
Calendars and Topologies as Types –

A Programming Language Approach to Modelling Mobile Applications

François Bry, Bernhard Lorenz, and Stephanie Spranger

Institute for Informatics, Univ. Munich, Germany
http://www.pms.ifi.lmu.de

contact: spranger@pms.ifi.lmu.de

Abstract. This article introduces a programming language approach to
modelling spatio-temporal data using calendars and topologies specified
as types. Calendric and topologic data appearing in Web applications
are most often rather complex, sometimes involving different calendars
and/or topologies. The basic principle is to model spatio-temporal data
by means of predicate subtyping. This principle is used to define calendric
and topologic data types representing granularities as well as conversions
between those data types. A thesis underlying this work is that calendars
and topologies are more conveniently expressed with dedicated language
constructs and that calendar and topology data are more efficiently pro-
cessed with dedicated reasoning methods than with general purpose “ax-
iomatic reasoning” of e.g. ontology languages or theorem provers.

1 Introduction

This article introduces a programming language approach to modelling spatio-
temporal data using calendars and topologies specified as types. Calendars are
human abstractions of the physical flow of time. They enable to measure time
in time granularities like day, week, working day, and teaching term. Topologies
are human abstractions of (schematised) geographic objects and their relation-
ships. Similarly to time granularities in a calendar, geographic objects in a topol-
ogy may have different location granularities like city, district, and street. More
abstractly, calendars and topologies both are finite collections of granularities
related to each other, in general, in different manners.

The authors of the work reported about in this article claim that a program-
ming language approach to calendars and topologies has similar advantages as
types (res. objects) and type checking in functional (resp. object-oriented) pro-
gramming. Types complement data with machine readable and processable se-
mantics. Type checking is a very popular and well established “lightweight formal
method” to ensure program and system behavior and to enforce high-level mod-
ularity properties. Types and type checking enhance efficiency and consistency
of (modern) programming and modeling languages. Specific aspects of calendars

Acknowledgment: This research has been funded in part by the PhD Program Log-
ics in Computer Science (GKLI) and the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Program project
REWERSE number 506779 (cf. http://rewerse.net).

and topologies make type checking with calendars and topologies an interest-
ing challenge: a mobile application listing pharmacies in the surrounding of a
(mobile) user will preferably only mention those that are currently open. Such
an application refers to various topologic and calendric data. Types give such
data their intended semantics, e.g. that some data refer to days. Static type
checking ensures certain semantics on the data when processing them, e.g. to
find an open pharmacy. The calendric data involved in such mobile applications
are most often rather complex, sometimes involving different calendars (e.g. cul-
tural calendars like the Gregorian and the Islamic and professional calendars)
with various regulations and lots of irregularities (e.g. leap years). The topologic
data involved often refer to different topologies like buildings or cities and to
connections between such topologies. Furthermore, calendar data such as dates
are probably more than any other data domain a subject to user interpretation:
e.g. the date “12/02/2005” is interpreted in France as 12th February 2005 while
it is interpreted as 2nd December 2005 in the US. Many traditional Web sites and
pages refer explicitly or implicitly to such calendar data. In the current Web,
such data can hardly be interpreted by computers. The vision of the Seman-
tic Web is to enrich the current Web with well-defined meaning and to enable
computers to meaningfully process such data.

This paper is devoted to a unifying view of calendars and topologies: time
and location granularities are modelled as data types and are related in calen-
dars and topologies, themselves specified as types. The basic principle of the
programming language approach to modelling spatio-temporal data is predicate
subtyping [1]. Predicate subtyping with predicate types is a stronger form of
typing and subtyping enabling to encode more information in types, because the
elements of a predicate type are described by a predicate set. Predicate sets are
used to declaratively define (possibly infinite) sets. Predicate types have been
widely investigated in type theory, logics, proof assistents, and theorem prov-
ing. The typing approach to calendars and topologies presented in this article
uses predicate types in a different manner and not for theoretical, but instead
practical purposes: predicate subtyping is used to define calendric and topologic
data types representing granularities as well as conversions between those data
types. A thesis underlying the work reported about in this article is that cal-
endars and topologies are more conveniently expressed with dedicated language
constructs and that calendar data and expressions are more efficiently processed
with dedicated reasoning methods than with “axiomatic reasoning” of ontology
languages like RDF and OWL.

2 Advantages of Types and Static Type Checking

Static type checking (i.e. verifying at compile time whether expressions and
definitions in a program obey the typing rules of the language) is a very popular
and well established “lightweight formal method” to ensure program and system
behaviour and to enforce high-level modularity properties [1].

Types and static type checking is as useful and desirable with calendric data
types and topologic data types as it is with whatever other data type: it catches

a significant number of errors before a program runs. Types are a valuable form
of program documentation that rarely becomes outdated. They simplify locating
definitions in libraries. Furthermore, typed languages gain in efficiency, because
functions need not verified during run time. Types are backbones for module sys-
tems yielding in abstraction. Specific aspects of calendars and topologies make
static type checking for such data an interesting challenge. Some basic problems
not only of theoretical but also of practical importance concerning calendric
and topologic data can be solved: (i) The problem of granularity conversion
(discussed for calendric types in [2]), i.e. to cast the elements of one granular-
ity (e.g. day) to those of another granularity (e.g. working day) is solved with
the concept of predicate types. (ii) Context-aware modelling of calendars and
topologies is possible, i.e. the type checker statically verifies according to which
calendar/topology some data have to be interpreted. A type checking approach
with calendric types is proposed in [3]. (iii) Constraint solving on calendric and
topologic data is performed independently, efficiently and without loss of seman-
tics of the data. The reason for this is that predicate types specify a conversion
from one data type to another, coincidently obtaining some level of abstraction
by means of granularities. Constraint solving on calendric data with different
calendric types by means of conversion constraints is introduced in [2].

3 A unifying View of Calendars and Topologies

This section is a mathematical prolog that formally introduces the notion of
granularity.

Definition 1. An n-dimensional space is a pair (An,<An) where An is an
infinite set (isomorphic to

�
n) and <An is a total order on An such that An is

not bounded for <An . An element a = (a1, ..., an) of An is called n-point.

Note that since A is totally ordered (recall that it is isomorphic to
�

), the
total order is preserved over the Cartesian product of A× . . . ×A.

Definition 2. Let (An,<An) be an n-dimensional space.
A generalised subspace s over(An,<An) is a (finite or infinite) collection of
pairwise disjoint, totally ordered right-open subspaces [a−, a+), a−, a+ ∈ An such
that a− <An a+ and a ∈ [a−, a+) iff a ∈ An and a− ≤An a <An a+.

In the following, SAn denotes the set of all generalised subspaces over (An,<An).

Definition 3. Let (An,<An) be an n-dimensional space.
Let G = {gi | i ∈ � } be a set isomorphic to � . Let call the elements of G

granules. A granularity is a (non-necessarily total) function G from G into
SAn such that for all i, j ∈ � with i < j

1. if G(gi) 6= ∅ and G(gj) 6= ∅, then for all ai = (ai1 , ..., ain
) ∈ G(gi) and for all

aj = (aj1 , ..., ajn
) ∈ G(gj), then ai <An aj, and

2. If G(gi) = ∅, then G(gj) = ∅.

According to Definition 3, granules of a same granularity are totally ordered and
non-overlapping. The first condition of Definition 3 induces from the ordering of
the n-point (of the n-dimensional space) the common-sense ordering on granules.
The second condition of Definition 3 is purely technical: it makes it possible to
refer to the infinite set � also for finite sets of granules.

Examples of granularities are time granularities [4] over (A,<A) location
granularities over (A2,<A2).

Granularities can be defined by specifying subtype relations (in terms of
predicates). Two subtype relations, aggregation of and inclusion of, have been
defined for (one-dimensional) time granularities in [4]. E.g. a type “working day”
is an inclusion (in the common set-theoretic sense) of the type “day” since the set
of working days is a subset of the set of days; the type “week” is an aggregation
of the type “day” since each week can be defined as a time interval of days.

Similar to the subtype relations, aggregation and inclusion, between time
granularities, aggregations and inclusions are defined between location granular-
ities as follows.

Definition 4. Let G and H be location granularities.
G is an inclusion subtype of H, denoted G ⊆ H, i.e. every granule of G is a
granule of H.

For example, the location granularity “subway station” is an inclusion subtype
of the location granularity “station”, selecting only those stations with subway
connection.

Definition 5. Let G and H be location granularities.
G is an aggregation-enclosure subtype of H, denoted G � H, if every granule
of G is a 2-dimensional space over H and every granule of H is included in
(exactly) one granule of G.
G is an aggregation-connection subtype of H, denoted G ≺ H, if every
granule of G is a 2-dimensional space over H and every granule of H is included
in (at least) one granule of G.

For example, the location granularity “train network” is an aggregation-enclosure
subtype of the location granularity “train connection”, aggregating a set of train
connections into a network. And a “train connection” itself is an aggregation-
connection subtype of “station”, connecting several stations to a train line. Note
that connections are not necessarily disjoint, because the same station may par-
ticipate in different train lines, for example.

The two subtype relations, inclusion subtype and aggregation subtype, are
corner stones of modeling granularities as types that, to the best of the knowledge
of the authors, have not been proposed elsewhere. As the examples given below
show, they are very useful in modeling calendars and topologies. Indeed, they
reflect widespread forms of common-sense reasoning with calendric and topologic
data.

4 Modelling Calendars as Types in CaTTS

CaTTS is a generic modelling language [4] for data modelling and reasoning
with calendars. CaTTS consists of two languages, a type definition language,
CaTTS-DL, and a constraint language, CaTTS-CL, of a (common) parser for
both languages, and of a language processor for each language. CaTTS-DL pro-
vides with CaTTS-TDL (for type definition language), a tool to define calendars
and CaTTS-FDL (for format definition language), a tool to define calendar data,
in particular dates to give calendar data well-defined meanings. CaTTS-CL pro-
vides a means to express a wide range of temporal constraints over calendar data
referring to the types defined in calendar(s) specified in CaTTS-DL.

In CaTTS-DL, one can specify in a rather simple manner more or less com-
plex, cultural and professional calendars. Irregularities like leap seconds or He-
brew leap months can be easily expressed in CaTTS-DL. In particular, CaTTS-
DL provide a means to define time granularities as calendric data types by means
of predicate types. E.g. the Gregorian calendar can be modelled in CaTTS-DL
as follows:

calendar Gregorian =
cal

type second ;
type minute = aggregate 6 0 second @ second (1) ;
. . .
type month = aggregate

31 day named january ,
alternate month(i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 1 0 0 ! = 0 | | (i div 1 2) mod 400 == 0) −> 29 day
| otherwise −> 28 day

end named february , . . . , 3 1 day named december @ day (1) ;
type year = aggregate 1 2 month @ month (1) ;
type weekend day = se lect day (i) where

relat ive i in week == 6 | | relat ive i in week == 7;
type working day = day\weekend day ;

end

The above calendar specification binds a calendar (between the keywords cal
and end) to the identifier Gregorian. This CaTTS-DL calendar specification con-
sists of a set of type definitions (each identified by the keyword type followed
by an identifier). The first type defined is second. It has no further properties.
The type minute is defined from the type second by specifying a predicate.
The CaTTS language processor interprets this recursive type definition as an
aggregation subtype of the type second such that each of its elements comprises
60 seconds1 (denoted aggregate 60 second) and that the minute that has in-
dex 1, i.e. minute(1) comprises all seconds between second(1) in second(60)

(denoted @ second(1)). Any further type definition follows the same pattern.
The definitions are straightforward following the rules of the Gregorian calen-
dar [5]. Since Gregorian months have different lengths, a CaTTS type month is
defined with a repeating pattern of the twelve months. The months February,
which is one day longer in each Gregorian leap year is defined by an additional

1 In CaTTS-DL, it is possible to define a type minute that considers leap seconds, as
well.

pattern which specifies the leap year rule for the Gregorian calendar using the
CaTTS language construct alternate...end. The type definition of the type
weekend day is derived from that of the type day. The CaTTS language pro-
cessor interprets this type definition as an inclusion subtype of the type day

such that each of its elements must be relatively to a week either the 6th or the
7th day (denoted relative i in week == 6 || relative i in week == 7).
The type working day is also and inclusion subtype of day, selecting those days
which are not weekend days (denoted day\weekend day).

The above exemplified CaTTS-DL calendar specification defines a calendar
as a “type” that can be used, in principle, in any language (e.g. XQuery, XSLT,
XML Schema), using calendar data enriched with type annotations after this
CaTTS-DL calendar. CaTTS’ type checker [3] is used to check the calendar
data typed after a CaTTS-DL calendar in such programs or specifications, thus,
providing a means to interpret such data.

Note further that particularities like time zones can be easily expressed in a
CaTTS-DL calendar definition. Calendar definitions of other cultural calendars
in CaTTS-DL, in particular the Islamic and Hebrew calendars and variations
of the Gregorian calendar like the Japanese calendar as well as date format
specifications using CaTTS-FDL are given in [4, 6, 7].

5 Topological Types

Fig. 1. Network section

In many cases, location reasoning pertains to rout-
ing and navigation tasks which rely on network in-
frastructures. Here, we use networks as a straight-
forward example for a topology, knowing that more
complicated topologies might require further re-
search. However, this example shows that a holis-
tic model of the real world is rarely necessary. E.g.
a journey involving the public underground sys-
tem can be planned without any information about
the geographic composition of the subway network.
Knowledge about schedules and the topologic structure suffices to find an optimal
connection between two stations. Expressing such information in a location type
language would provide both an abstraction from geographic coordinates and a
means to enable reasoning on location data. Let us consider a part of Munich’s
subway and suburban train network defined in a topology type system.

type subway stat ion = c o l l e c t
Sendl inger Tor , Hauptbahnhof , Marienplatz , S t i g lma i e rp l a t z , . . .

type t r a i n s t a t i o n = c o l l e c t Hauptbahnhof , Kar l sp latz , Marienplatz , . . .
type s t a t i o n (subway stat ion | t r a i n s t a t i o n) ;
type U1 = connect Sendl inger Tor − Hauptbahnhof − S t i g lma i e rp l a t z − . . .
type U3 = connect Sendl inger Tor − Marienplatz − Odeonsplatz − . . .
type S2 = connect Hauptbahnhof − Kar l sp l a t z − Marienplatz − . . .
type network = c o l l e c t U1 , U3 , S2 ;

A network such as the one in figure 1 can be defined as shown above. The type
subway station is defined as a collection of named subway stations. A collection

is an ordered set of entities which satisfy certain constraints, in this case denoting
a subway station. The definition of train station is analogous. The common
supertype station is a union of both (not necessarily disjoint) sets. A subway
line (U1, U3, etc.) is defined as an ordered connection of subway stations. If there
is a subway train servicing station A, B, and C (in this order), then these stations
are connected with each other to form a line. Therefore, a line is directed, i.e. a
service is usually comprised by two lines operating in different directions. This
is especially useful for modelling different time tables and changing services for
off-peak operation, etc. A network is in turn a collection of lines.

The approach skechted above provides a means for modeling topological data
required in many applications pertaining to routing problems. Map representa-
tions are facilitated by linking the topological information to spatial data, e.g.
sets of coordinates (polygons) which denote areas. This linking also facilitates
the use of established calculi like RCC8 [8]. Furthermore, this approach allows
for symbolic queries, such as finding out which stations lie in a certain quarter
of the city or which district office is in charge of a road segment. Linked data
is also necessary whenever for example polygons cannot be directly represented
as location granularities, which is only possible in special cases (e.g. when areas
can be regularly divided into same-size cells.)

6 Conclusion and Perspectives

This article has reported on a new approach introducing a unifying view of cal-
endars and topologies in which time and location granularities are modelled as
data types. Further work will be devoted to the refinement the idea of bridg-
ing between temporal and spatial modelling and reasoning techniques and their
application to typical problems in common scenarii.

References

1. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
2. Bry, F., Rieß, F.A., Spranger, S.: A Type Language for Calendars. submitted to

publication (2005)
3. Bry, F., Rieß, F.A., Spranger, S.: A Reasoner for Calendric and Temporal Data.

submitted to publication (2005)
4. Bry, F., Rieß, F.A., Spranger, S.: CaTTS: Calendar Types and Constraints for Web

Applications. In: Proc. 14th Int. World Wide Web Conference, Japan. (2005)
5. Dershowitz, N., Reingold, E.: Calendrical Calculations: The Millennium Edition.

Cambridge University Press (2001)
6. Bry, F., Spranger, S.: Towards a Multi-calendar Temporal Type System for (Seman-

tic) Web Query Languages. In: Proc. 2nd Int. Workshop Principles and Practice in
Semantic Web Reasoning. LNCS 3208, Springer-Verlag (2004)

7. Bry, F., Haußer, J., Rieß, F.A., Spranger, S.: Cultural Calendars for Programming
and Querying. In: Proc. 1st Forum on the Promotion of European and Japanese
Culture and Traditions in Cyber Society and Virtual Reality, France. (2005)

8. Randell, D.A., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection.
In: Proc. 3rd Int. Conf. Principles of Knowledge Representation and Reasoning,
USA. (1992) 165–176

