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Abstract. Linking the biomedical literature to other data resources is
notoriously difficult and requires text mining. Text mining aims to au-
tomatically extract facts from literature. Since authors write in natural
language, text mining is a great natural language processing challenge,
which is far from being solved. We propose an alternative: If authors
and editors summarize the main facts in a controlled natural language,
text mining will become easier and more powerful. To demonstrate this
approach, we use the language Attempto Controlled English (ACE). We
define a simple model to capture the main aspects of protein interactions.
To evaluate our approach, we collected a dataset of 459 paragraph head-
ings about protein interaction from literature. 56% of these headings can
be represented exactly in ACE and another 23% partially. These results
indicate that our approach is feasible.

1 Introduction

In this paper we introduce a new paradigm of how to make knowledge of scientific
papers accessible by computers. We focus on the fields of life sciences – particular
biology – but our approach could be used in other fields as well.

Our approach consists of letting authors express their scientific results in a
formal summary that could be an integral part of the papers they publish. We
argue that it is more reasonable to let the authors formalize their own results,
instead of trying to extract these results from the articles.

This section explains our motivation, introduces the language Attempto Con-
trolled English (ACE) and compares it with other knowledge representation
languages. Section 2 shows how ACE is used to build an ontology for protein
interactions. In Sect. 3 we use this ontology as foundation for the expression of
scientific results and we show how 89 selected articles could have been summa-
rized in ACE. Section 4 shows the benefits of our approach and Sect. 5, finally,
gives a short outlook.



1.1 Motivation

Biomedical scientists are challenged by an ever-increasing amount of scientific
papers. The indexing service PubMed3 shows the huge quantity of literature
that the scientists have to face. It contains at the moment 16 million articles
and grows every year by over 600’000 articles. All these biomedical articles are
written in natural language. That means that we cannot easily process them
with computers. But, facing the quantity of literature, it is clear that we need
computational support in order to manage the contained knowledge.

In the last years, text mining and information extraction – which build
both upon natural language processing (NLP) – gained an increasing interest
in biomedical sciences. They aim to extract some kind of formal knowledge from
natural language texts, which is generally considered a very demanding task.
Even the basic problem of named entity recognition, that aims to identify named
entities (e.g. protein names) in natural texts, is far from being solved. Other
major aspects of text mining are the extraction of relationships (e.g. protein in-
teractions), the automatic classification of texts, and the generation of new hy-
potheses on the basis of the available literature [3]. The BioCreAtIvE contest [21]
nicely shows, that even sophisticated tools for text mining have a considerable
lack of precision and recall: For a simple “named entity recognition”-task the
precision ranged up to 86% and the recall was at most 84%. Another attempt
is described in [4]: Information about protein-interactions was extracted from a
data set of 1.2 million sentences that were taken from biomedical abstracts. They
achieved a precision of 91%, but with a poor recall of only 21%. We recommend
[3] and [12] for a more comprehensive overview of the “accomplishments and
challenges” of text mining.

As a first step towards a better management of biomedical literature, con-
trolled vocabularies like MeSH 4 and the Gene Ontology5 have been created.
They serve to classify biomedical publications and to link them to other re-
sources. GoPubMed6, for example, is a search engine that connects the abstracts
from PubMed with the formal structure of the Gene Ontology. Thus a researcher
can exploit the Gene Ontology for the search of relevant literature. Such tools
are very valuable for scientists and there has been a notable progress in the last
years, but it will never be possible to extract all the information correctly. There
is inherent ambiguity and vagueness in natural language that prevents its perfect
processing by computers.

For this reason we present an alternative approach: The authors of scientific
articles formally summarize their own results. Such formal summaries are added
to the articles which makes them processable by computers. This requires a
formal language that on the one hand is easy to learn and understand, and
on the other hand is expressive enough to represent even complicated scientific
results. It is clear that this approach is not applicable for papers that have been

3 http://www.pubmed.gov
4 http://www.nlm.nih.gov/mesh/meshhome.html
5 http://www.geneontology.org
6 see [5] and http://www.gopubmed.org



written without the formal summaries, and that means that we still need NLP
or manual extraction for such papers. Thus we propose rather a concept for the
future than a solution for today’s problems. To explore our approach we use
Attempto Controlled English as knowledge representation language.

1.2 Formalization of Scientific Results

Since we want to access scientific results by computers, we have to formalize
this knowledge at some point. Today researchers write their results in natural
language. To extract these results and to formalize them, manual or computer-
supported text mining is necessary. Thus the formalization is accomplished by
computer-programs or by humans, and in either case it is done without the help
of the corresponding researchers. The article is the only source of information.
Since such articles are highly domain-specific, they require a lot of background
knowledge. Therefore the formalization is a very demanding task, even for hu-
mans. Altogether this causes a lot of knowledge to be lost in the vast amount of
biomedical literature.

We claim that most of these problems can be solved, if we simply let the
authors of scientific articles formalize their own results. The researchers them-
selves are the most qualified to understand their results, and thus they can give
the most precise formal representation. This is not even a big extra-effort for a
scientist, since he already has a – more or less – formal model of the domain
in his mind, and must write an abstract anyway. He just needs to learn how to
express his knowledge in a formal way. This means that we need to provide an
intuitive, yet formal language in which a scientist can write his results.

1.3 Attempto Controlled English

Attempto Controlled English (ACE)7 is a controlled natural language that has
been developed by Norbert E. Fuchs and his group at the University of Zurich.
ACE is a subset of natural English with a restricted grammar. There are no
limitations on the vocabulary, apart from some function words with predefined
meanings (e.g. ‘every’, ‘of’). ACE looks like English, but it is in fact a formal
language, which means that texts can be translated unambiguously into first-
order logic. Some ACE sentences would be ambiguous in natural English, but
ACE provides interpretation rules that allow in each case only one reading. The
report [13] contains a comprehensive description of the syntax of ACE.

In order to be able to write ACE texts, one has to learn the restrictions on the
grammar. Thus, like every formal language, ACE has to be learned. However,
since it looks like natural English, everyone is able to understand ACE texts
with almost no training. This is a big advantage over other formal languages.

The Attempto parser APE8 translates ACE texts into Discourse Represen-
tation Structures [6]. Such structures are equivalent to expressions in first-order

7 see [7], [8], and http://www.ifi.unizh.ch/attempto/
8 http://www.ifi.unizh.ch/attempto/tools/



first-order logic ∀X(protein(X) → ∃Y (terminus(Y ) ∧ has(X, Y )))

DL Protein ⊑ ∃has.T erminus

OWL (RDF/XML)

<owl:Class rdf:ID="Protein">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#Terminus"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

UML Protein Terminus

1..*

ACE Every protein has a terminus.

Fig. 1. Comparison of first-order logic, DL, OWL, UML, and ACE

logic, and thus every ACE sentence has a logical representation. Furthermore,
APE creates a paraphrase that shows the interpretation of an ACE text. If a
writer is not familiar with the ACE interpretation rules, then he can check the
paraphrase for the validation of his ACE text.

1.4 Comparison of Knowledge Representation Languages

In order to show the benefits of ACE, we compare it with four other knowl-
edge representation languages: first-order logic [9], Description Logics (DL) [15],
Web Ontology Language (OWL) with its RDF/XML-syntax [14], and Unified
Modeling Language (UML) [2].

We have to state that these four languages are not independent. DL and ACE
build upon first-order logic, and DL are the basis for OWL. While first-order logic
and DL focus on the theoretical concepts of knowledge, OWL, UML, and ACE
concentrate on the implementation and application of knowledge representation.
Nevertheless we dare to give a direct comparison between these five languages.

Figure 1 shows how the fact ‘everything that is a protein has a terminus’
is expressed in the five different languages. The OWL representation (using the
RDF/XML syntax) is the most verbose and – from the human perspective –
the least readable one. The representations in first-order logic and DL are more
concise, but they are still not understandable for people who are not familiar
with formal notations. The graphical notation of UML looks nice, but for a
non-specialist it is hard to guess the meaning of all the shapes and arrows. The
ACE representation, in contrast, should be immediately understandable for any
English speaking person. It looks perfectly like natural English and thus the
reader might not even recognize that it is a formal language.

We can state that controlled natural languages like ACE minimize the gap
between machines and humans. A reader is able to understand such languages



with almost no training. Furthermore, writing sentences in a controlled natural
language is possible with only little effort, especially if the writer is supported
by an authoring tool (see Sect. 3.3).

2 Ontology for Protein Interactions in ACE

In order to have a clear basis for the formal representation of scientific knowledge,
we defined an ontology for proteins and their interactions. This section shows
how ACE can be used as an ontology language, and introduces our ontology for
protein interactions.

2.1 Ontologies

The main goal of an ontology is to provide a shared understanding of a certain
domain. This shared understanding can serve as basis for the communication
between people, for the interoperability between systems, for the improvement
of reusability and reliability of software systems, and for the specification of
software [20]. Furthermore ontologies are an excellent basis for the formal rep-
resentation of knowledge [11].

Ontologies are not yet broadly established in science, but they are expected
to gain a very important role in the future, especially in life sciences. The Gene

Ontology is the most famous example, although it is actually more a controlled
vocabulary than a real ontology.

2.2 Ontology Elements

In order to provide basic structures for ontologies in ACE, we adopt the elements
from DL – individuals, concepts, and roles – and we call them ontology elements.
Furthermore we introduce an additional structure: context information.

Individuals. Individuals stand for single objects of the domain. They are rep-
resented in ACE as proper names like ‘Bub1’ (that stands for a protein) or
‘Alzheimer’ (that stands for a disease).

Concepts. Concepts stand for sets of objects, and there are two possibilities to
express them in ACE. Common nouns are the most straight-forward way.
The noun ‘protein’, for example, can stand for the concept of all proteins.
As a second possibility we can use adjectives (in their positive form). The
adjective ‘organic’, for example, can be used for the concept of all organic
substances.

Roles. Roles stand for binary relations between objects, and they can be ex-
pressed in four different ways. First of all, we can use transitive verbs for
expressing roles. For example, we can use ‘interacts-with’ to express a re-
lationship between proteins. Next, we can combine transitive verbs with
adverbs. For example, we can use the adverb ‘directly’ together with the
transitive verb ‘interacts-with’ to express the role ‘directly interacts-with’.
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Fig. 2. Context information

As a third possibility we can use of-constructs like ‘is a part of’. Due to the
syntax of ACE, ‘of’ is the only allowed preposition for nouns. Finally, we
can use constructs with comparative forms of adjectives like ‘is larger than’.
Such constructs typically represent transitive relationships.

Context Information. The examination of the results of scientific papers on
protein interactions showed that normal roles are often not sufficient to ex-
press the needed information. We can express simple statements like ‘P1
interacts-with P2’, but we cannot express statements with contextual in-
formation like ‘P1 interacts-with P2 in Yeast’ or ‘P1 interacts-with P2 in
Microfilament for Motor-Activity’. In order to be able to express such re-
sults, we want to allow roles to have such additional information. In natural
English we usually express such information with prepositional phrases, and
this is exactly the way we will do it in ACE. Figure 2 illustrates the examples
without and with context information.

Using these ontology elements, we can state for example

P1 is a protein and directly interacts-with P2 in Yeast.

where ‘P1’, ‘P2’, and ‘Yeast’ are individuals, ‘protein’ stands for a concept, and
‘directly interacts-with’ stands for a role. The phrase ‘is a’ is used to assign the
individual ‘P1’ to the concept ‘protein’. The conjunction ‘and’ connects the state-
ments flanking left and right. The preposition ‘in’, finally, connects to the context
‘Yeast’.

2.3 Ontology for Protein Interactions

Since we found no existing ontology that fits our needs, we had to create our
own ontology for protein interactions. First, we defined concepts that allow us



to make statements about the structure of proteins and protein-complexes. For
the sake of a clear structure, we introduced the concept protein-unit, which is
either a protein or a protein-complex, and protein-component, which is either a
protein-unit or a region of a protein. In order to describe the structure of such
regions, we defined concepts like ‘residue’, ‘secondary-structure’, and ‘domain’.

Next, we defined the roles for the description of interactions between proteins
like ‘interacts-with’ or ‘binds’. We can also express more complicated interactions
like ‘increases the phosphorylation of’.

Furthermore, we defined some concepts for expressing additional informa-
tion about proteins, like the localization to a certain cellular component or the
participation in a certain process. The big picture of this ontology is shown in
Fig. 3.

3 ACE Summaries

Our goal is to show how scientists could write formal summaries of their results.
There are some questions that naturally arise: What are these results about?
How complex is it to formulate them in a formal language? In the following we
present an empirical study of the feasibility of our approach.

3.1 ACE Summaries for 89 Selected Articles

Since we want to show how results of papers about protein interactions could
have been written in ACE in the first place, we picked 89 Elsevier -articles that
concern protein interactions. Such articles mostly have a section called “Results”
which is subdivided into subsections. The headings of these subsections are short
descriptions of the corresponding results. It turned out that these headings are
highly suitable for a manual translation into ACE. Please note that the intended
methodology is not to express the results first in natural language and then to
translate them into ACE. We do this just to demonstrate the feasibility of our
approach.

The 89 articles contain 457 such headings. 184 of them are ignored, because
they are not formulated as facts (e.g. “Functional characterization of Pellino2”9)
or because they contain information that is not about protein interactions.

total: 457 (100%)

ignored: (not a fact) 87 (19%)
(off-topic) 97 (21%)

used: 273 (60%)

We then tried to translate the 273 remaining headings into ACE. For 154
of them there is a perfect match, which means that the complete information
can be expressed in ACE; e.g. the heading “Interaction of Act1 with TRAF6”10

can be rephrased perfectly as “Act1 interacts-with TRAF6”. For another 62

9 see article PMID 12860405
10 see article PMID 12459498



����������

��������	
�
�������

��������	
�
�������

������� ��
����������������

�����	�������������������� �����	
������

���������� ���������� 	
��	���
�� ���	������

��	��

��	�
�����
���	������

continuant������

��������������

�����

�����������

������ ����������
��

�����
 ��

����
����

�������	�������

�	������
����
�������
��������

�
���	�����

�	��������������������

�
	����������	��������
�
���������������

����	�������
 ����	�������
 ��	��������

	���	����������

�
���
	���������

��
���	
�������

��

�
	���������

��	�������
��������������������

�������

���
����
����������

Fig. 3. The structure of the ontology for protein interactions



headings only a part of the information is expressed; e.g. the heading “The
mtFabD protein is part of the core of the FAS-II complex”11 can only partially
be rephrased as “MtFabD is a subunit of FAS-II”. For the remaining 57 headings
there is no translation at all.

used: 273 (100%)

matched: (perfect) 154 (56%)
(partial) 62 (23%)

unmatched: 57 (21%)

Let us take a closer look at the reason, why 119 headings cannot be rephrased
in ACE at all, or only partially. 56 of them could not be rephrased because
their content is not covered by our model, but they could be expressed with
an extended model. Another 21 headings describe relations of relations, like the
heading “Kal-GEF1 activation of Pak does not require GEF activity”12. In this
case, there is a relation between two objects (“Pak activates Kal-GEF1”) and this
relation itself stands in another relation (“... does-not-require GEF-activity”). At
the moment, we cannot express such structures in ACE in a satisfying way. But
there are attempts to extend the language ACE, and we hope that we will be able
to express such statements in the future. Furthermore there are 11 headings with
fuzzy statements (e.g. “ANKRD contains potential CASQ2 binding sequences
...”13) and 31 headings that we could not understand without reading the whole
article.

not perfectly matched: 119 (100%)

not covered by our model: 56 (47%)
relations of relations: 21 (18%)
fuzzy: 11 (9%)
not understood: 31 (26%)

Thus, altogether we could rephrase 79% of the relevant headings, either par-
tially or perfectly. This makes us confident that our approach is feasible for prac-
tical use. The reason, why 119 headings are not rephrased perfectly, is mostly
our simple model and our lack of understanding. If we used a more detailed
model, and if we let the scientists themselves express their own results in ACE,
then we expect to be able to express much more than 79% of the results.

3.2 ACE Summary as an Integral Part of an Article

Since ACE looks like natural English, every reader of a scientific article is able
to understand ACE texts. Thus the ACE summary of the results could be an
integral part of the article. Figure 4 shows how an article with an ACE summary
could look like14. Figure 5 shows the corresponding logical representation as
a Discourse Representation Structure (consult [6] for details). As we see, the

11 see article PMID 16213523
12 see article PMID 15950621
13 see article PMID 15698842
14 article PMID 12419313 is used for this example



The β2-adaptin clathrin adaptor interacts

with the mitotic checkpoint kinase BubR1

Corinne Cayrol, Céline Cougoule, Michel Wright

Abstract

The adaptor AP2 is a heterotetrameric complex that associates

with clathrin and regulatory proteins to mediate rapid endocytosis

from the plasma membrane. Here, we report the identification of ...

Keywords: Protein interactions; Two-hybrid; Vesicular traffic; Adaptor

protein; Protein kinase; Mitotic checkpoint.

ACE Summary: Beta2-Adaptin binds BubR1 in Yeast-Two-Hybrid. A

trunk-domain of Beta2-Adaptin interacts-with BubR1. Bub1 interacts-with the

trunk-domain of Beta2-Adaptin. Bub1 interacts-with every beta-sheet of AP

and BubR1 interacts-with every beta-sheet of AP.

Fig. 4. Article with ACE summary

natural looking ACE summary can be translated automatically into a formal
representation which is processable by computers.

Together with the abstract and a keyword list, the ACE summary gives a
concise insight into the content. In contrast to the abstract, the ACE summary
is readable by both, humans and machines; and in contrast to the keyword list,
the ACE summary does not only mention the objects of interest, but describes
the relations among them. Thus, every published article could be a contribution
to a constantly growing knowledge base.

3.3 Authoring Tool

Now we sketch a tool that would help writing ACE texts. It would guide the
user step by step and would need almost no training. Similar systems are the
look-ahead editor ECOLE [17, 18], the natural language interface LingoLogic

[19], and the Ginseng-system [1]. Our tool would solve several problems:

– The tool would help the user to comply with the standard nomenclature. The
user would only be allowed to use the defined words. It would also prevent
typing errors.

– It would make sure that the created sentences comply with the ACE syntax.
At every stage, the tool would allow to proceed only in a way that leads to



A B C D E F G H I

object(A,atomic,named entity,object,cardinality,count unit,eq,1), named(A,‘Beta2-Adaptin’)
object(B,atomic,named entity,object,cardinality,count unit,eq,1), named(B,‘BubR1’)
object(C,atomic,named entity,object,cardinality,count unit,eq,1), named(C,‘Yeast-Two-Hybrid’)
object(D,atomic,named entity,object,cardinality,count unit,eq,1), named(D,‘Bub1’)
object(E,atomic,named entity,object,cardinality,count unit,eq,1), named(E,‘AP’)
predicate(F,unspecified,bind,A,B), modifier(F,unspecified,in,C)
object(G,atomic,‘trunk-domain’,object,cardinality,count unit,eq,1)
relation(G,‘trunk-domain’,of,A)
predicate(H,unspecified,interact with,G,B)
predicate(I,unspecified,interact with,D,G)

J

object(J,atomic,‘beta-sheet’,object,
cardinality,count unit,eq,1)

relation(J,‘beta-sheet’,of,E)

⇒

K

predicate(K,unspecified,interact with,D,J)

L

object(L,atomic,‘beta-sheet’,object,
cardinality,count unit,eq,1)

relation(L,‘beta-sheet’,of,E)

⇒

M

predicate(M,unspecified,interact with,B,L)

Fig. 5. DRS-representation of the ACE summary

a correct ACE sentence. Thus the user would not need to know about the
syntax of ACE.

– The tool would be aware of the structure of the ontology. In this way it would
make sure, for example, that the domains and ranges of roles are respected.

We give now an example how this tool could be used. Suppose that an author
of the article that is shown in Fig. 4 wants to write down the fact that the protein
Bub1 interacts with the protein β2-Adaptin via its trunk domain.

The sentences are created step by step by a simple menu. At the beginning
there is just an empty sentence that might look like this:

���� �

The quotes indicate the beginning and the end of the sentence and the box in
the middle is used to create the content. If the user clicks on it, then a menu
is displayed that shows the different options for beginning a sentence. Since we
want to talk about the protein Bub1 we first insert ‘Bub1’ as a proper name.
This looks as follows.
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Proper names are hierarchically structured and the menu allows to navigate
through this hierarchy. Alternatively, we can use the search option to find a



certain term, or we can create a new proper name on-the-fly. In the next step
we get
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where the proper name ‘Bub1’ is now fixed as the beginning of the sentence, and
we have a new menu with different entries. We want to express the interaction
with another protein, and thus we choose the verb ‘interacts-with’. Like proper
names, verbs are hierarchically structured and we can navigate through this
hierarchy. In the next step we get
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where we can define the second participant of the protein-interaction. Since we
want to state that the interaction goes via a trunk domain of the protein β2-

Adaptin, we first have to add the article ‘a’. Then we get

���������	
��	����	��� ������������ �

���� �

�������

���
	��


�

�

��
��������

���	��	����

�

����
�����

���

�����������

��
����
����

�

���

��
�	������������

���� �����������

�	���!�����������

���

where we can choose the ‘trunk-domain of’-relation. Like proper names, such
of-relations are structured in hierarchies through which we can navigate (the
same holds for nouns and adjectives). After that we get
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where we can specify the second protein ‘Beta2-Adaptin’. Finally we get
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where we could use prepositions to add context information, e.g. to specify the
organism in which the interaction takes place. In our example, we now finish the
sentence with a full stop.

For the creation of this sentence we did not need any further knowledge about
ACE. Every person that is familiar with English and knows how to handle a
simple menu, is able to create ACE texts. However, to make such a tool really
user-friendly we will need a lot of usability testing, as it is done – with promising
results – for the Ginseng-system [1].

4 The Benefits of our Approach

The preceding sections showed what needs to be done to express scientific results
about protein interactions in ACE. Now it is time to take a look at the benefits.

Today there are many databases that contain life science data, but they are
mostly unsynchronized, incomplete, and often not up-to-date. With our approach
it would be much easier to provide complete and consistent databases.

Imagine that all the scientific papers about protein interactions summarize
their results in ACE. We could use these formal summaries to build up a dynam-
ically growing knowledge base about protein interactions. Of course, we would
also have to collect all the knowledge that is contained in old papers. For these,
we still need some form of classical text mining. But once we have such a knowl-
edge base that is continuously updated with the results of new papers, then we
would be able to answer many questions. We present now some examples.

Are some results consistent with an existing knowledge base or with
other papers? We can check, whether an ACE summary is consistent with
an existing knowledge base. If this knowledge base contains common knowledge,
then the results should be consistent, or otherwise it can be seen as an appeal
against the common knowledge.

Without formal declarations, it is impossible to check a paper for consistency.
Probably there exist scientific papers that contain results which are inconsistent
with the common knowledge. But since this can be very difficult to find out,
neither the author nor the readers might realize the special status of the results.

In the same way we can check, whether there exist papers that contradict a
certain paper. That would mean that different researchers claim contradictory
results. Being aware of such a contradiction might lead to a dialogue between
the corresponding scientists, which might entail better and consistent results.

Are some results (or parts of it) already known? With our formal ap-
proach we can check whether a certain result, or a part of it, is already known.
Results that are already considered common knowledge are usually not worth
to be described as results of scientific papers (unless they contain more detailed
information or if additional evidence is given). Thus it is very valuable to be able
to run a check, whether a certain result is already contained in the knowledge
base or not.



type Bub1

supertypes Kinase – Enzyme – Protein – Molecule

subtypes BubR1

interacts directly with Beta2-Adaptin, Cdc20, Mad3

interacts indirectly with Mad2, APC

associates with Cdc20, Mad3

phosphorylates Bub1, Bub3

localizes to Kinetochore, Chromosome

participates in Cell-Communication, Signal-Transduction

Fig. 6. Overview over the object ‘Bub1’

Furthermore a researcher might want to check, whether there exists scientific
literature that has arrived at the same or similar results. Altogether our approach
would help the researchers to save a lot of time, since they would not need to
search “manually” for the relevant literature.

Is there a known answer for a certain question? If someone – researcher
or not – has a specific question about the domain (e.g. protein interactions),
then we would be able to give automatically an answer.

Indeed, there exist already systems like MEDIE15 that provide some sort
of answer extraction using natural language processing. But such systems have
serious shortcomings: There is always a trade-off between precision and recall,
and only very simple queries are allowed. Furthermore, we cannot find answers
that are spread over multiple articles.

What is known about a certain object of interest? In some cases we do
not want to ask a specific question, but we rather want to get an overview of a
single object of interest (e.g. the protein Bub1 ). If we ask for information about
such an object then we might get something as shown in Fig. 6. Such an overview
could be used for a dynamic hypertext representation. This would allow us to
navigate through the whole knowledge base, e.g. with an ordinary web browser.
New papers that are submitted can be integrated automatically and thus such
a web interface would be always up-to-date.

How are some objects of interest related? Instead of focusing on one single
object, we might want to have an overview of the interrelations of a certain
group of objects. We could extract, for example, the interacts-with-relations
of all proteins and use this data for further examination, like the detection of
clusters or hot-spots. Such examinations are already common in the research on
proteins (e.g. [10], [16]), but only with restricted data. With our approach we
could consider every interaction that has been published.

15 http://www-tsujii.is.s.u-tokyo.ac.jp/medie/



5 Outlook

We suggest an approach of using controlled natural language for making the
results of scientific papers readable and – to some degree – understandable by
computers. But in order to achieve this goal, there is still a lot of work to do. For
example, we need an authoring tool as sketched in Sect. 3.3, that would support
the authors of scientific papers in the creation of ACE summaries. A prototype
of such a tool does already exist. Furthermore, we need tools for the definition
of ontologies and for the collection and management of knowledge.

Besides all these technical requirements, there are also political ones. There
must be a commitment among the scientists of the corresponding field of research
– or at least among a large part of them – that scientific articles get summarized
in ACE. If such a summary is optional then there is little hope that it gets
established.

This is the point where the publishers and editors have to come into play. The
publishers would have to make ACE summaries a mandatory part of the articles,
and the editors would have to check whether these summaries are correct and
complete. The creation of a formal summary should be an additional requirement
to consider when writing a scientific article, besides all the requirements that
already exist today (e.g. about the abstract, the keyword list, and the reference
list). The formal summaries can also be seen as a robust indicator for the value of
a scientific paper. Information that is already known and redundant information
could be ignored automatically, and wrong statements are likely to be detected
at some later point in time. Thus we could use the formal summaries to quantify
and qualify the contribution of a certain author, institute, or journal.

Due to the immense benefits such a system would bring along, we believe
in the great potential of our approach. It could be a first step towards better
communication and persistence of biomedical knowledge.
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