
Integrated Document Browsing and Data
Acquisition for Building Large Ontologies

Felix Weigel, Klaus U. Schulz, Levin Brunner, and Eduardo Torres-Schumann

Centre for Information and Language Processing (CIS)
University of Munich (LMU), Germany

{weigel,schulz,brunner,torres}@cis.uni-muenchen.de

Abstract. Named entities (e.g., “Kofi Annan”, “Coca-Cola”, “Second
World War”) are ubiquitous in web pages and other types of document
and often provide a simplified picture of the document’s content. We
present an ontology currently containing 31,000 named entities in differ-
ent languages from various domains such as history, geography, politics,
sports, arts, etc., which is being developed at the University of Munich
(LMU). The underlying graph data model is simple and yet extremely
versatile in different application scenarios. We demonstrate a prototype
of a graphical interface to both the ontology and to documents on the
web or in a local document repository, with a tight interaction in both di-
rections. Occurrences of concepts from the ontology are highlighted and
hyperlinked in the documents. Unrecognized entities could be added to
the database and related to other concepts in a semiautomatic process.
The entity database can also be used for extending full-text queries on
the web or the repository to semantically close documents, and for index-
ing different kinds of named entities in the document repository. Similar
to a programming IDE, the system illustrates how integrated browsing,
search and update functionality contributes to the construction of high-
quality ontologies, fundamental to the vision of a truly “semantic” web.

1 Introduction

The Semantic Web is meant to enable reasoning not only on the contents of
static web pages, but further and foremost on the underlying data sources such
as databases, web services, document repositories, digital libraries, on-line en-
cyclopaedias, etc. (sometimes called the “deep web”). A fundamental building
block for the description, integration/mediation and inference on these hetero-
geneous data sources are ontologies, i.e., formal schemata of the concepts and
relationships in one or more, possibly overlapping domains. Faced with a grow-
ing number of different knowledge representation formalisms [1,2] and tools for
creating ontologies [3,4], we claim that in order to make large amounts of ex-
isting data accessible to the Semantic Web, formalisms and tools are needed
which (1) make ontology development, maintenance and usage easy even for
non-experts in knowledge representation, (2) strive for a feasible amount of in-
ference rather than too much of fancy (and expensive) “magic”, and (3) offer a
data-driven approach for integrating ontologies and existing data sources.

We would like to comment on these controversial issues. First, experts are
most apt at giving some thematic domain a precise structure, but non-expert
users may not be able to query this complex structure, falling back to less so-
phisticated queries or simply browsing. By contrast, collaborative projects such
as Wikipedia [5] clearly show the benefits of both expert and non-expert con-
tributions for gathering encyclopaedic knowledge. Second, even in the presence
of emerging knowledge representation standards such as OWL [1], it seems nat-
ural to study simple formalisms by experimenting with prototypes of a limited
functionality, before coming up with more sophisticated applications in a second
step. Third, we believe that a fine-grained, up-to-date model of common-sense
knowledge on a web scale is infeasible. Fully automated knowledge extraction
may complement manual and semiautomatic acquisition techniques, but cannot
replace them. We thus advocate a mainly data-driven process where ontologies
are updated and enlarged while searching and browsing the actual contents.

Contributions. In this work we describe the EFGT Net, an ontology containing
currently 31,000 named entities from various domains, which is being developed
at the University of Munich. The underlying graph data model is deliberately
simple and specifically designed for building scalable models of common-purpose
knowledge. The ontology features multilingual concept descriptions, which we
consider indispensable in a web context. Target applications include simple se-
mantic search and inference on web contents or documents from a local reposi-
tory or intranet. We also outline a new integrated tool – similar to an Integrated
Development Environment (IDE) – for searching, exploring and updating the
ontology while browsing the documents. An extensive sample session illustrates
typical usage patterns with a prototype, emphasizing the benefit of a tight ontol-
ogy/corpus integration for creating and using large-scale, high-quality ontologies.

The next section describes in a nutshell knowledge representation and infer-
ence with the EFGT Net. Section 3 presents our prototype using a real-world
web example. The system architecture is sketched in Section 4. Finally, Section 5
concludes with a brief outlook on future work.

2 Knowledge representation and inference with EFGT

This section introduces the EFGT Net and its basic principles on an informal
basis. For a more formal definition of the data model, see [6]. The EFGT Net is a
directed acyclic graph (DAG) whose nodes represent concepts and whose edges
represent directed binary relations between the concepts. Each concept has a
natural-language definition in at least one of the supported languages, as well as
optional semantic and syntactic information. In the current version of the EFGT
Net there are about 31,000 nodes and 637,000 edges, with a language coverage of
100% German, 70% English, 30% French, 30% Polish and 10% Bulgarian. Every
node has a unique identificator, its ID string, which determines the position of
the corresponding concept in the structure of the EFGT Net and all its relations
to other concepts. Thus from the complete set of identificators, all the edges can
be inferred by means of a couple of formal deduction mechanisms [7].

I :=() | (X I .N) | (I & I)
X := (e | E | F | g | G | t | T)
N := D (0 | D)∗

D := (1 | . . . | 9)

Fig. 1. ID string syntax.

The EFGT Net is built and enlarged by gener-
ating ID strings according to a set of formal rules.
Syntactically, ID strings are defined by the gram-
mar in Fig. 1. The seven alternatives in the second
production can be arranged into the four main types
E, F , G and T (from which the acronym EFGT is
derived). Uppercase letters denote sets and lowercase letters singleton elements:

E, e Type E denotes a set of Entities like composers, whereas type e denotes
a singleton entity like J. S. Bach.

F Type F denotes a thematic F ield (topic) like politics. Since every the-
matic field can be regarded as a set of subfields, there is no type f .

G, g Type G denotes Geographical sets like rivers, whereas type g stands for
singleton geographic sites like the Alps.

T, t Finally, type T denotes a T emporal period like epochs in art, whereas
type t denotes an individual time interval or point like September 11th.

As shown by the first production in Fig. 1, there are two ways to create a
new ID string based on existing ID strings like the initial top node (). First one
can refine a single existing ID string by a local introduction with the dot nota-
tion shown in Fig. 1. For instance, (F().1) defines the first concept below the
top node, and is assigned to the topic “politics” in our ontology. When creating
a new concept by local introduction, the only directly connected other concept
is the existing concept being refined. The resulting edge can represent different
relations, e.g., the definition of a subconcept – “foreign policy” (F(F().1).2) –,
or subset – “political problems” (F(F().1).20) –, or the selection of a single
member of a set (“Presidents of the United States”—“Bill Clinton”). This vague-
ness is intended to facilitate the modelling of real-world knowledge, mirroring the
ambiguity of recursive constructs in natural language (“members of the Beatles”
vs. “albums of the Beatles”). The second way to create a new ID string is to
combine two existing ID strings with the & operator, which can either denote the
intersection between two given sets, (X&Y), or the creation of a new set (X&y)
by placing the original set X in the context of a singleton concept y. Note that
(X&y) need not be a subset of X. As an example combining local introduction
and intersection, consider the concept “politics” (F().1) and its subfield “de-
fense politics” (F(F().1).14). The intersection with “persons” (E().1) yields
the concept “defense politicians” ((F(F().1).14)&(E().1)). For convenience,
we henceforth drop occurrences of the top node, writing (F.1) for (F().1), etc.

Inference with the EFGT Net

Figure 3 illustrates how the new concept “Cities in Bavaria” is represented in
the ontology (for simplicity, ID strings are symbolized by their descriptions).
Assume there exist concepts “Germany”, “Bavaria” (a region in Germany), both
of type g, and concepts “Cities”, “Cities in Germany” of type E. “Bavaria” is
derived from “Germany” by local introduction, whereas “Cities in Germany”

Fig. 2. Neighbourhood of the concept “Romantic composers” in the EFGT Net.

Fig. 3. Link inference in the EFGT Net.

results from combining “Cities”
and “Germany” with the
& operator. Analogously, the
new concept “Cities in Bavaria”
is defined simply by applying
& to “Cities” and “Bavaria”,
as indicated by the dashed
arrows. However, the edges
actually inferred (green solid
lines) relate the new concept
directly to “Cities in Ger-
many” (since Bavaria is a part
of Germany), which implies
an indirect link to “Cities”. Typically many relations are inferred from a small
number of references to existing concepts explicitly stated in the ID string. Fig-
ure 3 shows a similar case in a more complex subgraph. When inserting “Ro-
mantic music” into the graph, only “Classical music” and “Romantic arts” are
explicitly mentioned in the ID string. The link stating that romantic music is
a period in music history is inferred, based on the fact that the latter concept
shares all higher-level ancestors (“types of music”, “style periods”) with the
newly defined node. The exact inference algorithm is given in [7].

Fig. 4. Screenshot of the EFGT Net browser prototype.

3 Using the EFGT Net for Semantic Web browsing

This section describes a typical session with our prototypical ontology browser for
the EFGT Net (see Figure 4). The system is explained in detail in Section 4. To
achieve tight interaction of the documents and the ontology as claimed above,
we integrated a GUI to the EFGT Net (left-hand side in Figure 4) into an
ordinary web browser accessing documents in local repositories, intranets or the
WWW (right-hand side). The EFGT GUI displays any concept along with its
neighbourhood, i.e., the more general (specific) concepts one level above (below).
In Figure 4, the concept “romantic composers” from Figure 2 is selected. Its
ancestor (descendants) are labelled ↖ (↘). Colours indicate the EFGT type of
all concepts as in Figure 2. Clicking on any item in the list shifts the focus to the
neighbourhood of that concept. History and bookmark functions (above/below
the list) and a backlink to the top node () facilitate browsing the EFGT Net.

Fig. 5. Ontology interaction.

As outlined in Figure 5, the EFGT
GUI interacts with the web page by
highlighting selected occurrences of con-
cepts in the document. The six high-
lighting modes (see the buttons on top of
the neighbourhood) are: all EFGT con-
cepts (), both more general and more
specific (), more general/specific only
(/), current concept only (), or no highlighting at all (). In Figure 4,
the mode is active. A click on the button removes the highlighting of all
occurrences visible in the screenshot, except “Johannes Brahms” and “music”.
Counters behind list items indicate how many occurrences of a concept itself
(parentheses) or any of its descendants (square brackets) are highlighted in the
document. The inference on ID strings for highlighting and counting ancestors
or descendants is done on the fly with simple and fast string matching [6]. Oc-
currences of the same concept in the web page are chained through hyperlinks
(light green arrows) for easy location of all paragraphs where a concept of inter-
est is mentioned. Each occurrence is also backed by a hyperlink into the EFGT
GUI, with the same functionality as links inside the GUI (focus shift, see above).
Besides, by hovering an occurrence, the user obtains a concept profile (bottom
left in Fig. 4) including, e.g., the life time of a person or the English description
of the concept, which is useful when browsing documents in foreign languages.

Currently concepts in the GUI can be reached alternatively by (1) browsing
the hierarchy down from the top node, (2) selecting a concept from the concept
store containing bookmarks stored persistently in previous sessions, (3) select-
ing a concept visited earlier from the persistent history, or (4) clicking on an
occurrence in the document. A simple string search on the natural-language
concept definitions is being integrated into the prototype. Further extensions of
the functionality, including ontology maintenance, are listed in Section 5.

4 Architecture of the prototype

The ontology browser presented in Section 3 is implemented as a client-server
application using Java Server Pages (JSP) and Java Servlets, as sketched in
Figure 6. The EFGT GUI is a JSP displayed in the sidebar of the web browser
(Mozilla 1.7.12). Each focus shift (i.e., request for the neighbourhood of a specific
concept) triggers the dynamic generation of a new web page containing the entire
GUI shown in Figure 4. This includes (partly hidden) concept and widget labels
in all supported languages, such that no reload is necessary when the user selects
a different language from the drop-down list on top. The concept information
needed to build the neighbourhood is obtained from the EFGT Net, which resides
in a RDBS backend (PostgreSQL 8.0). Requests for a specific neighbourhood are
answered through a Web Service interface from tables containing all nodes and
edges in the graph. The underlying inference relies on simple and efficient string
matching of ID strings. In order to reduce the response time even further, a
server-side concept cache retains the most recently requested neighbourhoods.

Fig. 6. Architecture of the prototype.

The preparation of EFGT-
enriched documents is a little
more involved, as shown on the
right-hand side of Fig. 6. The web
browser directs each request for a
new page (through a link or the
address bar) to the servlet engine
(Tomcat 5.0) running on a proxy
server. The servlet receiving the
request first fetches all data from
the document repository or the
web. Before the data is sent back
to the client, all occurrences of
EFGT concepts in the requested
document must be located and
hyperlinked using the ID strings from the EFGT Net, which are needed for
the interaction with the EFGT GUI. We found that when implemented näıvely,
preprocessing the documents thus on the fly easily entails inacceptable response
times. Therefore we compile the required EFGT data into a set of rewrite lexica
to be used by an extremely efficient and scalable string transducer [8]. Each
lexicon contains the ID strings of all nodes in the EFGT Net, along with the
concept definitions in a specific language. Thus the size of the lexica varies with
the coverage for the corresponding languages. For instance, the German lexicon
comprising all 31,000 nodes in our EFGT Net takes up 15 MB on disk. Note that
the lexica are created off-line once (in a few seconds) and then used repeatedly
when requests come in. Annotating all concept occurrences in a given document
with EFGT data (and HTML markup for links) is a matter of milliseconds.

There are a couple of caveats related to the document preprocessing. First,
to determine which lexicon to use for a given web page we examine the HTTP
header Content-Language, using a simple fall-back heuristic based on the top-
level domain of the requested URL if the header is missing. More sophisticated
techniques could infer the language from the page contents. Second, markup
must be temporarily stripped off the document before the transduction, other-
wise HTML or embedded script code might get corrupted. Finally, to recognize
inflected occurrences of EFGT concepts and to avoid needless annotation, some
linguistic normalization (stemming, stop-word removal) is in order—both on-
line in the document and off-line when creating the lexica. While this works fine
for English content (using Porter stemming), a simple adaptation of the Porter
algorithm to German resulted in many needless ambiguities. Hence we automat-
ically generated all noun inflections of the German concept descriptions, added
them to the lexicon (included in 15MB), and disabled stemming for German.

5 Conclusions
In this paper we presented an integrated tool for document browsing with ontol-
ogy support, and showed how the simple and versatile EFGT formalism provides
efficient string-based inference on multilingual corpora such as local document

repositories or the web. The underlying data model addresses common-sense
knowledge and can be universally applied and manipulated by non-experts. Effi-
cient reasoning is achieved by comparing language expressions directly, which en-
sures the scalability of our approach. While the prototype presented here exploits
inference only for simple subsumption tests, we envisage a more sophisticated se-
mantic search and classification of the documents, using ID string manipulation
either directly or with graphic metaphors. In the EFGT Net, semantic querying
can be realized in an intuitive way without imposing to the user the burden of a
complex formal query language. Further query refinement is achieved through in-
terleaved ontology navigation and document browsing as illustrated above. The
browsable GUI to the multilingual ontology distinguishes our system from other
tools for automatic document annotation and hyperlinking, such as Magpie [9]
and COHSE [10]. We plan to extend the prototype to support the user in ontol-
ogy maintenance: e.g., new concepts occurring in the documents could easily be
added on the fly to the EFGT Net using a drag-and-drop interface. By virtue of
its simple recursive structure, the EFGT formalism seems particularly promising
for such combined knowledge management and acquisition techniques. As the
ontology grows, the automatic linking of entities and documents becomes more
difficult since ambiguities arise. Apart from user-driven disambiguation (showing
alternatives in context menus), we intend to develop detection methods for new
entities and linguistic variants (maybe using named-entity recognizers such as
GATE [11]), as well as intelligent indexing with on-line disambiguation. These
steps should allow us to minimize human effort during ontology development.

References

1. Dean, M., Schreiber, G.: OWL Web Ontology Language Ref. (2005) W3C Rec.
2. Klyne, G., Carroll, J.J.: Resource Description Framework (2005) W3C Rec.
3. Sure, Y., Erdmann, M. et al.: OntoEdit: Collaborative Ontology Engineering for

the Semantic Web. In: Proc. 1st Int. Semantic Web Conf. (2002) 221–235
4. Noy, N.F., Sintek, M. et al.: Creating Semantic Web Contents with Protege-2000.

IEEE Intelligent Systems 16 (2001) 60–71
5. Wikipedia: The Free Encyclopedia. (www.wikipedia.org)
6. Schulz, K.U., Weigel, F.: Systematics and Architecture for a Resource Representing

Knowledge about Named Entities. In: Proc. Workshop on Principles and Practice
of Semantic Web Reasoning. (2003) 189–207

7. Brunner, L., Schulz, K.U., Weigel, F.: Organizing Thematic, Geographic and Tem-
poral Knowledge in a Well-founded Navigation Space: Logical and Algorithmic
Foundations for EFGT Nets. J. Web Serv. Research, Spec. Issue “Semantically
Augmented Metadata for Services, Grids, and Software Engin.” (2006) (in press).

8. Mihov, S., Schulz, K.U.: Efficient Dictionary-Based Text Rewriting using Subse-
quential Transducers. Journal of Natural Language Engineering (2005)

9. Dzbor, M., Domingue, J., Motta, E.: Magpie: Towards a Semantic Web Browser.
In: Proc. 2nd Int. Semantic Web Conf. (2003) 690–705

10. Carr, L., Hall, W., Bechhofer, S., Goble, C.: Conceptual Linking: Ontology-based
Open Hypermedia. In: Proc. 10th Int. World Wide Web Conf. (2001) 334–342

11. Cunningham, H., Humphreys, K. et al.: GATE – a General Architecture for Text
Engineering. In: Proc. 5th Applied Natural Lang. Processing Conf. (1997) 29–30

	Integrated Document Browsing and Data Acquisition for Building Large Ontologies
	Felix Weigel, Klaus U. Schulz, Levin Brunner, Eduardo Torres-Schumann (LMU Munich)

