
Ontology Driven Visualisation of Maps with SVG
An Example for Semantic Programming

Frank Ipfelkofer, Bernhard Lorenz and Hans Jürgen Ohlbach
Institute for Informatics, Ludwig-Maximilians University, Munich,

www.pms.ifi.lmu.de, fipfelkofer@kastner.de,{lorenz,ohlbach}@pms.ifi.lmu.de

Abstract
This article describes a particular use of ontologies for

visualising maps in a browser window. Geographic data
are represented as instances of concepts in an ontology
of transportation networks which was designed in close
relation to GDF. These data are transformed into SVG,
whereas the transformation is specified symbolically as in-
stances of atransformation ontology. This approach is ex-
tremely flexible and easily extendible to include all kinds of
information in the generated maps. The basic implementa-
tion technique is to use classes and instances of ontologies
in an intelligent way. This article is an abbreviated version
of the research report [12].

Keywords— semantic web, geospatial notions, ontologies,
visualisation, scalable vector graphics, semantic techniques

1 Introduction
There are may different ways for generating maps as

images on a computer. The most straightforward way is to
read the geographic data from a data source and to use spe-
cial purpose algorithms that transform the data into some
bitmap graphics format. These algorithms are rather com-
plex and not easy to change or extend. Only experts who
are familiar with the details of the process can do this. The
algorithms depend very much on the particular data format
and they usually yield only static pictures.

An alternative method is to generate output by means
of ontologies and ontology instances instead of using spe-
cialised algorithms processing data transformed into gen-
eralised formats. Furthermore, instead of creating bitmap
graphics, the results are encoded in a graphics descrip-
tion language, such as SVG, which is used as an example
throughout this article. Several advantages result from this
approach which are briefly laid out in this introduction and
discussed in more detail in section 2.

Scalable Vector Graphics(SVG) [19, 1] is an XML-
based language for describing geometric objects. There are
special plugins for web browsers which can render SVG
files in a browser window [1]. Compared to bitmap graph-
ics, SVG has a number of advantages:

• SVG is based on vector graphics, which are
zoomable without losing resolution on the screen.

• SVG has language constructs for describing dy-
namic changes of the graphics.

• Since SVG objects have a DOM representation [4]
in the browser, script languages like JavaScript can
interact with it. SVG documents can therefore serve
as GUIs to interact with the user. We used this to al-
low the user to interactively change the presentation
of the maps.

• SVG renderers can adapt the generated picture to the
output device. Therefore the SVG generator need
not worry about the device characteristics.

• There are different SVG sublanguages available [18,
20] to provide adaptation means for very different
output media.

• SVG documents are XML documents which can be
read by humans. This is very useful during the de-
velopment and test phase of SVG generators.

The generation of code in a graphics description language
like SVG instead of bitmap graphics therefore has the fol-
lowing advantages:

• The algorithms for transforming the geographic data
are much simpler because the final rendering of the
graphical data is done by the browser.

• The generated graphics code is device independent.
The renderer automatically adapts the graphics to the
output device.

• If the graphics description language has constructs
for dynamic presentation, they can be used directly
without having to care about rendering issues.

• Most kinds of interaction, for example zooming in
and out to a certain extent, is done by the browser,
and need not be taken into account by the transfor-
mation algorithms.



The primary data sources for the visualisation are usu-
ally Geographical Information System (GIS) databases
which (in-)directly provide data in standard formats, for
example the Geographic Data Format (GDF) [6] or the Ge-
ography Markup Language (GML) [7]. This is not the only
choice. In this article we propose an alternative. We still
use GIS data in some of the standard formats as primary
source, but only because these are the only available data.
The idea is to take an OWL ontology of transportation net-
works to represent the data as instances of the concepts of
this ontology. OWL provides a data format for instances
of the concepts of the ontology (basically the Resource
Description Framework (RDF)), and we use RDF for the
GIS data. This is not just a syntactic reformulation. It of-
fers completely new possibilities because the data format is
only loosely coupled with the ontology. For example, con-
sider an ontology containing the concept of aroad. A road
may have directions, at most two. If there is a particular
roadR with directions= 1 then OWL would classifyR as
a road. If, in a later step, the ontology is extended with the
conceptoneway road as aroad with directions= 1 then
OWL would automatically reclassifyR as aoneway road.
Thus, there is a certain degree of independence between the
OWL data format and the ontology. The same data can be
used for different ontologies.

We developed the Ontology of Transportation Networks
(OTN) [2]. OTN was generated by making the concepts
and structures which are implicitly contained in GDF [5, 6]
explicit as an OWL ontology. OTN contains all kinds of
notions for transportation networks, roads, trains, ferries
and much more.

The method for visualising maps uses three classes of
input data:

1. Concrete GIS data which has been transformed into
the OWL data format (we used the map of the city
of Munich).

2. An ontology of transportation networks, in our case
OTN.

3. A set of transformation rules which determine how
the instances of the concepts in the ontology are to
be transformed into SVG code.

The transformation algorithm now applies the transfor-
mation rules to all relevant instances of the concepts in the
ontology and produces SVG documents as output. With
this architecture it is extremely easy to change the visual-
isation. For example, if we want to distinguish one-way
roads from ordinary roads, it is only necessary to introduce
the concept of a one-way road in the ontology and to add a
corresponding transformation rule.

If the data source is in XML, which is the case for GML
or the OWL data format, and the target is also XML, which

is the case for SVG, there is a further alternative for gen-
erating maps. One can develop an XSLT style sheet that
transforms the GIS data into SVG [14]. This approach is,
however, very limited and relatively inflexible because the
XSLT style sheet depends extremely on the structure of the
XML data source. Moreover, it does not support rasterisa-
tion and levels of detail, which is extremely important for
working with large maps.

In this document we describe the basic ideas and tech-
niques of our approach, a more detailed description can be
found in [11]. Section 2 describes the limits of SVG and
illustrates our solutions, particularly regarding a dynamic
loading mechanism and a special rasterisation technique
based on R-trees. Detailed information about the transfor-
mation step can be found in [12]. While section 3 briefly
indicates a number of possibilities to extend the system and
its functionalities, related work is shown in section 4. We
conclude this paper with the summary and outlook in sec-
tion 5.

2 SVG Visualisation
We start with a description of the SVG visualisation

technique because this motivates some of the design de-
cisions for the transformation method.

2.1 The Final Result
The final result of the visualisation is illustrated in fig. 1.

The browser window consists of a frame containing the
SVG map and a HTML menu on the right hand side. The
SVG map is zoomable in a wide range, more than the built-
in SVG zooming facility would allow. The section to be
displayed can be changed by just dragging the mouse over
the window. The map may contain dynamic elements (e.g.
buses or trains moving along the rails, clouds moving over
the scene, etc.).

The menu allows the user to choose what he wants to
see. It is divided into two main sections,Modulesand
Ontology. TheOntologysection corresponds to adisplay
ontology, which is a tree of concepts in the transportation
network realm. Checking or unchecking the appropriate
box causes the corresponding items in the map to become
visible or invisible. Amodulein the upper section of the
menu consists of a set of elements from the display ontol-
ogy. Any combination of elements from the display ontol-
ogy can form a module. Checking or unchecking makes
the whole group of items visible or invisible.

There is a further feature which is not part of the sec-
tion of the browser window shown in fig. 1. Below the
map there is a text input section where one can type in a
street name and the street is then highlighted in the map.

2.2 Dynamic Loading
All visualisation systems for maps have the same prob-

lem: the server has usually much more data than the user at



Figure 1: Visualisation in SVG

the client side wants to see. Network bandwidth and com-
putation capacity are not large enough to transfer all the
data from the server to the client such that the client can
decide what to show to the user and what not. Therefore it
is necessary to partition the data at the server side and send
only the relevant parts to the client side. If the user changes
the section of the map to be shown or he zooms in and out,
more data needs to the loaded dynamically during the user
interaction.

SVG has no built-in facility for dynamically loading
data from the server. The combination of the DOM rep-
resentation of SVG data in the browser memory and the
possibilities of scripting languages like JavaScript to mod-
ify the DOM at any time, however, makes it possible to
program dynamic downloading of data from the server (for
a detailed description see [12]).

In order to use this mechanism for loading only the actu-
ally needed parts of a big map, we have to solve two prob-
lems. The first problem is to divide a big map into small
enough tiles which can be loaded independently. The sec-
ond problem is to support zooming already at the server
side. The problem here is that the same item must be dis-
played differently at different zoom levels. For example,
if the whole map of Germany is to be shown, it makes
no sense to display all the details of, say, the city of Mu-
nich. Munich should in this case be displayed only as a
dot, or maybe as a very simple polygon filled with a uni-
form colour. If the user zooms into Munich, he wants to

see of course more detail. These different views have to be
prepared at the server side.
2.3 Rasterisation

There is a very simple solution for splitting a big map
into smaller tiles: a fixed grid is imposed on the map and
the map is split into the grid elements. The disadvantage is
that this way the split parts may have very different size
– we are talking about vector data here. There may be
split parts with almost nothing in it and split parts in very
densely populated areas which contain thousands or mil-
lions of items. One could argue that this is not the case
with rasterised data, since all tiles would come in the same
size (e.g. 128x128 pixels). The contained information, the
net data, however, would also greatly differ.

A much better distribution of equally sized split parts
can be obtained with R-Trees [16, 17]. An R-Tree is a
structure for storing 2-dimensional data. Each node in the
tree contains data about itsminimum bounding rectangle,
i.e. the smallest rectangle which includes the node itself
and all of it descendants. Leaves contain the data and nodes
contain index information. Nodes can be further combined
within other nodes, rectangles can be overlapping. The
root node therefore contains all descending nodes and sub-
sequently all leaves including the bounding rectangle of
the whole tree. It is normally not possible to generate an
optimal R-Tree, since this would involve a complexity of
O(n) = 2n. Therefore, there are generally a number of dif-
ferent (equal) instances of an R-Tree and some algorithms



for maintaining its structure. This does, however, not have
a significant impact on the rasterising process as we need it
for our application. Fig. 2 shows a possible R-Tree, which
is rather self explanatory.

Figure 2: R-Tree Sample

In our special case, using an R-Tree means using the ad-
vantages of rectangular grid sections while eliminating the
need for separate indexing or cumbersome preprocessing
of data. The grid is comprised of the minimum bound-
ing rectangles (which can be overlapping), whereas each
element belongs to only one section and all sections con-
tain a similar number of elements. Each node contains in-
formation about its children and the sizes of their respec-
tive rectangles. This allows for recursive search from the
root along the different nodes, while for each node it can
be quickly decided, whether it touches the area to be dis-
played (and therefore, whether data from its children has
to be loaded). Elements can easily be distributed equally
between grid sections and there is no need for a separate
index file. Fig. 3 shows a tile of a map of Munich which
has been generated using an R-Tree. This tile contains only
data for a particular road type. We use the OTN ontology
to separate the items in the tiles into instances of the same
classes.

Figure 3: A generated tile of a map

2.4 Levels of Detail
Yet another similar problem stems from the zoom mech-

anisms. Depending on the current zoom level, certain ele-
ments - mostly because of their size - cannot be displayed

properly because they would be too small to be useful.
Elements like this include smaller streets (which come in
greater numbers as well), street names and similar things.
Moreover it makes sense to simplify certain elements to
simpler structures in order to improve readability and us-
ability of the map. Cities might be reduced to circles or
dots of different diameter (depending on other attributes,
such as number of inhabitants). This form of presentation
is much more useful than putting processing power into
rendering irregular city boundaries which are too small to
be identified as such.

Every element therefore contains the attributesminDe-
tail andmaxDetailwhich set the levels of detail between
which the element is to be visible. The level of detail is
the minimum of both the vertical and horizontal resolution.
On a map displaying from coordinates (200, 400) to (500,
1000) the minimum would bemin(300, 600) = 300.

Our system therefore generates SVG files for the differ-
ent tiles at the different zoom levels. If the user zooms in
or out the corresponding files are automatically loaded.

3 Further Services
The browser that renders SVG data has, via JavaScript,

access to the data structures underlying the items on the
generated image. This can be exploited to implement fur-
ther services. One of the services we implemented is a road
finder. Since every road has a name, the browser can build
an index for the roads when they are downloaded. The user
can now type in the name of a road and the browser uses
the index to match the road name with the SVG elements
that display the road. These elements are now highlighted
by changing their colour attribute. So far this works only
for roads. The reason is that different types of objects are
usually represented by different combinations of SVG el-
ements. A road, for example, consists of road segments
which are displayed with one or two (or more) SVG path
elements. This association is different for other types of
objects and has to be programmed in another way.

Highlighting particular roads is a service which can be
executed at client side. We also implemented a prototype
of a service where the client has to contact the server. This
service searches the shortest path between two locations on
a map. The client sends the two locations to the server, the
server computes the shortest path, and sends back an SVG
document that shows the shortest path in the browser win-
dow. So far, only the interface between client and server is
implemented and only fixed test data are sent.

4 Alternative Approaches
As mentioned before, there exist a number of different

possibilities in order to provide similar services. We give
some examples here which use different approaches, al-
though none incorporate a holistic use of ontologies.



Two of the most prominent commercial examples come
from the search engine provider Google.Google Mapsand
Google Earthshow two very different approaches in client-
side applications for GIS data presentation, a more com-
prehensive description can be found in [21, 22]. Google
Maps is based on JavaScript and XML, and can be ac-
cessed with any current web browser, whereas Google
Earth is a proprietary stand-alone application.

Google Mapsis a free Web Map Server application [9]
which provides zoomable and pannable street map and
satellite images for the whole planet, along with route plan-
ning and business locator facilities for a number of coun-
tries1. Following Google’s key mission, Google Maps can
be combined with some search functionality. Search re-
sults can for example be restricted to a certain area: “Pizza
in Boston” yields facilities providing pizza in the greater
Boston area. This applies to other services as well. Further
functionality includes common routing and navigation, in-
cluding lists of driving directions2.

Although in the early stages the underlying protocols
and mechanisms have not been publicly available, reverse
engineering of the interface (which is mainly based on
JavaScript and XML) has led to the development of ex-
panded and customised features. Using the core engine and
the map/satellite images hosted by Google, such expan-
sions can introduce custom location icons, location coordi-
nates and meta data, and even custom map image sources
(e.g. [10, 15]). Meanwhile Google released a Google Maps
API to Google developers for non-commercial purposes.

Google Earth, formerly developed as a purely commer-
cial product by Keyhole Inc. and now owned and made
freely available by Google, is a virtual globe enabling the
viewing of vectorised and rasterised data by generating
views of the earth from above [8]. Currently Google Earth
is only running on personal computers using Microsoft
Windows, although versions for Linux and Mac OS ver-
sions have been announced for the end of 2005.

Google Earth operates in a similar manner to Google
Maps, but as a 3-dimensional application. Instead of pla-
nar maps, Google Earth provides a globe, which can be
viewed, rotated, zoomed into, much like its real life coun-
terpart. The most important difference is a layer architec-
ture, well known from Geographic Information Systems,
which contain different sets of features, such as parks,
rivers, roads, borders of countries, locations of national
monuments and many thousands of other places. These
are provided not only by Google, but by the whole Inter-
net community. These layers can be selected and dese-
lected by the user in order to create a view containing the
desired features. The mechanisms for incorporating cus-

tomised data into the client are publicly available via the
Keyhole Markup Language (KML) [13].

MacauMap[3] is a handheld digital map application
which displays information about tourist-related spots (ho-
tels, restaurants, etc.), provides a bus routing function for
calculating an optimal bus route between a pair of bus stops
and offers other functions. As it is targeted for mobile use,
the focus of development mainly lies on two issues pertain-
ing to mobile devices: device resources and user interface.
Since computing power, bandwidth and memory capacity
are restricted, special techniques have been developed to
optimise data processing. Likewise, user interaction is re-
stricted to either a stylus (PDAs) or an alphanumeric key-
pad (mobile phones) the user interface has been adapted
accordingly.

5 Summary and Outlook
In this work we illustrate a particular use of ontologies

for dealing with geographic data. The geographic data are
represented in the OWL data format that corresponds to the
Ontology of Transportation Networks (OTN). Since there
is a certain degree of independence between the data and
the ontology, it is possible to adapt the ontology to the
needs of the application and still work with the same data.

The transformation of the geographic data into SVG is
also controlled by an ontology. The SVG elements are
represented as concepts of atransformation ontologyand
the particular rules for transforming the data in a particular
way are specified as instances of the concepts of the trans-
formation ontology. By changing these instances or creat-
ing new instances one can change or extend the displayed
maps very easily. Therefore this is an extremely flexible ar-
chitecture which allows one to program the generation of
maps by specifying the transformation in a symbolic way.

There are two main differences to other approaches for
generating maps:

1. the programming technique issemanticwith a sig-
nificant symbolic specification part. This is much
more flexible than other programming techniques.
For example, if the presentation of the map is to
be changed or extended, it is usually sufficient to
start an OWL editor and change some classes or in-
stances;

2. behind the displayed map there is always the docu-
ment object model (DOM), and the elements of the
DOM are still linked to the ontology. This enables
interactive services where the ontology can be in-
voked.

1The U.S., Canada, Japan, Hong Kong, China, the UK and Ireland(city centres only)
2As of June 2005, Google Maps features road maps for the UnitedStates, Puerto Rico, Canada, and the United Kingdom.



SVG is a very expressive language with a number of
quite powerful features. The renderers for SVG are there-
fore quite complicated and still seem not be optimised for
large data sets. The dynamic features of SVG in particu-
lar slow down the rendering considerably. Rendering big
maps with a lot of items is still slower than it could be. We
are currently exploring the possibility to write a rendererin
Java, not for full SVG, but for the special constructs needed
for visualising maps. This should give similar performance
as for example map24 or the aforementioned Google Maps.

In contrast to the commercial examples described in
section 4 we didn’t develop yet another set of proprietary
languages, interfaces and methods, but instead use already
available open standards. Apart from the obvious advan-
tages, this makes adaptation to different platforms and de-
vices much easier.

The techniques can also be extended in other directions.
For example, one could integrate scrollbars which are to
be used to make the graphics dependent on further param-
eters, in particular time. This way, time dependent data
can be integrated into the graphics in such a way that the
user can choose the time and the graphics is automatically
adapted. Another direction could be to replace SVG with
X3D in order to present 3D graphics. The transformation
techniques are similar to the 2D case.

Acknowledgement
This research has been co-funded by the European

Commission and by the Swiss Federal Office for Education
and Science within the 6th Framework Programme project
REWERSE number 506779 (cf.http://rewerse.
net ).

References
[1] Adobe SVG Viewer, Version 3.01.http://www.

adobe.com/svg/ , September 2003.

[2] Bernhard Lorenz and Hans Jürgen Ohlbach and Laib-
ing Yang. Ontology of Transportation Networks.
REWERSE Deliverable A1-D4, University of Mu-
nich, Institute for Informatics, 2005.

[3] Robert P. Biuk-Aghai. MacauMap: Next Generation
Mobile Travelling Assistant. InProceedings Of Map
Asia 2004, Beijing, China, August 2004.

[4] Document Object Model (DOM) Level 2 Core
Specification. http://www.w3.org/TR/
DOM-Level-2-Core , November 2000.

[5] International Organisation for Standardisation (ISO).
Geographic Data Files 3.0 (GDF) Documenta-
tion. http://www.ertico.com/en/links/
links/gdf_-_geographic_data_files.
htm , 1995.

[6] International Organisation for Standardisation (ISO).
Intelligent transport systems - Geographic Data Files

4.0 (GDF) - Overall data specification, ISO/DIS
14825/2004, February 2004.

[7] Geography Markup Language GML, Version
3. http://www.opengis.org/docs/
02-023r4.pdf , (accessed 11/2005).

[8] Google Earth. http://earth.google.com ,
(accessed 11/2005).

[9] Google Maps.http://maps.google.com , (ac-
cessed 11/2005).

[10] Greasemonkey. http://greasemonkey.
mozdev.org , (accessed 11/2005).

[11] Frank Ipfelkofer. Basisontologie und Anwendungs-
Framework für Visualisierung und Geospatial Rea-
soning. Diploma thesis, University of Munich, In-
stitute for Informatics, 2004.

[12] Frank Ipfelkofer, Bernhard Lorenz, and Hans Jürgen
Ohlbach. Ontology Driven Visualisation of Maps
with SVG – An Example for Semantic Programming.
Forschungsbericht/research report PMS-FB-2006-5,
Institute for Informatics, University of Munich, 2006.

[13] Google Earth KML Tutorial. http://www.
keyhole.com/kml/kml_tut.html .

[14] Andreas Kupfer. Visualisierung von GML mit XSLT
und SVG. Diploma thesis, Technical University of
Braunschweig, 2003.

[15] MyGMaps. http://mygmaps.com/mygmaps.
cgi , (accessed 11/2005).

[16] R-Tree Portal. http://www.rtreeportal.
org , Juni 2003.

[17] R-Tree Visualization Demo, National Technical Uni-
versity of Athens. http://www.dbnet.ece.
ntua.gr/˜mario/rtree , November 1999.

[18] Mobile SVG Profiles: SVG Tiny and SVG Basic,
W3C Recommendation.http://www.w3.org/
TR/SVGMobile , January 2003.

[19] Scalable Vector Graphics (SVG) 1.1 Specification,
W3C Recommendation.http://www.w3.org/
TR/SVG11, January 2003.

[20] SVG Print, W3C Working Draft. http://www.
w3.org/TR/SVGPrint/ , July 2003.

[21] Wikipedia: Google Earth. http://en.
wikipedia.org/wiki/Google_Earth .

[22] Wikipedia: Google Maps. http://en.
wikipedia.org/wiki/Google_Maps .


