
Data Model and Query Constructs for Versatile

Web Query Languages: State-of-the-Art and

Challenges for Xcerpt

François Bry, Tim Furche, and Benedikt Linse

Institute for Informatics, University of Munich,
Oettingenstraße 67, 80538 München, Germany

http://pms.ifi.lmu.de/

Abstract. As the Semantic Web is gaining momentum, the need for
truly versatile query languages becomes increasingly apparent. A Web
query language is called versatile if it can access in the same query pro-
gram data in different formats (e.g. XML and RDF). Most query lan-
guages are not versatile: they have not been specifically designed to cope
with both worlds, providing a uniform language and common constructs
to query and transform data in various formats. Moreover, most of them
do not provide a flexible data model that is powerful enough to nat-
urally convey both Semantic Web data formats (especially RDF and
Topic Maps) and XML. This article highlights challenges related to the
data model and language constructs for querying both standard Web
and Semantic Web data with an emphasis on facilitating sophisticated
reasoning. It is shown that Xcerpt’s data model and querying constructs
are particularly well-suited for the Semantic Web, but that some adjust-
ments of the Xcerpt syntax allow for even more effective and natural
querying of RDF and Topic Maps.

1 Introduction

Data on the web is increasingly enriched with semantic meta-data, linking it to
the real world or to other information. While XML has already gained wide-
spread acceptance, RDF is on the best way to do so. Query languages have
established themselves as a valuable means for accessing both formats, and a
considerable number of query languages for XML (such as XQuery[1], XPath[2],
XSLT[3], Xcerpt[4–6]) and for Semantic Web data (e.g. SPARQL[7], RQL[8],
Versa[9]) have been proposed and implemented, cf. [10] for a survey. XML query
languages can be used to query XML serializations of RDF data. This, however,
hardly yields a programmer-comfortable approach to RDF data. In fact, most
of the above languages have not been specifically designed to cope with both
worlds, and do not provide a uniform language and common constructs to query
and transform data in the various formats. Moreover, most of them lack a flexible
data model that is powerful enough to naturally comprehend both Semantic Web
data formats (especially RDF and Topic Maps) and XML.

This article highlights challenges related to the data model and convenient
constructs for querying both standard Web and Semantic Web data with an
emphasis on facilitating sophisticated reasoning. It is shown that Xcerpt’s data
model and querying constructs are well-suited also for the Semantic Web, but
that some adjustments of Xcerpt’s syntax would allow for even more effective
and natural query authoring with respect to RDF and Topic Maps.

The rest of this article is structured according to its contributions: Section 2
examines requirements related to the data model of versatile web query languages
with focus on RDF and XML. Section 3 proposes an extended edge-labeled syn-
tax for Xcerpt terms that can be straightforwardly mapped to usual Xcerpt data
terms. Section 4 illustrates that Xcerpt’s constructs for handling heterogeneity
are beneficial to both XML and RDF querying. Section 5 underlines the impor-
tance of grouping constructs in the scope of the Semantic Web. Finally, Section
6 concludes this article and sheds light upon further research both with respect
to the language itself and its efficient evaluation.

2 Challenges Related to the Data Model

Figure 1 presents two possible representations of information about countries,
their names and their border-countries in XML (on the left hand side) and RDF
(on the right hand side). Nodes of the XML document tree are represented as
grey rectangles containing the element name. Text nodes are are distinguished by
quotes and attribute-value pairs are displayed at the top right of the node they
belong to. The namespace prefixes rdf, rdfs and geo are assumed to be bound
to http://www.w3.org/1999/02/22-rdf-syntax-ns#, http://www-
.w3.org/2000/01/rdf-schema# and http://geo.org/terms#, respec-
tively throughout this article. Nodes of the RDF graph on the right are either
depicted as grey rectangles containing the URI or blank node name in the case
of non-literals or as orange nodes in the case of literal values.

Figure 1 naturally exemplifies that XML semi-structured data and Semantic
Web data differ in various ways, complicating the conversion of the formats in
either direction and impeding the use of a query language specialized on only
one of the formats for accessing both. On the one hand, XML data can hardly
be transformed to RDF, because (1) the order of outgoing edges in RDF is
irrelevant, (2) nodes are uniquely identified by URIs except for literals and blank
nodes, (3) RDF does not support the concept of attributes. On the other hand,
XML cannot naturally comprehend RDF data, in that (1) besides nodes also
the edges of RDF graphs are labeled, (2) RDF is truly graph structured, and (3)
RDF graphs need not be connected and are unrooted. In this section all of these
differences are discussed and it is illustrated that although Xcerpt data terms
are purely node-labeled, they can represent RDF data in a very straight-forward
way.

Fig. 1. XML data versus RDF data

2.1 Graph Data Model and References

One of the most striking differences between Semantic Web data and XML is that
XML does not allow multiple parent nodes for the same XML element and must
be considered tree structured under this consideration. This is why most XML
query languages such as XPath and XQuery provide a tree data model. Taking
the special attributes id and idref into account, XML may also be viewed
as a graph structure. When querying XML it may sometimes even be useful
to consider these XML references as true parent-child relationships. In contrast,
Semantic Web data is truly graph structured, in that predicates are the only way
of specifying relationships amongst resources, and nodes of an RDF graph may
very well have multiple incoming edges. RDF graphs are usually represented by
triples without any explicit references. Nevertheless, a graph structure is implied
by these triples, because RDF references are implicit in that they exploit the fact
that RDF resources are uniquely identified by URIs.

Whereas for XML query languages, such as XPath, XQuery and XSLT a tree
data model is a natural choice, versatile query languages that incorporate also
Semantic Web data must adopt a graph data model.

From the beginning Xcerpt was designed to not only handle XML data, but
also semi-structured graph data, which means that it can be adapted to natively
handle Semantic Web data easier than other XML query languages.

2.2 Labeled Edges

Put simply, the XML data model is a node-labeled tree. In contrast, RDF graphs
are not only node-labeled, but also edge-labeled. In XML serializations of RDF
graphs such as RDF/XML, this difference is overcome by “striped” XML, which
means that element nodes representing RDF nodes and edges alternate in the
nested XML serialization. The Syntactic Web Approach suggests querying RDF

serializations with XML query languages. This solution is unsatisfactory in var-
ious ways: (1) It is not coherent with the visual and intuitive representation of
RDF data as graphs, and is thus more difficult to grasp. (2) It does not pay
tribute to the different roles assumed by subjects, objects and predicates of the
RDF graph, which complicates e.g. the determination of the set of all predi-
cates of an RDF graph. (3) Many XML serializations (such as RDF/XML and
RDF/A) offer a great amount of variability and syntactic sugar for representing
RDF graphs, which makes the formulation of queries against such serializations
in XML query languages cumbersome.

As a result, a truly versatile query language for the Web must offer a data
model that comprehends both: node- and edge-labeled graphs as well as purely
node-labeled graphs. As has been mentioned before, node- and edge-labeled
graphs can be transformed into graphs without edge labels in a straightforward
manner. Nevertheless, the user must be provided with a syntax (see Section 3)
that clearly distinguishes between edge- and node-labels both in query constructs
and in the data.

2.3 Incomplete and Unbounded Data

In the Semantic Web, resources are uniquely identifiable, and thus anybody is
free to make statements about resources by simply referencing the unique URI
as subject, predicate or object within one’s own statements. A consequence of
this ability for everyone to make statements about arbitrary resources is that one
may never be sure to be aware of all statements made about a given resource.
From a graph perspective on Semantic Web data, this means that collecting all
existing outgoing edges of a resource is not possible, which is a fundamental
difference to XML data, where the sequence of children of an element node is
fixed and can be determined simply by looking at the document containing the
node in question.

To make things worse, whereas the size of the answers to XML queries is
bounded by the document size, this does not hold for the size of the results of
Semantic Web queries retrieving the information of interest for a single RDF
resource, because the same resource may occur in multiple documents.

A possible solution (which also yields other benefits) to this problem is to
restrict one’s attention to the contents of specific documents or groups of state-
ments, which are often referred to as Named Graphs. “Named graphs is the idea
that having multiple RDF graphs in a single document/repository and naming
them with URIs provides useful additional functionality built on top of the RDF
Recommendations.”1 In fact, RDF query languages such as SPARQL and TriQL
provide constructs for handling and constructing named graphs. An interesting
issue to note is that named graphs provide a means to introduce completeness
in RDF data.

The above observations show that the data model for a Semantic Web query
language must be able to express both complete (in form of named graphs or doc-

1 http://www.w3.org/2004/03/trix/

uments) and incomplete data (information that does not belong to any graph).
While conventional Xcerpt query terms may already be complete and incomplete
in breadth, data terms have always been considered to be complete. As shown in
section 4 data terms can be naturally extended to include incomplete data, and
an extended operational semantics that takes this extension of the data model
into is being considered.

2.4 RDF Graphs as Xcerpt Data Terms

While in semi-structured data, there is always a distinguished top level term,
the root, Semantic Web data does not have the concept of top level terms.
Furthermore, it may not even be possible to single out a resource from which
all other resources are reachable over edges in the graph, because RDF graphs
may consist of disconnected subgraphs. It is, however, possible to determine a
set resources, such that each resource in the graph is reachable from at least
one of them. Choosing these resources as top level nodes, RDF graphs are very
conveniently represented by sets of Xcerpt data terms.s

2.5 Order of Sub-Terms

Another difference between RDF and XML data illustrated in Figure 1 is that
RDF data usually does not impose an order on outgoing edges of a node. To
be more precise, RDF data is always unordered unless otherwise specified by
the use of an rdf:Seq sequence container. Hence, the data model must be able
to represent both ordered and unordered information. The distinction between
ordered und unordered data is especially useful in the scope of positional queries
against semi-structured data as exemplified in Section 4.

Xcerpt data terms have been conceived to not only represent XML data,
but also semi-structured data in general. Therefore Xcerpt already supports the
concept of unordered sets of children unlike most other XML query languages
and does not need to be adapted to the Semantic Web in this respect.

Summing up the particularities of XML and RDF data, the data model must sup-
port possibly cyclic and disconnected graphs with labeled and unlabeled edges,
complete and incomplete data specifications, ordered and unordered child ele-
ments, implicit and explicit references, and finally multiple roots.

3 An Intuitive Syntax for Versatile Web Query

Languages

In previous work [5], we have shown that due to its versatility gained from
construct-query-rules and constructs for treating heterogeneous data, Xcerpt
is particularly well-suited to handle XML serializations for the Semantic Web
data formats RDF and Topic Maps such as RDF/A, RDF/XML and XTM. An
obvious alternative to processing XML serializations of Semantic Web formats is

their direct treatment. In fact, for Xcerpt’s users it may be more convenient to
use a syntax that better distinguishes between edges and nodes within an RDF
graph. In this section, we propose a possible syntax derived from the syntax of
Xcerpt data terms that represents RDF data in a very similar way to XML data.

Listing 1. The RDF Graph of Figure 1 represented as an Xcerpt data term

1’montenegro@un.org’{
<geo:bordersOn> _:country3{

3<geo:bordersOn> _:country1,
<rdfs:label> literal(’Albania’)

5},
<rdfs:label> literal(’Montenegro’)

7}

9_:country2 { <rdfs:label> ’USA’ }

In listing 1 edges (predicates) of the RDF graph in figure 1 are enclosed by
angle braces and appear in between the elements (subjects and objects) that
stand for the nodes of the graph. This syntax eases the authoring and under-
standing of queries considerably, because subjects, predicates and objects are
much more easily distinguished.

As has been mentioned above, data with labeled edges may be transformed to
graph structured data with unlabeled edges by the introduction of an additional
node for each edge. This approach has already been used to query Semantic Web
data with Xcerpt in [11]. A graph data model with labeled edges can be offered
to the user by the internal and automatic transformation of both RDF query and
data graphs to graph data with unlabeled edges, which can already be handled
by Xcerpt. In this article it is argued that the user of a versatile query language
should be unconscious of and not be confronted with this transformation.

4 Common Query Constructs for the Web and the

Semantic Web

Schema information often being unavailable, data on the Web is very hetero-
geneous. But even if schema information is present, it usually leaves room for
variability. In contrast to relational database query languages, Web query lan-
guages must therefore provide constructs for handling this heterogeneity.

Besides querying Semantic Web data, programmers are also interested in
transforming it. An example scenario for one such transformation is the collection
of data from different sources, and its rearrangement according to a joint schema.

Xcerpt has been designed as a declarative language rooted in logic program-
ming. This section shows that Xcerpt’s approach to querying, transforming and
reasoning is well-suited not only for ordinary semi-structured data, but also for
the Semantic Web.

4.1 Query Patterns and Answer Closedness

One of the design principles of SPARQL and Xcerpt is answer closedness. This
principle dictates that all answers to queries may themselves be used as queries.
By ensuring similar syntaxes for both the formulation of queries and the repre-
sentation of data, answer closedness eases program understanding.

Using data terms, it is just possible to check whether an RDF graph is en-
tailed by the queried data, or whether a particular XML fragment is contained
within a document. In order to extract parts of the data, queries must contain
logical variables. Xcerpt query terms are data terms enriched by variables and a
series of constructs for handling heterogeneous data. These constructs are just
as useful in the Semantic Web as for ordinary XML data. Constructs for han-
dling heterogeneity in Xcerpt include optional term selection, double braces for
incompleteness in breadth and arbitrary length traversal path expressions.

One might be interested in all resources that represent countries directly
or transitively bordering on Montenegro and their names. Assuming data of a
similar form as in Figure 1, the following Xcerpt query in edge-labeled notation
helps out:

Listing 2. An Xcerpt query term with constructs for handling heterogeneity

1var Country →/.*/{{
<rdfs:type> ’http://geo.org/country’{{ }},

3desc(<geo:bordersOn> /.*/)*
<geo:bordersOn> ’montenegro@un.org’{{ }},

5optional <rdfs:label> var Name →literal(/.*/)
}}

There are several noteworthy constructs in the above query term:

– Variable Constraints. In Line 1, the bindings for the variable Country is
constrained to graphs matching the pattern following →.

– Incompleteness in breadth. The schema of data on the web is in many cases
unknown. Therefore one might not know or even not care about the set of
outgoing edges of an RDF node. Double curly braces are used in Xcerpt to
indicate that the matched data may also contain additional siblings other
than those specified by the query term.

– Regular expressions for labels. The logical variable Country in Listing 2 is
supposed to be bound to all kinds of nodes within the queried RDF graph,
no matter whether it is a blank node or a resource. The regular expression
/.*/ matches arbitrary URIs and b-nodes. In order to match just blank
nodes or resources, the keywords b-node and resource can be used.

– Incompleteness in depth. The resource r1 matching with the variable Country
shall be directly or transitively connected over geo:bordersOn-predicates
with the resource montenegro@un.org, which stands for Montenegro. The
RDF nodes in between r1 and montenegro@un.org are of no interest, and
therefore an arbitrary length traversal path expression containing a wild-card
regular expression for the resources of the intermediate nodes is used in line
three.

– Optional sub-terms. Labels for the resources r1 are to be retrieved if present.
In the absence of such a label the query is not intended to fail, but to
simply restitute no binding for the variable Name. Making use of the keyword
literal ensures that Name is only bound to literals, never to URIs.

Solutions to Xcerpt queries are given in the form of substitution sets, which
are sets of mappings from the logical variables in the query to subgraphs of the
data. The query in Listing 2 applied to the RDF graph in Figure 1 yields the
following substitution set:

{ {Country 7→ :country1{ . . . }, Name 7→ ’Albania’ } }

The fact that the variable Country is bound to the entire subgraph rooted
at the resource it matches differentiates Xcerpt from other query languages such
as SPARQL and RQL. Since in densely connected RDF graphs, the bindings
of variables may contain large sub-graphs of the data or even the whole data
graph, Xcerpt provides a second kind of variables called label variables which
are not bound to entire subgraphs but only to the nodes they match with. The
usage of a label variable in Listing 2 would be syntactically indicated by directly
prefixing the double curly braces in Line 1 by the variable var Country.

Note that also SPARQL provides a way to return more information (entire
subgraphs) about resources than just their URIs through the keyword describe.
The exact nature of such descriptions is left unspecified by the SPARQL working
draft, but the Concise Bounded Description2 proposed by Nokia is mentioned
as an example.

The semantics of the query in Listing 2 is implicitly defined by mapping the
node-and-edge-labeled syntax of the query to purely node-labeled query terms.

4.2 Injectivity and Querying RDF Sequences

When specifying a query term to be matched with semi-structured data, the
semantics intended by the query author is usually that sibling nodes shall not

match with the same node of the queried graph. Listing 3 shows a query se-
lecting all pairs of countries bordering on Montenegro, and Xcerpt’s semantics3

ensures that the variables Country1 and Country2 are not bound to the same
node. Note that formulating a query that allows the bindings for Country1 and
Country2 to be the same can be easily expressed using Xcerpt’s and connective
for queries.

Listing 3. A query selecting all pairs of countries bordering to Montenegro

montenegro@un.org{{
<geo:bordersOn> var Country1 →/.*/{{ }},
<geo:bordersOn> var Country2 →/.*/{{ }}

}}

2 http://swdev.nokia.com/uriqa/CBD.html
3 formally defined in [4, Chapter 8]

As has been mentioned in Section 2.5 Semantic Web data can both be ordered
and unordered. Xcerpt’s positional approach to querying allows to match data
dependent on the order of sub-terms. Figure 2 contains a possible representa-
tion of information about spoken languages in countries using an RDF sequence
container.

Fig. 2. An RDF sequence containing the languages in the order of their diffusion in
Montenegro

The query in Listing 4.2 selects all countries in which Serbian is more common
than Albanian assuming a schema as in Figure 2. The use of square brackets
instead of curly braces indicates that the order of occurrence within the RDF
sequence is relevant.

var Country →/.*/{{
<geo:spokenLanguage> /.*/[[
</.*/> literal(’Serbian’),
</.*/> literal(’Albanian’)

]]
}}

4.3 Blank Node Treatment

Blank nodes (also called b-nodes) in RDF graphs are used to assert that a
resource r1 exists that is related with other resources in a certain way without
associating a URI to r1. One unresolved issue related to querying RDF data
containing b-nodes concerns the redundancy of answer sets. To see this reconsider
the RDF graph from Figure 1.

Listing 4. A query selecting all resources of type http://geo.org/country

var Country →/.*/{{<rdfs:type> ’http://geo.org/country’}}

Selecting all resources of the graph that are of type http://geo.org/country,
the query in Listing 4 cannot determine whether :country2 and montene-
gro@un.org are meant to be the same concepts. Hence, the question arises,
whether both the blank node _:country2 and the resource identified by mon-
tenegro@un.org should be returned or only the URI. The solution considered
to be the most convincing by the authors is to exclude such query solutions that
are entailed by other solutions, but to keep all others. The query in Listing 4

would therefore return both resources. In the case that the triple (:country2,
rdfs:label, ’USA’) were not present, returning the blank node of the graph
would be redundant.

4.4 Negation and Breadth-Complete Queries

As has been discussed in Section 2.3, Semantic Web data must be considered
as inherently incomplete and unbounded in comparison to XML. Additionally
taking into account that RDF statements are always positive assertions, the only
sensible form of negation is scoped negation as failure, which has already been
proven useful in the context of the Semantic Web[12, 13].

An approach that goes even beyond scoped negation as failure by providing
explicit negative information to additionally enable strong negation is suggested
in [14]. Although strong negation would certainly be helpful for Semantic Web
Reasoning, it is not yet supported by Xcerpt.

While some Semantic Web query languages including the SPARQL family do
not provide negation, XML query languages including Xcerpt usually do. To un-
derline the importance of scoped negation in the Semantic Web consider the fol-
lowing query issued against the resource http://countries.org/country-
information.

Listing 5. Scoped negation as failure in Xcerpt query terms

1in{ resource{ ’http://countries.org/country_information’ },
/.*/{{

3<geo:bordersOn> ’montenegro@un.org’{{ }},
<rdfs:label> var Name →literal(/.*/),

5not(<geo:bordersOn> /.*/{{ <rdfs:label>
literal(’Albania’) }})

}},
7}

Listing 5 queries the names of all countries bordering to Montenegro but not
to Albania. Matching a term with both positive and negated sub-terms with
a data term is carried out as follows: At first, it is tested, whether each of the
positive query sub-terms can be associated with a matching sub-term of the data
respecting the injectivity requirement mentioned in Section 4.2. If this matching
succeeds, it is searched for a matching sub-term of the data for the negated sub-
terms. If any of the negated sub-terms can be matched, the entire matching fails.
If all positive sub-terms can be matched with the data, but none of the negated
ones, the entire matching succeeds. If all positive sub-terms can be matched with
the data, but none of the negated ones, the entire matching succeeds. The query
semantics for node- and edge-labeled query and data terms as needed for RDF
data is ascribed to the semantics of purely node-labeled terms as described in [4,
Section 8.2] by straight-forward normalization rules transforming edge-labeled
terms to purely node-labeled terms.

Breadth-complete queries are an issue which is closely related to negated
sub-terms, because they can be rewritten as breadth-incomplete queries using

the without-construct. They are indicated by single curly braces or brackets
instead of double ones and can only be matched with data that does not con-
tain any additional sub-terms besides those specified in the query term. To find
countries that only border to Italy, the query in Listing 6 could be used.

Listing 6. Breadth-complete queries against RDF data

1in{ resource{ ’http://countries.org/country_information’ },
var Country →/.*/{

3<geo:bordersOn> ’italy@un.org’{{ }},
},

5}

In the same way as queries with negated sub-terms, breadth-complete queries
must be scoped to a single or a set of named graphs.

4.5 Optional Sub-Terms

As exemplified in Listing 2, optional constructs are of great help for Semantic
Web queries in that they allow to extract certain parts of the queried data only
if they are present. Closer examination of the optional construct reveals that
it is only syntactic sugar for a disjunction of queries. The query in Listing 2
could also be written using the Xcerpt or construct:

Listing 7. The same query as in Listing 2 without the optional construct

1or (
var Country →/.*/{{

3<rdfs:type> ’http://geo.org/countries’{{ }},
desc(<geo:bordersOn> /.*/)* <geo:bordersOn>

’montenegro@un.org’{{ }},
5<rdfs:label> var Name →literal(/.*/)

}},
7var Country →/.*/{{

<rdfs:type> ’http://geo.org/countries’{{ }},
9desc(<geo:bordersOn> /.*/)* <geo:bordersOn>

’montenegro@un.org’{{ }},
without <rdfs:label> var Name →literal(/.*/)

11}}
)

As in SPARQL, multiple optional sub-terms may occur as siblings, or may
even be nested. The semantics of such graph patterns seems to be straightforward
at first glance: For each optional sub-term that succeeds to match, the bindings
of its variables are included in the substitution set returned by the overall graph
pattern. The failed matching of an optional sub-term does not prevent the overall
graph pattern from returning a substitution set, which simply does not contain
bindings for the variables in the unmatched optional sub-terms. Since variables
may – and often do – occur multiple times in a query pattern, they may also
be shared among multiple optional sub-terms, causing interdependencies among

them. In particular, it may happen that only one of two optional sub-terms may
be matched, but not both. While the SPARQL working draft does not define
which of the sub-terms is to be picked, Xcerpt adopts the following convention:
If multiple optional sub-terms impede each other from matching, all selections
of these sub-terms are chosen that maximize the number of variable bindings.

5 From Queries to Transformations

While most Semantic Web query languages are limited to querying and returning
sets of mappings of their variables to resources, Xcerpt – and to some extent also
SPARQL – are designed to do more: by providing construct terms (in SPARQL
they are called graph templates) to be filled with the variable bindings gained
from the evaluation of queries, they allow the construction of results having
an entirely different schema. This combination of querying and construction
in so-called construct-query-rules (see Section 5.1 for details) gives rise to the
possibility of complex transformations.

5.1 Construct-Query-Rules and User Defined Reasoning

The evaluation of Xcerpt query terms and SPARQL graph patterns against
RDF data yield substitution sets. Xcerpt construct terms are Xcerpt data terms
enriched by variables as place holders and grouping constructs like all and
some. Substitutions are applied to construct terms by replacing the variables
in the construct term by their bindings in the substitution set (for the detailed
semantics see [4, Section 7.3.3]). Query and construct terms are combined by
so-called construct-query-rules, which allow sophisticated user-defined reasoning
which goes beyond the predefined rules of RDFS and OWL.

5.2 Grouping Constructs

A major difference between SPARQL graph templates and Xcerpt construct
terms is that only the latter allow merging of substitution sets (called result sets
in SPARQL) by using grouping constructs. Merging substitution sets is necessary
because often the need arises to collect variable bindings from different matches
of the query pattern with the data. In contrast, a query result form within a
SPARQL query is always filled exactly as often as the graph pattern in the
WHERE clause matches with the queried RDF graph.

Reconsidering the information about countries and languages as exemplified
in Figure 2, one might wish to construct an RDF graph that groups countries
according to the languages which are spoken in them. To be more precise, for
each language a blank node shall be constructed carrying an rdfs:label such
as “Albanian”, “Serbian”, etc. Moreover the blank node must feature outgoing
geo:spokenIn edges for each country that the language is spoken in.

Listing 8. Grouping countries according to languages

CONSTRUCT
2_:language{

<rdfs:label> var Language,
4all <geo:spokenIn> var Country,

}
6FROM

var Country →/.*/{{
8<geo:spokenLanguage> /.*/{{ </.*/> var Language }}

}}
10END

Using the grouping construct all (line 4), the query in Listing 8 collects all
bindings for the variable Country that are contained within a substitution set
for a fixed binding of variable Language. An important issue to note is that –
just as in SPARQL – although the name :language of the blank node in Line
1 is constant, a new blank node is constructed for each binding of the variable
Language.

5.3 Versatile access to XML and RDF

Integrated access to different data formats includes the requirement that data
should be easily transformed from one format to the other, and that differ-
ent formats are queried simultaneously. As an exemplary use-case imagine that
information about bordering countries is available in XML format structured
similarly to that in the left part of Figure 1, and that information about lan-
guages spoken in these countries is only available in RDF format as in Figure
2.

The query in Listing 9 extracts all those pairs of border-countries whose
citizens understand each other, because they speak the same language. The
query part of the rule is a conjunction of two query terms, the first one querying
the XML resource, and the second one drawing information from an RDF file.
The names of countries sharing a common border are found by comparing the
values of the id and idref attributes with a value join over the variable ID (in
Xcerpt, XML attributes are enclosed in parentheses; double parentheses indicate
that there may be additional unspecified attributes). Similarly, pairs of countries
which have the same most common language are selected by a join over the
variable Language.

Listing 9. Versatile access to Web data Formats in Xcerpt

CONSTRUCT
2result[

all understanding-neighbors[var Name1, var Name2]
4]

FROM
6and (

in{ resource{ ’http://geo.org/Countries.xml’ },

8Countries {{
Country((var ID →id)){{ Name{ var Name1 } }},

10Country{{
borderCountry((var ID →idref)),

12Name{ var Name2 }
}}

14}}
},

16in{ resource{ ’http://geo.org/languages.rdf’ },
/.*/{{

18<rdfs:label> var Name1,
<geo:spokenLanguage> /.*/{{ <rdf:_1> var Language }}

20}},
/.*/{{

22<rdfs:label> var Name2,
<geo:spokenLanguage> /.*/{{ <rdf:_1> var Language }}

24}}
}

26)
END

The query uses both constructs that are peculiar to either RDF or XML –
such as variables for XML attribute values and edge-labeled query terms – and
constructs that are applicable to both – such as complete and incomplete query
term specifications. Notice that the variables Name1 and Name2 are shared
among both conjuncts, which would be cumbersome to implement with two
specialized languages for RDF and XML.

6 Conclusion and Outlook

Due to its graph data model, its rule-based nature and its convenient constructs
for handling heterogeneity, Xcerpt turns out to be very well-suited not only for
XML, but also for Semantic Web querying, transformations and reasoning. RDF
data being increasingly made available as descriptive meta-data for HTML and
XML documents, versatile access to both meta-data and XML in the same query
program becomes ever more important for the next generation of web applica-
tions such as specialized search engines, and online booking and library systems.
Developing such applications can be strongly eased by providing a query lan-
guage that does not restrict itself to one of the formats, but provides integrated
access to all of them, freeing the programmer from the burden of learning and
combining multiple languages.

Besides laying the foundation for effective query authoring, a versatile query
and reasoning language must process query programs efficiently in order to gain
strong acceptance throughout the Web community. Several challenges are related
to efficient query processing, demanding future work:

– Efficient parsing of semi-structured data from various serializations and ef-
ficient construction of in-memory graph representations of the data. Besides

parsing documents, in-memory graph representations must also be efficiently
constructed from relational RDF stores.

– Efficient simulation unification of query patterns with graph data and con-
struct terms. A large amount of research has been carried out in this direction
concerning primarily tree queries, but also graph queries [6].

– Efficient backward chaining evaluation of programs. A forward chaining eval-
uation of Xcerpt programs is less reasonable because (a) the set of facts of an
Xcerpt program can be very large, (b) the major part of derived facts may
be irrelevant to the query (c) Xcerpt programs may have infinite fixpoints if
they contain recursive rules.

Acknowledgements.

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query Language. W3C. (2005)

2. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., Simeon,
J.: XML Path Language (XPath) 2.0. W3C. (2005)

3. Clark, J.: XSL Transformations, Version 1.0. Recommendation, W3C (1999)
4. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the

Web. Dissertation/Ph.D. thesis, University of Munich (2004)
5. Bry, F., Furche, T., Linse, B.: Let’s Mix It: Versatile Access to Web Data in Xcerpt.

Submitted for publication (2006)
6. Bry, F., Schroeder, A., Furche, T., Linse, B.: Efficient Evaluation of n-ary Queries

over Trees and Graphs. Submitted for publication (2006)
7. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Working

draft, W3C (2006)
8. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis,

D., Scholl, M., Tolle, K.: Querying the Semantic Web with RQL. Computer
Networks and ISDN Systems Journal 42 (2003) 617–640

9. Olson, M., Ogbuji, U.: Versa Specification. Online only (2003)
10. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Lan-

guages: A Survey. In Maluszinsky, J., Eisinger, N., eds.: Reasoning Web Summer
School 2005. Number 3564 in LNCS. Springer-Verlag (2005)

11. Bolzer, O.: Towards Data-Integration on the Semantic Web: Querying RDF with
Xcerpt. Diplomarbeit/Master thesis, University of Munich (2005)

12. Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and
Negation as Failure. ACM Transactions on Computational Logic (2002) 177–225

13. Wagner, G.: Web Rules need Two Kinds of Negation. Principles and Practice of
Semantic Web Reasoning (2003)

14. Analyti, A., Antoniou, G., Damasio, C.V., Wagner, G.: Stable Model Theory for
Extended RDF Ontologies. International Semantic Web Conference 2005 (2005)
21–36

