
Attempto Controlled English Meets the Challenges of
Knowledge Representation, Reasoning, Interoperability and User Interfaces

Norbert E. Fuchs and Kaarel Kaljurand and Gerold Schneider
Department of Informatics & Institute of Computational Linguistics

University of Zurich
Email: {fuchs,kalju,gschneid}@ifi.unizh.ch

Abstract

We present Attempto Controlled English — a user-
friendly first-order logic language with a rich English
syntax — and its associated tools, and demonstrate how
they meet the challenges of knowledge representation,
reasoning, interoperability and user interfaces created
by large software projects like the semantic web.

Introduction
Large software projects, for instance the semantic web, cre-
ate enormous challenges for the representation of knowl-
edge, for reasoning, for interoperability and for user inter-
faces.

Languages like first-order logic, UML and OWL are gen-
erally considered to meet the challenges of knowledge rep-
resentation, reasoning and interoperability. However, these
languages are hard to understand by the non-initiated, and
thus fail the challenge of providing generally acceptable user
interfaces.

Concerning user interfaces, natural language excels as the
prototypical means of human communication. Natural lan-
guage is easy to use and to understand, and does not need
an extra learning effort. Furthermore, natural language is
highly expressive, and can be used in any application do-
main. Some researchers even consider natural language “the
ultimate knowledge representation language” (Sowa 2000).
On the other hand, natural language has traditionally been
dismissed as too ambiguous and too resource-consuming to
be suitable as a knowledge representation language. We be-
lieve that this rebuttal needs to be revisited, and that Sowa’s
claim can be substantiated.

The past decade has brought spectacular progress for nat-
ural language processing (NLP). Thanks to the integration
of statistics, both precision and recall in NLP have reached
new levels (Collins 1999; Bod 2001). On the other hand, a
sobering realisation is being made: precision and recall val-
ues of 80 to 95 % seem to be the ceiling for current statistical
NLP approaches. To achieve reliable knowledge bases, hu-
man intervention would be required, a scenario that is not
practical in general.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Fortunately, there has also been great progress in another
line of NLP research, namely controlled natural languages
(Controlled Natural Languages 2006). A controlled natural
language is a subset of the respective natural language that is
specifically designed to serve as a documentation, specifica-
tion or knowledge representation language. The ambiguity
and vagueness of full natural language can be avoided and
efficient processing is possible.

In the last years, we have developed the specification and
knowledge representation language Attempto Controlled
English (ACE). For details check the Attempto website (At-
tempto project 2006). The current version 4 of ACE of-
fers language constructs like countable and mass nouns,
collective and distributive plurals, generalised quantifiers,
indefinite pronouns, phrasal and prepositional verbs, noun
phrase/verb phrase/sentence negation, and anaphoric refer-
ences to noun phrases through proper names, definite noun
phrases, pronouns, and variables.

Every ACE sentence conforms to standard English gram-
mar and has an unambiguous meaning — even if the same
sentence may appear ambiguous in unconstrained English.

Though appearing completely natural, ACE is a formal
language defined by an abstract grammar and by a con-
crete grammar implemented by the Attempto Parsing Engine
(APE). APE translates an ACE text into a first-order repre-
sentation which allows us to assign ACE a formal semantics.
In brief, ACE is a logic language with an English syntax.

Controlled natural languages have been developed by
other groups for various purposes. For an excellent overview
consult the Controlled Natural Languages Homepage (Con-
trolled Natural Languages 2006). Closest to our work
are Boeing’s Computer Processable Language (Clarket al.
2005), Schwitter’s Processable English (PENG 2006), and
Sowa’s Common Logic Controlled English (Sowa 2004).

In the following sections we will show how ACE meets
the challenges of knowledge representation, reasoning, in-
teroperability, and user interfaces. Then we conclude and
point to future research.

Knowledge Representation in ACE
Here we present only a brief overview of the language ACE.
For a comprehensive description see (Fuchset al. 2005a).



A

object(A,atomic,airline,object,cardinality,countunit,eq,1)
⇒

B C

object(B,group,aircraft,object,cardinality,countunit,eq,2)
predicate(C,unspecified,buy,A,B)

Figure 1: DRS corresponding to the ACE sentence “Every airline buys 2 aircraft.”

ACE Syntax An ACE text consists of anaphorically inter-
related simple and composite sentences.

Simple sentences contain a verb that can be intransitive,
transitive or ditransitive. Furthermore, there is the cop-
ula ‘be’. Verbs can be complemented by noun phrases
and prepositional phrases (acting as subjects, direct objects
and indirect objects), and modified by optional adverbs and
prepositional phrases. Noun phrases contain a noun that
must be preceded by a determiner, and that can be mod-
ified by adjectives, possessive pronouns, Saxon genitives,
of-constructs, appositions (variables or strings) and rela-
tive clauses. Phrases of the same type can usually be co-
ordinated.

Composite sentences are recursively built from simpler
sentences by co-ordination (and, or, ...), quantification (ev-
ery, all, for every, for all, there is, ...), negation (no, does/is
not, it is not the case that, ...), and subordination (if-then).

Though the ACE syntax is simple, ACE sentences can get
quite complex, for example

(1) Every big and red button ”Go!” of an upper panel
that is illuminated and that is not inactivated controls
the aircraft on the runway.

ACE also supports interrogative sentences, for instance

(2a) Is the button inactivated?
(2b) What does the button control?
(2c) Where does the button control the aircraft?

The ACE lexicon contains a fixed set of predefined func-
tion words, and a large set of content words (nouns, verbs,
adjectives, adverbs) that users can extend. Each content
word can be simple or compound. Verbs are restricted to
simple present tense, third person singular and plural, active
voice, and indicative mood.

ACE Semantics The semantics of an ACE text is de-
fined by mapping it to Discourse Representation Structures
(DRS), i.e. to first-order logic.

We have extended the standard language of DRSs (Kamp
& Reyle 1993; Blackburn & Bos 1999) to express plural-
ity in first-order logic and to be able to effectively formulate
reasoning axioms (Fuchset al. 2005b). Our DRS represen-
tation strikes a balance between the intuitively acceptable
meaning of ACE sentences and computational tractability.
The sentence

(3) Every airline buys 2 aircraft.

is translated into the DRS in figure 1. Logical atoms are
formed from a small set of predefined predicates likepred-
icate/5 , that have as arguments reified predicates derived

from content words. Reification allows us to quantify over
the arguments of the predefined predicates, thus expressing
general aspects of relations in first-order axioms that oth-
erwise would require higher-order logic (Hobbs 1985). In
order to deal with plural constructions (Schwertel 2004), in-
formation about the quantity of objects, and a distinction
between countable and mass nouns are introduced into the
DRS. Refer to (Fuchset al. 2005b) for a comprehensive
description of the extended DRS language.

Synonymy is an important means to render texts more nat-
ural. ACE provides synonymy both on the syntactical as
on the lexical level. On the syntactical level, different ACE
texts can be mapped to the same DRS, i.e. have the same
semantics. For instance, sentence (3) can be replaced by the
semantically equivalent sentence

(3’) If there is an airline then the airline buys 2 aircraft.

With regard to lexical synonymy, each content word can
have any number of synonyms called aliases. During pars-
ing, aliases are replaced by the main word.

Handling Ambiguity As a formal language, ACE is not
ambiguous. To achieve this we employ three means.

First, some ambiguous constructs are not part of ACE;
unambiguous alternatives are available in their place.

Second, all remaining ambiguous constructs are inter-
preted deterministically using a small set of interpretation
rules. Syntactically marked ACE constructs exist to express
alternative readings. This syntax-oriented approach renders
disambiguation intelligible, reproducible and fast.

Third, the ACE parser generates a paraphrase in a subset
of ACE called Core ACE that the users can accept or reject.
If the users do not accept the paraphrase then they have to re-
formulate the input. Contrast this with approaches in which
the parser generates all possible readings and then lets the
user choose the intended one.

We now consider some examples of interpretation rules.
Please note that the braces{} used in the examples are not
part of ACE, and are only introduced to emphasise the inter-
pretations.

• Quantifier scoping: The textual occurrence of a quantifier
opens its scope that extends to the end of the sentence,
respectively conjoined sentence.
To express the two readings of the English sentence ‘Ev-
ery airline owns an aircraft.’ one writes in ACE

(4) {Every airline owns{an aircraft}}.
(5) {There is an aircraft that{every airline owns}}.

• Sentential negation scoping: The scope of sentential nega-
tions does not include co-ordinated sentences. A wider



scope can be forced by repeating the subordinating con-
junction.

(6) {It is not the case that an aircraft waits} and a
runway is empty.
(7) {It is not the case that an aircraft waits and that a
runway is empty}.

• Plural interpretations: Plural noun phrases have collective
reading. Distributive reading is expressed by the ‘each of’
construct.

(8) A technician services 2 aircraft.
(9) A technician services each of 2 aircraft.

• Lexical ambiguity: To resolve the lexical ambiguity be-
tween intransitive verbs (wait) plus prepositional phrase
(on a runway) and prepositional transitive verbs (wait on
somebody), ACE expects that the preposition of a prepo-
sitional verb is hyphenated to the verb.

(10) An aircraft waits{on a runway}.
(11) A stewardess{waits-on} a passenger.

For a complete listing of the ACE interpretation rules, re-
fer to (Fuchset al. 2005a).

Resolving Anaphoric References Anaphoric references
are an important mechanism to achieve a coherent and nat-
urally sounding text. Efficient resolution of anaphoric refer-
ences contributes to a great degree to the overall efficiency
of processing (controlled) natural language.

ACE provides proper names, pronouns, variables and def-
inite noun phrases as anaphoric references to noun phrases.

Proper names always denote the same object and thus
serve as their own anaphoric references. In all other cases
anaphoric references refer to indefinite noun phrases, and
their resolution is governed by accessibility, recency, speci-
ficity, and reflexivity. This renders resolution intelligible,
reproducible, and furthermore highly efficient.

With a sole exception, classical DRS accessibility con-
straints apply. This means that a noun phrase is not acces-
sible if it occurs in a negated or in a universally quantified
context. A noun phrase introduced in the if-part of an if-then
sentence is accessible in the then-part.

(12) A pilot does not have a valid licence. *It is expired.
(13) If an aircraft is on the runway then the aircraft has
a running engine. *It does not run.

(NB. Sentences prefixed with * are not accepted by the
ACE parser.)

Following DRS accessibility constraints, noun phrases in-
troduced in a disjunction are not accessible outside of the
disjunction. However, contrary to standard DRS accessibil-
ity constraints, a noun phrase introduced in a disjunct is ac-
cessible in subsequent disjuncts.

(14) An engine runs or it does not run. *It is serviced.

If the anaphor is a non-reflexive personal pronoun (he,
him, ...), or a non-reflexive possessive pronoun (his, ...), or a
relative pronoun then the anaphor is resolved with the most
recent accessible noun phrase that agrees in gender and num-
ber, and that is not the subject of the sentence.

(15) The aircraft of the pilot is serviced. Its engine runs.
He is satisfied.
(16) An officer checks the licence of a pilot who is new.
(= the pilot is new)
(17) An officer checks the licence of a pilot which is
new. (= the licence is new)

If the anaphor is a reflexive personal pronoun (herself,
...), or a reflexive possessive pronoun (her own, ...), then
the anaphor is resolved with the subject of the sentence in
which the anaphor occurs if the subject agrees in gender and
number with the anaphor.

(18) A pilot looks-at his own licence and reassures him-
self.

If the anaphor is a definite noun phrase then it is re-
solved with the most recent and most specific accessible
noun phrase that agrees in gender and number. Specificity
includes all modifications of a noun, i.e. adjectives, Saxon
genitives, of-relations, appositions and relative clauses.

(19) There is an aircraft that has a normal engine. There
is an aircraft that has a special engine. There is an air-
craft that has 2 engines. The pilot chooses the aircraft
that has a normal engine. (= the pilot chooses the first
aircraft)

If a definite noun phrase cannot be resolved then it is inter-
preted as an indefinite noun phrase introducing a new object.

If the anaphor is a variable then it refers to the noun phrase
that introduces the variable.

(20) There is an aircraft X that has a normal engine.
There is an aircraft Y that has a special engine. The
pilot chooses X.

Core ACE Removing all synonymous syntactic constructs
from ACE, we arrive at a subset of ACE called Core ACE.
Core ACE is semantically equivalent to full ACE but lacks
its syntactic variants.

Core ACE uses full sentences instead of relative phrases,
allows only sentence negation, replaces universal quantifi-
cation by if-then constructs, substitutes of-constructs for
Saxon genitives, knows only definite noun phrase anaphors,
and fixes the word order. Note that Core ACE does cur-
rently not cover distributive plural noun phrases and wh-
interrogative sentences.

Core ACE can be used for several purposes, the main one
being to paraphrase ACE texts. Such paraphrases fulfil the
following requirements

• the paraphrase is semantically equivalent to the original,

• the mapping is deterministic,

• the paraphrase needs fewer interpretation rules to be un-
derstood.

E.g. the paraphrase of example (1) is

(21) If there is a big and red button ”Go!” of an upper
panel and the upper panel is illuminated and it is not the
case that the upper panel is inactivated then the big and
red button ”Go!” of the upper panel controls an aircraft
on a runway.



As a downside, some ACE texts (those that fall into the
Core ACE subset) are not paraphrased into a different form.
Also, due to the syntactic restrictions of Core ACE, para-
phrases can sound less natural than the original ACE text.

The paraphrase of an ACE text is generated by translating
the DRS derived from the text back into Core ACE (Fuchs,
Kaljurand, & Schneider 2005). Parsing the paraphrase gives
the same DRS and consequently the same paraphrase.

Implementation The Attempto Parsing Engine (APE)
translates an ACE text into a DRS. APE is implemented
in Prolog as a Definite Clause Grammar (DCG) using fea-
ture structures. APE relies on a lexicon of function words
and a full-form lexicon of about 100,000 content words de-
rived from COMLEX (Wolff, Macleod, & Meyers 1998;
Bünzli 2004). The resolution of anaphoric references is im-
plemented as a separate module that accepts an unresolved
DRS with additional conditions for anaphors and potential
antecedents and produces a resolved DRS as the final out-
put.

APE is publicly available via a remote procedure call, im-
plemented as a REST webservice. The service translates
an ACE text into a DRS, and optionally provides informa-
tion about the tokenisation, syntax, paraphrase, and classical
first-order logic representations of the input text. As an ex-
ample of using the webservice, we provide a webclient. The
current version of the webclient allows to input an ACE text,
supplement APE’s internal lexicon with a user lexicon, and
control the display of the output.

ACE for Knowledge Representation As a first-order
logic language, ACE certainly fulfils the prerequisites of a
knowledge representation language, but only its application
to a range of problems can determine its usefulness and prac-
ticality. As the saying goes, the proof of the pudding is in
the eating.

ACE was originally developed as a specification lan-
guage, and was used, for instance, to specify an automated
teller machine, Kemmerer’s library data base (Schwitter
1998), data base integrity constraints (Fuchs, Schwertel, &
Torge 2000), and Kowalski’s subway regulations (Fuchs,
Schwertel, & Schwitter 1999). Currently, ACE is used to
express an ontology of proteins and their interactions (Kuhn
2006). In 2004, ACE was adopted as the controlled language
for the EU Network of Excellence REWERSE (Reasoning
on the Web with Rules and Semantics) (REWERSE 2006).

Since ACE has been successfully used by several re-
searchers for a variety of problems, we confidently claim
that it has proved to meet the challenge of a knowledge rep-
resentation language.

Reasoning in ACE
RACE The Attempto Reasoner (RACE) supports auto-
matic reasoning in ACE. Currently, RACE proves that one
ACE text is the logical consequence of another one, and
gives a justification for the proof in ACE. If there is more
than one proof then RACE will find all of them. Varia-
tions of the basic proof procedure permit query answering
and consistency checking.

Implementation The functionality of RACE is defined by
a set of requirements (Fuchs & Schwertel 2003) that reflect
our philosophy to make formal methods available to people
who are not familiar with them. As the basis for RACE we
took theorem provers and model generators available off-
the-shelf, prototypically implemented RACE with each of
them, and evaluated the prototypes with respect to the re-
quirements. The best results were achieved with Otter and
Satchmo. The current Prolog implementation of RACE is
based on the model generator Satchmo (Fuchs & Schwertel
2003). Thus, RACE performs not only theorem proving but
also model generation.

Satchmo (Manthey & Bry 1988) is implemented as a
small, efficient Prolog program. Adapting it to fulfil RACE’s
requirements, and still preserve most of its efficiency, turned
out to be no easy task. To compensate for the loss of ef-
ficiency caused by the additional functionality of RACE,
we introduced optimisations like clause compaction, and in-
formed search.

ACE axioms and ACE theorems are first translated into
DRSs and then into first-order clauses in which the actual
reasoning is performed. Reasoning is supported by auxil-
iary first-order axioms for the lattice-theoretic implementa-
tion of plurals, for the processing of equality and for other
purposes. Prolog predicates are used for the operations on
natural numbers. The results of a proof are reported using
the original ACE axioms and theorems. In the spirit of the
Attempto project, intermediate results are hidden from the
users. Also, users need not set parameters to control proofs.

Examples Here is a simple example of using RACE for
consistency checking. Given the ACE text

Every airline that buys a standard aircraft gets a dis-
count. A British airline buys a standard aircraft. A
French airline buys a standard aircraft. There is no air-
line that gets a discount.

RACE finds two inconsistent subsets

Every airline that buys a standard aircraft gets a dis-
count. A French airline buys a standard aircraft. There
is no airline that gets a discount.

Every airline that buys a standard aircraft gets a dis-
count. A British airline buys a standard aircraft. There
is no airline that gets a discount.

Here is another simple example for theorem proving. Given
the ACE axioms

Every airline that buys an aircraft gets a discount. Each
of 6 Swiss airlines buys an aircraft.

and the ACE theorem

An airline gets a discount.

RACE proves that the sentence

An airline gets a discount.

can be deduced from the sentences

Every airline that buys an aircraft gets a discount. Each
of 6 Swiss airlines buys an aircraft.



using the auxiliary axioms

(Ax. 9): Definition of properpart of.
(Ax. 10-1): Every group consists of atomic parts.
(Ax. 22-1): Number Axiom.

Notice that three auxiliary axioms (and also hidden Pro-
log predicates for natural numbers) are needed to prove the
theorem.

Until now, RACE has only been applied to a few smaller
problems like Schubert’s steamroller, and Lewis Carroll
puzzles. A realistic application is planned within ongoing
work on protein ontologies. For the time being, we can only
state that RACE offers a promising approach to reasoning in
ACE, but that convincing results are still missing.

Interoperability Support
Interoperability among applications, for instance those dis-
tributed over the WWW, is a complex technical and organ-
isational problem. To support interoperability we provide
translations of ACE into and from other languages.

All of these translations rely on DRSs as interlingua.
While the Attempto Parsing Engine (APE) translates ACE
into DRSs, the reverse translation of DRSs into Core ACE
is performed by the complementary tool DRACE.

First-Order Languages A DRS can be further translated
into formal languages equivalent to the language of first-
order logic. For example, translations into the standard and
the clausal form of first-order logic are used within RACE.
The reverse translation of first-order logic expressions into
DRSs is already defined (Fuchs, Kaljurand, & Schneider
2005), and is about to be implemented.

Subsets of First-Order Languages Transformations into
languages equivalent to subsets of first-order logic — e.g.
the languages PQL (Bernstein, Kaufmann, & Fuchs 2005),
PRQ (Fuchs, Schwertel, & Torge 2000), FLUX (Dawelbait
2004) that were used in practical applications of ACE —
usually ignore some information of the DRS. Transforma-
tion of a DRS into semantic web languages also fall into
this category. Concretely, in a prototypical implementation
we already translate ACE into a subset of OWL. In another
project, David Z. Hirtle at the University of New Brunswick
translates ACE into RuleML. There are not yet any transfor-
mations of these languages into DRSs; we plan, however, a
translation of OWL DL into DRSs.

On the basis of these results, we believe that ACE
promises to be a valuable support for interoperability.

ACE as User Interface
Natural language as the prototypical means of human com-
munication is an optimal means to communicate with com-
puter systems. With some reservations concerning expres-
sivity, this is also true for controlled natural languages like
ACE. Again, the proof of the pudding is in the eating, i.e. in
concrete applications — of which there are several.

ACE served as natural language interface for the model
generator EP Tableaux (Fuchs, Schwertel, & Torge 2000),
for a FLUX agent (Dawelbait 2004), and for MIT’s Process
Handbook (Bernstein, Kaufmann, & Fuchs 2005).

In (Kuhn 2006) ACE was used instead of OWL to de-
scribe an ontology of protein interactions.

Furthermore, ACE is being investigated for policy and
business rules within the EU Network of Excellence REW-
ERSE (REWERSE 2006). The feedback of the users was in
general positive, and resulted in constructive proposals for
extensions of ACE.

In a controlled experiment (Bernsteinet al. 2005), CS
students preferred ACE to SQL as database query language.
The students designed ACE queries resulting in a very good
retrieval performance (100% precision and 90% recall).
This tallies with our experience that ACE can be learned in
2–3 days with little previous knowledge.

On the basis of this we claim that ACE provides an excel-
lent basis for user interfaces.

Conclusions
We have presented Attempto Controlled English (ACE) and
associated tools, and assessed how far they meet the chal-
lenges of knowledge representation, reasoning, interoper-
ability and user interfaces. The results of this assessment
are generally positive, or at least encouraging, and show that
controlled languages form a promising bridge between nat-
ural language processing and knowledge representation.

We now discuss further work.

Knowledge Representation Currently, declarative and
interrogative ACE sentences are allowed. Following re-
quests from ACE users, we consider restricted forms of
modality, negation as failure, and support for prioritised
rules.

Reasoning Currently, RACE performs only deduction.
Further forms of reasoning, for instance hypothetical rea-
soning (‘What happens if ...?’), abductive reasoning (‘Under
which conditions ...?’) and temporal reasoning are planned.

Also, ACE will be applied to rule-based programming,
and to Grosof’s Courteous Logic Programming (Grosof
1999) for which we have already two interpreters accepting
rules expressed in Prolog (Dörflinger 2005).

Interoperability Once we will have completed the trans-
lation of first-order expressions into DRSs, we will have
a complete bidirectional mapping between ACE and first-
order logic, which can then complement DRSs as interlin-
gua. In addition, we are currently investigating a full bidi-
rectional mapping from a subset of ACE into OWL DL.

User Interfaces Many users of ACE see its potential as
interface language and have suggested relevant extensions
and enhancements. One of those proposals concerns extend-
ing ACE by imperatives. We have already developed a pro-
posal that is based on minimal extensions of the language,
and on processing imperative sentences as declarative ones.
Extending ACE by imperatives would allow us to use it in
a dialogue system, for instance to control interactively the
FLUX agent described in (Dawelbait 2004).

A mapping between ACE and OWL would enable ontol-
ogy building entirely on the level of ACE, and could replace
the complex graphical front-ends to OWL.



Acknowledgements
The authors would like to thank Stefan Höfler, Fabio Ri-
naldi, Uta Schwertel and Rolf Schwitter for their contri-
butions to the Attempto project. Further thanks go to the
anonymous reviewers for their constructive comments.

References
Attempto project. 2006. Attempto project website.http:
//www.ifi.unizh.ch/attempto .
Bernstein, A.; Kaufmann, E.; G̈ohring, A.; and Kiefer, C.
2005. Querying Ontologies: A Controlled English Inter-
face for End-users. In4th International Semantic Web Con-
ference.
Bernstein, A.; Kaufmann, E.; and Fuchs, N. E. 2005. Talk-
ing to the Semantic Web — A Controlled English Query
Interface for Ontologies.AIS SIGSEMIS Bulletin2(1).
Blackburn, P., and Bos, J. 1999.Working with Discourse
Representation Theory. An advanced Course in Computa-
tional Semantics.
Bod, R. 2001. What is the Minimal Set of Fragments that
Achieves Maximal Parse Accuracy? InProceedings of
ACL-2001.
Bünzli, A. 2004. AceLex — Lexikon f̈ur Ace. MA the-
sis. Institute of Computational Linguistics, University of
Zurich.
Clark, P.; Harrison, P.; Jenkins, T.; Thompson, J.; and Wo-
jcik, R. H. 2005. Acquiring and Using World Knowledge
Using a Restricted Subset of English. InFLAIRS 2005.
Collins, M. 1999.Head-Driven Statistical Models for Nat-
ural Language Parsing. Ph.D. Dissertation, University of
Pennsylvania, Philadelphia, PA.
Controlled Natural Languages. 2006. Controlled Nat-
ural Languages. http://www.ics.mq.edu.au/
˜rolfs/controlled-natural-languages .
Dawelbait, G. 2004. Attempto Controlled English (ACE)
as a Communication Language For a FLUX Agent. MSc
thesis. Department of Computer Science, Dresden Univer-
sity of Technology.
Dörflinger, M. 2005. Interpreting Courteous Logic Pro-
grams. Diploma Thesis. Department of Informatics, Uni-
versity of Zurich.
Fuchs, N. E., and Schwertel, U. 2003. Reasoning in At-
tempto Controlled English. InWorkshop on Principles and
Practice of Semantic Web Reasoning (PPSWR 2003), num-
ber 2901 in Lecture Notes in Computer Science. Springer.
Fuchs, N. E.; Ḧofler, S.; Kaljurand, K.; Rinaldi, F.; Schnei-
der, G.; and Schwertel, U. 2005a. Attempto Controlled
English (ACE), Language Manual, Version 4.0. Technical
report, Department of Informatics, University of Zurich.
Forthcoming.
Fuchs, N. E.; Ḧofler, S.; Kaljurand, K.; Schneider, G.; and
Schwertel, U. 2005b. Extended Discourse Representation
Structures in Attempto Controlled English. Technical Re-
port ifi-2005.08, Department of Informatics, University of
Zurich, Zurich, Switzerland.

Fuchs, N. E.; Kaljurand, K.; and Schneider, G. 2005.
Deliverable I2-D5. Verbalising Formal Languages in At-
tempto Controlled English I. Technical report, REWERSE.
http://rewerse.net/deliverables.html .
Fuchs, N. E.; Schwertel, U.; and Schwitter, R. 1999.
Attempto Controlled English — Not Just Another Logic
Specification Language. In Flener, P., ed.,Logic-Based
Program Synthesis and Transformation, number 1559 in
Lecture Notes in Computer Science. Manchester, UK:
Eighth International Workshop LOPSTR’98.
Fuchs, N. E.; Schwertel, U.; and Torge, S. 2000. A Natu-
ral Language Front-End to Model Generation.Journal of
Language and Computation1(2):199–214.
Grosof, B. N. 1999. Compiling Prioritized Default Rules
into Ordinary Logic Progams. Technical Report RC 21472,
IBM Research, IBM T.J. Watson Research Center.
Hobbs, J. R. 1985. Ontological promiscuity. InProceed-
ings of the 23rd annual meeting on Association for Com-
putational Linguistics, 60–69. Morristown, NJ, USA: As-
sociation for Computational Linguistics.
Kamp, H., and Reyle, U. 1993.From Discourse to Logic.
Introduction to Modeltheoretic Semantics of Natural Lan-
guage, Formal Logic and Discourse Representation The-
ory. Kluwer Academic Publishers.
Kuhn, T. 2006. Expressing Ontological Knowledge of Pro-
tein Interactions in Attempto Controlled English. Diploma
Thesis. Department of Informatics, University of Zurich.
Manthey, R., and Bry, F. 1988. SATCHMO: A Theorem
Prover Implemented in Prolog. InCADE 88, Ninth Inter-
national Conference on Automated Deduction, volume 310
of Lecture Notes in Computer Science, 415–434. Argonne,
Illinois: Springer.
PENG. 2006. PENG website.http://www.ics.mq.
edu.au/˜rolfs/peng/ .
REWERSE. 2006. REWERSE website.http://
rewerse.net .
Schwertel, U. 2004.Plural Semantics for Natural Lan-
guage Understanding – A Computational Proof-Theoretic
Approach. Ph.D. Dissertation, University of Zurich.
Schwitter, R. 1998. Kontrolliertes Englisch f̈ur An-
forderungsspezifikationen. Ph.D. Dissertation, Department
of Computer Science, University of Zurich.
Sowa, J. F. 2000.Knowledge Representation: Logical,
Philosophical, and Computational Foundations. Pacific
Grove, CA: Brooks Cole Publishing Co.
Sowa, J. F. 2004. Common Logic Controlled English.
Technical report. Draft, 24 February 2004,http://
www.jfsowa.com/clce/specs.htm .
Wolff, S. R.; Macleod, C.; and Meyers, A. 1998. COM-
LEX Word Classes Manual. Technical report, New York
University.


