
Towards static type checking of Web query language

Sacha Berger, François Bry
Ludwig-Maximilians Universität, Institut für Informatik

Oettingenstr. 67, D-80538 München
sacha.berger@ifi.lmu.de bry@ifi.lmu.de

Zusammenfassung

This article reports on a research project investigating the following two complementary
issues: (1) improving how the structure of XML and HTML can be specified, (2) using
structure specification (of XML and HTML documents) for static type checking of Web
(and Semantic Web) query programs. The first step towards this goal is to provide a schema
language like DTD, XML Schema or Relax-NG with better support of graph structured data.

1 Introduction

The schema languages DTD, XML Schema[Con01] and Relax-NG[CM01] are used to specify
the type and structure of XML and WWW documents. Although documents and data on the
Web often represent graph structures based on references (expressed using eg. ID and IDREF
attributes, RDF triples or Hyperlinks), the above mentioned schema languages can only
specify tree structures. This article first introduces a novel schema language for specifying
XML documents and semi structured data called Regular Rooted Graph Grammars – also
referred to as R2G2. R2G2 gives rise to specify graph shaped XML and semistructured
related data types possibly with (directed or undirected) cycles. R2G2 is an extension of
regular tree grammars (that underly many Web schema languages).

The second issue addressed is using a regular rooted graph grammar as a type language for
static type checking of web query or transformation programs. Static type checking consists
of (1) inferring data types for all program constructs and (2) detecting type inconsistencies,
both at compile time, ie. before query evaluation. The main advantage of static type checking
is, as its proponent Robin Milner said, that ”well-typed programs do not go wrong”[Mil74].
The Web query language Xcerpt is used as test bed for using Regular Rooted Graph for
static type checking.

2 R2G2introduced on an example

XML documents are serialisations of tree, or graph, structured data i.e. representations in
a linear, or textual, form using parenthesis, the opening and closing tags. Non-tree XML
documents play an important role in practice. An example of such an XML document is
given below, in which children elements are used to describe (possibly symmetric) friendship
relationships. Recall that DTD, XML Schema and Relax-NG cannot express the structure
of graph structured XML documents. R2G2grammars have been designed to model graph
structured documents (possibly containing directed or undirected cycles).

The following figure is (part of) an XML document expressed in Xcerpt syntax. used is
actually the Xcerpt data term[SB04] syntax:

addressbook{ id1@card{ name{"Snoopy"}, friends[^id1,^id2], phone{"9310"} },
id2@card{ first{"Charly"}, last{"Brown"}, phone{"9316"} }

}

According to [SB04], such an element is called in the following a dataterm. The example
represents two addresses (called card) of an addressbook. The card elements are defining



occurrences 1 of elements that may be referenced using the unique identifiers at the left of
the @ signs (as seen in the friends element of the first card). The use of square brackets
indicate that the order of the sub elements is relevant (as always in XML), the curly braces
indicate the irrelevance of the sub elements order (as common in databases, an extension of
XML introduced by Xcerpt).

The following example is a R2G2 specifying a structure, or schema, of addressbooks like
the previous one. Due to lack of space, R2G2will informally be introduced on this example:

elmtype AddressBook = addressbook{ @Card* };
elmtype Card = card{{ Name,

friends[ ^Card+ ]?, Contact* }}
elmtype Contact = phone{ String } | /[Ee]?mail/{ String };
elmtype Name = name{ String };

The grammar consists of 6 rules similar to rules of regular tree languages. The first rule,
given on the first line, defines an element type named AddressBook with label addressbook.
In contrast to DTD and similar to Relax-NG and XML-Schema, the element label and the
type name may not be the same or related to each other, so that the same element label can
be used with different structure in different places in a document.

The right hand side of a rule may be an element type definition term (as seen in the 1st,
2nd and 4th rule) or a disjunction of type definition terms (as seen in the 3rd rule). The
content of an element type definition term is a regular expression of element type names or
element type definition terms. Elements of type Card e.g., contain an element of type Name,
an optional element labelled friends and an arbitrary number of elements of type Contact
as children. The element type definition term of this rule is enclosed by double braces,
indicating that the content definition is incomplete, that therefore elements conforming to
this definition may contain further arbitrary elements. This is a convenience feature not used
in current XML schema languages, but useful for modelling partly arbitrary content models2.

Content models enclosed by square brackets (used in the 2nd rule) are ordered content
models: only ordered element instance’s content can conform to such a content model3.
Content models enclosed by curly braces are content models with irrelevant order, instances
of those types may either be ordered or unordered.

It is possible to model elements with the same type name and content model, but with
different labels: this is accomplished by using a string regular expressions (enclosed by ”/ßlas-
hes) at the position of the label in the type definition term (see the 3rd rule).

As in the 1st rule’s type definition term the Card is prefixed with an @, child elements
of type Card must have an an unique identifier to be referrable. The modelling of elements
with unique identifier is a feature also available in XML Schema, DTD and Relax-NG: they
provide the ability to model ID attributes, which is of comparable expressiveness as Xcerpt’s
defining occurrence mechanism. In the second rule, a reference type (^Card) is part of the
definition of the friends element’s content model: elements conforming to this type definition
term may only contain references to elements of type Card. In contrast to the typed reference
mechanism in R2G2, current schema languages only provide the ability to model references
to arbitrary ID attributes. Hence R2G2provides a better way to model graph shaped XML
documents.

Further Features of R2G2 not mentioned above (for space reason) are (1) content model
rules, used to provide names for parts of content models, (2) alias rules, used to provide
alternative names to the same type, (3) scalar types, as String in the former example, (4)
label types, to provide names to sets of alternative labels (or label regular expressions) and
(5) local definition and modules.

3 Validation of Data terms with R2G2

Validation, commonly referred to as acceptance test in automata theory, means to test if a
“word” is accepted by an automaton, ie. if the word is part of a language associated to the

1The term defining occurrence is introduced in [SB04]
2The expressiveness of R2G2is not enhanced by this extension, cf. section 3.
3A precise definition of the matching is given in section 3.



automaton or its corresponding grammar. Here an XML document is the word to test for
acceptance under the grammar (or its corresponding automaton) represented by the schema,
with the root indicating the non terminal to use as start symbol.

The approach to validation presented here, is an extension of tree automaton-based va-
lidation [MLM01], more precisely, a non deterministic bottom up approach of regular tree
grammar based validation [MLM01]. Validation is done using a recursive function returning
a set of non terminal symbols for validated elements. Each non terminal represents one pos-
sible derivation for the element under the given grammar, an empty set indicates an invalid
element.

validate(l[t1, · · · , tn], G) = {X|N1 · · ·Nn ∈ L(rc) ∧ elmtype X =l[rc] ∈ G}
where Ni ∈ validate(ti, G)

This approach needs some extension to cope with the following R2G2features: (1) incom-
plete or double brace content models, (2) label regular expressions, (3) unordered or curly
brace content models and (4) handling of typed references.

validate(l{t1, · · · , tn}, G) = {X|W ∈ L(rc)
∧W ∈ permutation(N1 · · ·Nn)
∧l ∈ L(rl)
∧elmtype X =rl{rc} ∈ G′

+ALL

where Ni ∈ validate(ti, G)

validate(l[t1, · · · , tn], G) = {X|W ∈ L(rc)
∧( (W ∈ permutation(N1 · · ·Nn)

∧l ∈ L(rl)
∧elmtype X =rl{rc} ∈ G′

+ALL)
∨(W = N1 · · ·Nn

∧l ∈ L(rl)
∧elmtype X =rl[rc] ∈ G′

+ALL))}
where Ni ∈ validate(ti, G)

validate(id@lαt1, · · · , tnβ, G) = {@X|X ∈ validate(lαt1, · · · , tnβ, G)

validate(∧id, G) = {@X|X ∈ validate(lookup(id), G)

The modified grammar G′
+ALL expresses the same as G, but does not use double braces, ie.

incomplete content models. Rules with incomplete content model are replaced by rules with
complete content model, by (1) changing the double braces into single braces, while main-
taining the order type of the braces, (2) adding ALL* as first atom of the regular expression
and (3) modifying the atoms of the content regular expression as follows:

1. replacing all a* atoms by (a,ALL*)*

2. replacing all a+ atoms by (a,ALL*)+

3. replacing all a? atoms by (a,ALL)?

4. replacing all other atoms ra by ra,ALL*

The rule for the ALL type is

elmtype ALL = /.+/{ALL*} | /.+/[ALL*] | String

For example, the 2nd grammar rule of section 2 can be rewritten to

elmtype CARD = card{ ALL*, NAME,
ALL*, (friends[^CARD], ALL)?,
(Contact, ALL)* }

The variables α and β (in the 3rd rule) has been used to capture square and curly braces, as
they are treated the same way. The rules with incomplete content models have been rewritten
using the ANY type and the ANY type is added to the set of rules. The ANY type captures
arbitrary content4.

4The possibility to rewrite any grammar G to a corresponding schema G′
+ALL indicates, that double braces

do not extend the expressiveness of R2G2.



Label regular expressions are processed by checking the containment of the data term’s
label against the language defined by the label regular expression or the type definition term’s
label interpreted as regular expression.

Unordered and ordered data terms, ie. terms like name{"Snoopy"} (unordered) and
friends[^id1, ^id2] (ordered), are handled in the first, respectively in the second functi-
on definition case. Note that in essence the right hand side of the first case is contained in
the second case, reflecting that ordered data terms may also match with unordered content
model specifications. The containment test for unordered terms is achieved by checking the
containment of at least one permutation of the unordered content with respect to the regular
expression of a given content model.

Validation of defining occurrences of identifiers and of references is handled by the 3rd,
respectively the 4th function definition case. For this purpose a lookup function, characteristic
to each document validated, is used. An implementation could rely on a hashtable, initialised
by an additional pass on the document.

Note that a naive implementation of the algorithm explained above, may not terminate
when validating circular structures. Termination can easily be ensured by using lazy evalua-
tion or by labelling validated nodes with their matching types, this means by relying on the
set of types used as label in preference to calculating this set again.

4 R2G2for static type checking of web query languages

Static type checking means detecting type inconsistencies at compile time, ie. before query
or program evaluation. Essential properties of type checking are decidable and efficiently
computability. For these purposes, and in contrast to model checking, type checking works
on approximations of the values a program may use or produce, more precisely on super-
set approximations of the actual set of possible values a specific program construct may
compute[Mil74, Car97, Pie02]. All constructs of a language that are to be type checked,
must therefore be typeable, this means, such a superset approximation must be assignable
to those constructs. The art of finding a good type system is, to have the type approxima-
tion as precise as possible, and therefore to find as many errors as possible, while being as
general as necessary to still ensure termination and mostly polynomial complexity for the
type checking process.

Traditionally all typable constructs of a program had to be explicitly type annotated
manually, but modern type systems provide the ability to automatically deduce type anno-
tation based on type inference[Pie02]. This brings the freedom of omitting or providing the
type annotation as wished by the programmer. The main advantage of static type checking
is, as its proponent Robin Milner said, that ”well-typed programs do not go wrong”[Mil74].
General principles of a type system for Web query languages are presented in the following.

The idea of type checking applied to Web query languages means, to detect prior to
execution, that query programs (1) do not query the desired data, and that they (2) produ-
ce undesired output. Common to many query languages are constructs to (1) query given
data or Web sites, and (2) construct results based on the queried information. Language
components used for querying usually restrict structure and values of expected results by
filtering and pruning elements of the queried data. The schema of elements in the result
set can be expressed using R2G2. Language components for the construction of answers to
a query program usually provide a template-like mechanism to rearrange and integrate the
data collected using query constructs. The schema of elements constructed according to the
template and the type of the queried data can also be expressed using R2G2. According to
the specialities of a concrete web query language, further constructs may be of relevance for
typing.

Based on the two language component classes that may be typed, two classes of errors
exist:

• Query terms may be ill-typed, because the type of the queried data or web site has an
empty intersection with the type associated to the query result set (this means, that a
query may never return anything when applied to a valid data base)

• Construct terms may be ill-typed, because the type of their result set is not contained
in the type of the expected result (this means, the constructed results may have invalid



structure or content with respect to a result type annotation)

Note, that therefore it is necessary to (1) calculate the intersection of two data types, (2)
that the inclusion test of a type in another type is still decidable, and that (3) the test of
emptiness of a type is decidable. All three properties should be achievable with R2G2(not
proved by now).

Based on principles previously presented, a type system for the Web query language
Xcerpt based on R2G2is currently being developed as test bed. As there exists already
a regular tree grammar based approach of typing Xcerpt [AW03], this will be used and
extended to provide type checking for Web queries querying and constructing tree and graph
structured data.

5 Conclusion

This article presented R2G2, a grammar formalism for specifying schemas of graph structured
XML documents and semi structured data. A validation algorithm based on non deterministic
tree automaton techniques [MLM01] is presented. Further work needs to be done, to prove
some set theoretical properties of R2G2’s needed for static type checking. Based on R2G2 a
type system for Xcerpt will be conceived.
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