A Distributed Tabling Algorithm
for Rule Based Policy Systems

Miguel Alves, Carlos Viegas Damasio
CENTRIA, Universidade Nova de Lisboa
Lisbon, Portugal
Email: cd@di.fct.unl.pt,mba@estg.ipvc.pt

Abstract— Distributed Peer-to-Peer and Grid infrastructure
require distributed access control mechanisms. These mechanisms
can be implemented in distributed trust management infrastruc-
tures and usually require reasoning on more than one peer,
as soon as authority is delegated or requests involve several
authorities. Building on previous work of the authors which
formalized such a distributed trust management infrastructure
based on distributed logic programs, we describe in this paper
how reasoning can be implemented as distributed logic evaluation
and how loops during this evaluation can be handled with. Our
solution is based on a loop tolerant distributed tabling algorithm
which includes in the process protection of sensitive policies and
generation of proofs without increasing the complexity of the
system.

I. INTRODUCTION

Access to sensitive information involves a process in which
authentication and authorization play a crucial role. Authen-
tication allows to identify which entity is requesting access
and authorization is the process of checking whether that
entity is allowed to get access to the requested resource. For
example, a user authenticates into a system by means of the
login mechanism (providing user and password) and the system
consults its permission table before the user is granted access
to a resource (authorization).

However, P2P and virtual organizations require more com-
plex decisions than just matching identities (or groups) with a
table of permissions. Due to the need to interact with entities
with whom no previous transaction has been made, we require
statements like “Grant access if requester provides a valid
credit card and the resource is available at the moment”. Logic
based policy languages provide well-defined semantics [1] and
have been chosen in the last years as an appealing solution
to specify this kind of statements (e.g., [2], [3], [4], [5]) in
order to allow more powerful authorization mechanisms. In
addition, real-world policies [6] tend to be as complex as any
piece of software when written down in detail; getting a policy
right is as hard as getting a piece of software correct, and
maintaining a large number of them is only harder. There
exist some approaches that help local administrators in the
specification of such policies (e.g., using ontologies [7]) and
validating them. These tools typically guide the user on the
specification of policies, ensuring that they are syntactically
and semantically correct at writting time (static checking).
In order to dynamically validate policies or to avoid infinite

Wolfgang Nejdl, Daniel Olmedilla
L3S Research Center and Hannover University
Hannover, Germany
Email: {nejdl,olmedilla} @13s.de

Bob:
- ¥ Is Tom a friend of Bob? ¥~ -

- ~
-
-~ AN
- ~
-

~
g Bob: Bob: Bob: So
// Is Tom a friend Is Tom a friend of Frank? \\
e ‘ ‘ AN
/
/ Alice: Frank:
// Is Tom a friend of Alice? -~ N -~ > Is Tom a friend of Frank? \\

\ /7
/ \ / \
! \ /7 \
! Alice: Alice: \ ! Frank: Alice: !
\\ Is Tom a friend of Bob? | Is Tom a friend of Frank? /‘(\ Is Tom a friend of Alice? | Is Tom a friend of Bob? /’
~ -

- - PN ~
SN—— - Erank:

Alice: - - =
Check local friend list Check local friend list

of Alice? Check local friend list

\
\

-

Fig. 1. SLD-like tree for Bob’s example

evaluation, techniques like model checking or tabling are
applied. However, all these tools and techniques help in a local
environment where the whole set of policies is known, and
they cannot be used in a distributed environment. In particular,
problems like loops among delegation rules cannot be detected.

From the point of view of declarative policy specification,
loops may easily occur and should not be considered as errors.
However, if not handled accordingly, they may end up in non-
terminating evaluation. For example, suppose Bob wants to
share his pictures with his friends. Bob protects his pictures
with a policy that states “only my friends may access my
pictures”. However, he does not only have a list of his friends
but also include that “all Alice’s and Frank’s friends are also
my friends”. Suppose Alice and Frank have a similar policy in
which their friends list includes also all other’s friends. Given
that setup, imagine that Tom requests access to Bob’s pictures.
Bob’s security agent (SA) checks that Tom is not his friend
but, since he might be a friend of Alice or Frank, it asks their
security agents. Now, Alice’s SA checks locally if Tom is her
friend, but some of her policies say that any friend of Bob
or Frank is also her friend and therefore, it asks Bob’s and
Frank’s SA. In parallel Frank’s SA evaluates its policies and
produces a similar situation asking back Bob’s and Alice’s
SA, and so on. As the reader can see, if not detected and
handled appropriately, the evaluation of this request would
never terminate (see figure 1), even if answers exist. Real
policies, including for instance business rules, are much more
complex and higher in number than the ones in this example
(and they are typically not under control of a single person)
what increases the risk of loops and not termination during

dynamic policy evaluation. In addition, it is important to note
that solutions like replication of information (e.g., sharing the
lists of friends) or including in each communication all the
previous requests made (in order to detect repetitions in the
chain of requests) may not be possible due to privacy or even
scalability issues (as it happens with search where in many
cases federation is preferred over replication of resources).

In this paper we present a distributed tabling algorithm
which can handle safely mutual recursive dependencies (loops)
in distributed environments like P2P networks. Due to the
security context, other aspects like private and public policies
and proof generation must be taken into account. This algo-
rithm allows a system to evaluate arbitrary authorizations with
respect to arbitrary policies, without increasing the overall load
of the network (the algorithm is polynomial), return the right
answers and detect termination even when loops exist.

This paper is structured as follows: Section II briefly in-
troduces the context of policy-driven negotiation for access
control as well as the PEERTRUST language. An extended
example is presented in Section III, and the problems of ordi-
nary SLD-resolution appropriately illustrated. The distributed
tabling algorithm and a detailed example of its application are
described in section IV. Section V discusses related work and,
finally, section VI presents the conclusions and further work.

II. POLICY-DRIVEN NEGOTIATION AND PEERTRUST

Open distributed environments like the World Wide Web or
P2P networks offer easy sharing of information, but provide
few options for the protection of sensitive information and
other sensitive resources. Typically, this protection is based on
the assumption that a requester is already known by the server
(e.g., by means of previous registration and user/password
authentication mechanisms). This way, the server is able to
map the identity of the requester into a permissions table in
order to grant or deny access to a resource.

Nowadays, due to the success of the WWW and P2P
networks and therefore to the big amount of potential users
a server might have, maintaining a table of authorizations
based on identities is no longer desirable. Specifically, the Web
provides an environment where parties may make connections
and interact without being previously known to each other. In
many cases, before any meaningful interaction starts, a certain
level of trust must be established from scratch. Generally,
trust is established through exchange of information between
the two parties. Since neither party is known to the other,
this trust establishment process should be bi-directional: both
parties may have sensitive information that they are reluctant
to disclose until the other party has proved to be trustworthy
at a certain level.

To make controlled sharing of resources easy in such an
environment, parties will need software that automates the
process of iteratively establishing bilateral trust based on
the parties’ access control policies, i.e., trust negotiation [8]
software. In this software, every party can define access control
and release policies (policies, for short) to control outsiders’
access to their sensitive resources. The policies describe what

properties a party must demonstrate (e.g., ownership of a
driver’s license, membership of a specific project or holding
of a citizen id of the European Union) in order to gain access
to a resource.

There exist several requirements a policy language must
satisfy [1]. In particular, an entity can delegate some of its
authority to another entity. For example, the manager of a
company can delegate its authority to buy new equipment to
one of its employees or a system may delegate the validation
of a student id to the university. However, as this process must
be automated, delegation of authority [9] brings some new
challenges that must be solved like the existence of loops in
the policies which could bring a negotiation into an infinite
evaluation.

PEERTRUST’s language [3], [10] is based on first order Horn
rules (definite Horn clauses), i.e., rules of the form

lito — l?:tl, SR ,litn

where each lit; is a positive literal Pj(t1,...,t,), P; is a
predicate symbol, and the ¢; are the arguments of this predicate.
Each ¢; is either a variable or a constant!. The head of a rule
is lity, and its body is the set of li¢;. The body of a rule can
be empty. The following policy can be used to specify that
access to resources are granted to clients:

access(Resource) $ Requester «— client(Requester).

The ability to reason about statements made by other peers
is central to trust negotiation. For example, in our initial
example, Bob does not have information about Alice’s friends
and therefore must ask her to find out if Tom is her friend. One
can think of this as a case of Bob delegating evaluation of the
query “Is Tom Alice’s friend?” to Alice. To express delegation
of evaluation to another peer, we extend each literal [i¢; with
an additional Authority argument, “ lit; @ Authority ” where
Authority specifies the peer who is responsible for evaluating
lit; or has the authority to evaluate lit;. The Authority argu-
ment can be a nested term containing a sequence of authorities,
which are then evaluated starting at the outermost layer

As mentioned earlier, Bob may need a way of referring to the
peer who asked a particular query (e.g., Tom). We accomplish
this by including a Requester argument in literals, so that we
now have literals of the form

lit; @ Issuer $ Requester.

Using the Issuer and Requester arguments, we can delegate
evaluation of literals to other parties and also express inter-
actions and the corresponding negotiation process between
parties. For instance, the policy for Bob is specified as follows

Bob Policy:

access(Picture) $ Requester « friend(Requester).

IThe original PEERTRUST language allows also complex terms, ie. a
function symbol and its arguments, which are themselves terms. These are
not allowed here because termination of queries with complex terms is an
undecidable problem.

friend(Name) $ Requester < isMyFriend(Name).
friend(Name) $ Requester < friend(Name) @ “Alice”.

and Alice’s policy only differs on the last policy rule where
she delegates to Bob instead of herself.

III. PROBLEM STATEMENT

As shown in section I, the trust negotiation would get into
an infinite evaluation due to a loop. It is desirable not only
to detect the loop but also to allow the algorithm to find
the right answers. In our example, if Tom was a friend of
Alice, the evaluation would not terminate due to the existence
of an infinite branch in the SLD-tree. Furthermore, special
mechanisms may be applied in case loops are detected. For
example, imagine two CIA agents with the policy “I show
you my CIA badge if you show me yours first” [11]. None
of them is going to show her CIA badge first and therefore,
even though their negotiation could succeed it does not due
to the existence of a deadlock. [11] describes an algorithm to
solve this deadlock, which could be applied in case the loop
is detected.

In addition, in trust negotiation, we must be able to dis-
tinguish between predicates that can be queried by external
parties, and ones that cannot—analogous to the public and
private procedures in object-oriented languages. These rules
must also be kept hidden while generating proofs to be
disclosed to other peers.

Additionally, the rules that the peer defines on its own are
its local rules. A peer may also have copies of rules defined by
other peers, and it may use these rules in its proofs in certain
situations. In those cases, a signature is used to verify that
the issuer really did issue the rule. Because of simplicity, the
examples in this paper include only local and public rules.

In the rest of this section we introduce how the distributed
evaluation of logic programs is used for access control, and de-
scribe an extended example which illustrates the PEERTRUST
language as well as the problems with the ordinary SLD-based
proof-procedures of logic programming.

A. Distributed Evaluation for Access Control

Delegation of authority is widely used in access control. For
example, a system may delegate the validation of a student id to
the university or one company in a virtual organization might
delegate on other partners whether a requester is a client or
not. Therefore, the ability to reason about statements made by
other parties is central to trust negotiation.

This scenario can be seen as the evaluation of distributed
logic programs. The semantics of the PEERTRUST language
is an extension of that of SD3 [12] to allow the set of all
PEERTRUST programs to be viewed as a single global logic
program. We refer the interested reader to [12], [3] for semantic
details.

B. Running Scenario

A Library provides free access to its documents, and it
makes available a public search mechanism based on key-
words, returning URLSs for further navigation. Moreover, it has

an agreement with an international Publishing company (Pub)
that allows redirection of requests from the Library to its own
search service. This policy is specified as follows:

Library Policy:

getURL(Key,URL) « libraryDoc(Key,URL).
getURL(Key,URL) « getURL(Key,URL) @ “Pub”.
libraryDoc(p2p, ‘http://library.org/url1’).

The search engine of the Publisher is connected to other
specific search engines. It also provides access to its own
publications under a subscription. All topics are classified with
respect to an access level: free, basic or full.

Publisher Policy:

getURL(Key,URL) «—
searchEngine(Loc), getURL(Key,URL) @ Loc.
getURL(Key,URL) $ Req «—
Req # “Pub”,
topicProvided(Key,Level),
accLevel(Req,Level),
getURL(Key,URL).
getURL(Key,URL) $ “Pub” «
companyPublication(Key,URL).

searchEngine(“Library”).

topicProvided(p2p,free).
topicProvided(music,basic).

companyPublication(p2p, ‘http://my.com/urll’).
companyPublication(p2p, ‘http://my.com/url2’).

The first rule of getURL/2 allows any user to use the
search service of the associated search engines. The next rule,
provides the access control policy to documents of Publisher,
where it should be noticed in particular the last call in the
body to getURL/2: since this rule is to be executed by the
Publisher peer, then the requester is changed to “Pub”, and
no longer is Req. The last rule is to be executed solely by a
call from “Pub” itself. The access level is controlled by the
following rules:

Publisher Policy (cont):

accLevel(Req, basic) « registeredUser(Req) @ “Music”.
accLevel(Req, Level) < hasSubscription(Req,Level).
accLevel(Req, Level) «—

accLevel(Req,LevelH), accOrder(Level,LevelH).

accOrder(free,basic).
accOrder(basic,full).

hasSubscription(“Library”, free).
hasSubscription(“Music”, full).
hasSubscription(“Alice”, basic).
hasSubscription(“Bob”, full).

? acclLevel(“Bob”,Lev) @ “Publisher” $ “Bob”

Lev = basic

? registeredUser(“Bob”) @ “Music” $ “Publisher”

? registeredUser(“Bob”) @ “Music” $ “Music”

? acclLevel(“Bob”,basic) @ “Publisher” $ “Music”

? acclLevel(“Bob”,basic) @ “Publisher” $ “Music”

? registeredUser(“Bob”) @ “Music” $ “Publisher”

Fig. 2. An infinite SLD branch

In particular, the publisher allows users of its partner company
Music to have basic access to the documents of Publisher.

The Music company makes available to its users, informa-
tion about the music topic obtained from Publisher. It also
provides all services to users of Publisher company which have
at least basic access.

Music Policy:

getMusic(URL) $ Req «—
registeredUser(Req),
getDocURL(music,URL) @ “Pub”.

registeredUser(User) $ “Pub” « registered(User).
registeredUser(User) $ “Music” « musicUser(User).
registeredUser(User) $ “Music” «

accLevel(User, basic) @ “Pub”.

musicUser(”Frank™).

Notice that the query accLevel ("Bob", Lev) does not
terminate under ordinary SLD-resolution. Since in order to
check that Bob has basic access to the Publisher services, then
it should be first verified whether it is a registered user of
“Music” company. But in order to check that Bob is registered
at “Music”, it is also verified that Bob has basic access level
to Publisher documents. An infinite branch of the SLD tree
generated from the goal can be found in Figure 2, where each
goal is attached with the peer and requester of the goal. Other
SLD derivations exist, for instance by unifying the top-goal
with the second and third rules of the policy rules for Publisher.

Independently of that, the last rule of access level is left
recursive, and under ordinary SLD-resolution will not be able
to answer any query. Furthermore, it is also clear that there

are multiple dependencies between the queries getURL at
Librarian and at Publisher, which introduce further problems
for the SLD proof-procedure.

IV. TABLING ALGORITHM AND DISTRIBUTED
EVALUATION

Tabling is a technique for goal-oriented evaluation of logic
programs by storing computed answers in tables, combining
the characteristics of the traditional top-down strategy with
those of the bottom-up evaluation [13], [14], [15], [16], [17].
Tabling is adequate for the evaluation of recursive queries
with repeated calls in programs, and for cases where queries
may not terminate under the ordinary top-down SLD-based
inference mechanisms of the Prolog like logic programming
languages, like the ones shown in the previous section. In
the context of evaluation for distributed rule based policy
systems this is particularly relevant since it is not known
a priori if mutual dependencies between goals will exist
among peers. In this section we extend a distributed tabling
architecture [18] to P2P networks, which is based on the SLG
proof procedures [15], [17].

A. Tabling

A tabling algorithm produces a forest of proof-trees, one
for each goal executed in the system. Each tree will have
an associated table, where the answers (lemmas) produced by
that proof-tree are stored. The evaluation of a new goal is
started by ordinary resolution with program clauses. As in SLD
resolution, a sub-goal is selected for execution in the resolvent.
However, instead of resolving again with program clauses,
the sub-goal waits for the answers of the corresponding table
(which might be created at that time). When a new answer
is found, it is stored in the respective proof-tree table and it
is propagated to the consumer sub-goals of this table. Since
repeated answers are not propagated, looping is avoided and
program termination is guaranteed for the Datalog case (no
complex terms). The full forest constructed for the query
accLevel ("Bob", Lev) started at “Pub” is depicted in
Figure 3, where goals are numbered by (a possible) order of
creation.

The tabulation algorithm has four basic operations: cre-
ation of a new tree, selecting a node for execution, calling
a goal, and answer resolution (or lemma resolution). The
construction of the forest in Figure 3 starts by creating a
proof-tree for the top goal, the node labeled by 1 in the
forest. The goal labeling the root node is resolved with each
clause that unifies with it; in this case obtaining nodes 2,
3, and 4. The computation proceeds by choosing a node for
execution, and selecting a goal in the resolvent (which are
underlined in the figure). Suppose node 3 is chosen; since
there is only one goal in the node still to be executed, this
is the selected one. Now, the proof-procedure starts execution
of the goal hasSubscription ("Bob",Ll) @ "Pub"
$ "Bob", and a new tree is created for the goal (numbered
5), with variables renamed apart. The difference to SLD is now
evident, since each new goal starts the creation (or reuses) a

1. accLevel(“Bob”,Lev) @ “Pub” $ “Bob” 5.

Lev = basic

Lev = full

Lev = basic

7.0 11.

9. accOrder(L2,full) @ “Pub” $ “Pub”

L2 = basic

10.o

18. registeredUser(“Bob”) @ “Music” $ “Pub”

/

19. registeredUser(“Bob”) @ “Music” $ “Music” S/
/

/

/

21. musicUser(“Bob”) @ “Music” $ “Music”

25.0

X

Fig. 3.

proof-tree, and is not “inline” resolved. The goal at the root,
node 5, is resolved with a fact in the program, obtaining the
answer (empty) clause at node 6. This answer is resolved with
the consuming goal(s), i.e. solely 3. By unifiying the answer
hasSubscription ("Bob", full) of goal 5 with the call
at node 3, the first answer is obtained for the top goal, namely
Lev = full, represented at node 7.

The goal at node 4 is then selected for execution, and the
very interesting call accLevel ("Bob", LevelH) occurs:
this a variant (renaming) of the initial goal; therefore, the
tree at node 1 is reused for providing answers to goal 4. This
is a property of the tabling algorithm, avoiding the repetitive
creation of proof-trees! Since there is already one answer for
the top-goal (full), it is resolved with goal at 4, originating
node 8. This node 8 starts the creation of a new tree (nodes
9 and 10), with a single answer (basic). This generates a new
answer to the top goal, which is consumed again by node 4.
This process further generates nodes 11-17.

Finally, a new proof-tree is created (root at node 18) by
choosing node 2 for execution. The computation proceeds as

8. accOrder(Lev full) @ “Pub”$ “Pub”

13. accOrder(L3,basic) @ “Pub” $ “Pub”

20. registeredUser(“Bob”) @ “Music” $ “Music”

L1 =full
6.0
4. accLevel(“Bob”,LevelH) @ “Pub” $ “Pub”,
accOrder(Lev,LevelH) @ “Pub” $ “Pub”
LevelH = full

\ T LeveH =free
\ LevelH = basic ~

16. accOrder(Lev,free) @ “Pub” $ “Pub”

12. accOrder(Lev,basic) @ “Pub” $ “Pub” ‘

X

Lev = free

15.0

17. accOrder(L4,free) @ “Pub” $ “Pub”

L3 =free ‘

14.o X

22. musicUser(“Bob”) @ “Music” $ “Music”

X

23. accLevel(“Bob”,basic) @ “Pub” $ “Music”

24.0

Full forest constructed during the tabulated evaluation of the query accLevel ("Bob", Lev) at “Pub”

previously, till node 23 is generated. Node 23 is labeled with
a goal which is an instance of node 1, but the requester is
distinct. By a simple syntactical analysis, it can be seen that
the requester of accLevel/2 is irrelevant, so the answers
for tree 1 can be reused. Since it has been shown previously
that Bob has basic access (node 11), the tree rooted at 20
succeeds with a single answer. This answer is then consumed
by node 19, and propagated to node 2, originating node 26; so
another proof granting basic access to Bob has been obtained.
However, this answer was already generated and therefore it
is not propagated to the consumers. The computation finishes
without entering into a loop and obtaining the expected results:
Bob has access level full, basic and free.

B. Distribution of the Tabling Algorithm

The challenge is now the adaptation of the previous tabling
algorithm to the distributed setting, with the corresponding
technological issues properly addressed. In first place, it is
assumed the existence of an asynchronous message-passing
system, with reliable FIFO channels and unbound capacity. Our
basic distributed system requires three types of components:

(o]
w PEER

Prover.
rover
GOAL
PEER PEER PEER MANAGER . PEER
Client Client 4
Prover

Prover
PEER
PEER

COMMUNITY A

Fig. 4. Example of running architecture

o The goal manager which interfaces a community of peers
with the outside world;

o The peer clients which keep the tables and correspond-
ing answers for goal calls, avoiding redundant answers.
Simultaneously, they manage the delivery of solutions to
the appropriate invoking goals;

o The peer provers which perform the logical expansion
operations on the set of active goals, i.e. construct and
store the proof-trees;

Nothing prevents the coupling of a peer client with the
correspondent peer prover in a single software component, if
the protocol described in the rest of this section is followed.
All peers in the system should be able to communicate among
them (directly or via goal managers). The behavior of each
component and the communication protocol is detailed below.

Goal Managers: In a running system, there exists a goal
manager for each community of peers, several peer clients, one
for each peer, and a prover client for each peer client (as in
Figure 4). There are two types of queries that can be executed
by the system: call for authorizations, obtaining answers, and
requesting the explanation of a computed authorization answer,
obtaining program clauses in the proof. The task of a goal
manager is to start queries in peers of the corresponding
community, and to provide the appropriate answers to the
requesters. Its major function is to detect termination of the
corresponding queries.

In Figure 5, we depict the several types of messages that the
components of the architecture interchange. The dashed arrows
between Peer Client and Peer Prover signify that the messages
can be sent to the corresponding components of other peer, in
the same community or not.

The authorization query is encapsulated in a message
call(Goal @ Peer, N) where Goal is the goal to be executed
at Peer, and N is an external identifier. Notice that an internal
identifier is generated and a call message is sent to the appro-
priate peer, in public mode. The answers are received through
answer(Ans,i) where i is the internally assigned identifier to
goal N. Proofs are requested with

proof{ Goal @ Peer, Ans @ Peer, M)

messages, where answer Ans @ Peer should have been
received from a previously invoked query Goal @ Peer,
and M is the external identifier for the proof; again an
internal identifier is generated in order to avoid potential
unintended mixing of external with internal identifiers.

The clauses necessary to derive the answer are sent via
explanation(Rule,Id) messages, one at a time. Done messages
are sent to the involved components in order to announce
termination of both types of query (c.f. Section IV-C).

Peer Clients: When a peer client receives a call message,
it verifies whether the goal is already tabled or not. If the goal
is not tabled, a new table for the goal is created and a call
message is sent to the prover client with the goal and table
identifier, in order to be evaluated. If the goal is already tabled,
all the answers in the table are sent to the caller. The peer
client must keep the peer names from which it received call
message in order to send back every new answer generated
(table consumers). There are two modes for goal execution:
public, for goals that can be shown in proofs, and internal, for
goals which must be hidden in proofs. For security reasons,
goals in different modes are maintained in different tables. An
initial query, requested by a goal manager, is always started in
public mode.

When a peer client receives a proof message request, it
simply forwards it to the prover client which is responsible
for producing it. Again, for guaranteeing termination, a proof
for a given answer to a goal is asked only once.

Peer Provers: The peer provers perform the logical
operations on goals. The execution of a new goal at the prover
client is initiated with a call message from its peer client. This
goal can either be executed at the current peer, or forwarded to
a different one. If a goal is to be executed explicitly at another
peer, the prover client first checks whether it has delegated
signed rules from that peer, which allow it to execute the goal
locally. If not, the goal call is simply forwarded to that peer.
Otherwise, in the cases that the goal is to be executed locally,
the prover resolves the literal with the policy rules matching
it (signed or not) in the program and then selects a literal in
each resulting resolvent. Local rules of the peer can be marked
public or internal. To avoid unintentional disclosure of private
information, public calls must be ground in order to match
with internal rules. Public rules can always be used, as well
as internal rules called by goals in internal mode.

Upon reception of a matching answer for a given goal, the
prover client unifies the answer with the selected literal. If the
body is empty, a solution has been found and it is commu-
nicated to the peer client which requested the computation.
Otherwise, a literal is selected in the resolvent and a new
resolvent is created. The prover then sends a call message to
its peer client, and waits for the answers. Notice that if the
literal is to be executed at a different peer, then the prover
later on will forward it, as we’ve explained before.

The peer prover keeps track of the logical operation which
originated a resolvent in the proof-tree, either: clause resolution
with an ordinary rule; clause resolution with a signed rule;
forwarding a query to a different peer; and answer resolution,
keeping a pointer to the parent resolvent. This information is
then used to produce the explanation (proof) of an answer.
Basically, a peer prover is capable of reconstructing the proofs

NETWORK COMMUNITY

call(goal,ld,public)

explanation(RuIe,Id)\

call(Goal,Tid,Mode)

} answer(Ans,|d)

answer(Ans, Tid)

proof(Goal,Ans,|d)

call(Goal,Gid,Mode)

done(ld)

proof(Tid,Ans,|d)

E call(Goal @ Peer,N) . M
X P answer(Ans,N) v A
Tp | G
E (@) N
R E proof(Goal@Peer,Ans @Peer, N) A A
E | |, explanation(Rule,N) G
N R | < L E
A R
L . done(N) \

Fig. 5.

of answers to calls executed in that peer. If the answer was
originated by an internal rule called in public mode, then it
simply sends to the goal manager an explanation containing a
rule with that answer in the head and body with the special
literal hidden. Otherwise, it determines the policy rule which
originated the answer and sends that rule to the corresponding
goal manager. This rule is obtained by traversing the path from
the answer to the root of the proof-tree. From this path, the
peer prover obtains the sub-goals and corresponding answers
that have been used to produce the answer to be explained.
The proofs for used answers of sub-goals are then recursively
asked to the corresponding peers. Some care must be taken in
the implementation in order to avoid repeatedly sending rules
and to guarantee termination in the proof generation.

C. Termination Detection

One important aspect of the proposed architecture is the
capability to know that the authorization query or that the
generation of the corresponding proof is finished. It is fun-
damental to be able to detect the termination of the distributed
computation of each query executed in the system, in order
to inform the entity who queried the system that there are no
more answers. Also, termination detection allows freeing of
allocated structures used in the evaluation of the query.

Several versions of termination detection have been imple-
mented, by adapting the classical Dijkstra-Scholten’s diffusing
computation and Mattern’s credit recover distributed termina-
tion detection algorithms (see for instance [19]). In the most
general scenario, several peers in different communities can
share computations. Whenever a new query is started at a
goal manager, a new instance of the termination algorithm
is initiated and all messages are tagged with the identifier of
this instance. If during the distributed evaluation of query A,
a goal calls a non-completed table started by other external
query B then query A cannot complete before B is complete.
In these situations, we run dynamically Tel’s Phase Wave
algorithm (see again [19]) among involved goal managers
in order to synchronize their termination detection, obtain-
ing an algorithm inspired in the Shavit-Francez decentralized
computation termination algorithm, which can also be found

done(Tid)

PEER

Messages interaction between the components of the architecture

in [19]. If two queries do not share incomplete tables, then their
termination is detected independently. Notice again that already
completed tabled goals can be shared without interference
of computations. The advantage of this algorithm is that no
propagation of graph dependencies are necessary to ensure
termination, and thus no sensitive information is disclosed.
However, if two queries share some goal then one of them
might end waiting too long for the termination of the other.
The number of control messages exchanged is in the worst-
case linear in the number of messages of the basic algorithm,
and the overhead is small.

We have also developed local termination algorithms that
are capable to detect completion (termination) of individual
tables. These are too complex to describe here, but the idea
is that each call in the system starts a new instance of the
termination algorithm. For guaranteeing correctness of the
algorithm we use a sophisticated locking mechanism which
requires the propagation of goal dependencies in order to
avoid deadlock. For a single community of peers this is
very appropriate, and empirical evidence suggests that the
message complexity overhead is between one and two times
the number of calls and answers of the algorithm described
in the previous section. This is relatively small, and promises
to have good application in P2P networks. However, sending
the dependency among goals might not be acceptable for some
peers, since it publicizes the peers involved in the computation.
We are currently working in variations of the local algorithm
with limited propagation of goal dependencies for the general
setting.

D. Implementation

The architecture previously described was implemented? via
Prolog meta-interpreters on top of PVM-Prolog [20], using
the XSB Prolog system. The PVM-Prolog (PPVM) library
is a Prolog interface for PVM system, offering to the logic
programing application the capabilities of PVM such as pro-
cess spawning and control, virtual machine management and

2 Available from the PEERTRUST CVS

http://sourceforge.net/projects/peertrust/

repository at

failure handling. PVM-Prolog defines an intermediate layer
supporting the parallel and distributed execution of Prolog
programs. This way it is possible to build a real distributed
environment where several peers interact with each other using
the PVM message passing mechanisms.

We make use of the layer of Prolog code presented in [18],
supporting basic services like name resolution and distributed
termination algorithms. Furthermore, for development and de-
bugging purposes, we use a random simulator of the distributed
system. The system was tested in a 8 PC cluster.

E. Detailed Computation

Consider again the proof forest of Figure 3, and the query

accLevel ("Bob",Lev) @ "Pub" $ "Bob"

Figure 6 depicts an UML 2.0 interaction diagram showing
a particular execution of our distributed algorithm. We are
using subsumptive tabling in this example, in order to reduce
generation of tables and respective proof-trees. Notice that each
basic operation in the non-distributed tabling algorithm corre-
sponds to the exchange of several messages by the distributed
procedure; the messages are numbered with the corresponding
identifiers of nodes used in the forest of Figure 3.

The computation is started by a query of Bob to the
Publisher peer, and for the sake of simplicity, all goals and
rules are in public mode. Since Publisher is not in the same
community of Bob, the call must go through the goal manager,
where the identifier is renumbered (from 7 to 0), and is sent to
the Publisher peer client. Since this is a new goal, a new table
is created in the publisher peer client and a message is sent
to the publisher peer prover in order to start execution of the
goal. The often occurring pattern of a call message sent to the
peer client followed by a message to the corresponding peer
prover indicates the creation of a new tree in the distributed
forest of the tabling algorithm. The second argument of call
messages originated from peer clients or peer provers represent
identifiers of tables or goals, respectively.

The proof-trees are kept inside the prover peers, and only
call and answer messages are interchanged between the com-
ponents. Notice that all goals selected for execution are always
sent to the peer client, even in the cases that the goal is sub-
sequently executed at the same prover (e.g., messages labeled
with 3, 4, and 5). This clearly decouples storage of tables and
execution of goals, at expense of some message overhead but
with substantial modularity advantages; this overhead can be
reduced by using threading.

A particularly interesting subsequence of messages is the
one labeled with 2. This represents a call from a peer prover
(Publisher) to the peer client of a different peer (Music). This
is once more sent through the peer client of Publisher, before
being forwarded to the Music peer client by the Publisher
peer prover. This allows the Publisher peer prover to check if
there are signed rules obtained from Music peer before sending
the request, avoiding unnecessary delays as well as tabling of
remote calls (it is assumed that a prover peer client have faster
message channels to its peer clients than to other peers).

Notice that message 4 reuses the table created by message
1, avoiding non-termination of the computation. Answers are
generated in peer provers, which are sent back to the peer
clients. The peer clients check if the answer is not repeated, and
in this case propagate the answer to the requesters which might
generate more answers, see for instance messages labeled
with 6 and 7. The first message 7 corresponds to an answer
to the original top-goal. Since this table is being shared by
two calls, it originates two answer messages, one for each
consuming selected goal (for Bob and for publisher peer
prover). Upon reception of message 7 by publisher peer prover,
the computation continues with message 8.

Message 23 does not create a new table, reusing again the
tree created at 1, because of the adoption of subsumptive
tabling. The decision to reuse a table has significant impact in
the size of the computation, and two versions are commonly
found in the literature [17]. The simplest check consists in
using variant tabling, where a new table is created unless there
is already a tabled goal identical modulo renaming of variables.
Another alternative is subsumptive tabling, which creates a new
tree unless there is a more general tabled goal; this requires
extra unification checks since a more general answer might
not unify with a more particular goal. In general, the same
goal from a different requester might have different solutions.
However, if the requester is not mentioned at the head of all
rules for a predicate, as in the accLevel/2 rules, then it is
safe to share the answers.

Also notice that a failed goal, like 17, has an associated
table but no answers are generated. Finally, the computation
is finished by sending the appropriate done messages to Bob
and to the peer clients. The detection of termination requires
extra control messages, which are not shown in the diagram.

V. RELATED WORK

The work on distributed tabled query evaluation of logic
programs is rather limited [18], [21], [22], [1], due to the
inherent difficulties of termination detection. The previous
work by the authors [18], [22] probably contains the most
complete discussion of the problems that can be found in
distributed query evaluation of logic programs, as well as a
thorough analysis of local and global completion algorithms.
This paper generalizes previous work avoiding the assumption
of a single goal manager and extends it to make it suitable
for policy languages, including mechanisms for delegation,
internal rules as well as proof explanation.

The work by Rui Hu [21] presents a distributed implemen-
tation of the SLG proof procedure [15], including support
for negation. Unfortunately, some unrealistic assumptions are
made in the description of the algorithms, namely the knowl-
edge of some global data structures. Furthermore, it requires
passing of the “call stack™ in each invoking call message which
is terribly inefficient and might disclose private information.
No study of the complexity of the implemented system is
given.

The authors of the Cassandra system contributed in [4] with
a new language for trust management. They mention the use of

Prover Peer "Pub"

Bob Goal Manager Peer "Pub”

Peer Music Prover Peer Music

0. call(accLevel ("Bob",Lev) @ "Pub" f; "Bob",7)

0. caII(AaocLeveI ("Bob",Lev) $ "Bob" ,S,public)

1. can(%cheveu"Bob",Lev) $ "Bob" 0 publc)

I 7]
2. call(registeredUser("Bob") @ "Music" $ "Pub",p0,public)

N |
3. call(hasSubscription ("Bob",Lev) $ "Pub”,p1,public)

N |
4. call(accLevel("Bob",LevelH) $ "Pub",p2 public)
2. call(registe?edUser("Bob") @ "Music" $ "i’ub",1,public)
| N

5. call (has[Subscription("Bob",L1) $ "Pujb",z,public)

[Il
6. answer(hasSubscription ("Bob",full) $ "Pub",2)

2. caII(rePisteredUser(“Bob") $ "Pub",p3,public)

6. answer(hasSubscription("Bob",fdll),pﬂ

7. answer(accLevel("Bob",full) $ "Bob",0)

answer(accLevel("Bob",full),p2)

N

answer(accLevel("Bob" full),0)
i

8. call(accOrder(Lev,full) $ "Pub",p6,public)
9. call(accOrder(L2,full) $ "Pub",a,;jublic)

7. answer(accLevel ("Bob",full) @ "Pub",7)

/‘
23. call(accLevel ("Bob",basic) $ "Music",m3,public)

18. caII(ngisteredUser("Bob") $ "Pubi]O,puinc)

[71
19. call(registeredUser("Bob") $ "Music",m0,public)

20. caII(reNgisteredUser(“Bob") $ "Music"',2,public)
| N|

I 71
21. call(musicUser("Bob") $ "Music",m1,public)

22. caII{musicUser("Bob") $ “Music"ﬂ; ,public)

[71
23. call(accLevel("Bob" basic) @ "Pub" $ "Music",m2,public)

23. call(aocLeYeI("Bob”,basic) @ "Pub" $ "Music",3,public)
[

1
10. answer(accOrder(basic,full) $ "Pub",3)
1 O{Nanswer(accOrder(basic ,full),\é)G)

[1
11. answer(accLevel("Bob",basic) $ "Bob",0)

11. gnswer(achevel("Bob",basic)",pZ)

[
11. answer(accLevel ("Bob",basic),0)

11. ?nswer(amLevel("Bob",basic)},m"i)

|
12. call@@accOrder(Lev,basic) $ "Pub",p9,public)

'Pub",7) 13. call?aocOrder(L&basic) $ "Pub",:l;,public)

[4l
14. answer(accOrder(free,basic) $ "Pub",4)

11. answer(accLevel("Bob",basic) @

14.;answer(accOrder(free,basic)\,;p9)

[71
15. answer(accLevel("Bob" free) $ "Bob",0)

1 5.Nanswer(accLevel("Bob",free) " p2)

-

[
5. answer(accLevel("Bob" free),0)

25. answer(registeredUser("Bob") $ "Pub",p3)

[
11. answer(accLevel("Bob",basic) @ "Pub" $ "Music",3)
11. anszer(acheveI("Bob",basic) @ "ii’ub",m2)
| N
I 71
24, answer(registeredUser("Bob") $ "Music",2)

24. 'T:nswer(registereduser("Bob'z}mO)

[71
25. answer(registeredUser("Bob") $ "Pub",0)

’\
26. answer(registeredUser("Bob") @ "Music" $ "Pub",1)
26. answ%r(registeredUser("Bob“) @ 'E'/Iusic",po)

15. answer(accLevel("Bob",free) @ "Pub",7)

[1
15. answer(accLevel("Bob" free) $ "Bob",0)

N |
16. call(accOrder(Lev,free) $ "Pub” p12,public)
17. calr(accOrder(L4,free) $" Pub",5,"public)

done(0)

done(0)

done(7)

Fig. 6. Distributed tabulated evaluation of a query

a SLG tabled resolution algorithm extended with constraints,
to deal with remote entities. In this sense is very similar to our
initial ideas published in 2000. However, the contribution of
that paper is a new language with tunable expressiveness and
therefore they do not provide a description of the algorithm
nor any details of it. Here we provide a full description of
the distributed algorithm we have defined and how we deal
with private and public rules as well as with generation of the
proofs (which is not supported by the Cassandra system). In
addition, we provide a fully distributed implementation of the
algorithm and discuss the different solutions for the termination
algorithm, which is probably the most important issue in
the definition of a query evaluation algorithm in distributed
environments. The authors in [4] report that they have only
one sequential implementation.

We should mention also the OPTYap system, which is the
unique parallel tabling system which we are aware of [23].
OPTYap is particularly efficient and scalable, however the
techniques used do not generalize to the distributed setting
of P2P networks or the WWW.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have provided a solution in order to
dynamically deal with loops during an authorization decision
for access control. The algorithm takes care of internal and
public rules, generates the proof of the evaluation and returns
the answers (even if within a loop) in polynomial time. This
work has been implemented and tested in a real distributed
environment over a 8 PC cluster.

Further work includes an analysis of the current communi-
cation among goal managers in order to reduce the information
interchanged. This reduction would allow a better management
of the information that could lead to information leakage. In
addition, we plan to integrate algorithms for local termination
involving several peer communities. This is specially important
in order to allow negation as failure in the PEERTRUST lan-
guage, under the well-founded semantics. We are also working
in variations of the algorithms which are capable of handling
communication faults.

Acknowledgements. This research has been partially sup-
ported by European Commission and by the Swiss Federal
Office for Education and Science within the 6th Framework
project REWERSE number 506779.

REFERENCES

[1] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson,
H. Mills, and L. Yu, “Requirements for policy languages for trust
negotiation.” in 3rd International Workshop on Policies for Distributed
Systems and Networks (POLICY 2002), 5-7 June 2002, Monterey, CA,
USA. IEEE Computer Society, 2002, pp. 68-79.

[2] P. A. Bonatti, N. Shahmehri, C. Duma, D. Olmedilla, W. Nejdl, M. Bal-
doni, C. Baroglio, A. Martelli, V. Patti, P. Coraggio, G. Antoniou, J. Peer,
and N. E. Fuchs, “Rule-based policy specification: State of the art and
future work,” Working Group 12, EU NoE REWERSE, Tech. Rep., Aug.
2004, http://rewerse.net/deliverables/i2-d1.pdf.

[3] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett,
“No registration needed: How to use declarative policies and negotiation
to access sensitive resources on the semantic web,” in Ist European
Semantic Web Symposium (ESWS 2004), ser. Lecture Notes in Computer
Science, vol. 3053. Heraklion, Crete, Greece: Springer, May 2004, pp.
342-356.

(4]

(51

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]
[19]

[20]

[21]

[22]

[23]

M. Y. Becker and P. Sewell, “Cassandra: Distributed access control poli-
cies with tunable expressiveness.” in 5th IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY 2004), 7-9
June 2004, Yorktown Heights, NY, USA. 1EEE Computer Society, 2004,
pp. 159-168.

P. A. Bonatti and D. Olmedilla, “Driving and monitoring provisional
trust negotiation with metapolicies,” in 6¢h IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY 2005).
Stockholm, Sweden: IEEE Computer Society, June 2005, pp. 14-23.
“Cassandra policy for national ehr in england.
http://www.cl.cam.ac.uk/users/mywyb2/publications/ehrpolicy.pdf.” [On-

line]. Available: http://www.cl.cam.ac.uk/users/mywyb2/publications/ehrpolicy.pdf

W. Nejdl, D. Olmedilla, M. Winslett, and C. C. Zhang, “Ontology-based
policy specification and management,” in 2nd European Semantic Web
Conference (ESWC), ser. Lecture Notes in Computer Science, vol. 3532.
Heraklion, Crete, Greece: Springer, May 2005, pp. 290-302.

W. H. Winsborough, K. E. Seamons, and V. E. Jones, “Automated
trust negotiation,” DARPA Information Survivability Conference and
Exposition. IEEE Press, Jan 2000.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” ACM Transactions on
Computer Systems, vol. 10, no. 4, pp. 265-310, 1992. [Online].
Available: citeseer.ist.psu.edu/lampson92authentication.html

S. Staab, B. K. Bhargava, L. Lilien, A. Rosenthal, M. Winslett, M. Slo-
man, T. S. Dillon, E. Chang, F. K. Hussain, W. Nejdl, D. Olmedilla, and
V. Kashyap, “The pudding of trust,” IEEE Intelligent Systems, vol. 19,
no. 5, pp. 74-88, 2004.

N. Li, W. Du, and D. Boneh, “Oblivious signature-based envelope,”
in PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing. New York, NY, USA: ACM Press,
2003, pp. 182-189.

J. Trevor and D. Suciu, “Dynamically distributed query evaluation,” in
Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, Santa Barbara, CA, USA, May
2001.

H. Tamaki and T. Sato, “OLD resolution with tabulation,” in Proc. of
the Int. Conf. on Logic Programming’86, ser. LNCS 225, Shapiro, Ed.
Springer—Verlag, 1986, pp. 84-98.

L. Vieille, “A database-complete proof procedure based on SLD-
resolution,” in Proc. of the Int. Conf. on Logic Programming’87, 1987,
pp. 74-103.

W. Chen and D. S. Warren, “Query evaluation under the well founded
semantics,” in Proc. of the Twelfth Symposium on Principles of Database
Systems (PODS’93), 1993.

R. Bol and L. Degerstedt, “Tabulated resolution for well founded
semantics,” in ILPS’93. MIT Press, 1993.

K. Sagonas, T. Swift, and D. S. Warren, “XSB as an efficent deductive
database engine,” in Proc. of SIGMOD 1994 Conf. ACM, 1994.

C. V. Damésio, “A distributed tabling system,” in Proceedings of Tabu-
lation in Parsing and Deduction 2000 (TAPD 2000), 2000.

G. Tel, Introduction to Distributed Algorithms. Cambridge Univ. Press,
2000, 2nd Edition.

J. C. Cunha and R. F. P. Marques, “Distributed algorithm development
with pvm-prolog,” in 5th EUROMICRO Workshop on Parallel and
Distributed Processing. 1EEE Computer Society Press, 1997, pp. 211-
2158.

R. Hu, “Efficient tabled evaluation of normal logic programs in a
distributed environment,” Ph.D. dissertation, State University of New
York at Stony Brook, 1997.

M. B. Alves, “Distributed tabling architecture with termination detection
(in portuguese),” Master’s thesis, Universidade Nova de Lisboa, 2004.
R. Rocha, “On applying or-parallelism and tabling to logic programs,”
Ph.D. dissertation, University of Porto, Portugal, 2001.

