
Advanced Policy Explanations on the Web1

P. A. Bonatti and D. Olmedilla and J. Peer2

Abstract. The frameworks for protecting security and pri-
vacy can be effective only if common users—with no training in
computer science or logic—increase their awareness and control
over the policy applied by the systems they interact with. To-
wards this end, we introduce a mechanism for answering why,
why-not, how-to, and what-if queries on rule-based policies for
trust negotiation. Our framework is lightweight and scalable but
it fulfills the main goals of modern explanation facilities. We
adopt a novel tabled explanation structure, that simultaneously
shows local and global (intra-proof and inter-proof) informa-
tion, thereby facilitating navigation. Answers are focussed by
removing irrelevant parts with suitable heuristics.

1 Introduction

The area of trust management—and in particular trust ne-
gotiation (TN)—is intersecting semantic web issues. In recent
approaches [2, 5], software agents communicate their security
and privacy requirements by exchanging policies formulated as
rules, that is, simple ontologies. In this case, semantic descrip-
tions concern the semantics of access control and information
disclosure, which constitutes part of service and user agent se-
mantics.

There is increasing awareness that advanced security and
privacy techniques cannot be effective unless users are able to
understand and possibly personalize the policy enforced by the
systems they interact with (cf. [3] and the CUPS project on
http://cups.cs.cmu.edu/). In order to enhance user aware-
ness and control on policies, researchers are advocating a form
of cooperative policy enforcement where policy decisions can be
inspected by non-specialized users, and negative responses are
enriched with suggestions and explanations.

In this paper, we describe an advanced explanation mecha-
nism designed to help users understand what rule-based poli-
cies prescribe and control. Our first contribution consists in a
requirements analysis for explanations in the context of trust
negotiation. Moreover, we define explanation mechanisms for
why, why-not, how-to, and what-if queries. There are several
novel aspects in our approach:

• We adopt a tabled explanation structure as opposed to more
traditional approaches based on single proof trees. The
tabled approach makes it possible to describe infinite fail-
ures (which is essential for why not queries).

• Our explanations show the outcome of different possible
proof attempts and let users see both local and global proof
details at the same time. Such combination of intra-proof
and inter-proof information is expected to facilitate naviga-
tion across the explanation structures.

1 Partially supported by REWERSE, IST-2004-506779.
2 Universities of Naples, Hannover, and St. Gallen, respectively. D.

Olmedilla is also a member of L3S. Contact: bonatti@na.infn.it

• We introduce suitable heuristics for focussing explanations
by removing irrelevant parts of the proof attempts. Any-
way, we provide a second level of explanations where all the
missing details can be recovered, if desired.

• Our heuristics are generic, i.e. domain independent. This
means that they require no manual configuration.

• The combination of tabling techniques and heuristics yields
a completely novel method for explaining failure. In the
past, the problem has been ignored or formulated differently
(e.g., by suggesting how to complete proofs by introducing
new facts [4]).

Moreover, we aim at a lightweight and scalable explanation
mechanism, that fits the requirements of web applications.

This paper is structured as follows. First, in Section 2, we re-
call the latest developments on explanations for expert systems.
Then we outline in Section 3 the requirements for explanations
in the context of trust negotiation, and briefly compare the
two frameworks. Section 4 briefly introduces trust negotiation
in our context and anticipates the functionalities of the expla-
nation modules by means of a reference scenario. Then the ex-
planation mechanisms are formally defined in two steps: First,
the internal structures are defined (Section 5), then we describe
how to render the explanation in natural language (Section 6).
Section 7 concludes the paper with a final discussion of the
results.

2 State of the Art

Integrated Explanation Facilities (IEFs) have been a goal for
the development of intelligent systems early on. During the last
fifteen years, a variety of design approaches for explanation fa-
cilities have been proposed, often classified as second genera-
tion frameworks by the literature [14, 6]. Examples of second
generation IEFs include EES, the Explainable Expert System
[11], the Mission Planning Assistant (MPA) [13, 12], the Re-
constructive Explainer Rex [14]. These frameworks manage to
decouple reasoning and explanation, whith the purpose of cre-
ating high quality explanations, at the cost of producing and
synchronizing two versions of knowledge, one for reasoning and
one for explaining. This is one of the main reasons that forced
us to depart from these approaches (see next section).

From the Semantic Web perspective, the most comprehen-
sive work on this new frontier is Inference Web (IW) [9, 10],
a toolkit that aims at providing generic explanation tools for
(Semantic) Web based systems. We could not use IW’s facili-
ties for our purposes because there is no support for explaining
infinitely failed derivations. To navigate why-not queries we
found it useful to explore multiple proof attempts simultane-
ously, while IW APIs are designed to manipulate single proofs.
Moreover, IW’s approach at removing the parts of the proof
irrelevant to explanations (based on derived inference rules)

is not suitable for the kind of ellipsis and focussing we need,
that we had to achieve by introducing a notion of cluster (see
Section 5) and by exploiting predicate dependency graphs.

Finally, in the context of security, the KNOW system [7]
focusses on the provision of feedback after a request is denied.
However, KNOW does not return an explanation but a set of
changes to the policy that would make it fulfilled. Similarly,
the WhyNot system [4] suggests which sets of facts might be
added to the system to make a given goal succeed, based on
some heuristic weights calculated on proofs.

3 Requirements

Since TN frameworks can be applied in many application do-
mains, rule-based policies almost always refer to domain spe-
cific concepts and application specific information sources. So
a TN framework has to be suitably instantiated for each ap-
plication by defining the set of application specific predicates,
and interfacing them with legacy software and data. Almost no
further effort should be added to the framework instantiation
phase.

A second requirement is related to scalability: explanations
should not increase significantly the computational load of the
servers which is already increased by rule manipulation.

The first requirement is incompatible with the methodol-
ogy of [1], that prescribes an actor and five distinct phases
entirely devoted to the development of an independent expla-
nation module equipped with an ad-hoc domain ontology and
special rules for creating explanation-related data structures.

The second requirement is incompatible with the methodol-
ogy of [1], too. The special rules for creating explanation-related
data structures are meant to be executed during the reasoning
process and may potentially affect performance.

A third requirement, instead, is shared with second genera-
tion explanation systems: explanations should be closer to the
users’ problem solving strategies than the system’s automated
reasoning strategy. The reason is that policy explanation sys-
tems should be understood by any user.

According to modern explanation approaches, the support
for explanation presentation is characterized by the following
features [9]:

• Methods for asking for explanations. We have iden-
tified the following kinds of queries: why/why not, how to,
what if, that may be asked before, during, and after a nego-
tiation to understand which pieces of information are actu-
ally used (some information may be unnecessarily released),
what remains to be done. The same queries can be used to
inspect and monitor policies.

• Methods for breaking up proofs into manageable
pieces. The local view (the rules that directly apply to
a given goal), should be enriched with global information
such as the different answer substitutions of each subgoal, to
help users in deciding which proof and which proof branches
should be visited next.

• Methods for pruning proofs and explanations to
highlight relevant information. The negotiation proto-
col determines what is relevant: Peers fulfil conditions by
submitting credentials and other information, so the pieces
of information that have been submitted and those that
have not determine the focus of attention. State predicates
constitute another kind of crucial information in TN, be-

cause their semantics is often blurred [2], i.e. it is not com-
municated to the client (either for privacy reasons or for
efficiency). This raises the need for special explanations.

• Methods and user interfaces for proof and explana-
tion navigation: We see a proof as a (potentially cyclic)
hypertext, whose links help the user in exploring single as
well as alternative proofs and proof attempts.

• Different presentation formats. Natural language is an
appealing, user-friendly format. It can be complemented by
graphical representations.

• Methods for obtaining justifications for conflicting
answers. Today the languages involved in TN are not ex-
pressive enough to derive contradictions, so this aspect is
currently marginal but this may change in the future.

Finally, the entities referred by the policies should be denoted
in a user-friendly way. Their internal encoding (XML, object
handles, etc.) is generally not suitable because it is meaningless
to most users.

4 TN and Explanations

We apply our techniques to Protune [2], one of the most recent
trust negotiation frameworks. In summary, each party makes
decisions on access control and information disclosure accord-
ing to a set of rules that entail decision atoms such as allow(X).
The rule language extends Datalog with syntactic sugar. Policy
rules are extended with a time-dependent set of facts, includ-
ing currently available credentials and declarations (sent by the
other party), other negotiation-related information, user pro-
files, etc. The argument of allow(X) may refer to a service or
it may denote a credential release, declaration release or the
execution of some specified action. To explain its disclosure
requirements to the other peers, each peer sends out the rules
themselves, as a compact representation of all the possible ways
of fulfilling the request. First, however, the rules are suitably
filtered to protect the sensitive parts of the policy (the policy
itself may be confidential). Explanations are built from filtered
policies (so they can be built on the clients). The following
scenario illustrates some of the explanations that our method
produces from the filtered rules.

A digital library protects its resources according to the policy
partially illustrated in Figure 1. John Smith tries to download
a paper with file name “paper01234.pdf” and authenticates
himself by providing an id credential. He receives the answer
“permission denied” from the library service. To understand
why, he sends a why-not query to the service. His personal
assistant gathers the policies provided for why-not explanations
and filters them highlighting the parts most relevant to the
user, i.e. those requirements the user did not fulfill, and hiding
some other aspects of the policy (e.g., those that do not depend
on the user). The first output is:

I can’t prove that it is allowed to download paper01234.pdf
because:

Rule [r3] is not applicable:
there is no User such that

User is authenticated [details]
and

rule [r4] is not applicable:
there is no User such that

User is authenticated [details]

· · ·
[r2] : allow(download(Resource))←

public(Resource) .
[r3] : allow(download(Resource))←

authenticated(User),
has subscription(User ,Subscription),
available for(Resource,Subscription) .

[r4] : allow(download(Resource))←
authenticated(User),
paid(User ,Resource) .

· · ·
[r6] : authenticated(User)←

id(Credential),
Credential .name : User ,
Credential .public key : K ,
challenge(K).

[r7] : authenticated(User)←
declaration([username = User , password = P]),
passwd(User ,P).

· · ·
Figure 1. Digital Library Policy

moreover
there is no User such that

User has paid for paper01234.pdf [details]

Concise explanations (like the one presented above) do not
show all the details and focus primarily on those conditions that
depend on the user, giving him the opportunity to fulfill the
conditions quickly. For example rule r3 talks about subscrip-
tions, but these details are omitted in the explanation above
because if John is not authenticated it makes no sense to in-
spect his subscription. However, John could still request the
full explanation by clicking on the [details] link.

John did disclose his id credential and wonders why the au-
thentication failed. By clicking on that condition he eventually
finds why (the definition of id/1 is not shown in Figure 1):

I can’t find any Cred such that Cred is an id because:
c012 is a credential with

type student-id and issuer Open University [details]
student-id is an id-type [details]
but
it is not the case that

Open University is trusted for id [details]

This explains why John’s request has not been accepted: the
certification authority (CA) ’Open University’ on his credential
is not among the trusted CAs for id credentials at the library
service. Note that the above explanations anticipate the results
of each subgoal (e.g. a failure, or the answer substitution fixing
the credential’s identifier, type and issuer). In case of multiple
answer substitutions, the user can inspect the list of all answers
of a subgoals and apply some, to focus on a subset of all proof
attempts (see refinement links in the following sections).

John might ask for a complete explanation of the possible
ways of obtaining the paper by issuing a how-to query. The
result would be:

to make sure that it is allowed to download Resource
nothing needs to be done if
Resource is public [details]

alternatively
please make sure that for some User

User is authenticated [details]
where, for some Subscription,
User has subscription Subscription
and
Resource is available for Subscription [details]

alternatively
please make sure that for some User
User is authenticated [details]
and
User has paid for Resource [details]

Again, John can get a specific how-to explanation for each
of the above conditions by clicking on it. The “make sure”
part contains predicates that depend on user actions (includ-
ing credential); they are identified via a standard predicate
dependency graph. Due to space constraints, what-if queries,
why queries, and “technical” (level 2) explanations that pro-
vide full proof details are not discussed in this paper.

5 Explanation Structures

To meet page limitations, we present here slightly simplified
explanation structures that do not support blurred predicates
(which involve notions similar to abductive explanations and
verbalizations such as: “it might be the case that...”).

We assume the reader to be familiar with the basics of logic
programming, including the notions of most general unifier
(mgu) and (computed) answer substitution. The reader is re-
ferred to [8] for these matters. There are some delicate techni-
cal aspects in handling substitutions, related to standardization
apart. So we assume a function ansE

P (G) that for all programs
P , all goals G, and all expressions E returns a complete (up
to variable renaming) set of answer substitutions whose range
does not contain any variable occurring in P , E, G.

Before formalizing explanations we tackle the problem of re-
ferring to structured objects, such as credentials, that are typ-
ically denoted by means of internal identifiers (handles) that
have no meaning to the common user. We noted that the at-
tribute atoms obj.attr:val in a rule body are typically the rel-
evant, characterizing attributes of the complex object whose
handle is obj—see for instance the why-not explanation refer-
ring to credential c012 in Section 4. In a given negotiation,
these attributes almost always identify a unique object when
their values are fixed. So our idea is using these attributes as a
key to identify the object. For this purpose, we look for subsets
of the body called clusters that correspond to concepts with
attributes (a sort of terminological expression) and treat them
as a description of the complex object.

Definition 1 (Clusters) Let L = p(t) where p is a unary
predicate and t is a term. If L ∈ body(r), then a cluster of L
(in r) is a set containing L and some attribute subgoals (u.a :
v) ∈ body(r) with u = t. A cluster is complete if it contains
all such subgoals. If t is a variable, then it is called the main
variable of the cluster; L and p are called the main literal and
the main predicate of the cluster, respectively.

Example 1 The policy rule instance r6 in Figure 1 contains
one complete cluster (the first three literals in the body) whose
main literal is id(Credential). The cluster denotes “the id
with name User and public key K”. 2

Remark 1 Clusters are more flexible than key attributes be-
cause they can be applied also to those classes of objects that

have no key attributes. Moreover, clusters reduce the frame-
work instantiation effort, because they need no manual inter-
vention (while key attributes must be specified by knowledge
engineers). Clusters are very useful in why not queries, where
incomplete clusters allow to explain situations such as: “there
is an id with name J. Smith, but the public key is not k012”.

While a single atom like credential(X) may have multiple
solutions, often its cluster has just one answer (in this sense
the attributes of X characterize X). By applying this substi-
tution, we specify the credential we are talking about. The
process of exhaustively applying substitutions when they are
the unique answer of a cluster or a subgoal is formalized as a
binary (rewrite) relation −→U over annotated rules (r, θ). The
precise definition and the heuristics for the cases where dif-
ferent rewrite sequences yield different results3 are in the full
report. The framework can be adapted to different heuristics
simply by changing the definition of −→U .

We are ready to formalize explanations. They are graphs
(abstracting a hypertext) where each node illustrates: (i) the
local context for a goal, that is, the rules whose head unifies
with that goal; (ii) a global view of all the proof attempts,
consisting in the answers of each rule body and subgoal thereof.
Such answers provide a sort of lookahead on proof outcomes
that may help the user in navigating the proof. We proceed
by defining the explanation graph, starting with its nodes and
entry points.

Definition 2 An explanation node for a program P is a finite
set of pairs (r, θ) where r ∈ P and θ is a substitution.

The explanation entry point for an atom A w.r.t. P , denoted
by entryP (A), is the (unique) explanation node X for P such
that

X = {(r, θ) | r ∈ P , A is unifiable with head(r),
and (r, mgu(A, head(r))) −→U (r, θ) } .

There are two kinds of navigation links: detail links and re-
finement links. Informally, the former expand the proof details
by showing the rules that can be used to prove a subgoal; the
latter apply answer substitutions locally to the rule to see the
effects on the other subgoals and focus on a subset of all the
possible proofs.

Now we can proceed with the formalization of navigation
links. They lead directly to nodes where unique answers have
been propagated, and consider only maximally general answer
substitutions to reduce redundancy. So we need a function
mg(S) that for all sets of substitutions S returns the maxi-
mally general elements of S. In the following we extend −→U

to explanation nodes as follows:

X1 −→U X2 iff X2 = {(r, θ′) |
for some (r, θ) ∈ X1, (r, θ) −→U (r, θ′)} .

Definition 3 (Level 1 navigation link) For all explana-
tion nodes X1 and X2 for P we define:

detail links: X1
L
;D X2 iff for some (r, θ) ∈ X1 and some

L ∈ body(r), entryP (Lθ) −→U X2;
refinement links: X1

σ
;R X2 iff for some (r, θ) ∈ X1 and

some L ∈ body(r), σ ∈ mg(ansr
P (Lθ)) and {(r, θσ)} −→U

X2

3 This may happen if body(r) fails.

Example 2 Let P be the program illustrated in Fig-
ure 1 extended with time-dependent facts, and A =
allow(′paper0123.pdf′). If the body literals of r2, r3, and r4
have no solutions, then entryP (A) = {(r2, θ), (r3, θ), (r4, θ)}
where θ = [Resource = ′paper0123.pdf′]. If only
authenticated(User) has a unique solution, say, [User =
′John′], then entryP (A) = {(r2, θ), (r3, θ′), (r4, θ

′)} where θ′ =
[Resource = ′paper0123.pdf′,User = ′John′]. Now suppose
that the subgoal has subscription(John,Subscription) of r3θ

′

has two answer substitutions σ, σ′. The action of select-
ing and applying σ to r3 is formalized by crossing the re-
finement link entryP (A)

σ
;R {(r2, θ), (r3, θ′σ), (r4, θ

′)}. Oth-
erwise, the action of expanding the details of the subgoal
L = authenticated(User) of r3θ

′ is formalized by the detail
link entryP (A)

σ
;R {(r6, γ), (r7, γ

′)}, where γ, γ′ result from
applying the unique answers of the subgoals of r6 and r7. 2

Definition 4 A level 1 explanation graph for an atom A
w.r.t. a partially specified program P is a minimal structure
(V, ED, ER) closed under the following properties:

1. V contains entryP (A);

2. if for some X1 ∈ V , X1
L
;D X2 then V contains exactly one

variant X̃2 of X2, and ED contains an edge (X1, L, X̃2);
3. if for some X1 ∈ V , X1

σ
;R X2 then V contains exactly one

variant X̃2 of X2, and ER contains an edge (X1, σ, X̃2).

Since our programs are basically Datalog programs, it can be
shown that the explanation graph is always finite. It is cyclic
in the presence of infinitely failed proofs, and the browser can
highlight loops by marking the nodes that have already been
visited. In the full paper, explanation structures are defined as
explanation graphs labelled with suitably filtered answer sub-
stitutions (the global, possibly inter-proof information).

6 Verbalization

Explanation structures are translated into natural language
sentences by instantiating text patterns. The verbalization pat-
terns for application dependent literals must be supplied during
the framework instantiation phase. They are typically formu-
lated with simple Protune metafacts like:

is authenticated(X).explanation : [X, is, authenticated]

If necessary, proper rules (with nonempty body) can be used
and it is also possible to define text patterns for negative lit-
erals. By default, variable names are taken from the original
rule—which is the first element of the current node (r, θ).

A cluster C = {L, t.a1 : v1, . . . , t.an : vn} of (r, θ) with main
literal L is verbalized as a single condition:

verb(L1θ) with a1 v1, a2 v2,. . . , and an vn.

The rest of this section is implicitly formulated w.r.t. the
following context:

• a node X = {(r1, θ1), . . . , (rz, θz)} of XG (the current
node);

• an atom A (the one being currently explained), more general
than head(riθi) for 1 ≤ i ≤ z.

For all clusters or literals Y and for all substitutions θ, the
verbalization of Y θ will be denoted by verb(Y, θ). For the sake
of simplicity, the navigation links will not be shown.

We show the verbalization details for why-not queries (the
details for the other queries are in the full paper). They start
with:

I can’t prove that verb(A, ε) because: (if A is ground)
I can’t find any <var list> such that verb(A, ε) because:

(if A is not ground).
The above incipit is followed by the verbalization of all

(ri, θi) ∈ X. Each pair (ri, θi) is formatted according to the
following pattern:

Rule <rule identifier> is not applicable:

<Success Slot> but <Failure Slot>

where but is omitted if any of the two slots is missing. The
Success Slot in its most complete version is verbalized as:

<quantification>
verb(Y1, θi) and ...and verb(Ym, θi) and verb(L1, θi)
and ...and verb(Ln, θi)

where Y1 . . . Ym are all the ⊆-maximal clusters in body(riθi)
with a single answer (i.e. |ansP (Yi)| = 1), and L1 . . . Ln are all
the literals with a single answer (i.e. |ansP (Lj)| = 1) that do
not occur in Y1 . . . Ym.

If body(riθi) contains some failed clusters or literals (with
zero answers), then the Failure Slot is verbalized as4

verb(notZ1, θi) moreover...moreover
verb(notZj , θi) moreover verb(notL′

1, θi) more-
over...moreover verb(notL′

k, θi)

where {Z1 . . . Zj}, denoted by minfailed, consists of the ⊆-
minimal failed clusters in body(riθi), and L′

1 . . . L′
k are the

failed literals in body(riθi) that neither occur in minfailed nor
belong to the set of attribute atoms t.a:v such that t is the
main variable of a singleton cluster in minfailed. Wit the latter
condition, the attributes of non-existing objects are ignored.

Example 3 If no id has been provided, then (with this con-
dition) the why not verbalization of r6 is simply: “there
is no Credential such that Credential is an id” as ex-
pected. A naive approach would have produced something like
“there is no Credential such that Credential is an id

with name User and public key K”, which is misleading. 2

If no clusters or literals fail, the Failure Slot is verbalized as

each of the following facts has some solution
<quantification> verb(L′′

1) ... <quantific.> verb(L′′
k)

but there is no common solution

where L′′
1 . . . L′′

k are the literals with two or more solutions in
body(riθi). Via refinement links, the user may apply a cho-
sen answer substitution and explore why it eventually fails (i.e.
which other subgoals become failed after applying that substi-
tution).

7 Conclusions

In TN it is possible to construct good explanations in response
to why, why not, how to, and what if queries, using simple
generic explanation strategies based on the intended meaning
of a few core predicates with a special role in negotiations. The

4 In the following expression we identify not notA and A.

only extra workload needed during the framework instantiation
phase to support explanations consists in writing literal verbal-
ization patterns. Moreover, the extra computational burden on
the server can be limited to adding a few more rules to the fil-
tered policies (the literal verbalization rules) because the expla-
nations can be independently produced on the clients. Despite
its simplicity, our explanation mechanism supports most of the
advanced features of second generation explanation systems.

Another contribution of our work is a novel explanation
structure combining local and global information about single
and multiple proof attempts. The new explanation structures
are analogous to the tables of tabled logic programming en-
gines, so our work might be applied to execution tracing in
tabled Prolog implementations like XSB. Our method provides
an effective way of explaining infinitely failed proofs. Global
proof information and heuristics help in focussing the expla-
nation strictly on relevant details. The resulting explanations
have no counterpart in previous literature.

REFERENCES
[1] R. Barzilay, D. McCullough, O. Rambow, J. DeChristofaro,

T. Korelsky, and B. Lavoie. A new approach to expert sys-
tem explanations. In 9thInternational Workshop on Natural
Language Generation, pages 78–87. 1998.

[2] P. A. Bonatti and D. Olmedilla. Driving and monitoring pro-
visional trust negotiation with metapolicies. In 6th IEEE In-
ternational Workshop on Policies for Distributed Systems and
Networks, pages 14–23, jun 2005.

[3] Bonatti et al. The rewerse view on policies. In Proc. of
the ISWC Semantic Web Policy Workshop (SWPW), http:
//ebiquity.umbc.edu/get/a/publication/215.pdf, 2005.

[4] H. Chalupsky and T. A. Russ. Whynot: debugging failed
queries in large knowledge bases. In 14th national conference
on Artificial intelligence, pages 870–877, 2002.

[5] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and
M. Winslett. No registration needed: How to use declarative
policies and negotiation to access sensitive resources on the
semantic web. In 1st European Semantic Web Symposium,
volume 3053, pages 342–356, may 2004.

[6] S. R. Haynes. Explanation in Information Systems: A Design
Rationale Approach. PhD thesis, London School of Economics
and Political Science, Dept. of Information Systems and Dept.
of Social Psychology, 2001.

[7] A. Kapadia, G. Sampemane, and R. H. Campbell. Know why
your access was denied: regulating feedback for usable security.
In 11th ACM conference on Computer and communications
security, pages 52–61, 2004.

[8] J. Lloyd. Foundations of logic programming. Springer-Verlag,
1984.

[9] D. L. McGuinness and P. P. da Silva. Explaining answers from
the semantic web: The inference web approach. Journal of Web
Semantics, 1(4):397–413, 2004.

[10] D. L. McGuinness and P. P. da Silva. Trusting answers from
web applications. In New Directions in Question Answering,
pages 275–286, 2004.

[11] W. Swartout, C. Paris, and J. Moore. Explanations in knowl-
edge systems: Design for explainable expert systems. IEEE
Expert: Intelligent Systems and Their Applications, 6(3):58–
64, 1991.

[12] M. C. Tanner, A. Keunecke, and B. Chandrasekaran. Expla-
nation using task structure and domain functional models. In
Second Generation Expert Systems, pages 586–613. 1993.

[13] M. C. Tanner and A. M. Keuneke. Explanations in knowledge
systems: The roles of the task structure and domain functional
models. IEEE Expert: Intelligent Systems and Their Applica-
tions, 6(3):50–57, 1991.

[14] M. R. Wick. Second generation expert system explanation. In
Second Generation Expert Systems, pages 614–640. 1993.

