
Let’s Mix It:
Versatile Access to Web Data in Xcerpt∗

François Bry
Institute for Informatics,

University of Munich
Oettingenstrasse 67

81543 Munich, Germany

Francois.Bry@ifi.lmu.de

Tim Furche
Institute for Informatics,

University of Munich
Oettingenstrasse 67

81543 Munich, Germany

Tim.Furche@ifi.lmu.de

Benedikt Linse
Institute for Informatics,

University of Munich
Oettingenstrasse 67

81543 Munich, Germany

Benedikt.Linse@ifi.lmu.de

ABSTRACT
Applications and services that access Web data are becoming in-
creasingly more useful and wide-spread. Web query languages
provide efficient and effective means to access and process data
published on the Web. Conventional Web query languages such as
XQuery, XSLT, or SPARQL, however, focus only on one of the dif-
ferent data formats used on the Web and provide little to ease the
integration of heterogeneous schemata or representations. Xcerpt
is a versatile semi-structured query language, i.e., a query language
able to access all kinds of Web data such as XML and RDF in the
same language reusing common concepts and language constructs.
In this article, we demonstrate how Xcerpt’s features ease the in-
tegration of data sources that are heterogeneous in (a) data format
(e.g., XML vs. RDF), (b) schema, and (c) concrete representation
(if the schema allows representational variants). The results show
that versatile Web query languages form a convenient foundation
for data integration scenarios on the Web and suggest further con-
sideration of their use in developing data-centric Web applications.

1. INTRODUCTION
Recent years have witnessed an upsurge in applications and ser-

vices that access Web data: For instance, bibliography management
applications access book data from Amazon, Barnes & Noble, and
other vendors, citation data from CiteSeer, PubMed, ACM’s digi-
tal library, etc., topic and researcher classifications in RDF format
by crawling or from syndication sites, and keywords, abstracts, or
table of contents from DocBook representations of articles.

Web query languages are tailored to the efficient and effective
manipulation of such data. However, conventional Web query lan-
guages such as XQuery, XSLT, or SPARQL focus only on one of
the different data formats available on the Web and provide little to
ease the integration of the heterogeneous schemata or representa-
tions. We argue that versatility, i.e., the ability to handle in the same
query program heterogeneous formats, schemata, and representa-
tions, is a crucial property of Web query languages, in particular
to provide a convenient platform for the development of applica-
tions needing integrated access to different Web data sources. As
defined in [6], a language is versatile if it provides means to handle
heterogeneous data. One can distinguish three forms of versatility

∗This research has been funded by the European Commission and
by the Swiss Federal Office for Education and Science within the
6th Framework Programme project REWERSE number 506779
(cf. http://www.rewerse.net/).

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

Web Application

Representational Versatility:
— representational variants in same schema

DocBook: multiple ways to represent authors, sections
(sect1,...,sect5 vs. section), etc.

FOAF: naming, association of homepages or topics

Schema Versatility:
— same information in different schemata

DocBook: co-authorship as a form of foaf:knows,
author affiliation

FOAF: foaf:knows, person’s affiliation/institution

Format Versatility:
— different Web formats for data
— often directly linked to different schemata

DocBook/DBLP: in XML
FOAF: in any RDF format (RDF/A, RDF/XML, RXR, ...)

Data
Source

Data
Source

Data
Source

V
e
rs

a
tile

 D
a
ta

 A
c
c
e
s
s
 L

a
y
e
r

Figure 1: Versatile Data Access on the Web

in Web query languages based on the origin of the heterogeneity
that is considered by the language (summarized in Figure 1):

Format versatility: We call a language format versatile if it is
able to query data in different (Web) formats such as XML, RDF,
and Topic Maps. Whereas in the case of XML there is a precise
mapping between serialization and data model, RDF and Topic
Maps exhibit many different serialization formats, e.g., for RDF
RDF/XML, RDF/A, and RXR (for a survey see [9]). The open
and rapidly changing nature of the Web prevents that a small set
of “built-in” formats suffices to achieve format versatility. If versa-
tility beyond mere serialization differences is desired, the different
data models have to be taken into consideration, cf. [11].

Schema versatility: Schema versatility is a slightly more elusive
property of a query language linked to its ability to handle data rep-
resented according to different schemata. Ideally, the schema dif-
ferences are handled transparently, e.g., by integrating the different
schemata according to some given schema mapping. Such schema
mappings may be specified, e.g., in RDFS, the RDF vocabulary de-
scription language, or in OWL, the Web ontology language. Direct
or programmed support for schema mappings enables a query for-
mulated according to one of the schemata to be evaluated against
data in any of them.

Representational versatility: Web data is partially or semi-
structured rather than fully structured like relational data. There-
fore, even within the same schema, data may be represented in
different ways, both w.r.t. structure and datatype. Web query lan-
guages should be able to take these representational variants into
account, but in contrast to format and schema heterogeneity repre-
sentational variants can not be handled transparently: For instance,

different ways to represent a section in DocBook (sect1 vs. section)
carry additional semantics and must be distinguished in some con-
texts, whereas in many cases they can be considered the same. Such
distinctions should be expressible in a versatile query language, al-
lowing the programmer to choose the appropriate solution.

Xcerpt [15, 14] is one of the few Web query languages that ad-
dress all three forms of versatility. It is a semi-structured query
language, but very much unique among such languages: (1) In its
use of a graph data model, it stands more closely to semi-structured
query languages like Lorel than to recent mainstream XML query
languages. (2) In its aim to address all specificities of XML, it re-
sembles more mainstream XML query languages such as XSLT
or XQuery. (3) In using (slightly enriched) patterns (or templates
or examples) of the sought-for data for querying, it resembles more
the “query-by-example” paradigm [17] than mainstream XML query
languages using navigational access. (4) In its strict separation of
querying and construction in rules it allows an easy transformation
and interfacing of different rules. (5) In its use of rules as proce-
dural abstraction or view mechanism, it provides a foundation for
reasoning and mediation.

Following a short introduction to Xcerpt and the data formats
considered, the remainder of the article further details the three
forms of versatility along concrete examples realized in Xcerpt.
Special emphasize is placed on the identification of general prin-
ciples needed or useful for a versatile Web query language.

2. PROLEGOMENA

2.1 Web Formats Basics
Web data is currently, as far as it is not image, video, or layout-

centric, mostly represented as semi-structured data, marked up ei-
ther as XML (most often in the form of XHTML) or in one of the
serializations of RDF (most often in the form of RSS). The dis-
cussion of versatile data access in Sections 3–5 uses data in both
formats. To this end, the salient features of the two data represen-
tation formats are shortly summarized here.

XML [5] is a generic markup language for semi-structured data
that has found widespread adoption both for data exchange and data
representation on the Web (and beyond). Its data model is essen-
tially a tree of nodes corresponding to elements (such as h1 or title
in HTML) of the XML document. The tree structure reflects the
nesting of elements in the serial XML document. Elements may
contain text content represented as text node children in the data
model. Other features of XML include attributes, namespaces, and
processing instructions, for details see [7].

Where XML data is used in the following sections, the examples
are mostly drawn from a list of articles, papers, conferences, etc.
in the style of DBLP1, but with additional information about the
actual content of the paper in DocBook format2. Figure 2 shows a
visual representation of parts of the sample XML document (with
fictional journal information) using Xcerpt’s visual companion lan-
guage visXcerpt [3].

RDF [10] is the prevalent standard for representing metadata in
the (Semantic) Web. RDF data is sets of triples or statements of
the form (Subject, Property, Object). RDF’s data model is a di-
rected graph, whose nodes correspond to subjects and objects of
statements and whose arcs correspond to their properties relating
subjects and objects. Nodes are labeled by either (1) URIs describ-
ing (Web) resources, or (2) literals (i.e., scalar data such as strings
1http://www.informatik.uni-trier.de/~ley/db/
2http://www.oasis-open.org/docbook/

Identifier and label of elements

Element nesting (child relation)

Non-hierarchical relations

Ordered vs. unordered children list

Figure 2: Visual Rendering of Sample XML Data

or numbers), or (3) are unlabeled, being so-called anonymous or
blank nodes. Blank nodes are commonly used to group or “aggre-
gate” properties. Edges are always labeled by URIs indicating the
type of relation between its subject and object.

RDFS allows one to define so-called “RDF Schemata” or on-
tologies, similar to object-oriented data models. Based on RDFS,
inference rules can be specified, for instance the transitivity of the
class hierarchy.

RDF can be serialized in various formats, the most frequent be-
ing XML. Early approaches to RDF serialization have raised con-
siderable criticism due to their complexity. As a consequence, a
surprisingly large number of RDF serialization have been proposed,
cf. [9] for a survey of serialization formats.

In the following, example data based on the “Friend of a Friend”
(FOAF) project3 is used. FOAF is an RDF vocabulary describing
mostly foaf:Persons by properties such as foaf:name, foaf:mbox,
foaf:homepage, foaf:interest, etc. Furthermore, it allows to es-
tablish “social networks” of persons using foaf:knows, foaf:Project,
foaf:Group, foaf:Organization, and foaf:member.

2.2 XcerptBasics
As introduced above, Xcerpt is a query language designed af-

ter principles given in [6] for querying both data on the standard
Web and data on the Semantic Web. More information, including a
prototype implementation, is available at http://xcerpt.org.

2.2.1 Data as Terms
Xcerpt uses terms to represent semi-structured data. Data terms

represent XML documents, RDF graphs, and other semi-structured
data items. Notice that subterms (corresponding to, e.g., child el-
ements) may either be “ordered” (as in an XHTML document or
in RDF sequence containers), i.e., the order of occurrence is rele-
vant, or “unordered”, i.e., the order of occurrence is irrelevant and
may be ignored (as in the case of RDF statements). In the term
syntax, an ordered term specification is denoted by square brackets
[], an unordered term specification by curly braces { }. Terms may
contain the reference constructs ^id (“referring” occurrence of the
identifier id) and id @ t (“defining” occurrence of the identifier
id). Using reference constructs, terms can form (possibly cyclic,
but rooted) graph structures. Term attributes are denoted in round
parentheses. Terms are similar to ground functional programming

3http://www.foaf-project.org/

expressions and logical atoms. A non-XML syntax has been chosen
for Xcerpt to improve readability, but there is a one-to-one corre-
spondence between an XML document and a data term.

2.2.2 Queries as Terms
Following the “Query-by-Example” [17] paradigm, queries are

merely examples or patterns of the queried data and thus also terms,
annotated with additional language constructs. Xcerpt separates
querying and construction strictly.

Query terms are (possibly incomplete) patterns matched against
Web resources represented by data terms. In many ways, they are
like forms or examples for the queried data, but also may be in-
complete in breadth, i.e., contain ‘partial’ as well as ‘total’ term
specifications: A term t using a partial term specification for its
subterms matches with all such terms that (1) contain matching
subterms for all subterms of t and that (2) might contain further
subterms without corresponding subterms in t . Partial term specifi-
cation is denoted by double (square or curly) brackets. Query terms
may further be augmented by variables for selecting data items,
possibly with “variable restrictions” using the → construct, which
restricts the admissible bindings to those subterms that are matched
by the restriction pattern. They may contain query constructs like
position matching, subterm negation using without, optional

subterms, regular expressions for namespaces, labels, and text, and
conditional or unconditional path traversal using desc. Finally, they
may contain further constraints on the variables in a so-called con-
dition box, beginning with the keyword where.

Construct terms serve to reassemble variables (the bindings of
which are gained from the evaluation of query terms) so as to con-
struct new data terms. Again, they are similar to the latter, but aug-
mented by variables (acting as place holders for data selected in a
query) and the grouping construct all (which serves to collect all
instances that result from different variable bindings). Occurrences
of all may be accompanied by an optional sorting specification.

2.2.3 Rules and Programs
Query and construct terms are related in rules which themselves

are part of Xcerpt programs. Rules have the form:
CONSTRUCT construct-term
FROM and { query-term or { query-term ... } ... } END

Rules can be seen as “views” specifying how to obtain docu-
ments shaped in the form of the construct term by evaluating the
query against Web resources (e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database
rules to form complex query programs, i.e., rules may query the
results of other rules. More details on the Xcerpt language and its
syntax can be found in [14, 15].

3. FORMAT VERSATILITY
The most basic type of versatility a query language for the (Se-

mantic) Web should posses, is format versatility. Data on the Web
is encountered in many different XML markup languages. In con-
trast, metadata is usually represented in RDF or Topic Maps. How-
ever, XML serializations exist for both of these meta data standards,
which makes their integration with XML data easier. Therefore, it
has been proposed, e.g., in [13], that an ordinary XML query lan-
guage such as XQuery already provides all necessary means to in-
tegrate data from these different formats. However, using ordinary
XML query languages for such an integration proves to be infeasi-
ble for a number of reasons:

(1) Limitations of the XML Data Model: The W3C’s data model
for XML, the XML Infoset [7], deviates from most other semi-
structured data models (including those of RDF and Topic Maps)

in two notable ways: it is tree-shaped, handling non-hierarchical
relations as “second class” relations, and it assumes that the order
among the children of a node is always relevant. These limitations
are true neither for RDF nor Topic Maps and make format versatile
extensions of ordinary XML query languages such as XQuery or
XSLT difficult at best: Either the approach has to tackle “slicing”
up an RDF or Topic Maps graph in XML trees [16], leading to very
unnatural queries, or relational representations are used to represent
RDF triples or Topic Maps assertions, e.g., in [13].

(2) Multitude of Serialization Formats: Topic Maps and, to an
even greater degree, RDF exhibit numerous structured text and XML
serialization formats, e.g., the W3C syntax for RDF RDF/XML
[2], a syntax for embedding RDF in arbitrary XHTML documents
RDF/A [1], and Turtle, the RDF triple syntax adopted for W3C’s
SPARQL. A format versatile language should thus be able to adopt
to rapidly emerging serialization variants.

(3) Transparent Integration: Integrating data from different for-
mats with ordinary XML query languages can be quite cumber-
some and unnatural, as the integration must be performed as part
of each query accessing the integrated data. Xcerpt rules represent
a high level construct that can be used to provide a uniform logical
view over XML markup languages and RDF serializations.

On the other hand, existing RDF and Topic Maps query lan-
guages are equally unsuited for XML processing, partially due to
the limited expressiveness of most of these languages (including the
W3C’s SPARQL), partially due to the specificities of XML related
to its document markup origins not considered in these languages.

Therefore, a proper versatile query language is called for that has
transparent support for different formats and a data model capable
of seamlessly, but without loss of (relevant) information, integrat-
ing semi-structured data on the Web represented in either XML,
RDF, or Topic Maps.

The remainder of this section illustrates this point along a num-
ber of examples realized in Xcerpt. The above mentioned data
sources, a DBLP-like article collection and FOAF data are used.

3.1 From XML to RDF
Xcerpt is tailored in many aspects closely to XML, making the

access to XML data like speaking ones “mother tongue”. In this
section we show how the co-author relation (indicated by the name
dblp:coauthor) can be extracted from the DBLP-like article collec-
tion. Consider the following fragment:
bib(){

2article.66.cicero.wax @ article(){
authors()[

4author()[name(){ "Marcus Tullius Cicero" }
affiliation()["Governor, Cicilia"]]

6author()[name(){ "Marcus Aemilius Lepidus" }]]
title()["Data Storage on Wax Tablets"] }

From this XML fragment it can be deduced that there are persons
with the names “Marcus Tullius Cicero” and “Marcus Aemilius
Lepidus” who are co-author of each other. XML does not associate
unique identifiers with the elements in a document. Hence, blank
nodes must be used to represent these persons in the correspond-
ing RDF graph. The rules below transform the DBLP-like article
collection to a set of RDF-like triples containing all dblp:coauthor
predicates for authors of the same paper. For simplicity, it is as-
sumed that names are unique within the article collection. If this
assumption does not hold, additional properties of the author such
as his affiliation could be leveraged to resolve such name conflicts
in some cases.

Two queries are needed to extract this information from the arti-
cle collection. First we need to establish a b-node for each distinct
author name:

1CONSTRUCT
DISTINCT-NAMES{ all distinct name[var AName] }

3FROM
bib{{ _ {{ # Article, Inproceeding, Techreport, ...

5desc author{{ name{ var AName } }} }} }}
END

An author name is found in the XML article collection in name

children of author elements under top-level entries representing ar-
ticles, theses, technical reports, etc. Since there may be elements
between entry and author (e.g., authorgroup or affiliation) Xcerpt’s
desc modifier is used to indicate that authors at any depth are to be
included. In the construct part of the rule, a temporary store for the
names is created that contains one child for each distinct binding
of the variable AName.

In a second rule, we query the result of the first one: For each
pair of authors within the same top-level entry (i.e., publication) the
(automatically assigned) ID of the corresponding name element as
created by the previous rule is queried and used as the local ID of
the b-node for that author.
CONSTRUCT

2RDF-STORE{
all (triple[value(idvar AID1), "dblp:coauthor",

4value(idvar AID2)]) }
FROM

6and (
DISTINCT-NAMES{{

8idvar AID1 @ name[var AName1]
idvar AID2 @ name[var AName2] }}

10bib{{ /.*/{{
desc author{{ name{ var AName1 } }}

12desc author{{ name{ var AName2 } }} }} }})
END

3.2 Normalizing RDF or From RDF to RDF
As mentioned above, a multitude of serializations for RDF in

XML and structured text exists and frequently new serialization
formats are adopted. Therefore, built-in support for one or even
a small number of these serialization formats alone is not suffi-
cient. Alternatively or additionally, a versatile Web query language
should provide user definable mappings from arbitrary RDF seri-
alizations to a uniform or normalized view of RDF used as target
for queries. In other words, the various physical representations of
RDF must be mapped to a logical view of RDF.

This section illustrates such mappings as Xcerpt rules for some
of the available RDF serialization, viz. RDF/XML [2], and RDF/A
[1]. Fortunately, this can be achieved independently of the schema
of the RDF data, which means that the examples of this section
work just as well for any other vocabulary than FOAF.

In a semi-structured query language two possible logical views
of RDF are most reasonable: RDF as (relational) triples and as
proper graph.4 For many queries the second view is more favor-
able, as it allows the leveraging of expressive graph traversal op-
erators such as descendant or regular path expressions in queries.
However, for simplicity a triple view of RDF as in the above exam-
ples is assumed in the following. For a more detailed discussion of
choosing an appropriate logical view on RDF see [8].

3.2.1 Transforming RDF/XML to Triples
The standard serialization format for RDF is RDF/XML [2], a

W3C recommendation since 2004 very close to the original 1999
RDF syntax. Surprisingly, it is very difficult to parse this serializa-

4Obviously, any structure in between could also be chosen, how-
ever, as [16] shows it is far from obvious to choose a good “slicing”
of the RDF graph that determines which relations are expressed
through direct links and which through value references.

tion format as it has a high degree of variability. This originates par-
tially from the design goal that the syntax allows terse statements
of large XML graphs without unnecessary repetition or duplication
in the syntax leading to a large number of abbreviations and purely
syntactical variants, making reading and processing of RDF/XML
non trivial. The following example document shows a few fictive
statements in RDF/XML about “Marcus T. Cicero” based on the
FOAF vocabulary:

1<?xml version="1.0" encoding="utf−8"?>
<rdf:RDF ... >

3<jur:Lawyer rdf:about="people:m_t_cicero"
foaf:name="Marcus T. Cicero">

5<foaf:member rdf:resource="pol:Optimates" />
<foaf:depiction>

7<rdf:Description>
<foaf:creator

9rdf:resource="people:m_t_cicero" />
</rdf:Description>

11</foaf:depiction>
</rdf:Description></rdf:RDF>

Description elements represent resources occurring as subjects in
RDF triples. They contain elements or attributes that define their
properties. The object of a statement is attached as attribute value,
as element content, or as value of the special rdf:resource attribute.
Thus, the above RDF/XML document defines the following RDF
triples (in Turtle notation).
people:m_t_cicero foaf:name "Marcus T. Cicero".

2people:m_t_cicero rdf:type <jur:Lawyer>.
people:m_t_cicero foaf:member pol:Optimates.

4people:m_t_cicero foaf:depiction _:bust_17.
_:bust_17 rdf:creator people:m_t_cicero .

This example gives only a glimpse at the many variants allowed
in RDF/XML. For more details on the variants and a full descrip-
tion on how to use Xcerpt to transform RDF/XML in a triple view
of RDF are given in [4].

A brief look at one of the transformation rules suffices to demon-
strate the level of versatility needed to integrate such formats:

1CONSTRUCT
RDF-STORE{ all triple[var SURI, var PURI, var OURI] }

3FROM
and(

5rdf-subjects {{
idvar S @ _{{ var PURI ((rdf:resource=var OURI)){{

7}} }} }},
node-to-triple-value[idvar Subject, var SubjURI])

9END

The rule uses two helper rules rdf-subjects and node-to-uri to find
all subject resources in the RDF/XML document (this requires a re-
cursive traversal of the document, as subject resources may occur at
any depth and are only distinguishable from properties and objects
through their structural position). The second helper rule is node-

to-uri that associates nodes in the RDF/XML document with URIs
(needed to resolve relative URIs, assign “URIs” to blank nodes
etc.). The above rule selects for each subject node the immediate
children of that node, which represent the properties of the subject
node. Finally, the URI of the object is selected from the value of
the rdf:resource attribute of the property. Obviously, this rule only
covers one of the many cases how triples are represented, it can,
e.g., not handle literal objects or nested objects.

3.2.2 Transforming RDF/A to Triples
RDF/A [1] is a recent W3C editor’s draft proposing a new seri-

alization of RDF that allows to embed RDF statements as attributes
in any possible XML markup language, such as XHTML or SVG.
An example RDF/A fragment is shown in the following listing.

1<p about="http://senate.spqr/m_t_cicero">

For many years, Marcus T.
3Cicero is a recognized name, both as a <span

property="rdf:type" href="jur:Lawyer">lawyer and as
5a senator. He is a member of the conservative Optimates
7party. He has also created <span href="[_:bust_17]"

rev="foaf:depiction" rel="foaf:creator">Bust 17
9depicting himself.</p>

This RDF/A fragment represents the same triples as the above
RDF/XML document: Subjects of statements are indicated by the
about attribute, predicates by one of the attributes property (if the
object of the statement is a literal), rel (if the object of the state-
ment is a URI) and rev (if the statement is to be read in the reverse
direction). In case the objects of statements are literals, in RDF/A
they are either included in the element with the subject and predi-
cate attributes or in a content attribute, which takes precedence. If
the object is an URI, it is included in an href attribute.

The different ways RDF triples may be embedded in XHTML (or
any other XML markup language) can be covered in the disjuncts
of a single Xcerpt rule:

1CONSTRUCT
RDF-STORE{ all triple[var S, var P, var O] }

3FROM
or (

5desc _((about=var S, property=var P, without content=_))
{{var Object}}

7desc _((about=var S, rel=var P, href=var O)){{ }}
desc _((about=var O, rev=var P, href=var S)){{ }},

9desc _((about=var S, property=var P, content=var O)){{}})
END

Not all possible embeddings of triples in the RDF/A syntax are
covered by this rule: Is the about attribute absent for an element
with a property attribute, the subject of the corresponding statement
is resolved by subject resolution, cf. Section 5.

There are also other, non-W3C RDF serialization formats that
are more regular and become very similar to the logical triple view
of RDF discussed in this section.

3.2.3 From Triples to Graphs
Given the triple view, one can formulate easily expressive queries

against the RDF data. However, whenever the queries involve path
traversals, in particular arbitrary length path traversals (e.g., to tra-
verse the transitive closure of a relation) complex and often recur-
sive rules are needed.

However, if RDF is considered as a graph, where similar as in
RDF/XML subjects contain properties which in itself contain links
to objects of statements, then such queries can be expressed with
descendant or regular path expressions as available in most XML
and semi-structured query languages.

In the spirit of versatility, Xcerpt provides access to both logical
views. The following rule transforms the triple into a graph view.
CONSTRUCT

2RDF-GRAPH-STORE {
all var Subject @ var Subject {

4all optional var Predicate { ^var Object },
all optional var Predicate { var Literal } } }

6FROM
RDF-TRIPLE-STORE[

8triple[var Subject, var Predicate,
optional var Literal →literal{{}},

10optional var Object →/.*/]]
END

3.3 From Topic Maps to RDF
Topic Maps being an ISO standard fitting similar purposes as

RDF, it is often desirable to draw information from both of these

semantic Web data formats simultaneously. The large amount of re-
search aiming at easing the interoperability amongst both formats,
cf. [12], is an indicator for the necessity of a versatile query lan-
guage like Xcerpt that allows the aggregation of information from
both formats.

A possible procedure for integrating Topic Maps with other for-
mats would be the transformation of topics and associations to sets
of triples in a similar way as the transformation of the DBLP-like
article collection above. There are several kinds of triples that may
be extracted from a topic map: the type of the topic, its name,
and named occurrences of the topic. The transformation of top-
ics to RDF-like triples—and therefore the integration of informa-
tion from Topic Maps and RDF—is obtained quite naturally using
a format versatile query language and is therefore omitted for space
reasons.

4. SCHEMA VERSATILITY
Schema versatility builds upon format versatility in the sense

that the integration of information from different resources in many
cases requires that the employed query language is both format ver-
satile and schema versatile. In fact, it is unlikely that pieces of in-
formation gathered from sources in different formats make use of
the same schema. As an example reconsider the integration of in-
formation from the DBLP-like article collection and FOAF descrip-
tions. While both sources of information have been brought into a
uniform triple notation thanks to format versatility, the schemata of
both sources remain unassociated. This is where schema mappings
specified, e.g., in the W3C’s RDFS vocabulary definition language
or in the Web Ontology Language (OWL) come into play.

Both languages provide some means to establish a mapping be-
tween classes and properties in different schemata, though the map-
ping concepts of RDFS are very limited. A schema mapping might,
e.g., state that dblp:coAuthorOf is a subproperty of foaf:knows, i.e.,
that all resources that stand in dblp:coAuthorOf relation also stand
in foaf:knows relation.

If the query language supports reasoning with RDFS and/or OWL,
it suffices to include such schema mappings into the considered
data. The query engine then infers the appropriate tuples. Xcerpt
provides such reasoning support for RDFS in form of a rule library
that also illustrates how user defined schema mappings (e.g., go-
ing beyond the mapping constructs of either RDFS or OWL) can
be supported in a query language. Xcerpt’s RDFS rule library is
described in more detail in [4, 8]. Here, it suffices to give an im-
pression of the kind of rules needed to realize RDFS reasoning:

1CONSTRUCT
RDFS-STORE{

3optional all triple[var Subject, var SuperPr, var
Object]

optional all var BasicTriple }
5FROM

or (
7RDF-STORE{{

triple[var SubPr, "rdfs:subPropertyOf", var SuperPr]
9triple[var Subject, var SubPr, var Object] }}

RDF-STORE{{ var BasicTriple }})
11END

The rule queries the RDF-STORE for all triples with predicate
rdfs:subPropertyOf. Such triples connect a sub-property SubPr to
a super-property SuperPr. In the inferred RDFS-STORE a new triple
is inserted for each basic triple with the sub-property as predicate.
Additionally, all the basic triples are included as well.

Beyond simple equivalences or specialization relations, schema
mappings may contain more elaborate information, e.g., that a prop-
erty of an object is a primary key, i.e., its values uniquely iden-

tify that object. In OWL this is specified by typing the property
as owl:InverseFunctionalProperty. This information can be used to
recognize that two objects, even if they are identified differently
(most commonly at least one of them is a blank node) are indeed
the same. In the example case, ISBNs or DOIs of books and arti-
cles qualify for inverse functional properties. This allows to infer
equivalence of individual books even if the schema mapping con-
tains only equivalences on properties and classes.

Schema versatility often goes hand in hand with the two other
forms of versatility: Often different schemata originate from differ-
ent formats used for the data; often different schemata use different
representations for the same data. The link between schema and
representational versatility is further investigated in the following
section.

5. REPRESENTATIONAL VERSATILITY
Even within the same schema, the represenation of information

may vary to a great extent, and the semi-structured nature of data
on the Web requires that an adequate query language can handle
heterogeneous and incomplete data and complex nested structures.
RDF/A is an example for an XML schema that allows a great de-
gree of representational diversity. Especially the concept of subject
resolution, which has been mentioned in Section 3, requires that a
Web query language that is supposed to handle RDF/A is represen-
tationally versatile. Subject resolution in RDF/A means that in the
absence of an about attribute, the subject of a statement is searched
for as the value of the nearest available about attribute of enclosing
elements.

In order to extract also triples of this kind, the rule from Section
3 must be adjusted to use Xcerpt’s regular path expressions. The
second disjunct of the above rule would read as follows.

1desc _ ((about=var Subject)){{
desc(!(_[about=_]))*

3((rel=var Predicate, href=var Object)){{ }}
}}

The FOAF vocabulary specification provides many different ways
to specify the name of a person, such as foaf:firstName, foaf:nick,
foaf:givenname, foaf:family_name, foaf:name, and foaf:surname.
The automatic creation of an address book from a set of FOAF de-
scriptions requires that all or some of these possibilities are taken
into account. Undoubtedly, a representationally versatile query lan-
guage must provide a construct that allows certain parts of semi-
structured data to be optional, in the sense that they are to be re-
trieved if present, but that the query need not fail if they are absent.
The following Xcerpt rule transforms a set of FOAF descriptions
into an address book making intensive use of the optional con-
struct.
CONSTRUCT

2addressbook[
all address[

4mbox[var Mbox],
firstname[optional var FirstName, optional var

GivenName],
6familyname[optional var FamilyName, optional var

Surname],
optional name[var Name]]]

8FROM
foaf:Person{{

10foaf:mbox{ var Mbox },
optional foaf:firstName{ var FirstName },

12optional foaf:family_name{ var FamilyName },
optional foaf:surname{ var Surname },

14optional foaf:name{ var Name },
optional foaf:givenname{ var GivenName } }}

16END

In construct terms, optional marks the enclosed subterms as op-
tional, i.e., they are only included in the result, if there are bindings
for the free variables in the scope of the optional. Therefore, the
element name in the above rule is only included, if the query part
of the rule succeeded to match the Name variable.

Note that the rule is written based on the assumption that there is
no major semantic difference neither between surnames and family
names, nor between first names and given names. Furthermore, it
is assumed that a single FOAF description does not contain both a
family name and a surname or a first name and a given name. If this
is not the case, a precedence could be given to, e.g., firstName and
familyName and realized with Xcerpt’s conditional construction.

6. CONCLUSION
We believe that query languages are the right tools for many ap-

plications to access Web data and can also provide flexible, rich
interfaces if used for publishing Web data. However, on the Web
data access is not limited to one format, to one schema, or to one
representation as can be assumed for many traditional usage sce-
narios of query languages. Therefore, query languages for the Web
have to be able to deal with heterogeneity at all levels to become
truly useful for application developers. Xcerpt is, in our opinion, a
first step towards realizing this vision of versatile query languages
that make access to heterogeneous data sources almost as easy as
access to homogeneous data.

7. REFERENCES
[1] B. Adida and M. Birbeck. RDF/A Primer 1.0—Embedding RDF in

XHTML. Internal draft, W3C, 2006.
[2] D. Beckett and B. McBride. RDF/XML Syntax Specification

(Revised). Recommendation, W3C, 2004.
[3] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser.

Xcerpt and visXcerpt: Twin Query Languages for the Semantic
Web. In Proc. Intl. Semantic Web Conf., 2004.

[4] O. Bolzer. Towards Data-Integration on the Semantic Web: Querying
RDF with Xcerpt. Master thesis, University of Munich, 2005.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible Markup Language (XML) 1.0 (3rd Ed.).
Recommendation, W3C, 2004.

[6] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger.
Querying the Web Reconsidered: Design Principles for Versatile
Web Query Languages. J. of Semantic Web and Inf. Sys., 1(2), 2005.

[7] J. Cowan and R. Tobin. XML Information Set (2nd Ed.).
Recommendation, W3C, 2004.

[8] T. Furche, F. Bry, and O. Bolzer. Marriages of Convenience: Triples
and Graphs, RDF and XML. In Proc. Intl. Workshop on Principles
and Practice of Semantic Web Reasoning, 2005.

[9] T. Furche, F. Bry, S. Schaffert, R. Orsini, I. Horrocks, M. Krauss,
and O. Bolzer. Survey over Existing Query and Transformation
Languages. Deliverable I4-D1, REWERSE, 2004.

[10] F. Manola, E. Miller, and B. McBride. RDF Primer.
Recommendation, W3C, 2004.

[11] P. Patel-Schneider and J. Simeon. The Yin/Yang Web: XML Syntax
and RDF Semantics. In Proc. Intl. World Wide Web Conf., 2002.

[12] S. Pepper, F. Vitali, L. M. Garshol, N. Gessa, and V. Presutti. A
Survey of RDF/Topic Maps Interoperability Proposals. W3C, 2006.

[13] J. Robie. The Syntactic Web. In Proc. XML Conference and
Exhibition, 2001.

[14] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation
Language for the Web. Ph.D. thesis, University of Munich, 2004.

[15] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical
Introduction to Xcerpt. In Proc. Extreme Markup Languages, 2004.

[16] N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Proc.
Extreme Markup Languages, 2003.

[17] M. M. Zloof. Query By Example: A Data Base Language. IBM
Systems Journal, 16(4):324–343, 1977.

