantic Web. This amounts to
claiming that only one single, e.g., imperative, programming language could be sufficient for developing software.

19I.e., type systems supporting abstract data types and offering static type checking, parametric polymorphism, and
modules.

4

http://rewerse.net
http://rewerse.net


on the subject of this article. This research has been funded by the European Commission and by
the Swiss Federal Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net).

References

[1] Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams. SIGMOD Record,
2001.

[2] James Bailey, François Bry, and Paula-Lavinia Pătrânjan. Composite Event Queries for Re-
activity on the Web. In Proc. 14th Int. World Wide Web Conference, 2005.

[3] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming Expert Systems
in OPS5: An Introduction to Rule-based Programming. Addison-Wesley, 1985.

[4] François Bry, Fatih Coskun, Serap Durmaz, Tim Furche, Dan Olteanu, and Markus Spannagel.
The XML Stream Query Processor SPEX. In Proc. 21st Int. Conf. on Data Engineering
(ICDE), 2005.

[5] François Bry and Paula-Lavinia Pătrânjan. Reactivity on the Web: Paradigms and Applica-
tions of the Language XChange. In Proc. 20th Annual ACM Symp. Applied Computing (SAC),
2005.

[6] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A Foundation for Higher-
Order Logic Programming. Jour. of Logic Programming, 15(3):187–230, 1993.

[7] Jürgen Dix, Lúıs Moniz Pereira, and Teodor C. Przymusinski., editors. Selected Papers from
the Non-Monotonic Extensions of Logic Programming. LNCS 1216. Springer-Verlag, 1996.

[8] K. Doets. From Logic to Logic Programming. MIT Press, 1994.

[9] Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled English – Not Just
Another Logic Specification Language. In Proc. 8th Int. Workshop (LOPSTR), LNCS 1559.
Springer-Verlag, 1999.

[10] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Jour. ACM, 38(3):620–650, 1991.

[11] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. Int. Conf. and Symp. Logic Programming, 1988.

[12] Jerome Keisler. Handbook of Mathematical Logic, chapter Fundamentals of Model Theory,
pages 47–103. North-Holland, 1989.

[13] Rainer Manthey. Active and Passive Rules in Database Systems: How do They Relate. In
Proc. 1st Workshop on Advances in Databases and Information Systems, 1994.

[14] Rainer Manthey and François Bry. SATCHMO: A Theorem Prover Implemented in Prolog,.
In Proc. 9th Conf. on Automated Deduction, 1988.

[15] Massimo Marchiori and Janne Saarela. Query + Metadata + Logic = Metalog. In Proc. QL
’98, The Query Languages Workshop, 1998. http://www.w3.org/TandS/QL/QL98/.

[16] Robin Milner. Fuly Abstract Models of Typed λ-Calculi. Theoretical Computer Science,
4(1):1–22, 1977.

[17] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. Monitoring XML
Data on the Web. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, 2001.

[18] Sandeep Pandey and and Soumen Chakrabarti Krithi Ramamritham. Monitoring the Dynamic
Web to Respond to Continuous Queries. In Proc. 12th Int. World Wide Web Conference, 2003.

[19] Jonathan Robie. The Syntactic Web: Syntax and Semantic on the Web. In Proc. XML Conf.
and Exposition, 2001.

[20] Mark E. Stickel. Automated Deduction by Theory Resolution. Jour. of Automated Reasoning,
1(4):333–355, 1985.

[21] Mark E. Stickel. A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Computer. Jour. of Automated Reasoning, 1988.

[22] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous Queries over
Append-Only Databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 1992.

5

http://rewerse.net
http: //www.w3.org/TandS/QL/QL98/

	Languages
	Data and Data Processing
	Semantics
	Engineering and Rendering

