
Fuzzy Time Intervals

System Description of the FuTI–Library

Hans Jürgen Ohlbach

Institut für Informatik, Universität München
E-mail: ohlbach@lmu.de

Abstract. The FuTI–library is a collection of classes and methods for
representing and manipulating fuzzy time intervals. Fuzzy time intervals
are represented as polygons over integer coordinates. FuTI is an open
source C++ library with many advances operations and highly optimised
algorithms. Version 1.0 is now available from the URL
http://www.pms.ifi.lmu.de/CTTN/FuTI.

1 Fuzzy Time Intervals

Fuzzy Intervals are usually defined through their membership functions. A mem-
bership function maps a base set to a real number between 0 and 1. This “fuzzy
value” denotes a kind of degree of membership to a fuzzy set S. The base set for
fuzzy time intervals is the time axis. In FuTI it is represented by the set R of
real numbers. Real numbers allow us to model the continuous time flow which
we perceive in our life. A fuzzy time interval in FuTI is now a fuzzy subset of
the real numbers.

A typical fuzzy interval may look like:

-

6

R
0

1

Party Time

6pm 7pm 10pm 12pm 2am 3am

This set may represent a particular party time, where the first guests arrive
at 6 pm. At 7 pm all guests are there. Half of them disappear between 10 and
12 pm (because they go to the pub next door to watch an important soccer
game). Between 12 pm and 2 am all of them are back. At 2 am the first ones
go home, and finally at 3 am all are gone. The fuzzy value indicates in this case
the number of people at the party.

Fuzzy intervals in FuTI may be infinite, but the membership must be constant
from certain time onwards.

2 Data Structures and Algorithms

There are four basic data types: time points, fuzzy values, fuzzy temporal inter-
vals and y-functions.

Time Points

The time points are points on the R-axis. Arbitrary real numbers cannot be
represented on computers. The choice is therefore between floating point num-
bers and integers as representation of time points. The range of floating point
numbers is much higher than the range of integers. Unfortunately, algorithms
operating on floating point numbers are prone to uncontrollable rounding errors.
Therefore the FuTI–library represents time with integer coordinates. There is no
assumption about the meaning of these integers. They may be years, seconds,
picoseconds or even cycles of the Caesium 133 light. The system can use two
types of integers, 64 bit long integers, and multiple precision integers from the
GMP library (http://www.swox.com/gmp).

Fuzzy Values

Fuzzy values are usually real numbers between 0 and 1. A first choice would
therefore be to use floating point numbers for the fuzzy values. Again, floating
point numbers are prone to rounding errors. Moreover, computation with floating
point numbers is more expensive than computation with integers. Therefore
FuTI uses again integers instead of floating point numbers. This means of course
that one cannot represent the fuzzy value 1 as the integer 1. We could then use
just 0 and 1 and no other fuzzy value. Instead one better represents the fuzzy
value 1 as a suitable unsigned integer of a certain bit size. Since fuzzy values
are estimates only anyway, 16 bit unsigned integer (unsigned short int in C) are
precise enough for fuzzy values.

Fuzzy Time Intervals

Fuzzy intervals are usually implemented by a representation of their membership
functions. Arbitrary membership functions are almost impossible to represent
precisely on a computer. A natural choice for realizing approximated fuzzy time
intervals over integer time and integer fuzzy values is the representation with
envelope polygons over integer coordinates. This has a number of advantages:
the representation is compact and can nevertheless approximate the member-
ship functions very well; simple structures, like crisp intervals, have a simple
representation; we can use ideas and algorithms from Computational Geometry,
there are very efficient algorithms for most of the problems, and it is clear where
rounding errors can occur, and where not.

3 The Class Hierarchy

The data structures are organised in the following hierarchy:

FuTI::FuTITop

FuTI::Interval FuTI::Operation FuTI::Point

FuTI::YFunction

FuTI::BinaryYFunction FuTI::UnaryYFunction

FuTI::SDGoedel FuTI::SDKleene FuTI::SDLukasiewicz FuTI::TCoNorm FuTI::TNorm FuTI::NegationYFunction

FuTI::HamacherCoNorm FuTI::HamacherNorm FuTI::lambdaComplement

3.1 Point

The class ‘Point’ represents 2D points with integer coordinates. These points
form the vertices of the envelope polygons for fuzzy sets. Since two points de-
termine a line segment, all the algorithms for line segments are also contained
in ‘Point’. The algorithms range from simple ‘leftturn’ tests up to integration
over two multiplied linear functions, where the linear functions are determined
by two lines.

3.2 Interval

This is the most important class in the FuTI–library. It contains the represen-
tation of fuzzy intervals as polygons. There are two types of operations on these
polygons. The first type consists of some dozens of ‘hardwired’ operations which
transform the fuzzy sets in a certain way. Computing three different types of
hulls (monotone, convex and crisp hull) is an example. Multiplying a crisp or
fuzzy interval with a linear or Gaussian distribution is another example. Fur-
ther operations are, for example, normalised integrations over the membership
functions, from past to future and the other way round.

The second type are parameterised operations on fuzzy intervals where the
parameters themselves are operations on membership functions (called Y-functions
in FuTI).

An example for a unary transformation of a fuzzy interval is the complement
operation, which is defined by a negation function on the membership function.
The so-called λ-complement nλ(y)=def 1−y

1+λy
function can be used for this purpose.

-

6

R
0

1

λ-Complement for λ = 2

6 8

The function nλ is then a parameter to a ‘unary-transformation’ operation.
More complex combinations of these transformation functions can compute,

for example, a fuzzified point–interval ‘before’ relation:

-

6

R
0

1

Fuzzy Point–Interval Relation

I F (I)C(F (I))

0 10

F (I) is a fuzzified and extended version of the interval I where a Gaus-
sian distribution is multiplied with I. C is a complement operation. The result,
C(F (I)) gives for every time point t the fuzzy value for ‘t is before I’.

Besides unary transformations, there is also a function ‘binary–transformation’
on intervals, which is parameterised by a function that takes two fuzzy values as
input and computes a new fuzzy value. Set operations like union or intersection,
which are determined by so-called T-Norms and T-Conorms are examples for
binary transformations.

A particular binary transformation is the (normalised) integration over mul-
tiplied membership functions. A definition of a fuzzy interval–interval ‘before’
relation as the weighted average over the point–interval ‘before’ relation B(J)
could be before(I, J)=def

∫
I(t) · B(J)(t) dt/|I| which is computed by a suitable

binary transformation function.
Some of the transformations are non-linear, i.e. they turn straight lines into

curves. The algorithms in FuTI approximate the curves automatically with suf-
ficiently dense polygons.

3.3 Operation

This class is the top class for all unary and binary Y-functions and other opera-
tions on intervals. The subclasses of ‘Operation’ implement a standard repertoire
of Y-functions. New Y-functions can easily be added by adding further subclasses
of the class ‘YFunction’.

The classes ‘SDGoedel’, ‘SDKleene’ and ‘SDLukasiewicz’ implement binary
Y-functions which realise three different types of fuzzy set difference operations.

-

6

R
0

1

Set Difference I \ J

Kleene

Lukasiewicz

Goedel

I J

The classes ‘TCoNorm’ and ‘TNorm’, with their subclasses ‘HamacherCoNorm’
and ‘HamacherNorm’ are used for realising fuzzy union and intersection opera-
tions. The picture below illustrates the operations.

-

6

R
0

1

Hamacher Intersection and Union

The class ‘UnaryYFunction’ has, so far, only subclasses for standard and
lambda-complement.

4 Summary

The FuTI-library is a component of the CTTN-system (Computational Treat-
ment of Temporal Notions) [1], a program for evaluating temporal expressions
like ‘three weeks after Easter’. CTTN is currently under development. CTTN
contains in particular the specification language GeTS for specifying and work-
ing with temporal notions [2]. Many of the language primitives in GeTS are
the operations of the FuTI–library. Other language primitives in GeTS use the
PartLib–library for representing periodical temporal notions [3]. GeTS is in par-
ticular suitable for specifying fuzzy relations between fuzzy time intervals. There-
fore FuTI is only one piece in a bigger mosaic. Some of the design decisions in
FuTI are motivated by the needs of the GeTS language. Nevertheless the API
for FuTI is general enough to be useful also for other applications.

Acknowledgements

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Hans Jüergen Ohlbach. Computational treatement of temporal notions –
the CTTN system. In François Fages, editor, Proceedings of PPSWR 2005,
Lecture Notes in Computer Science, pages 137–150, 2005. see also URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-30.

2. Hans Jürgen Ohlbach. GeTS – a specification language for geo-temporal notions.
Research Report PMS-FB-2005-29, Inst. für Informatik, LFE PMS, University of
Munich, June 2005. URL: http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-
2005-29.

3. Hans Jürgen Ohlbach. Modelling periodic temporal notions by labelled parti-
tionings of the real numbers – the PartLib library. Research Report PMS-FB-
2005-28, Inst. für Informatik, LFE PMS, University of Munich, June 2005. URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-28.

