
HOW TO QUERY THE GENEONTOLOGY

Andreas Doms1, Tim Furche2, Albert Burger3 and Michael Schroeder1

1Biotec, Technical University Dresden, Germany
2Ludwig-Maximilians-Universiẗat Munich, Germany

3Medical Research Council, Human Genetics Unit, Edinburgh, UK

ABSTRACT
Ontologies, which are structured, hierarchical vocabular-
ies, are widely used in molecular biology to annotate se-
quence and structure data. One such ontology, the Ge-
neOntology, contains some 18000 terms on biological pro-
cesses, molecular function, and cellular components. Ge-
neOntology is available as flat file, in web formats such as
XML and RDF, and as database. Using these formats we
compare three different reasoners to query the GeneOntol-
ogy. Prolog is the classical logic programming approach
to reason over the ontology, Prova is a rule-based Java
scripting language, and Xcerpt a query language for XML
and RDF. We conclude by discussing the strengths and
weaknesses of the three approaches.

1. INTRODUCTION

Recently much work has been dedicated to create ontolo-
gies and annotate other data sources with the terms of the
ontologies. One prominent example is the GeneOntology,
which defines a vocabulary for cellular components, bio-
logical processes and molecular function. When searching
the data sources, which have been annotated with ontolog-
ical terms reasoning over the ontology becomes crucial.
A query for all genes, which have been annotated with
“small GTPase mediated signal transduction” should also
return all genes, which have been annotated with the chil-
dren of the term, such as Ras, Rho, or Rac mediated signal
transduction. I.e. a reasoner is required, which recursively
traverses the is-a hierarchy to find associations. Such a
reasoner needs to be able to handle boolean expressions
correctly. E.g. which genes have been annotated with
small GTPases mediated signal transduction apart from
Rho. The GeneOntology is available in various formats
such as flat files, Web formats such as XML and RDF,
and as database. We compare the three different reasoners
Prolog, Prova, and Xcerpt to query the GeneOntology.

2. ONTOLOGIES IN BIOINFORMATICS

Currently there is no agreed vocabulary used in molecu-
lar biology. For example, gene names are not used in a
consistent way. GeneCards ([13]) and LocusLink ([12])
address this problem by providing aliases. For example
GeneCards lists six aliases for a gene that is responsible
for breast cancer

• PSCP,

• RNF53,

• breast cancer 1, early onset,

• breast-ovarian cancer, included,

• papillary serous carcinoma of the peritoneumand

• Breast cancer type 1 susceptibility protein.

At the time of writing, searching PubMed forPSCP
returns 2035 relevant articles. Searching forpapillary serous
carcinoma of the peritoneum, returns 78 articles. How-
ever, searching for both terms returns only 15 hits. In
general, there is a pressing need in molecular biology to
use common vocabularies. This need has been addressed
through the ongoing development of biomedical ontolo-
gies. Starting with the GeneOntology1 [7], the Open Biomed-
ical Ontologies effort2 currently hosts over 50 biomedical
ontologies. Fig. 1 shows some example ontologies such as
cell type, Drosophila development, Fungal gross anatomy,
SwissProt organismal classification, andC. elegans devel-
opment.

2.1. Gene Ontology (GO)

A core ontology is the GeneOntology, which contains over
18000 terms describing biological processes, molecular
functions, and cellular components for gene product. The
biological process ontology deals with biological objec-
tives to which the gene or gene product contribute. A pro-
cess is accomplished via one or more ordered assemblies
of molecular functions. The molecular function ontology
deals with the biochemical activities of a gene product. It
describes what is done without specifying where or when
the event takes place. The cellular component ontology
describes the places where a gene product can be active.
The GO ontologies have become a de facto standard and
is used by many databases as annotation vocabulary.

There are a number of tools that can be used to browse
and query the GeneOntology. The GO website lists tools
such as AmiGO and DAG-Edit, which allows users to
search and browse by term or gene name. The associa-
tion of ontology terms and genes is qualified by evidence

1www.geneontology.org
2obo.sourceforge.net

� anatomy
� gross anatomy
� cell type
� BRENDA tissue / enzyme source

� chemical
� chemical entities of biological interest
� physico-chemical methods and properties
� physico-chemical process

� development timeline
� animal development
� plant development

� ethology
� Habronattus courtship
� Loggerhead nesting

� experimental conditions
� biological imaging methods
� microarray experimental conditions
� physical-chemical methods and properties
� plant enviromental conditions

� genomic and proteomic
� gene product
� gene structure and variation

� phenotype
� taxonomic classification

Figure 1. Example categories of ontologies listed at the
Open Biomedical Ontologies website

codes, which indicate the support for the link such as trace-
able author statements, statements inferred from expres-
sion pattern, from electronic annotation, or a curator. The
GeneOntology is available in various formats such as flat
files, the extensible mark-up language (XML), the resource
description format (RDF), and as MySQL database. Fig.
2 shows an excerpt of the GO in XML. The GeneOntol-
ogy can be queried using all of the above representations,
which have different advantages and disadvantages. Be-
fore discuss these in more detail, we will introduce an ex-
ample scenario in signal transduction.

3. EXAMPLE PROBLEMS: SMALL GTPASES

Consider Fig. 3, which shows the biological process of
small GTPase mediated signal transduction with its chil-
dren such as Rac, Ras, and Rho protein signal transduc-
tion. GTPases are a large family of enzymes that can bind
and hydrolyze guanosine triphosphate, GTP. GTPases play
an important role in signal transduction at the intracellular
domain of transmembrane receptors, including recogni-
tion of taste, smell and light. GTPases also play a role in
other cellular functions such as protein biosynthesis, con-
trol and differentiation during cell division, translocation
of proteins through membranes and transport of vesicles
within the cell. There are various subfamilies such as Ras,
Rho, Rab, Arf, Ran, Rheb, Rad and Rit. Figure 4 shows a
Ras protein which is in the active state bound to guanosine
triphosphate, GTP.

In the context of GTPases, we will show how to an-
swer the following three queries with three different rea-

OBO XML
<?xml version="1.0" encoding="UTF-8"?>
<obo>

...
<term>

<id>GO:0008150</id>
<name>biological_process</name>
<namespace>biological_process</namespace>
<def>

<defstr>A phenomenon marked by changes that ...
...lead to a

particular result, mediated by one or more ...
...gene

products.</defstr>
<dbxref>

<acc>curators</acc>
<dbname>GO</dbname>

</dbxref>
</def>
...
<is_root>1</is_root>

</term>
<term>

<id>GO:0007275</id>
<name>development</name>
<namespace>biological_process</namespace>
<def>

<defstr>Biological processes specifically ...
...aimed at the

progression of an organism over time from an ...
...initial

condition (e.g. a zygote, or a young adult) ...
...to a later

condition (e.g. a multicellular animal or an ...
...aged adult).

</defstr>
<dbxref>

<acc>ems</acc>
<dbname>WB</dbname>

</dbxref>
</def>
<comment>Note that this term was ’developmental...

... process’.
</comment>
...
<is_a>GO:0008150</is_a>

</term>
...

</obo>
}

Figure 2. Example fragment of the GeneOntology in OBO
XML format

soning engines:

1. Show the ID of the GO termsmall GTPase mediated
signal transduction!

2. Which small GTPase mediated signal transduction
processes are known?

3. Which small GTPase mediated signal transduction
processes apart from Rho are listed in the GO?

Much more complex queries integrating also other biomed-
ical data sources are possible. For clarity we concentrate
in this survey on the three afore-mentioned basic queries.
Expressing such queries using logic-programming style
reasoning-aware query languages is investigated from three
perspectives: the well-established logic programming lan-
guage Prolog, a rule-based scripting language, Prova, that
adds access to Java objects, and Xcerpt, an XML and RDF
query language based on logic programming.

B Biological process
B Cellular process

B cell communication
B signal transduction

B intracellular signaling cascade
B small GTPase mediated signal transduction

B Rac protein signal transduction�
B Ras protein signal transduction�
B regulation of small GTPase mediated signal transduction

B regulation of Rho protein signal transduction
B positive regulation of Rho protein signal transduction
B negative regulation of Rho protein signal transduction

B Rho protein signal transduction
A regulation of Rho protein signal transduction

B positive regulation of Rho protein signal transduction
B negative regulation of Rho protein signal transduction

A regulation of signal transduction
B regulation of small GTPase mediated signal transduction�

A regulation of cellular process
B regulation of signal transduction

B regulation of small GTPase mediated signal transduction
B Molecular function

B enzyme regulator activity
B GTPase regulator activity

B small GTPase regulatory/interacting protein activity
B Cellular component

Figure 3. View on the GO hierarchy containing terms related to small GTPases.B symbolizes anis a relation andA
symbolizes apart of relation. � marked nodes hide more children related to ”‘small GTPase mediated signal transduc-
tion”’. Note: this tree view is stripped down to the concepts of GO necessary to explain our example. The subtree related
to regulation of Rho protein signal transductionis present two times because this GO term has multiple parents. The
relations in GO are graph-shaped, we show here a simplified hierarchical representation.

4. RULES AND REASONING

Ontologies as introduced in section 2 are directed acyclic
graphs and each is-a and part-of relationship can be ex-
pressed as a rule. To reason over rules there are many
different formalisms and reasoning engines. One of the
most well-established approaches is logic programming
with programming languages such as Prolog, which allow
programmers to specify problems in the form of if-then
rules. Prolog is ideal if a problem can be completely spec-
ified by declarative if-then rules. Often practical consid-
eration require however integration of non-logic program-
ming constructs. Examples are the ability to call external
web services, to exchange messages, to access underly-
ing databases and to use Java or other programming lan-
guages. Prova ([10]) aims to close this gap and marry the
benefits of rule-based programming with Java program-
ming. Prova closely resembles Prolog syntax, but addi-
tionally provides predicates to send and receive messages,
to call web services, and to access databases. Prova vari-
ables correspond to underlying Java objects, which means
that all of the available Java methods are transparently ac-
cessible from within Prova. While Prolog is not suitable
for programming on the web, Prova’s link to Java ensures
that it can work with web technologies such as XML and

RDF. Xcerpt ([2]), the third rule-based language discussed
in this paper, puts these web technologies at center stage.
Xcerpt implements rule-based querying of XML and RDF
documents. Below we give a brief introduction into Pro-
log, Prova and Xcerpt. Then we will show how to use
them to query GeneOntology and compare their strengths
and weaknesses for this task.

4.1. Prolog

Prolog (Programming in Logic) is a declarative language
(vs. procedural language) which means that it describes
”‘what to do”’ rather than ”‘how to do it”’. A Prolog pro-
gramme consists of facts and rules. Consider e.g. the list-
ing for the same generation problem, where :- is read as
“if” and the comma as “and”.

Listing 1. The same generation problem
1 sg(X,Y) :- parent(X,Z), parent(Y,Z).
2 sg(X,Y) :- parent(X,Z1), parent(Y,Z2), sg(Z1,Z2).
3

4 parent(bob,mary).
5 parent(bill,mary).
6 parent(bert,marge).
7 parent(marge,pete).
8 parent(mary,pete).

The programme specifies in just two rules under which
circumstance X and Y are in the same generation. The

Figure 4. Crystal structure of rasa59g in the gtp-bound
form

first rules states that X and Y are in the same generation if
they are siblings. The second rule specifies that X and Y
are in the same generation if their parents are. The query
sg(bob,X) answers e.g., who is in the same generation as
bob.

There are a few different implementations of Prolog,
the more popular ones are: Sicstus Prolog3, SWI-Prolog4

and IF Prolog5.

4.2. Prova

Prova is based itself on Mandarax6and provides a rule-
based Java scripting language. The use of rules allows
one to declaratively specify the integration needs at a high-
level without any implementation details. The transparent
integration of Java caters for easy access and integration
of database access, web services, and many other Java ser-
vices. This way Prova combines the advantages of rule-
based programming and object-oriented programming in
Java. This section presents rationales and design princi-
ples behind the Prova language. The Prova language is po-
sitioned as a platform for knowledge-intensive ontology-
rich applications in biomedical research. It aims to satisfy
the following design goals with the proposed Prova lan-
guage:

• Combine the benefits of declarative and object-oriented
programming;

• Merge the syntaxes of Prolog, as rule-based lan-
guage, and Java as object-oriented languages;

3www.sics.se
4www.swi-prolog.org/
5www.ifcomputer.com
6www.mandarax.org

• Expose logic as rules;

• Access data sources via wrappers written in Java or
command-line shells like Perl;

• Make all Java API from available packages directly
accessible from rules;

• Run within the Java runtime environment;

• Be compatible with web- and agent-based software
architectures;

• Provide functionality necessary for rapid applica-
tion prototyping and low cost maintenance.

Consider the following Prova code showing how knowl-
edge can be inferred from the available facts.

Example 1 (Declarative programming)
Consider a table of interacting proteins. We wish to infer
all interactions, direct or indirect. In Prova, this can be
specified as follows (:- is read as “if”):

Listing 2. Prova example
1 % Facts (what we know)
2 interactDirect(a,b).
3 interactDirect(b,c).
4 interactDirect(c,d).
5

6 % Rules (how to der i ve new knowledge)
7 interact(X,Y):-interactDirect(X,Y).
8 interact(X,Z):-interactDirect(X,Y),interact(Y,Z).

The query:- solve(interact(a,X)). , which
can be read as “which proteinsX interact with protein
a?”, will return the three answersX=b, X=c, andX=d.

Thus, Prova follows classical Prolog closely by declar-
atively specifying relationships with facts and rules. Now
let us consider two examples, where access to Java meth-
ods is directly integrated into rules.

Example 2 (Object-oriented programming)
The code below represents a rule whose body consists of
three Java method calls: the first to construct a String
object, the second to append something to the string, and
the third to print the string to the screen.

Listing 3. Prova example
1 hello(Name):-
2 S = java.lang.String("Hello "),
3 S.append(Name),
4 java.lang.System.out.println(S).

4.3. Xcerpt

Xcerpt7 is a Web query language for the “standard Web”
(e.g., XML and HTML data) and the Semantic Web (e.g.,
RDF, Topic Maps, etc.). Xcerpt is “data versatile”, i.e.
a same Xcerpt query can access and generate, as answers,
data in different Web formats. Xcerpt is “strongly answer-
closed”, i.e. it not only gives rise to construct answers

7www.xcerpt.org

in the same data formats as the data queries like, e.g.,
XQuery [6], but also to further processing in a query pro-
gram data generated by this same query program. Xcerpt’s
queries are pattern-based and give rise to incompletely
specify the data to retrieve by (1) not explicitly specifying
all children of an element, (2) specifying descendant ele-
ments at indefinite depths (restrictions in the form of reg-
ular path expressions being possible), and (3) specifying
optional query parts. Xcerpt’s evaluation of incomplete
queries is based on a novel form algorithm called “sim-
ulation unification”. Xcerpt’s processing of XML docu-
ments is graph-oriented, i.e., Xcerpt is aware of the ref-
erence mechanisms (e.g., ID/IDREF attributes and links)
of XML. Xcerpt is rule-based. An Xcerpt rule expresses
how data queried can be re-assembled into new data items,
i.e., an Xcerpt rule corresponds to an SQL view. Xcerpt
allows both traversal of cyclic documents and recursive
rules, termination being ensured by so-called memo-ing,
or tabling, techniques. Xcerpt rules can be chained for-
ward or backward, backward chaining being on the Web
the processing of choice. Indeed, if rules can, like Xcerpt’s
rules, query any Web site, then a forward processing of
rule-based programs could require to start a program’s
evaluation at all Web sites. Xcerpt is inspired from Logic
Programming. However, since it does not offer backtrack-
ing as programming concept, Xcerpt can also be seen as
“set-oriented functional”.

Three features of Xcerpt are particularly convenient
for querying not only XML but also RDF data. (1) Xcerpt’s
pattern-based incomplete queries are convenient to col-
lect related resources in the neighborhood of some re-
sources and to express traversals of RDF graphs of in-
definite lengths. (2) Xcerpt chaining of (possibly recur-
sive rules) are convenient to express RDFS’s semantics,
e.g., the transitive closure of thesubClassOf relation,
as well as all kinds of graph traversals. (3) Xcerpt’s op-
tional construct is convenient for collecting properties of
resources.

5. QUERYING ONTOLOGIES

In this section we describe in principle and examples how
to answer the questions from section 3 with Prolog, Prova
and Xcerpt.

5.1. Examples solved with Prolog

We assume that relevant parts of the GeneOntology term
table and the term2term table are represented in a knowl-
edge base using the following two predicates:

1 name2term(N,T). %where N is the name and T the id;
2

3 term2term(R,RT,T1,T2).
4 %where R is the relationship id, RT the ...

...relationship type id,
5 %and T1 and T2 are term ids;
6 %and RT=2 for is-a;

then the three queries could be written as follows:

Listing 4. Query 1

1 % Show the ID of the GO term small GTPase mediated ...
...signal transduction?

2 name2term(’small GTPase mediated signal ...
...transduction’, T);

3

4 % Which GTPase processes are listed in the GO?
5 isDesc(’small GTPase mediated signal transduction’,...

...N);
6

7 isDesc(N1,N2) :-
8 name2term(N1,T1),
9 isa(T2,T1),

10 name2term(N2,T2).
11

12 isa(T,T).
13 isa(T2,T1) :- term2term(_,2,T3,T1), isa(T2,T3).
14

15 isDesc2(N).
16

17 % Which GTPase processes apart from Rho are listed ...
...in the GO?

18 isDesc2(N) :-
19 isDesc(’small GTPase mediated signal ...

...transduction’, N),
20 not(isDesc(’Rho protein signal transduction’,N)...

....

5.2. Examples solved with Prova

The Prova code very closely resembles the declarative Pro-
log specification. However, instead of relying on an in-
ternal knowledge base, which needs to be loaded entirely
into memory, Prova access the GO in a database, which
is accessed as needed. In the same way as Prolog, Prova
applies backward-chaining to evaluate queries.

The following Prova code first ”‘imports”’ some util-
ity functions, likedbopen, which opens a database con-
nection. One database location is provided in line 4. The
script evaluates the three statements at once. First, it tries
to bind a GO term accession number to a given name, in
line 7. The answer is no if the database has no such label
for any term. The predicatename2term is defined later
in the code (lines 42-45). It opens a database connection
to a current GeneOntology MySQL database scheme, con-
structs the where-clause for the SQL statements in line 44
and issues the SQL query in line 45. The values of the
columnid in the result set are bound to the variableT .

Second, descendant concepts in the ontology are found
for small GTPase mediated signal transductionwith the
predicateisDesc. In line 20, GO accession ids are bound
to T1 if there is a term with the nameN1 and it has an ac-
cession id. Line 21 binds all terms which are sub-concepts
of T1 to T2. For this it uses the recursive definition of
isa in line 29 which eventually queries the database us-
ing the predicateisaDB defined in line 36. In line 43 the
database connection is opened. Line 44 just prepares the
where-clause for the SQL statement used insql select,
line 45.

The third query is similar to the second one but ex-
cluding subclasses ofRho protein signal transductionin
the result.

1 :- eval (consult ("utils.prova")).
2

3 % Define database l o c a t i o n
4 location(database,"GO","jdbc:mysql://server","guest...

...","guest").
5

6 % Show the ID of the GO term smal l GTPase mediated . . .
. . . s i g n a l t r ansduc t i on ?

7 :- solve (name2term("small GTPase mediated signal ...
...transduction",T)).

8

9 % Which smal l GTPase mediated s i g n a l t r ansduc t i on . . .
. . . processes are l i s t e d i n the GO?

10 :- solve (isDesc("small GTPase mediated signal ...
...transduction",N)).

11

12 % Which smal l GTPase mediated s i g n a l t r ansduc t i on . . .
. . . processes apar t from Rho are l i s t e d i n the GO. . .
. . . ?

13 :- solve (isDesc2(N)).
14 isDesc2(N):-
15 isDesc("small GTPase mediated signal transduction...

...",N),
16 not(isDesc("Rho protein signal transduction",N)).
17

18 % Def in ing a descendent
19 isDesc(N1,N2) :-
20 name2term(N1,T1), % N1 has the term i d T1
21 isa(T2,T1), % T2 i s a T1
22 term2name(T2,N2). % T2 has the term name N2
23

24 % A term T i s a T
25 isa(T,T).
26

27 % Recursive d e f i n i t i o n o f is−a :
28 % A term T2 i s a T1 i f T3 i s a T1 and T2 i s a T3
29 isa(T2,T1) :-
30 isaDB(T3,T1),
31 isa(T2,T3).
32

33 % This p red ica te i s l i m i t e d by the number o f open . . .
. . . connect ions

34 % allowed T2 i s a T1 i f there i s a corresponding . . .
. . . en t r y i n the

35 % term2term t ab l e o f the database
36 isaDB(T2,T1) :-
37 dbopen("GO",DB),
38 concat(["term1_id=",T1," and relationship_type_id...

...=2"],WhereClause),
39 sql_select(DB,term2term,[term2_id,T2],[where, ...

...WhereClause]).
40

41 % Given the name N, get the term i d T
42 name2term(N,T) :-
43 dbopen("GO",DB),
44 concat(["name like ",N],WhereClause),
45 sql_select(DB,term,[id,T],[where, WhereClause]).
46

47 % Given the term i d T , get the term name N
48 term2name(T,N) :-
49 dbopen("GO",DB),
50 concat(["id=",T],WhereClause),
51 sql_select(DB,term,[name,N],[where, WhereClause])...

....
52 }

The unmodified output of this is shown below. Note
there are three paragraphs. One paragraph persolve state-
ment.

Prova output
GO_ID=4280

N="small GTPase mediated signal transduction"
N="Ras protein signal transduction"
N="Rho protein signal transduction"
N="Rac protein signal transduction"
N="regulation of small GTPase mediated signal ...

...transduction"
N="regulation of Rac protein signal transduction"
N="negative regulation of Rac protein signal ...

...transduction"
N="positive regulation of Rac protein signal ...

...transduction"
N="regulation of Rho protein signal transduction"
N="negative regulation of Rho protein signal ...

...transduction"
N="positive regulation of Rho protein signal ...

...transduction"
N="regulation of Ras protein signal transduction"
N="positive regulation of Ras protein signal ...

...transduction"
N="negative regulation of Ras protein signal ...

...transduction"

N="positive regulation of small GTPase mediated ...
...signal transduction"

N="positive regulation of Rac protein signal ...
...transduction"

N="positive regulation of Rho protein signal ...
...transduction"

N="positive regulation of Ras protein signal ...
...transduction"

N="negative regulation of small GTPase mediated ...
...signal transduction"

N="negative regulation of Rac protein signal ...
...transduction"

N="negative regulation of Rho protein signal ...
...transduction"

N="negative regulation of Ras protein signal ...
...transduction"

N="small GTPase mediated signal transduction"
N="Ras protein signal transduction"
N="Rac protein signal transduction"
N="regulation of small GTPase mediated signal ...

...transduction"
N="regulation of Rac protein signal transduction"
N="negative regulation of Rac protein signal ...

...transduction"
N="positive regulation of Rac protein signal ...

...transduction"
N="regulation of Rho protein signal transduction"
N="negative regulation of Rho protein signal ...

...transduction"
N="positive regulation of Rho protein signal ...

...transduction"

Observant readers might notice that the answer to the
question ”‘Which small GTPase mediated signal trans-
duction processes apart from Rho are listed in the GO?”’
contains(negative/positive) regulation of Rho protein sig-
nal transduction. In this query we want the list of pro-
cesses which are a subclass ofsmall GTPase mediated
signal transductionbut excluding subclasses ofRho pro-
tein signal transduction. GO currently listsregulation of
Rho protein signal transductionaspart of but not asis a
Rho protein signal transduction, see figure 3. However
(negative/positive) regulation of Rho protein signal trans-
ductionare subclasses ofregulation of Rho protein signal
transductionbut not ofRho protein signal transduction.
Therefore the query is in fact answered correctly, but the
GO contains an inconsistency in its use of part-of and is-
a: regulation of small GTPase mediated signal transduc-
tion is-a small GTPase mediated signal transductionbut
not part of. We summarize that GO sometimes listsreg-
ulations of a process as part of the general process and
sometimes as being a subclass of it.

5.3. Examples solved with Xcerpt

GeneOntology in XML and RDF. For the GeneOntol-
ogy two different XML serialization formats and one (in-
official) RDF version are available. The more widespread
XML format (referred to in the rest of this paper as GO/XML)
actually uses RDF identifiers (URI’s and attributes from
the RDF namespace) for identifying and referring to terms
as the ID/IDREF link mechanism provided in basic XML
has been deemed insufficient. This XML format is essen-
tially compatible with RDF/XML [1], the standard serial-
ization of RDF in XML, but extends this format slightly.
The second XML format is based upon the OBO syntax
for flat files. It differs from GO/XML by using differ-
ent (non-RDF) identifiers, no use of namespaces, and a
slightly simpler structure as it is not based on RDF/XML.

A non-official format of the GeneOntology in standard
(non extended) RDF is also available. The main differ-
ence to GO/XML is the use ofrdfs:subClassOf in-
stead ofgo:is a to represent the subsumption hierarchy
among terms and a proper RDF representation of com-
plex information such as database cross-references. This
makes processing of this information using standard RDF
tools easier.

GeneOntology as Graph and as Triples.Instead of
implementing the sample queries from Section 3 on each
of these different serialization formats, we propose in the
following to define two more abstract views over these
concrete serializations using Xcerpt rules:

The first view allows to see the terms and their rela-
tions in the GeneOntology as (flat) RDFtriples. This is
similar to the view most RDF query languages such as the
W3C’s SPARQL [11] provide on the RDF version of the
GeneOntology.

Listing 5. RDF Triples for an Xcerpt of the GeneOntology
(using N3 [3] notation for RDF triples)

1 :GO0007264 rdf:type go:term.
2 :GO0007264 go:name ” s ma l l GTPase med ia ted s i g n a l . . .

. . . t r a n s d u c t i o n ”.
3 :GO0007264 rdfs:subClassOf :GO0007242.
4 :GO0016601 rdf:type go:term.
5 :GO0016601 go:name ”RAC p r o t e i n s i g n a l t r a n s d u c t i o n ”. . .

. . ..
6 :GO0016601 rdfs:subClassOf :GO0007264.
7 :GO0007265 rdf:type go:term.
8 :GO0007265 go:name ”RAS p r o t e i n s i g n a l t r a n s d u c t i o n ”. . .

. . ..
9 :GO0007265 rdfs:subClassOf :GO0007264.

The second view allows to view the ontology directly
as agraph of terms and relations among the terms. This
graph view of the GeneOntology is close to the graph
view of RDF in Xcerpt as described in [4]: XML and
therefore Xcerpt are limited to node-labeled graphs only.
The GeneOntology, on the other hand, (just like RDF and
other ontology languages) uses a graph model where both
nodes (i.e., terms in the ontology) and edges (i.e., relations
among the terms) are labeled. To represent such a graph
in Xcerpt, labeled edges are represented by labeled nodes
with (unlabeled) edges to the source and sink of the origi-
nal edge. E.g., to express thatX stands in part-of relation
to Y , there is a part-of subelement forX that containsY
as subelement. This leads to a graph where the children
of nodes for terms are nodes for relations and vice versa.
Hence, such a representation is often referred to asstrip-
ing.

In the following queries, the Xcerpt compact syntax is
used.

View definitions in Xcerpt. The following rule shows
how such a graph view can be generated from the GO/XML
representation of the GeneOntology:

Listing 6. Graph View on GO/XML
1 ns-prefix go= ” h t t p : / / www. geneon to logy . org / d t d s / go

. . . d td # ”
2 ns-prefix rdf= ” h t t p : / / www. w3 . org /1999/02/22− . . .

. . . rdf−syntax−ns #”
3

4 CONSTRUCT

5 terms {
6 all var TermAID@term {
7 id { var TermAID },
8 all var Property,
9 optional all var Relation {

10 ˆ var TermBID
11 }
12 } }
13 FROM
14 go:go {{
15 var TermA → desc go:term {{
16 attributes {{ rdf:about { var TermAID } }},
17 var Property → var Label {{
18 without attributes {{ rdf: resource {{ }} }}
19 }},
20 optional var Relation {
21 attributes {{ rdf: resource { var TermBID } ...

...}}
22 }
23 }} }}
24 END

An excerpt rule is used, where in the query term (be-
tween theFROM and END keywords)go:term ele-
ments are matched and bound to the variableTermA. The
desckeyword specifies that these elements may occur at
any depth under the root of the XML document with la-
bel go:go . The query also collects the value of their
rdf:about attribute (i.e., the ID of the term), all their
properties (i.e., sub-elements withoutrdf:resource
attribute), and their relations to other terms. Such relations
are expressed in GO/XML using sub-elements (labeled,
e.g.,go:is a orgo:part of) with ardf:resource
attribute pointing to the related term. The double curly
brackets in the query indicate (1) that we do not care about
the order among the specified elements and (2) that the
query specification is incomplete, e.g., there might be ad-
ditional sub-elements of thego:go document element.
Theoptional keyword in line 20 indicates that this part of
the query is optional, i.e., a term is also matched, if it has
no relations.

In the construct term (betweenCONSTRUCT and
FROM) the shape of the data constructed by the rule is
specified: under the rootterms for each binding ofTermA
(i.e., for each term in the GeneOntology) aterm element
with the proper ID is created and all its properties are
copied from the input data. The crucial part of the con-
struct term are lines 9–11: here for each relation a sub-
element labeled as in the input is created. This element in
turn has as sub-element, the related term. Instead of copy-
ing that term, a reference to the term is used indicated by
theˆ operator. Such references are defined in line 5 using
the@operator.

A triple view of the GeneOntology can be obtained
from the RDF serialization format by using the library for
accessing RDF data proposed in [4].

The following view shows how to define the above
graph view on such an RDF triple view8.

Listing 7. Graph View on GO/RDF (same namespace dec-
larations as above)

1 CONSTRUCT
2 terms {
3 all var TermID@term {

8For simplicity, dbxref’s that are represented as blank nodes in RDF
are not handled.

4 id { var TermID },
5 all var Property { var Value },
6 optional all go:part_of {
7 ˆ var PartOfTermID
8 }
9 optional all go:is_a {

10 ˆ var IsATermID
11 }
12 }
13 }
14 FROM
15 and {
16 RDF-TRIPLE [
17 var TermID:uri{}, ” r d f : t ype ” :uri{}, ” go : term ”. . .

. . .:uri{}
18],
19 RDF-TRIPLE [
20 var TermID:uri{}, var Property:uri{}, literal...

... { var Value }
21],
22 optional RDF-TRIPLE [
23 var TermID:uri{}, ” go : par t−of ” :uri{}, var ...

...PartOfTermID:uri{}
24],
25 optional RDF-TRIPLE [
26 var TermID:uri{}, ” r d f s : subClassOf ”:uri{}, ...

... var IsATermID:uri{}
27]
28 }
29 END

In essence, the query collects the URIs of all terms
in the variableTermAID (see lines 2–4 in theFROM
clause). More precisely, URIs for all instances ofgo:term
are collected where instances are expressed using the stan-
dard RDF instance relationrdf:type . For each such
term, all properties and the URIs of all terms it is part or
subclass of are collected. Again, there might be no part or
subclass relations, therefore theoptional keyword is used
for these conjuncts. The construction is analogous to the
case above.

Sample queries in Xcerpt. Query 1 from Section 3
can be expressed in Xcerpt as follows:

1 GOAL
2 result {
3 all term-id{
4 var TermID
5 }
6 }
7 FROM
8 terms {{
9 term {{

10 id { var TermID },
11 go:name { ” s ma l l GTPase med ia ted s i g n a l . . .

. . . t r a n s d u c t i o n ” }
12 }}
13 }}
14 END

In this query we operate on the graph view defined
above and query the IDs of all terms with the requested
go:name property. In theFROM clause such IDs are
bound to the variableTermID using incomplete matching
in breadth for both theterms andterm element as both
may (and do) have additional sub-elements not specified
here.

In the GOAL clause a construct term specifying the
shape of the final result of the program is given: Using
the keyword groupingall the IDs of all matched terms are
collected, each nested inside its ownterm-id element.

This query can be as easily expressed on the triple
view:

1 GOAL

2 result {
3 all term-id{
4 var TermID
5 }
6 }
7 FROM
8 and {
9 RDF-TRIPLE [

10 var TermID:uri{}, ” r d f : t ype ” :uri{}, ” go : term ”. . .
. . .:uri{}

11],
12 RDF-TRIPLE [
13 var TermID:uri{}, ” go : name”:uri{}, literal{ ”. . .

. . . s ma l l GTPase med ia ted s i g n a l . . .

. . . t r a n s d u c t i o n ” }
14]
15 }
16 END

A conjunctions of triples is used to find the IDs of
terms that fulfill all properties asked for. Such conjunc-
tions of triples are used often in RDF query languages,
e.g., in RDQL [14], SeRQL [5], RQL [8, 9] or the W3C’s
SPARQL [11]. In SPARQL this query can be expressed
as follows:

1 SELECT ?TermId
2 WHERE (?TermID, <rdf:type>, <go:term>),
3 (?TermID, <go:name>, ” s ma l l GTPase med ia ted . . .

. . . s i g n a l t r a n s d u c t i o n ”)
4 USING go FOR http://139.91.183.30:9090/RDF/VRP/...

...Examples/schema_go.rdf#,
5 rdf FOR http://www.w3.org/1999/02/22-rdf-...

...syntax-ns#

Query 2, however, is not as easily expressed on such a
triple view as it requires recursive traversal of therdfs:
subClassOf / go:is a relation. In fact, none of the
above mentioned RDF query languages supports recursive
traversal of arbitrary relations and only RQL has specific
language constructs for recursive traversal ofrdfs:subClassOf
(as that relation is part of the RDFS standard). In Xcerpt,
this query can be expressed very handily on the graph
view as follows:

1 GOAL
2 result {
3 all term-id{
4 var TermID
5 }
6 }
7 FROM
8 terms {
9 term {

10 id { var TermID },
11 desc (go:is_a|term)* term {
12 go:name { ” s ma l l GTPase med ia ted s i g n a l . . .

. . . t r a n s d u c t i o n ” }
13 }
14 }
15 }
16 END

Here the Xcerpt’s “qualified descendant” construct is used
in line 8: all terms are selected that have a term with the
requested name as descendant. However, between the de-
scendant and the selected term onlygo:is a andterm
elements may occur. This ensures that the term is not ac-
tually related by thego:part of relation.

On the triple view the query can be expressed as well
but requires recursive rules (as in the Prolog and Prova
case). Forrdfs:subClassOf the required rules are
contained in the RDFS entailment library developed in [4]
(slightly simplified here):

1 CONSTRUCT
2 RDFS-TRIPLE[
3 var CLASS, ” h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rdf−schema#. . .

. . . subClassOf ”:uri{}, var SUPERCLASS
4]
5 FROM
6 and [
7 RDF-TRIPLE[
8 var CLASS, ” h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / . . .

. . . rdf−schema# subClassOf ”:uri{}, var X
9],

10 RDFS-TRIPLE[
11 var X, ” h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rdf−schema#. . .

. . . subClassOf ”:uri{}, var SUPERCLASS
12]
13]
14 END

On this RDFS “view” query 2 can than be easily ex-
pressed as follows:

1 GOAL
2 result {
3 all term-id{
4 var TermID
5 }
6 }
7 FROM
8 and {
9 RDF-TRIPLE [

10 var TermID:uri{}, ” r d f : t ype ” :uri{}, ” go : term ”. . .
. . .:uri{}

11],
12 RDFS-TRIPLE [
13 var TermID:uri{}, ” r d f s : subClassOf ”:uri{}, ...

... var X:uri{}
14],
15 RDF-TRIPLE [
16 var X:uri{}, ” go : name”:uri{}, literal{ ” s ma l l . . .

. . . GTPase med ia ted s i g n a l t r a n s d u c t i o n ”}
17]
18 }
19 END

Query 3 can be expressed on the graph view as straight-
forward extension of the previous query:

1 GOAL
2 result {
3 all term-id{
4 var TermID
5 }
6 }
7 FROM
8 terms {
9 term {

10 id { var TermID },
11 and {
12 desc (go:is_a|term)* term {
13 go:name { ” s ma l l GTPase med ia ted s i g n a l . . .

. . . t r a n s d u c t i o n ” }
14 },
15 not {
16 desc (go:is_a|term)* term {
17 go:name { ”Rho p r o t e i n s i g n a l . . .

. . . t r a n s d u c t i o n ” }
18 }
19 }
20 }
21 }
22 }
23 END

Notice the use of theand keyword to express a conjunc-
tion inside of a term. This illustrates another important
property of Xcerpt: in contrast to traditional logic pro-
gramming languages, formulae and terms are not sepa-
rated, but rather formulae are expressed as terms. In par-
ticular, Xcerpt does not distinguish between predicates
and terms.

On the triple view it can be expressed as

1 GOAL
2 result {
3 all term-id{
4 var TermID
5 }
6 }
7 FROM
8 and {
9 RDF-TRIPLE [

10 var TermID:uri{}, ” r d f : t ype ” :uri{}, ” go : term ”. . .
. . .:uri{}

11],
12 RDFS-TRIPLE [
13 var TermID:uri{}, ” r d f s : subClassOf ”:uri{}, ...

... var X:uri{}
14],
15 RDF-TRIPLE [
16 var X:uri{}, ” go : name”:uri{}, literal{ ” s m a l l . . .

. . . GTPase med ia ted s i g n a l t r a n s d u c t i o n ”}
17],
18 not {
19 RDFS-TRIPLE [
20 var TermID:uri{}, ” r d f s : subClassOf ”:uri{}, ...

... var Y:uri{}
21],
22 RDF-TRIPLE [
23 var Y:uri{}, ” go : name”:uri{}, literal{ ”Rho . . .

. . . p r o t e i n s i g n a l t r a n s d u c t i o n ”}
24]
25 }
26 }
27 END

6. COMPARISON OF LANGUAGES AND
IMPLEMENTATIONS

Languages. We compare in this article three reasoning-
aware query languages and their ability to query biologi-
cal ontologies. Prolog is the most mature language avail-
able in many implementations with a strong support and
extensive documentation available. This stands in con-
trast to the two other relatively new languages, Prova and
Xcerpt, currently used by small communities. The two
languages are in a developmental state but with finalized
specifications for most of the language features and syn-
tax elements. Implementations exist for both of them and
are ready to use. The developers give support to interested
users. The documentation on both is sufficient to start us-
ing the languages.

Access to data sources.Ontologies are available in
various formats such as XML, RDF, and databases. The
three languages have no principle problem in accessing
any of the offered data formats. Xcerpt naturally prefers
XML and RDF formats and comes with very versatile
querying and construction features for such data making
it the best choice for querying ontologies in these formats.
The currently available prototype concentrates rather on
the language features but on scalability for large ontolo-
gies, there Xceprt has difficulties dealing with large on-
tologies specified in XML. Xcerpt is consciously limited
to a single complex data type, viz. XML. Hence, it is only
possible to access relational databases by means of XML
interfaces to these databases. Direct access to relational
databases is not considered for Xcerpt.

Basic Prolog does not offer direct access to XML, RDF
or relational databases. But there are implementations
such as Quintus Prolog with huge libraries to call C func-
tions and standard UNIX routines.

Prova follows another approach. A programmer famil-
iar with Java might use Prova for parts of the application
best expressed with rules, e.g. business rules, workflows,
etc. Other components preferably modelled in an object-
oriented language remain written in Java. Therefore Prova
fully supports database access and can access all XML rel-
evant features supported by Java.

7. CONCLUSIONS

Prolog. Developers of production stage services or ap-
plications should use the well-established logic program-
ming language Prolog. Serveral extensions are available
which make it possible to externalize task possibly diffi-
cult to implement in a pure logic programming language,
e.g. database access, GUI programming, graphical visu-
alisation. Prolog clearly has the advantage over Prova and
Xcerpt in that it has a large supporting community.
Prova. Prova is the choice of a Java programmer with
Prolog experience who aims to develop a system which
needs a possibly thin layer of rules to do some reasoning
or defining business rules, workflow or agent communica-
tion. Prova is available at www.semanticwebrules.org.
Xcerpt. Xcerpt is a general purpose XML and Web query
language. It is well-suited for ontology queries over XML
and RDF, as well as (X)HTML pages. Due to its relative
youth and the focus on language and evaluation theory,
a production use of Xcerpt is currently only advisable in
small-scale projects. Xcerpt is online at www.xcerpt.org.

Acknowledgement: We would like to thank Alex Ko-
zlenkov, who maintains Prova, and Andreas Henschel for
his comments.

8. REFERENCES

[1] Dave Backett.RDF/XML Syntax Specification (Re-
vised). W3C, February 2004.

[2] Sacha Berger, Franois Bry, Oliver Bolzer, Tim
Furche, Sebastian Schaffert, and Christoph Wieser.
Xcerpt and visXcerpt: Twin Query Languages for
the Semantic Web. InProc. Int. Semantic Web Conf.,
11 2004. I4 I3.

[3] Tim Berners-Lee. Notation 3, an RDF language for
the Semantic Web. Online only, 2004.

[4] Oliver Bolzer. Towards Data-Integration on the Se-
mantic Web: Querying RDF with Xcerpt. Diplomar-
beit/Master thesis, University of Munich, 2 2005.

[5] Jeen Broekstra and Arjohn Kampman. SeRQL: A
Second Generation RDF Query Language. InProc.
SWAD-Europe Workshop on Semantic Web Storage
and Retrieval, 2003.

[6] Don Chamberlin, Peter Fankhauser, Massimo Mar-
chiori, and Jonathan Robie.XML Query (XQuery)
Requirements. W3C, 2003.

[7] GeneOntologyConsortium. The Gene Ontology
(GO) database and informatics resource.Nucleic
Acids Res., 1(32):D258–61, 2004.

[8] Gregory Karvounarakis, Sophia Alexaki, Vassilis
Christophides, Dimitris Plexousakis, and Michel
Scholl. RQL: A Declarative Query Language for
RDF. In Proc. International World Wide Web Con-
ference, May 2002.

[9] Gregory Karvounarakis, Aimilia Magkanaraki,
Sophia Alexaki, Vassilis Christophides, Dimitris
Plexousakis, Michel Scholl, and Karsten Tolle.
RQL: A Functional Query Language for RDF. In
Peter Gray, Peter King, and Alexandra Poulovassilis,
editors,The Functional Approach to Data Manage-
ment, chapter 18, pages 435–465. Springer-Verlag,
2004.

[10] Alexander Kozlenkov and Michael Schroeder.
PROVA: Rule-based Java-scripting for a bioinfor-
matics semantic web. In E. Rahm, editor,Interna-
tional Workshop on Data Integration in the Life Sci-
ences DILS, Leipzig, Germany, 2004. Springer.

[11] Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF. Working draft, W3C, 2
2005.

[12] K.D. Pruitt, K.S. Katz, H. Sicotte, and D.R. Ma-
glott. Introducing refseq and locuslink: curated hu-
man genome resources at the ncbi.National Center
for Biotechnology Information, 16(1):44–7, 2000.

[13] Michael Rebhan, Vered Chalifa-Caspi, Jaime
Prilusky, and Doron Lancet. Genecards: a novel
functional genomics compendium with automated
data mining and query reformulation support.Bioin-
formatics, 14(8):656–664, 1998.

[14] Andy Seaborne. RDQL – A Query Language for
RDF. www.w3c.org, January 2004.

