
XML Querying Using Ontological Information

Hans Eric Svensson and Artur Wilk

Dept. of Computer and Information Science,
Linköping University, S 581 83 Linköping, Sweden

{x05erisv, artwi}@ida.liu.se

Abstract. The paper addresses the problem of using semantic anno-
tations in XML documents for better querying XML data. We assume
that the annotations refer to an ontology defined in OWL (Web On-
tology Language). The intention is then to combine syntactic querying
techniques on XML documents with OWL ontology reasoning to filter
out semantically irrelevant answers. The solution presented in this paper
is an extension of the declarative rule-based XML query and transfor-
mation language Xcerpt. The extension allows to interface an ontology
reasoner from Xcerpt rules. This makes it possible to use Xcerpt to fil-
ter extracted XML data using ontological information. Additionally it
allows to retrieve ontological information by sending semantic queries to
a reasoner. The prototype implementation uses DIG (Description Logic
interface) for communication with the OWL reasoner RacerPro where
the ontology queries are answered.

1 Introduction

XML, designed by W3C1, is increasingly used for representing semistructured
data on the Web. XML is considered a basic layer in the W3C Semantic Web
initiative initiated by Tim Berners-Lee. As stated by Antoniou and van Harme-
len [2] the objective of the initiative is “to represent Web content in a form
that is more easily machine-processable and to use intelligent techniques to take
advantage of these representations”. The intention is not to build a new Web
from scratch, but to stimulate gradual evolvement of the existing Web in the
above-mentioned direction.

Another layer of the Semantic Web is the so-called ontology layer. Ontologies
provide information about concepts, roles and individuals in a given application
domain. Thus an ontology gives a common vocabulary to be understood in the
same way by various applications in the domain. For example the concept tree
in graph theory applications is understood to be a special kind of the concept
graph. The same concept would be understood to be a special kind of the concept
plant in a botanical vocabulary. The roles defined by an ontology are binary
relations on concepts. The Web Ontology Language OWL [1], recommended by
the W3C, is used for specifying Web ontologies. Formally the language is based
on a Description Logic. An OWL ontology can thus be seen as a set of logical
1 http://www.w3.org/

http://www.w3.org/

axioms. Querying a given ontology is done by reasoning in the underlying logic.
For example, if the graph ontology states that the individual t is a tree it can
be concluded that t is a graph.

XML is supported by query languages, including the W3C Candidate Rec-
ommendation XQuery [4]. Querying of XML data in such languages relies on the
structure of the queried XML data: a query identifies a (possibly empty) set of
fragments of given XML data. The structure-based querying of XML data is thus
based on the syntax of the data. XML data may include semantic annotations,
referring to concepts defined by ontologies. However, XML query languages do
not provide ontology reasoning capabilities. The objective of this paper is to
show how structure-based querying can be combined with ontology reasoning.
For this we combine the XML query language Xcerpt [7,6] with ontology queries.
Xcerpt is being developed by the EU Network of Excellence REWERSE 2 in the
6th Framework Programme. It differs from most other XML query languages in
that it is deductive and rule based. This makes it more suitable for integration
with ontology queries.

As already stated, the objective of our work is to enhance structural querying
of XML data with ontology reasoning. We assume that XML data contains
annotations referring to an ontology defined in OWL. We would like to filter XML
documents returned by a structural query by reasoning on semantic annotations
included therein. This can be illustrated by the following example. Assume that
an XML database of culinary recipes is given. Each recipe indicates ingredients
(like flour, salt, sugar etc.). We assume that the names of the ingredients are
defined by a standard ontology, accessible separately on the web and providing
also some classification. For example, the standard may specify disjoint classes of
gluten-containing and gluten-free ingredients (see Figure 1). Thus, the names of
ingredients in the XML recipe can be seen as semantic annotations. To prepare
dinner we would query the XML database for recipes. To check if the ingredients
of a chosen recipe are gluten-free we have additionally to query the ontology.

Thus, the problem outlined above can be seen as the problem of interfacing of
an XML query language with an ontology reasoner. We decided to choose Xcerpt
as the query language as variables of Xcerpt can naturally be used for passing
semantic annotations from results of Xcerpt queries to an ontology reasoner. Also
we had access to the source code of the Xcerpt implementation which made it
possible to implement our solution by modification of this code. The prototype
implementation uses DIG (Description Logic interface [3]) for communication
with the OWL reasoner RacerPro3 where the ontology queries are answered.

The prototype implements two ways of interfacing a reasoner from Xcerpt.
One of them involves boolean ontology queries, which are used to filter out irrel-
evant answers. Another one allows arbitrary DIG queries to retrieve ontological
information from the reasoner. Such information can be further used by other
rules in an Xcerpt program.

2 http://www.rewerse.net/
3 http://www.racer-systems.com/

http://www.rewerse.net/
http://www.racer-systems.com/

Fig. 1. Recipe ontology graph (generated by RacerPorter - a graphical user
interface of RacerPro).

The rest of the paper is organised as follows. Section 2 briefly introduces
the query language Xcerpt and gives some background information on the DIG
interface. Section 3 presents an extension of Xcerpt allowing querying XML
using ontological information. It also presents a prototype implementing new
constructs in Xcerpt. Finally, Section 4 provides some conclusions.

2 Preliminaries

This section gives a brief introduction to the XML query and transformation
language Xcerpt and the DIG Interface. These are basic techniques applied in
the presented work.

2.1 Xcerpt

An Xcerpt program is a set of rules consisting of a body and of a head. The
body of a rule is a query intended to match data terms. If the query contains
variables such matching results in answer substitutions for variables. The head
uses the results of matching to construct new data terms. The queried data is
either specified in the body or is produced by rules of the program. There are two
kinds of rules: goal rules produce the final output of the program, while construct

rules produce intermediate data, which can be further queried by other rules.
Their syntax is as follows:

GOAL CONSTRUCT
head head

FROM FROM
body body

END END

Sometimes, we will denote the rules as head ← body neglecting distinction be-
tween goal and construct rules.

XML data is represented in Xcerpt as data terms. Data terms are built
from basic constants and labels using two kinds of parentheses: brackets [] and
braces { }. Basic constants represent basic values such as attribute values and
character data (called PCDATA). A label represents an XML element name.
The parentheses following a label include a sequence of data terms (its direct
subterms). Brackets are used to indicate that the direct subterms are ordered
(in the order of their occurrence in the sequence), while braces indicate that the
direct subterms are unordered. The latter alternative is used to encode attributes
of an XML element by a data term of the form attr{l1[v1], . . . , ln[vn]} where li
are names of the attributes and vi are their respective values.

Example 1. This is an XML element and the corresponding data term.

<CD price="9.90"> CD[attr{ price["9.90"] },
<title>Empire</title> title["Empire"],
<artist>Bob Dylan</artist> artist["Bob Dylan"],
<country>USA</country> country["USA"]

</CD>]

There are two other kinds of terms in Xcerpt: query terms and construct
terms.

Query terms are (possibly incomplete) patterns which are used in a rule
body (query) to match data terms. In particular, every data term is a query
term. Generally query terms may include variables so that a successful match-
ing binds variables of a query term to data terms. Such bindings are called
answer substitutions. A result of a query term matching a data term is a set of
answer substitutions. For example a query term a[b[], varX] matches a data
term a[b[], c[]] resulting in answer substitution set {X/c[]}. Query terms can be
ordered or unordered patterns, denoted, respectively, by brackets and braces. For
example a query term a[c[], b[]] is an ordered pattern and it does not match a
data term a[b[], c[]] but a query term a{ c[], b[] }, which is an unordered pattern,
matches a[b[], c[]]. Query terms with double brackets or braces are incomplete
patterns. For example a query term a[[b[], d[]]] is an incomplete pattern which
matches a data term a[b[], c[], d[]]. As the query term uses brackets the match-
ing subterms of the data term must occur in the same order as in the pattern.
Thus the query term a[[b[], d[]]] does not match a data term a[d[], b[], c[]]. In

contrast a query term a{{ b[], d[] }} matches a[d[], b[], c[]]. To specify subterms
at arbitrary depth a keyword desc is used e.g. a query term desc d[] matches a
data term a[b[d[]], c[]].

A query term q in a rule body may be associated with a resource r storing
XML data or data terms. This is done by a construction of the form in[r, q].
The meaning of this construction is that q is to be matched against data in r.
Query terms in the body of a rule which have no associated resource are matched
against data generated by rules of the Xcerpt program.

Rule bodies are constructed from query terms (possibly with indicated re-
sources) using logical connectives such as or, and, and not.

Construct terms are used in rule heads to construct new data terms. They
are similar to data terms, but may contain variables which act as place holders
for data selected in a query. They may also use a grouping construct all which
is used to collect all instances that result from different variable bindings [5].

A construct term c in a goal rule head may be associated with a resource r
to which the goal results are written. This is done by a construction of the form
out[r, c]. If a head of a goal rule is a construct term which is not associated with
a resource the results of the rule are directed to the standard output.

Example 2. Consider a document catalogue.xcerpt containing a data term:

catalogue[

cd[title["Empire"], artist["Bob Dylan"], year["1985"]],

cd[title["Hide your heart"], artist["Bonnie Tyler"], year["1988"]],

cd[title["Stop"], artist["Sam Brown"], year["1988"]]

]

Here is an Xcerpt rule which queries the document and extracts titles and artists
of the CD’s issued in 1988 and presents the results in a changed form (title as
name and artist as author).

GOAL

results [

all result[name[var TITLE], author[var ARTIST]]

]

FROM

in["file:catalogue.xcerpt",

catalogue{{

cd{ title[var TITLE], artist[var ARTIST], year["1988"] }

}}

]

END

The results returned by the rule are:

results[result[name["Hide your heart"], author["Bonnie Tyler"]],

result[name["Stop"], author["Sam Brown"]]]

Xcerpt rules may be chained to form complex query programs, i.e. rules may
query the results of other rules.

2.2 DIG interface

Ontologies provide information about concepts, roles and individuals in a given
application domain. Thus an ontology gives a common vocabulary to be under-
stood in the same way by various applications in the domain. A main language
used to defined ontologies is OWL developed by W3C. OWL is based on descrip-
tion logics.

An OWL file representing an ontology is just an encoding of a set of axioms.
To make use of the axioms one needs an ontology reasoner. Using an ontology
reasoner it is possible to draw conclusions from the set of axioms such as dis-
covering implicit subclass relationships and discovering class equivalence. In the
presented work we use the ontology reasoner RacerPro. To allow Xcerpt pro-
grams to communicate with the reasoner we need to use a reasoner interface.
For this purpose we have chosen DIG (Description Logic interface [3]) which is
supported by RacerPro.

The DIG interface is an API for a general description logic system. It is
capable of expressing class and property expressions common to most description
logics. Using DIG clients can communicate with a reasoner through the use
of HTTP POST requests. The request is an XML encoded message of one of
the following types: management, ask or tell. Management requests are used
e.g. to identify the reasoner along with its capabilities or to allocate a new
knowledge base and return its unique identifier. Tell requests, expressed in the
Tell language, are used to make assertions into the reasoner’s knowledge base.
Ask requests, expressed in the Ask language, are used to query the knowledge
base. Replies to ask requests are provided with the Response language. Tell,
Ask and Response languages use expressions from the Concept language which
is used to define classes, properties, declare individuals etc. Here we present an
extract of expressions from the Concept language:

– Primitive concepts, roles and individuals:
• <top/> - the universal concept (like owl:Thing)
• <bottom/> - the empty concept (like owl:Nothing)
• <catom name="CN "/> - introduces a concept (i.e. class) CN
• <ratom val="RN "/> - introduces a role (i.e. property) RN
• <individual name="IN "/> - introduces an individual IN

– Boolean operators:
• <and>C1 . . . Cn</and> - intersection of concept expressions C1, . . . , Cn

• <or>C1 . . . Cn</or> - union of concept expressions C1, . . . , Cn

• <not>C</not> - complement of a concept expression C

This is an excerpt from the Ask language (C,C1, . . . , Cn are concept expres-
sions):

– satisfiability queries for which the response is a boolean value
• <satisfiable>C</satisfiable>
• <subsumes>C1 C2</subsumes>
• <disjoint>C1 C2</disjoint>

– concept retrieval queries for which the response is a set of concepts
• <allConceptNames/>
• <parents>C</parents>
• <children>C</children>
• <descendants>C</descendants>
• <equivalents>C</equivalents>

3 Extended Xcerpt

This section presents a way for extending Xcerpt to enable it to interface with an
ontology reasoner while querying XML data. First we present a kind of filter used
in Xcerpt rules to filter out semantically irrelevant answers. Then, we propose a
more general way for interfacing an ontology reasoner with Xcerpt.

In order not to confuse keywords from Xcerpt like or, and etc., with similar
keywords used in DIG, we precede them with the character ’ !’. Thus, for example,
!or in Extended Xcerpt is equivalent to or in Xcerpt. Also, the character ’ !’ is
used to denote a label of a data term representing attributes (!attr).

3.1 Answer filtering

Here we present a new Xcerpt construction called filter. Such a filter can be used
between a body and a head of an Extended Xcerpt rule to filter out semantically
irrelevant answers:

GOAL CONSTRUCT

head head
FILTER FILTER

filter filter
FROM FROM

body body
END END

A filter is an expression !dig[URL, cterm], where URL is an URL of an
ontology reasoner answering DIG queries and cterm is a construct term used
to produce a DIG query. Evaluation of a body of a rule results in a set Ψ of
answer substitutions. The substitutions are then used by the construct term
cterm to build a data term asks[a1, . . . , an] where a1, . . . , an are expressions
from the DIG’s Ask language for which boolean answers can be given. The data
term asks[a1, . . . , an] corresponds to a result of an Xcerpt rule cterm ← body.
The data term is transformed into an XML document and sent to an ontology
reasoner specified by URL. The XML document sent to the reasoner additionally
contains a header with DIG namespace declarations and unique identifiers for
the elements corresponding to a1, . . . , an. The reasoner replies with a boolean
answer for each ask expression. If the answer for the query ai is ’false’ the answer
substitutions used to construct ai are discarded4; otherwise they are retained.
4 As cterm may contain grouping constructs ai may originate from more than one

answer substitution.

As a result we obtain a subset Ψ ′ of the set of answer substitutions Ψ . Only the
substitutions from Ψ ′ are used then to build the results of the initial rule.

Our prototype of Extended Xcerpt implements this method of filtering. How-
ever, the present version of the prototype is somewhat restricted. It only allows
filters in goal rules and forbids use of grouping constructs such as !all in filters.
As the grouping constructs are forbidden there is no need to use explicitly a
common label asks for ask expressions in the filter. Thus a construct term cterm
in a filter !dig[URL, cterm] is used to build separate ask expressions ai for each
answer substitution from Ψ . Then a data term asks[a1, . . . , an] is built automat-
ically; it is translated into XML and sent to a reasoner. In order to be able to
further query the results of goal rules with filters the Xcerpt implementation has
been altered in such way that the files produced by goal rules can be queried
by other goal rules. The goal rules are evaluated in the order they appear in a
program.

Usage of the filter is illustrated on the following example which can be run
on the prototype. Consider an XML document recipes.xml, which is a collection
of culinary recipes. The document is represented by the data term:

recipes[

recipe[

name["Recipe1"],

ingredients[

ingr[name["sugar"], amount [!attr{ unit["tbsp"] }, 3]],

ingr[name["orange"], amount[!attr{ unit["unit"] }, 1]]

]

]

recipe[

name["Recipe2"],

ingredients[

ingr[name["flour"], amount[!attr{ unit["dl"] }, 3]],

ingr[name["salt"], amount[!attr{ unit["krm"] }, 1]]

]

]

recipe[

name ["Recipe3"],

ingredients[

ingr[name["barley"], amount[!attr{ unit["dl"] }, 1]],

ingr[name["salt"], amount[!attr{ unit["dl"] }, 2]]

]

]

]

Also consider the culinary ingredients ontology from introduction (Figure 1).
We assume that the ontology is loaded into an ontology reasoner which is acces-
sible via the URL http://localhost:14159/. We also assume that the names
of the ingredients used in the XML document are defined by the ontology. Thus,
ingredients in the XML recipe can be seen as semantic annotations. We want
to find all the recipes in the XML document which are gluten-free. This can be

http://localhost:14159/

achieved using the following program with two goal rules, one of them with a
filter:

GOAL

!out [

!resource ["file:bad-recipes.xcerpt"],

bad-recipe-names [!all name [var R]]]

FILTER

!dig ["http://localhost:14159/",

subsumes [

catom [!attr { name ["gluten-containing"] }],

catom [!attr { name [var N] }]]]

FROM

!in [!resource ["file:recipes.xml"],

recipes [[

recipe [[

name [var R],

ingredients [[ingredient [[name [var N]]]]]]]]]]

END

GOAL

recipes [!all name [var R]]

FROM

and[

!in [!resource ["file:recipes.xml"],

recipes [[recipe [[name [var R]]]]]],

!in [!resource ["file:bad-recipes.xcerpt"],

not bad-recipe-names [[name [var R]]]]

]

END

Evaluation of the program starts from the first goal rule. Evaluation of the
body of the rule results in the set of answer substitutions Ψ = {{R/”Recipe1”,
N/”sugar”}, {R/”Recipe1”, N/”orange”}, {R/”Recipe2”, N/”flour”},
{R/”Recipe2”, N/”salt”}, {R/”Recipe3”, N/”barley”}, {R/”Recipe3”, N/”salt”}}.
Then the substitution set Ψ is used in construct term from the filter to build
data terms representing ask expressions. A separate ask expression is built for
each substitution from Ψ . The obtained ask expressions are grouped together
under a common label asks:

asks[

subsumes[

catom[attr{ name ["gluten-containing"] }],

catom[attr{ name ["sugar"] }]],

subsumes[

catom[attr{ name ["gluten-containing"] }],

catom[attr{ name ["orange"] }]],

subsumes[

catom[attr{ name ["gluten-containing"] }],

catom[attr{ name ["flour"] }]],

subsumes[

catom[attr{ name ["gluten-containing"] }],

catom[attr{ name ["salt"] }]],

subsumes[

catom[attr{ name ["gluten-containing"] }],

catom[attr{ name ["barley"] }]],

subsumes[

catom[attr{ name ["gluten-containing"] }],

catom[attr{ name ["salt"] }]]]

The asks data term is sent to a reasoner. The reasoner replies with a posi-
tive answer for the third and the fifth ask expressions as only flour and barley
contain gluten wrt. the ontology. As the answers for the remaining ask expres-
sions are negative the substitutions used to build them are discarded. Thus,
the obtained set of substitutions used to build the final result of the rule is
Ψ ′ = {{R/”Recipe2”, N/”flour”}, {R/”Recipe3”, N/”barley”}}. Hence, the fi-
nal result written by the first goal rule into the file bad-recipes.xcerpt is:

bad-recipe-names[name["Recipe 2"], name ["Recipe 3"]]

The second goal rule returns those names of recipes from recipes.xml which are
not in bad-recipes.xcerpt. Thus the final result of the program returned by the
second goal rule is

recipes[name["Recipe 1"]]

The kind of queries which can be sent to a reasoner is limited due to the DIG
interface which is often not sufficiently expressive. It lacks e.g. logical operators
such as and and or (keywords and and or are used in DIG to denote intersection
and union of concepts, respectively). This is a reason why we had to use two goal
rules instead of one rule in the example above. To obtain the same result using
a program with only one rule we need to be able to use grouping constructs in
a filter and e.g. conjunction in the ask expression constructed by the filter. The
latter would be needed to assure that each ingredient of a recipe is subsumed by
the concept gluten-free.

3.2 DIG rules - querying ontology reasoner with Xcerpt

In the previous section we introduced a filter which sends boolean queries to
an ontology reasoner and based on the reasoner replies, filters out irrelevant
answers. However, we can take more general approach where the queries sent to
a reasoner are arbitrary DIG ask expressions (not only boolean). An ordinary
Xcerpt rule, say ask rule, can be used to produce such an ask expression which
is sent to a reasoner. Then another Xcerpt rule, say response rule, captures the
response received from the reasoner and transforms it to a desired format.

This can be reflected by a higher level rule called e.g. a DIG rule. A DIG
rule can be denoted as (hR ← bR) � (hA ← bA), where hA ← bA is an ask
rule and hR ← bR is a response rule. Thus hA is a construct term of the form
asks[. . .] and bR a query term of the form e.g. responses{{. . .}}. DIG rules could
be handled by an external application which executes relevant Xcerpt programs

and communicates with a reasoner. Another solution is extending Xcerpt itself
with DIG rules so it interfaces an ontology reasoner. Beside ordinary rules (i.e.
Xcerpt query rules) such an extended Xcerpt could use response and ask rules,
respectively, of the forms:

CONSTRUCT CONSTRUCT
hR !out[!dig[URL], hA]

FROM FROM
!in[!dig[URL], bR] bA

END END

To implement this idea based on backward rule chaining we need to assure
that a response rule invokes a relevant ask rule, the result of the ask rule is sent
to a reasoner, and the reasoner response is queried by the initial response rule.

We can consider a special, simple case of a DIG rule (hR ← bR) � (hA ←
bA), where its body, the ask rule, is of the form hA ← !and[]. Thus the ask rule
is equivalent to a data term hA which represents fixed ask expressions i.e. hA is a
data term asks[. . .]. Such a simple DIG rule can be denoted as (hR ← bR) � hA.
The prototype of Extended Xcerpt is restricted to such simple DIG rules. DIG
rules (hR ← bR) � hA are incorporated into Xcerpt goal rules which are of the
form:

GOAL
hR

FROM
!in[!dig[URL, hA], bR]

END

hA is a data term asks[a1, . . . , an] containing ask expressions a1, . . . , an or
a data term tells[t1, . . . , tn] containing tell expressions t1, . . . , tn. Alternatively,
hA can be a URI of an XML file storing an ask or tell expression. The ask ex-
pressions a1, . . . , an (and tell expressions) must contain unique identifiers to be
able to relate reasoner responses with them. As the programmer handles the
reasoner responses by himself/herself this time the identifiers cannot be added
automatically. The rule is evaluated in the following way. The data term hA is
transformed into an XML document to which a header containing DIG names-
pace declarations is added. Such a document is sent to the reasoner specified by
URL. The response returned by the reasoner is queried by the query bR. Then
the resulting answer substitutions are applied to a construct term hR and a rule
result is returned.

Consider the following example. We want to query the ingredients ontology
to build a document containing gluten-free ingredients. We use the following
rule:

GOAL

results [!all var C]

FROM

!dig ["http://localhost:14159/",

asks [

descendants [

!attr{ id ["q1"] },

catom [[!attr { name ["gluten-free"]}]],

]

],

responses {{

conceptSet {{

!attr { id ["q1"] },

synonyms [[

catom [[!attr { name [var C] }]]

]]

}}

}}

]

The result returned by the rule is

results [

"water",

"rice",

"salt",

"orange",

"sugar"

]

Although the approach using DIG rules is in some sense more general than
answer filtering presented in the previous section, it cannot be used directly for
answer filtering. This is because a response rule can only query a response of the
reasoner and does not have access to the answers of the body of the ask rule.
Thus the answers cannot be filtered based on the reasoner responses. However, a
workaround for achieving the same goal as with answer filtering is possible. First,
the needed ontological information could be captured by a DIG rule. Then an
ordinary Xcerpt rule could query both an XML document and the ontological
data obtained from a reasoner. In this way the irrelevant (wrt. the ontology)
XML data could be filtered out.

4 Conclusions

The paper addresses the problem of how to use ontological information in the
context of querying XML data. The problem seems to be important for achieving
the Semantic Web but it is not sufficiently covered in literature. The solution
proposed in this paper extends the XML query language Xcerpt by allowing
the combination of XML queries with ontology queries. The extension allows
Xcerpt rules to communicate with an ontology reasoner using the DIG interface.
We presented two ways of extension. The first of them is a kind of a filter used
in between the body and the head of an Xcerpt rule to filter out semantically
irrelevant answers. Another approach, which is more general in some sense, allows
interfacing an ontology reasoner with arbitrary DIG queries.

A restricted version of the presented techniques of interfacing an ontology
reasoner are implemented in a prototype of Extended Xcerpt. The prototype
requires further development. Allowing grouping constructs in filters, filters in
construct rules and unrestricted DIG rules would substantially increase the func-
tionality of the prototype.

Acknowledgment

We would like to thank Professor Jan Ma luszyński for his interesting ideas ini-
tiating this work.

This research has been funded by the European Commission and by the
Swiss State Secretariat for Education and Research within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net).

In the work presented here the RacerPro Software was used under a free ed-
ucational license from Racer Systems GmbH & Co. KG5 for ontology reasoning.

References

1. OWL Web Ontology Language Overview. February 2004. W3C Recommendation.
http://www.w3.org/TR/owl-features/.

2. G. Antoniou and F.van Harmelen. A Semantic Web Primer. The MIT Press, 2004.
3. S. Bechhofer. The DIG Description Logic Interface: DIG/1.1. In Proceedings of

DL2003 Workshop, Rome, 2003.
4. W3 Consortium. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/2005/WD-xquery-20050915/.
5. T. Furche, F. Bry, and O. Bolzer. Marriages of Convenience: Triples and Graphs,

RDF and XML in Web Querying. In International Workshop, PSWR 2005, Dagstuhl
Castle, Germany, September 2005, Proceedings, number 3703 in LNCS, pages 72–84.
Springer Verlag, 2005.

6. S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, University of Munich, Germany, 2004.

7. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Proceedings of Extreme Markup Languages 2004, Montreal, Quebec,
Canada (2nd–6th August 2004), 2004.

5 http://www.racer-systems.com/

http://rewerse.net
http://www.racer-systems.com/

	XML Querying Using Ontological Information
	Hans Eric Svensson and Artur Wilk

