45

Towards an Abstract Syntax and Direct-Model
Theoretic Semantics for RuleML

Adrian Giurca and Gerd Wagner

Institute of Informatics, Brandenburg University of Technology at Cottbus
{Giurca,G.Wagner}@tu-cottbus.de

Abstract. This paper contains a proposal of an abstract syntax and a
model theoretic semantics for NafNegDatalog, sublanguage of RuleML
[9]. The model-theoretic semantics use the partial logic ([7], [10]) to pro-
vide an interpretation and a satisfaction relation, and provide a formal
meaning for RuleML knowledge bases written in the abstract syntax.

Keywords: rule markup languages, RuleML, abstract syntax, seman-
tics, partial logic.

1 Introduction

The RuleML Initiative [9] started in August 2000 during the Pacific Rim In-
ternational Conference on Artificial Intelligence (PRICAI 2000). It has brought
together expert teams from several countries, including leaders in Knowledge
Representation and Markup Languages, from both academia and industry.

The RuleML Initiative is developing an open, vendor neutral XML/RDF-
based rule language. This will allow for the exchange of rules between various
systems including distributed software components on the Web, heterogeneous
client-server systems found within large corporations, etc. The RuleML language
offers XML syntax for rules Knowledge Representation, interoperable among
major commercial and non-commercial rules systems.

During this period 12 sublanguages was developed (see [2], Figure 2). Each
sublanguage has a proposed XML syntax and DTD for validation and from
version 0.85 we have also an XML Schema for validation.

In this paper we propose an abstract syntax and a model theoretic semantics
for the NafNeg-Ur-Datalog sublanguage of RuleML.

2 The Abstract Syntax

The abstract syntax is specified here by means of a version of Extended BNF,
very similar to the EBNF (based on Wirth’s definition) notation used for XML.
Nonterminals are enclosed between angle brackets (< and >) and terminals are
in boldface. Alternatives are either separated by vertical bars (|) or are given in
different productions. Components that can occur at most once are enclosed in

A. Adi et al. (Eds.): RuleML 2005, LNCS 3791, pp. 45-55, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.3
 Optimize For Fast Web View: Yes
 Embed Thumbnails: No
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [2400 2400] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 610 dpi
 Compression: Yes
 Compression Type: ZIP
 Bits Per Pixel: 8 Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 1220 dpi
 Compression: Yes
 Compression Type: ZIP
 Bits Per Pixel: 8 Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 2400 dpi
 Downsampling For Images Above: 3600 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Leave Color Unchanged
 Intent: Default
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: No
 Transfer Functions: Apply
 Preserve Halftone Information: No

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: No
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: Yes
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: Yes
 Log DSC Warnings: No
 Resize Page and Center Artwork for EPS Files: Yes
 Preserve EPS Information From DSC: Yes
 Preserve OPI Comments: No
 Preserve Document Information From DSC: Yes

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /FlateEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Gray Gamma 2.2)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 2.03333
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages false
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth 8
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Remove
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.01667
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth 8
 /ColorImageResolution 600
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages false
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 600
 /ColorImageFilter /FlateEncode
 /PreserveHalftoneInfo false
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams true
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [2400 2400]
>> setpagedevice

46 Adrian Giurca and Gerd Wagner

square brackets ([...]); components that can occur any number of times (including
zero) are enclosed in braces ({...}). Whitespace is ignored in all the productions.

Definition 1 (Relations). A RuleML relation is a named predicate or a named
builtin predicate:

(Rel) ::= Rel((relID)).
(relID) ::= URlIreference.

In this paper we follow the Datalog (constructor-function-free) sublanguage, the
foundation for the kernel of RuleML, i.e. we don’t not consider functions in atom
construction (Datalog model).

Definition 2 (Terms). A RuleML term is a variables or an individual con-
stant:

(Term) ::= (Variable) | (Individual).
(Variable) ::= Var({(varName)).
(Individual) ::= Ind({individualID)).
(individualID) ::= URlIreference.
(varName) ::= UnicodeString.

Slots are basic RuleML constructs which are used in slotted atoms (see below)
for capturing object descriptions.

Definition 3 (Slots). The abstract syntaz of RuleML slots is:
Slot) ::= Slot(Property(({slID)), (slotValue)).
slotValue) ::= (Individual) | (Data)

(

(

(Data) ::= Data((dataValue)).
(dataValue) ::= UnicodeString.
(

slID) ::= URIreference.

RuleML allow two kinds of atoms: positional atoms and slotted atoms. Positional
atoms are used for representing Prolog like atoms while the slotted atoms capture
object descriptions.

Definition 4 (Atoms). The abstract syntax of RuleML atoms is:
(Atom) 2= (PositionalAtom) | (SlottedAtom).

(PositionalAtom) ::= PosAtom((Rel), {(Term)}).

(SlotAtom) ::= SlotAtom({Term), {(Slot)}).

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 47

Below we provide the abstract syntax of literals (negated atoms) in RuleML.
Intuitively speaking, weak negation captures the absence of positive information,
while strong negation captures the presence of explicit negative information (in
the sense of Kleene’s 3-valued logic).

Definition 5 (Negations). The abstract syntaz of weak negation and strong
negations is:

(WeakNegation) ::= Naf({Atom)).
(StrongNegation) ::= Neg((Atom)).

Definition 6 (AndOrNafNegFormula). The abstract syntax of RuleML An-
dOrNafNegFormula is:

(AndOrNafNegFormula) ::= (Atom) | (WeakNegation) | (StrongNegation)
| (Conjunction) | (Disjunction)

(Congunction) ::= And({{AndOrNafNegFormula)}).
(Disjunction) ::= Or({(AndOrNafNegFormula)}).

A RuleML rule has a body which is represented by an and-or-naf-neg-formula
and a head which is an atom or a strong negated atom. Rules with an empty
body are facts and rules with an empty head are queries.

Definition 7 (Rule). The abstract syntax of the rule in RuleML is:
(Rule) ::= Tmp([(ruleID),][(Body),][(Head)]).

(Body) ::= Body([{AndOrNafNegFormula)]).

(Head) ::= Head({Atom)) | Head({StrongNegation}).

(ruleID) ::= URIreference.

In the following example presents the abstract syntax form of a rule from the
RDF /RuleML interoperability position paper [3].

Ezample 1 (A rule). The following is an example of a rule using both kinds of
negation. Here, the relation requiresService does not allow Closed-World infer-
ence, while the relation isAssigned ToRentalContract does allow it, and, hence, the
former is negated with Neg and the latter with Naf.

Imp(”Rl”,
Body (
And(
PosAtom(Rel(ex:RentalCar),Var(Car))
Neg(
PosAtom(Rel(ex:requiresService),Var(Car))

)
Naf(

48 Adrian Giurca and Gerd Wagner

PosAtom(Rel (isAssignedToRentalContract),Var(Car))

)
)

)
Head (

PosAtom(Rel(ex:isAvailable),Var(Car))

)
)

Definition 8 (Knowledge Base). Any RuleML Knowledge Base is a set
of rules.

(KB) ::= {(Rule)}.

3 RuleML Semantics in Partial Logic

In business and administrative domains, most of the information to be processed
is assumed to be complete (this tacit assumption is called Closed-World Assump-
tion, [8] in AI). But in other domains, such as in medicine and criminology, most
information is incomplete. RuleML is a rule language for applications so it should
allow expressing rules for both types of information.

3.1 Why Partial Logic?

Unlike negation in classical logic, real-world negation is not a simple two-valued
truth function. The simplest generalization of classical logic that is able to ac-
count for two kinds of negation is partial logic giving up the classical bivalence
principle and subsuming a number of 3-valued and 4-valued logics (see [7]).

Because the web does not operate under de CWA hypothesis (see [1]), RuleML
should distinguish between relations (or slots) that are totaly represented (a to-
tal assumption corresponds to a predicate-specific Closed-World Assumption) or
are partial represented.

In the case of a completely represented predicate, negation-as-failure reflects
falsity, and negation-as-failure and strong negation collapse into classical nega-
tion. In the case of a partial represented relation or slot, negation-as-failure only
reflects non-provability, but does not allow to infer the classical negation (for
details see [11]).

In standard logics, there is a close relationship between a derivation rule
and the corresponding implicational formula: they have the same models. For
nonmonotonic rules (with negation-as-failure, [4]) this is no longer the case: the
intended models of such a rule are in general not the same as the intended models
of the corresponding implication (see [6] and [5]).

These are the main reasons for that we consider partial logic to be the most
appropriate logic for interpreting RuleML rules.

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 49

3.2 Direct-Model Theoretic Semantics

Definition 9 (Vocabulary). The RuleML vocabulary is defined by the follow-
ing tuple
Voc = (Rel, TRel, Pr, DLit, Var, Ind)

where Rel is the set of relation names, TRel is the set of total relations names,
Pr is the set of property names, DLit is the set of all data literals names, Var is
the set of variables names and Ind is the set of individuals names.

Note that Pr is in fact the set of al URI references to binary relations, i.e.
Pr C Rel. We suppose that all these sets are nonempty, pairwise disjoint and
TRel C Rel.

Let O be the set of all objects and V(D Lit) the set of all data literal values. In
this paper each relation or property is a pair r = (r*,r/) such that r*,r/ C 0%
We allow only coherent relations and properties (see [7] for details), i.e, if r is a
relation, then r* Nrf = 0.

Definition 10 (Interpretation). An abstract interpretation is a tuple of func-
tions

T = (Iprit, Zind: Zrr,ZRel)
such that:

1. Ipr : DLit — V(DLit), maps each data literal into a value i.e.
I(Data(d)) = IDLit(d) S V(DL’Lt)

where V(DLit) is the value space.
2. Irng : Ind — O, maps individuals names to objects,

I(Ind(id)) = Tina(id) € O

3. Ip, : Pr — O? x O?, maps each property name into a pair of binary
relations,

Z(Pr(p)) = Zpr(p) = (p',p’), with p*,p’ C O

If p is a total property name, then pt Up! = O2. Note that in this paper we
allow only coherent properties (see [7] for details) i.e. g Npf = 0.

4. IRei : Rel — O™ x O™, maps each n-ary relation name into a pair of n-ary
relations

T(Rel(r)) = Tra(r) = (', 17, with *,r! C O

If r is a total n-ary relation name, then rt Urf = O™. Again we allow only
coherent relations ([7]) i.e. v Nrf = 0.

3 As in RDF, a datatype is characterized by a lexical space, DLit which is a set of
Unicode strings; a value space, V(DIit); and a total mapping Zpr: from the lexical
space to the value space.

50 Adrian Giurca and Gerd Wagner

Definition 11 (Valuation). A valuation over an interpretation I is a function
V : Var — O, which associate each variable name with an object, i.e.

IZ(Var(v)) =V(v) €O
Definition 12 (Satisfaction Relation). Let V be a valuation. The satisfac-
tion relation = is a pair (=, [=7) such that,

1. Let r be a relation name and Zpe(r) = (rt,rf).
(a) If r is partial, i.e. r € Rel — TRel, then

I,y EY PosAtom(r,t1,...,tn) iff (Z(t1),...,Z(tn)) €7t
I,y =F PosAtom(r,t, ... tn) if f (Z(t1),...,Z(tn)) € 7S

(b) If r is total, i.e. v € TRel, then

I,y E! PosAtom(r,t1,...,tn) if f (Z(t1),...,Z(tn)) € rt
T,y =F PosAtom(r,ty,. .. ty) iff (Z(t1),...,Z(tn)) &1t

2. Let (p;i)i=1,n be property names, i.e. Ipy(p;) = (pﬁ,p{)iﬂ,n, t be a term and
S = {Slot(Property(p;),vi) ti=1,n @ slot. Then,
(a)

Ty ' SlotAtom(t,S) iff \ {(Z(t),Z(w)) € pi}

i=1,n

(b)
T,y =7 SlotAtom(t, S)

iff
(Elia Di tOtal7 <I(t)7I(vz)> gp:) \4 (3.77 bj partial, <I(t),I(UJ)> € p;)
3. If R = Imp(Body(P, ..., P,)), Head(C)) is a rule, then
Iy Head(C) if TE" (PLA...AP,)

Definition 13 (Model and Satisfaction Set). Let R be a rule in RuleML.
We say that an interpretation T = (Zprit, Zind, Zrr,Zrel) @8 a model for R and
we denote T = R if and only if

IyvE' R

for all variable valuations V.
Let KB ={Ry,...,R,} be a RuleML knowledge base. A satisfaction set for
KB is the set:

Satz(KB) = {V | T,y E* (Ri A ... A Ry)}

Definition 14 (Rule Model). Let T be an interpretation and
R = Imp(Body(P, ..., P,)), Head(C)) a rule.

IERiff () Satz(P;) C Satz(C)

i<n

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 51

Ezample 2. Let Voc = (Rel, TRel, Pr, DLit, Var, Ind) be the following vocabu-
lary:

Rel = {"ex : RentalCar”,” ex : requiresService”,

Vex : isAssignedToRentalContract”,” ex : isAvailable” }

TRel = {"ex : RentalCar”,” ex : isAssignedT oRentalContract” }
Pr=10

DLit = 0

Var = {Car}

Ind ={"ex: CT2MDF”,”ex : DJ02GCP”}

Let KB = {R1, R2, R3, R4} be a RuleML knowledge base which consist of
the rule R1 as in Example 1 and the following facts (rules with empty body):

1. Rule R2 "ex:CT20MDF is a RentalCar”.
2. Rule R3 7ex:DJ02GCP is a RentalCar”.

3. Rule R4 ”ex:DJ02GCP does not require service” ("requiredService is a par-
tial relation”).

Below is the abstract semantics of the new rules:

Imp(” R2” ,
Head (PosAtom(Rel (” ex: RentalCar”),Ind (” ex :CT20MDF”)))

Imp ("R3”,
Head (PosAtom(Rel (” ex: RentalCar”) ,Ind (” ex :DJ02GCP”)))

Imp(”R4” ,
Head (
Neg (
PosAtom(Rel (" ex:requireService”),Ind (” ex:DJ02GCP”))
)
)
)

In the following we define an interpretation Z = (Zprit, Zrnd, Zsi, Zret) and the
we illustrate some satisfaction results in K B.

1. Zprst can be any arbitray function (we don’t use this function because don’t
have data literals in our knowledge base).

2. Zypgq is defined below (for simplicity we keep the name of the individual re-
moving the namespace):

Tinda(Pex : CT20MDF”) =" Opel — Corsa”
Zinda(Pex : DJ02GCP”) =”"BMW€6”

3. Zg; can be any arbitray function (again, we don’t use this function because
don’t have slot relations in our knowledge base).

52 Adrian Giurca and Gerd Wagner

4. Tgre is defined below:

Trei(ex : RentalCar) = (rct, rcf)

Trei(ex : requireService) = (rst,rs¥)

Trel(ex : isAssignedToRentalContract) = (irct,ircY)
Trei(ex : isAvailable) = (iat,ial)

where

rct = {Ind(”ex : CT20M DF”), Ind("ex : DJO2GCP”)}, rcf = 0),
rst =0, rsf = {Ind("ex : DJO2GCP”)},
irct = {Ind("ex : CT20M DF”)}, irc! =0,
iat =0, iaf = 0.
Now, let V; : Var — O, V1 (Car) =”DJ02GCP”. Then,
T,, =" PosAtom(Rel(ex : isAvailable), Ind(”ex : DJ02GCP”))
that means ”the rental car BMW®6 is available for renting”.

Ty, =f PosAtom(Rel(ex : isAvailable), Ind(”ex : CT20M DF”))

that means ”the rental car Opel Corsa is not available for renting”.

4 Minimal Reasoning

Let Voc = (Rel, TRel, Pr, DLit, Var,Ind) be a vocabulary and KB a RuleML
knowledge base based on Voc.

We denote by Litkp(Ind) the set of all atoms or strong negation of atoms
without variables that are constructed using atoms from KB and indivivual
constants from Ind i.e the Herbrand base of KB. Each T# C Litxp(Ind) is a
Herbrand interpretation for K B.

Definition 15. If Z € Litxp(Ind) such that T |= KB we say I is a Herbrand
model of KB. Usually we denote a Herbrand interpretation by T, a Herbrand
model by M and the set of all Herbrand models by Mod™ (K B).

Definition 16. Let T, T C Litxp(Ind) be two Herbrand interpretations. We
say that IZH extends ZF and denote TFH < IX if

{L € Litgp(Ind) | ZF = L} C {L € Litgp(Ind) | Z &= L}
The informal meaning of this order is: T is ”less informative than” TH .
Definition 17 (Interpretation Intervals). The model interval is defined as:

[Z{,7}] = {T" € Litkp(Ind) | Z{' < TH < I}'}

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 53

Definition 18 (Stable Model ([7], [13])). Let MH € Mod" (K B) be a Her-
brand model. M* is called minimally stable model of K B if there is a chain of
Herbrand interpretations ME < ... X M such that M? = M and:
1. ME =0.
2. For alli € {1,...,k}, M is a minimal extension of M, satisfying the
heads of all rules whose bodies hold in [MzH_l,MH], i.e.

ME € min {IH | ME | <7 and " \= H(R), for all R€ R[MH_I’MH]}
where R is a rule, H(R) is the head of rule R, B(R) is the body of R and
Rime | mr] = {Re KB| M" = B(R) for all M* € [MI |, M*]}

Ezample 3. (continued) Let KB = {R1, R2, R3, R4} be a RuleML knowledge
base as in Example 2.

Let’s test if the following model M = {L1, L2, L3, L4} where

L, = PosAtom(Rel(ex : isAvailable), Ind(”ex : CT20M DF”))

Ly = Positional Atom(Rel(”ex : RentalCar”), Ind(”ex : CT20M DF”))

L3 = Positional Atom(Rel("ex : RentalCar”), Ind(”ex : DJ02GCP”))

L4 = Neg(Positional Atom(Rel(” ex : requireService”), Ind(”ex : DJ02GCP”)))

is a stable model of K B.
Let M{ = 0. Then R[MH] = {Ra, R3, R4} and, consequently,
0

MH = {L27L37L4}
NOW, R[M(’;{,Mfl] = {Rl, Rg, R3,R4} and

ME ={L1,Ls, L3, L4}
Finally, R[M{{’Mél] = {Rla R27 R37R4} and

M =M

5 Conclusions and Future Work

The paper provide an abstract syntax for the core RuleML sublanguage NafNeg-
Datalog and a model theoretic semantic. The semantics is done using partial
model theory, as a natural generalization of classical model theory. This seman-
tics is able to capture many important distinctions arising in web rules reasoning,
such as explicit falsity vs. non-truth, or total vs. partial predicates. At the ob-
ject level, these distinctions can be expressed by means of the two negations of
partial logic.

One possible quick extension of this work is to generalize the strong negation
formulas that is to allow strong negations on and-or-naf-neg-formulas not only
to atoms like below:

54 Adrian Giurca and Gerd Wagner

Ezample 4 (Allowing strong negation on and-or-naf-neg-formulas).
(StrongNegation) ::= Neg({AndOrNafNegFormula)).

All cases of a such formula composition are treated by the following DeMorgan-
style rewrite rules expressing the falsification of compound formulas:

Neg(F ANG) — Neg(F)V Neg(G)
Neg(FV G) = Neg(F) A Neg(QG)
Neg(Neg(F)) = F

Neg(Naf(A)) — A

where F',G are and-or-naf-neg-formulas and A is an atom.
Another extension concern the improvement of the abstract syntax to allow
the declaration of a total or partial relation/slot like:

Example 5 (Declare total or partial relations/slots).
(Rel) ::= Rel((relID), (type)).

(SlotAtom) ::= SlotAtom((Term), (type), {(Slot)}).
(type) ::= total | partial.

This improvement will be used by RuleML reasoning engines.

Using partial logic we solve the knowledge representation which need incom-
plete (partial) predicates. However, it is possible to extend RuleML with capa-
bilities for representing uncertain information in the form of fuzzy sets, fuzzy
numbers, possibility and necessity measures, discrete plausibility measures or
other quantitative measures of uncertainty.

Also, we don’t cover in this paper the important problems of non-coherent
relations or non-coherent slots that must be also declared by the rule designer.
Allowing non coherent relations and non-coherent slots means to accommodate
an inconsistency tolerant reasoning in RuleML.

Finally, seems to be possible to extend RuleML to accommodate the distinc-
tion between OWL individuals, instead of using the traditional logic concept
individual constants.

References

1. Berners Lee, T., Hendler J., Lassila, O., The Semantic Web: A new form of Web
content that is meaningful to computers will unleash a revolution of new possibil-
ities, Scientific American May 2001.

2. Boley, H., Tabet, S., Wagner, G., Design Rationale of RuleML:A Markup Lan-
guage for Semantic Web Rules, in Proc. of Int. Semantic Web Working Symposium
(SWWS), July 30 - August 1, 2001, Stanford University, California, USA.

3. Boley, H., Mei, J., Sintek, M., Gerd Wagner, G., RDF/RuleML Interoperability,
W3C Workshop on Rule Languages for Interoperability Position Paper: 27-28 April
2005, available at http://www.w3.0rg/2004/12 /rules-ws/paper/93/

10.

11.

12.

13.

Towards an Abstract Syntax and Direct-Model Theoretic Semantics 55

Clark, K.L., Negation as Failure, In H. Gallaire and J. Minker Editors, Logic and
Databases, pp.293-322, Plenum Press, 1978.

van Gelder, A., Kenneth A. Ross A., K., Schlipf S., J., The Well-Founded Semantics
for General Logic Programs, Journal of ACM, Vol.38, No. 3 July 1991, pp.620-650.
Gelfond, M., Lifschitz, V., The Stable Model Semantics For Logic Programming,
In Proceedings of the 5th International Conference on Logic Programming, 1070
1080. Seattle, USA, August 1988. The MIT Press.

Herre, H., Jaspars, J., Wagner G., Partial Logics with Two Kinds of Negation as
a Foundation for Knowledge-Based Reasoning, in D.M. Gabbay and H. Wansing
(Eds.), What is Negation ?, Kluwer Academic Publishers, 1999.

Reiter, R., On Closed World Data Bases, In H. Gallaire and J. Minker Editors,
Logic and Databases, pp. 55-76, Plenum Press, 1978.

Wagner, G., Antoniou, G., Tabet, S., and Boley, H.,The Abstract Syntax of
RuleML Towards a General Web Rule Language Framework, Rule Markup Ini-
tiative (RuleML), http://www.RuleML.org

Wagner, G., Web Rules Need Two Kind of Negations, in Proc. of Principles and
Practice of Semantic Web Reasoning, PPSWR, 2003, pp.33-50.

Wagner, G., Foundations of Knowledge Systems with Applications to Databases
and Agents, Kluwer Academic Publishers, 1998.

Wagner, G., Seven Golden Rules for a Web Rule Language, invited contribution
to the Trends & Controversies section of IEEE Intelligent Systems 18:5, Sept/Oct
2003.

Wagner, G., Herre, H., Stable Models are Generated by a Stable Chain. Journal
of Logic Programming 30 (1997) 2, 165 - 177.

	Towards an Abstract Syntax and Direct-Model Theoretic Semantics for RuleML

