
The XML Stream Query Processor SPEX

François Bry, Fatih Coskun, Serap Durmaz, Tim Furche, Dan Olteanu, Markus Spannagel
Institute for Informatics, University of Munich, Germany

{bry,furche,olteanu}@pms.ifi.lmu.de {coskun,durmaz,spannage}@stud.ifi.lmu.de

1. Introduction

Data streams (e.g., [1]) are an emerging technology for
data dissemination in cases where the data throughput or
size make it unfeasible to rely on the conventional approach
based on storing the data before processing it. Areas where
data streams are applied include monitoring of scientific
data (astronomy, meteorology), control data (traffic, logis-
tics, networks), and financial data (bank transactions). Data
streams are a new and promising setting in which many
conventional database methods have to be considered anew.
Querying XML data streams without storing and without
decreasing considerably the data throughput is especially
challenging because XML streams convey tree structured
data with (possibly) unbounded size and depth.

SPEX, initially described in [3], evaluates XPath queries
against XML data streams. SPEX is built upon formal
frameworks for (1) rewriting XPath queries into equiva-
lent XPath queries without reverse axes [4] and (2) correct
query evaluation with polynomial combined complexity us-
ing networks of pushdown transducers [2]. Such transduc-
ers are simple, independent, and can be connected in a flex-
ible manner, thus allowing not only easy extensions but also
extensive query optimization, e.g., by sharing transducers.
A reason for the latter is that processing new query con-
structs implemented by new transducers does not affect the
processing of existing ones. As a proof of concept, SPEX
is extended here with novel compile-time optimizations that
reduce both the size of the transducer network and the pro-
cessing of irrelevant stream fragments.

SPEX is demonstrated using a practically useful appli-
cation for monitoring processes running on UNIX systems,
and a novel, sophisticated visualization of its run-time sys-
tem, called SPEX Viewer. SPEX Viewer makes it pos-
sible to visualize (1) the step-by-step rewriting of XPath
queries into equivalent queries without reverse axes, (2)
the networks of pushdown transducers generated from such
queries, (3) the incremental processing of XML streams
with these networks under various novel optimization set-
tings, and (4) the progressive generation of answers.

2. Application scenario:
Monitoring Computer Processes

For demonstrating the SPEX query processor, a concrete
application is used: monitoring processes currently running
on UNIX computers. The process parameters are constantly
gathered as a continuous XML stream from the output of the
ps -elfH command.

The XML stream generated in this manner is unbounded
in size and depth, because (1) new process information
wrapped in XML is repeatedly sent in the stream and (2) the
process hierarchy can contain arbitrarily nested processes.

By means of XPath queries the monitoring application
allows the user to specify what process information is to
be watched and reported back. One can, e.g., monitor sus-
pended processes with CPU and memory expensive subpro-
cesses. Monitoring queries can also express simple aggre-
gations, e.g., the selection of processes that together with
their subprocesses use a certain amount of memory or have
more than a given number of subprocesses.

The combination of the XML encoding of process infor-
mation used here and an XML stream query evaluator like
SPEX turns out to be a natural, declarative, and effective
solution for monitoring relations between nested processes.

3. The SPEX Query Processor

Querying XML streams with SPEX consists in four
steps: First, the input XPath query is rewritten into an XPath
query without reverse axes [4]. Second, the forward XPath
query is compiled into a logical query plan abstracting out
details of the concrete XPath syntax. Then, a physical query
plan is generated by extending the logical query plan with
operators for determination and collection of answers. In
the last step, the XML stream is processed continuously
with the physical query plan, and the output stream con-
veying the answers to the original query is generated pro-
gressively. All four steps are further detailed below.

Step 1: Source-to-source query transformations. The
forward and reverse XPath axes enable random access to

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

nodes of an XML tree. If queries are to be evaluated against
streams conveying XML trees, nodes cannot be accessed
randomly, but rather in the stream’s sequence. The evalua-
tion of reverse axes, e.g., ancestor and preceding, would
demand then the (possibly unnecessary) buffering of al-
ready processed stream fragments. SPEX proposes a frame-
work [4] for rewriting queries with reverse axes into equiv-
alent queries in which only forward axes occur.

Further source-to-source transformations that optimize
the evaluation of forward XPath queries are also ap-
plied in this step. Such optimizations focus on prun-
ing redundant computations. E.g., consider the query
/child::process/following::state that selects all state-
elements following process children of the root. For the
set of state-elements that follow the first process child of
the root is already the set of state-elements that follow all
process children of the root, this query can be rewritten
to /child::process[1]/following::state, so that only the first
process child of the root is considered during evaluation.

Step 2: Compilation into a logical query plan. A forward
XPath query is compiled into a logical query plan that con-
sists either in a path, if the query is a sequence of steps, in a
tree, if the query also has predicates, or in a directed acyclic
graph, if the query also has set operators. Each construct
in a forward XPath query, such as an axis or a predicate,
induces a corresponding operator in the logical query plan.

At this step, further compile-time optimizations can be
applied: E.g., common prefixes of branches rooted at an
and (or) operator are compacted. Note that such a “branch
compaction” is not possible at the level of the XPath syntax
and therefore not possible at the first step.

Step 3: Generation of a physical query plan. A phys-
ical query plan is a transducer network that computes the
answers to the initial query from the XML stream. Such a
network is created from a logical query plan in two steps.

First, each operator from a logical query plan is realized
in a network as a deterministic pushdown transducer.

Second, the network is extended at its beginning with
a stream-delivering transducer in, and at its end with an
answer-collecting funnel, i.e., a subnetwork of auxiliary
transducers serving to collect the computed potential an-
swers. For each and, or, or not predicate in the query
there is a pair of transducers in the network implementing
the logic of that predicate. The nesting of such pairs corre-
sponds to the nesting of predicates in the query. An answer
transducer is introduced to annotate potential answers that
are buffered by the out transducer. The out transducer also
delivers the query answers.

Step 4: Processing with a physical query plan. Process-
ing an XML stream corresponds to a depth-first left-to-right
preorder traversal of the (implicit) XML tree conveyed by

that stream. Exploiting the affinity between preorder traver-
sal and stack management, the transducers use their stacks
for remembering the depth of the nodes in the implicit XML
tree. This way, binary relations expressed as forward XPath
axes, e.g., child and desc, can be computed in a single
pass. A transducer network processes the XML stream an-
notated by its first transducer in. The other transducers in
the network process stepwise the received annotated XML
stream and send it with changed annotations to their succes-
sor transducers. E.g., a transducer child moves the annota-
tion of each node to all children of that node.

The answers computed by a transducer network are
among the nodes annotated by the answer transducer. These
nodes are potential answers, as they may depend on a down-
stream satisfaction of predicates. The information on pred-
icate satisfaction is also conveyed in the stream by annota-
tions. Until the predicate satisfaction is decided, the poten-
tial answers are buffered by the out transducer.

Those optimizations that are specific to stream process-
ing are applied only to the transducer network. Specialized
transducers, called structural filters, are employed to min-
imize the stream traffic between transducers in a network.
They can depend both on the structure of the transducer net-
work and of the data.

4. SPEX Viewer

The SPEX processor is visually demonstrated using the
SPEX Viewer. It illustrates the four steps of the SPEX pro-
cessor, in particular showing the stepwise query rewriting
and stream processing together with the progressive gen-
eration of answers, and also windows over the most re-
cent messages from the input XML stream and the most
recent answers. The SPEX Viewer provides three process-
ing modes: step-by-step, running, and pause mode. Break-
points can be specified to alert when a given XML tag
reaches given transducers, or when given transducers have
particular stack configurations.

The SPEX Viewer can give a concrete feeling for the
polynomial combined complexity of SPEX [2] and for the
influence of various optimizations on the stream processing.

References

[1] N. Koudas and D. Srivastava. Data stream query processing:
A tutorial. In Proc. of VLDB, 2003.

[2] D. Olteanu, T. Furche, and F. Bry. Evaluating Complex
Queries against XML streams with Polynomial Combined
Complexity. In Proc. of BNCOD, 2004.

[3] D. Olteanu, T. Kiesling, and F. Bry. An evaluation of regu-
lar path expressions with qualifiers against XML streams. In
Proc. of ICDE, 2003.

[4] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
forward. In Proc. of EDBT Workshops, 2002. LNCS 2490.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

