
A Usable Interchange Format for Rich Syntax Rules
Integrating OCL, RuleML and SWRL

Gerd Wagner
Institute of Informatics

Brandenburg University of
Technology at Cottbus

03046 Walther Pauer Str.2,
Cottbus, Germany

G.Wagner@tu-cottbus.de

Adrian Giurca
Institute of Informatics

Brandenburg University of
Technology at Cottbus

03046 Walther Pauer Str.2,
Cottbus, Germany

Giurca@tu-cottbus.de

Sergey Lukichev
Institute of Informatics

Brandenburg University of
Technology at Cottbus

03046 Walther Pauer Str.2,
Cottbus, Germany

Lukichev@tu-cottbus.de

ABSTRACT
Rules are becoming increasingly important in business mod-
eling and requirements engineering, and as a high level pro-
gramming paradigm. In the area of rule modeling there
are different developer communities like UML modelers and
ontology architects. The former use rules in business mod-
eling and in software development, while the latter use rules
in collaborative Web applications. Each of them is using
different rule languages and tools. Since a business rule is
the same rule no matter in which language it is formalized,
it is important to support the interchange of rules between
different systems and tools.

This paper presents an interchange format for rules inte-
grating the Rule Markup Language (RuleML), the Seman-
tic Web Rule Language (SWRL) and the Object Constraint
Language (OCL). These languages provide a rich syntax for
expressing rules. This means that they support conceptual
distinctions, such as distinguishing different types of terms
and different types of atoms, which are not present in stan-
dard predicate logic. The interchange format is usable in the
sense that it allows structure-preserving markup of all con-
structs of these different languages and does not force users
to translate their rule expressions to a completely different
language paradigm such as having to transform a function
into a functional predicate. In the case of OCL rules this is
achieved by developing a logical reconstruction of the ’un-
logical’ original OCL metamodel.

We consider three kinds of rules in this paper: integrity
rules, derivation rules and production rules. We define rule
concepts with the help of MOF/UML, a subset of the UML
class modeling language proposed by the Object Manage-
ment Group (OMG) for the purpose of ’meta-modeling’, i.e.
for defining languages conceptually on the level of an ab-
stract (semi-visual) syntax.

Keywords
Rules, rule markup languages, integrity rules derivation rules,
production rules, rule metamodels, OCL, RuleML, SWRL

1. INTRODUCTION
Rule markup languages will be the vehicle for using rules

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

on the Web and in other distributed systems. They allow
deploying, executing, publishing and communicating rules
in a network. They may also play the role of a lingua franca
for exchanging rules between different systems and tools. In
a narrow sense, a rule markup language is a concrete (XML-
based) rule syntax for the Web. In a broader sense, it should
have an abstract syntax as a common basis for defining vari-
ous concrete languages serving different purposes. The main
purposes of a rule markup language is to permit reuse, in-
terchange and publication of rules.

We adopt the Model Driven Architecture (MDA,[8]), which
is a framework for distinguishing different abstraction lev-
els defined by the Object Management Group (OMG), [11].
As illustrated in Figure 1, we consider rules at the three
abstraction levels defined be the MDA:

At the (’computation-independent’) business do-
main level (called CIM in OMG’s MDA), rules are state-
ments that express (certain parts of) a business/domain pol-
icy (e.g., defining terms of the domain language or defining/
constraining domain operations) in a declarative manner,
typically using a natural language or a visual language. Ex-
amples of such rules are:

• ”The driver of a rental car must be at least 25 years
old”

• ”A gold customer is a customer with more than $1Mil-
lion on deposit”

• ”An investment is exempt from tax on profit if the
stocks have been bought more than a year ago”

• ”When a share price drops by more than 5% and the
investment is exempt from tax on profit, then sell it”

At the platform-independent operational design level
(called PIM in OMG’s MDA), rules are formal statements,
expressed in some formalism or computational paradigm,
which can be directly mapped to executable statements of a
software system. Examples of rule languages at this level are
SQL:1999 [15], OCL 2.0 [10] and DOM Level 3 Event Listen-
ers [6]. Remarkably, SQL provides operational constructs for
all three business rule categories mentioned above: checks
and assertions operationalize a notion of integrity rules, views
operationalize a notion of derivation rules, and triggers op-
erationalize a notion of reaction rules.

Rule

DerivationRule

ProductionRule TransformationRule

SQL1999Assertion

OCL2.0Invariant

SQL1999View

ECAPRule ECARule

SQL1999Trigger

XSL1.0RuleOracle10gSQLView XSB2.6PrologRule MSOutLook6Rule ILOGRule Jess3.4Rule

R2ML::DerivationRule

IntegrityRule

R2ML:IntegrityRule

R2ML:ProductionRule

ReactionRule

R2ML:ReactionRule

CIM

PIM

PSM

Figure 1: Rule concepts at three different abstraction levels: computation-independent (CIM), platform-
independent (PIM) and platform-specific (PSM) modeling.

At the platform-specific implementation level (called
PSM in OMG’s MDA), rules are statements in a language of
a specific execution environment, such as Oracle 10g views
[12], Jess 3.4 [7], XSB 2.6 Prolog [18] or the Microsoft Out-
look 6 Rule Wizard [9].

Rule interchange will be important both at the PIM and
the PSM level. So, there are four interchange types:

PIM to PIM examples: OCL to SQL, SQL to ISO Prolog.

PIM to/from PSM examples: OCL to/from Java, SQL
to/from Oracle 10g.

PSM to PSM examples: XSB Prolog to SWI Prolog, ILOG
to ILOG, ILOG to Jess.

General purpose rule interchange formats, such as RuleML
and R2ML, address the PIM level. They support a PSM
to PSM interchange via the PIM level. Since there will be
several rule interchange formats, there is also the issue of
mapping them on each other.

In general, a rule interchange will not be loss-free. For
instance, since RuleML cannot represent several linguistic
distinctions made in OCL and SWRL, an OCL to SWRL
interchange is not well supported by RuleML, while R2ML
allows a loss-free interchange.

We assume that Web rule languages do not directly follow
the tradition of predicate-logic-style rule languages such as
Prolog, but rather follow the recent developments of Web
knowledge representation languages such as RDF [13] and
OWL [16]. This requires that they accommodate:

• Web naming concepts, such as URIs/IRIs and XML
namespaces,

• The ontological distinction between objects and data
values,

• The datatype concepts of RDF.

As a working name for our interchange format, we use the
acronym R2ML standing for REWERSE Rule Markup Lan-
guage.

2. CONTENT LANGUAGE
Logical formulas and rules are expressed with the help of

logical connectives on the basis of a content language con-
sisting of a datatype language and a user-defined content
vocabulary.

2.1 Datatype Language
The datatype language consists of a set of predefined datatype

names, including the name rdfs:Literal standing for the
generic datatype of all Unicode strings. Each predefined
datatype name is associated with:

• a set of data literals, which are Unicode strings;

• a set of datatype function names;

• a set of datatype predicate names.

2.2 Content Vocabulary Constructs
The user-defined content vocabulary includes

• user-defined object names;

• user-defined object function names comprising role
function names and object property names;

• user-defined data function names comprising at-
tributes and data operations;

• user-defined noun concept names standing for gen-
eral noun concepts, among which we distinguish object
types (’classes’) and datatypes;

• user-defined verb concept names, called ’predicate
symbols’ in traditional logic, standing for general verb
concepts, or predicates, among which we distinguish
properties and associations; properties are either at-
tributes, if they are data-valued, or reference proper-
ties, if they are object-valued.

In Web languages such as RDF and OWL, all these names
are globally unique standard identifiers in the form of URI
references. One of the goals of R2ML is to comply with
important Semantic Web standards like RDF(S) and OWL.
In particular, R2ML accommodates the data type concept
of RDF.

ObjectTerm

ObjectVariable
ObjectName

objectID : URIRef RoleFunctionTerm

contextArgument 1

Class
classID : URIRef

0..1

*

0..1

*
ReferenceProperty

refPropertyID : URIRef

*

1

Operation
operationID : URIRef

ObjectOperationTerm

*

1

Term

arguments

*

contextArgument

0..1

Figure 2: Object terms

DataTerm

DataVariable
DataLiteral

lexicalValue : UnicodeString

DataFunctionTerm

DataOperationTerm AttributeFunctionTerm DatatypeFunctionTerm

arguments *
{ordered}

dataArguments

1..*
{ordered}

ObjectTerm

contextArgument

1

contextArgument1

Term

PlainLiteral
languageTag[0..1] : UnicodeString

TypedLiteral
type : URIRef

Operation
operationID : URIRef

*
1

Attribute
attributeID : URIRef

*
1

0..1 *

Datatype
datatypeID : URIRef

DatatypeFunction
datatypeFunctionID : URIRef

*
1

Figure 3: Data terms

2.2.1 User-Defined Object Functions
User-defined object functions are either role functions or

object operations. They are used in object terms as shown
in Figure 2.

A role function corresponds to a functional association
end (of a binary association) in a UML class model. For
example, in Figure 4, both association ends pickupBranch

and returnBranch define role functions.
An object operation is a special type of user-defined

function that corresponds to an object-valued non-state-
changing (i.e. side-effect-free) operation in a UML class
model. For example, in Figure 4, the operation getLastRental()

defines an object operation.

2.2.2 User-Defined Data Functions
User-defined data functions are either attributes or data

operations. They are used in data terms as shown in Figure
3.

An attribute is a special type of user-defined function
that corresponds to a data-valued property in a UML class
model. In Figure 4, reservationDate is an attribute of the
class Rental.

A data operation is a special type of user-defined func-
tion that corresponds to a data-valued operation in a UML
class model. In Figure 4, age() defines a data operation.

branch

return branch

1 *

pick up branch1

*

age()
getLastRental()

production year
rental car

storage branch 1

*

is stored at

0..1

/available car

*

/is available at

rented car
is assigned to

reservation date
/discount
start date

rental

Figure 4: Sample vocabulary

2.2.3 User-Defined Noun Concepts
User-defined noun concepts comprise classes (or object

types) and user-defined datatypes including enumerations.

2.2.4 User-Defined Verb Concepts
User-defined verb concepts comprise properties and as-

sociations. Properties are either attributes, if they are
data-valued, or reference properties, if they are object-valued.

Notice that we use an attribute name both as the name of
a function and as the name of the corresponding functional
predicate. Likewise, we use a reference property name both
as the name of a property predicate and as the name of the
corresponding role function. This kind of naming liberty,
which is supported by RDF and Common Logic, helps to
switch between functional and relational languages.

3. TERMS
Terms are either object terms standing for objects, or data

terms standing for data values. The concrete syntax of first-
order non-Boolean OCL expressions can be directly mapped
to our abstract concepts of ObjectTerm and DataTerm, de-
picted in Figures 2 and 3, which can be viewed as a predicate-
logic-based reconstruction of the standard OCL abstract
syntax.

3.1 Object Terms
An object term, as shown in Figure 2, is either an object

variable, an object name (also called ’constant symbol’ in
traditional predicate logic and ’object identifier’ in object-
oriented programming), a role function term or an object
operation term.

An ObjectOperationTerm refers to an object operation
and has an object term as an optional context argument and
zero or more object terms and data terms as arguments.

A RoleFunctionTerm refers to a role (reference property),
and takes an object term as context argumnet.

Example 1 (ObjectOperationTerm). The expression
x.getLastRental(), which returns the last rental of a rental
car, is an ObjectOperationTerm, getLastRental() denotes
an operation and x is the context argument (see Figure 4).

Example 2 (RoleFunctionTerm).
The expression x.pickupBranch, where pickupBranch is a

ObjectClassificationAtom
classID : URIRef

Class
ObjectTerm

*

class

1

1

Figure 6: Object classification atoms

ObjectDescriptionAtom

Class
classID : URIRef

ObjectTerm

ReferenceProperty
refPropertyID : URIRefObjectSlot

DataSlot

Attribute
attributeID : URIRefDataTerm

*

1

baseType

1

1

type

*

object

1

value

1

*
1

*
1

subject

1

Figure 7: Object description atoms

role name of a Branch in association between classes Rental
and Branch (Fig. 4), is a RoleFunctionTerm, where x is an
object term and pickupBranch is a reference property.

3.2 Data Terms
A data term (cf. Figure 3) is either a data variable, a

data literal, or a data function term, which can be of three
different types:

1. A datatype function term formed with the help of a
datatype function that comes with the corresponding
datatype.

2. An attribute function term formed with the help of a
user-defined attribute.

3. A data operation term formed with the help of a user-
defined non-state-changing data operation.

4. ATOMS
The basic logical constituents of a rule are atomic formu-

las, called ’atoms’. In R2ML we define 9 types of atoms,
including two convenience constructs:

-Object description atom, representing a conjunctive ag-
gregate of a number of simpler atoms (like an RDF descrip-
tion).

-Inequality atom, representing a negation of an equality
atom. All atoms from our framework are presented in Figure
5.

An object classification atom (Figure 6) refers to a class
and consists of an object term.

Following RDF [13] and OWL [16], we adopt the con-
cept of an object description atom. An object description
atom (Figure 7) refers to a class as a base type and to
zero or more classes as categories, and consists of a num-
ber of property/term pairs (attribute data term pairs and
reference property object term pairs). Any instance of such
atom refers to one particular object, that is referenced by
an objectID, if it is not anonymous.

An attribution atom (Figure 8) consists of an object term
as ”subject”, and a data term as ”value”.

AttributionAtomObjectTerm DataTerm

subject

1 value

1
*

1
attributeID : URIRef

Attribute

Figure 8: Attribution atoms

ReferencePropertyAtom

subject

1 object

1

ObjectTerm

refPropertyID : URIRef
ReferenceProperty

* 1

Figure 9: Reference property atoms

A reference property atom (Figure 9) associates object
terms as ”subjects” with other object terms as ”objects”.

In order to support common fact types of natural language
directly, it is important to have n-ary predicates (for n > 2).

An association atom (Figure 10) is constructed using an
n-ary predicate as association predicate, a collection of data
terms as ”data arguments” and a collection of object terms
as ”object arguments”.

An equality atom or inequality atom, see Figure 11, is
composed of two or more object terms.

A data classification atom (Figure 12) consists of a data
term and refers to a data type.

A datatype predicate atom (Figure 13) refers to a datatype
predicate, and consists of a number of data terms.

5. FORMULAS
R2ML provides two abstract concepts for formulas: the

concept of AndOrNafNegFormula (see Figure 14), which
represents the most general quantifier free logical formula
with weak and strong negations, and the concept of Logi-
calFormula (see Figure 15), which corresponds to a general
first order formula.

The distinction between strong negation and negation-
as-failure is used in several computational languages: it is
presented in explicit form in extended logic programs [3],
only implicitly in SQL [15] and OCL [10], as was shown
in [5]. Intuitively speaking, weak negation captures the ab-
sence of positive information, while strong negation captures
the presence of explicit negative information (in the sense of

DataTerm ObjectTermAssociationAtom

dataArguments

*
{ordered} objectArguments

2..*
{ordered}*1

assocPredID : URIRef
AssociationPredicate

Figure 10: An association atom can express an n-ary
association between classes and datatypes.

isNegated : Boolean = 0
Atom

ObjectAtom

DataClassificationAtom

EqualityAtom

InequalityAtomObjectClassificationAtom AttributionAtom ReferencePropertyAtom

ObjectDescriptionAtom AssociationAtom DataPredicateAtom

DataAtom

Figure 5: Atoms types

InequalityAtomEqualityAtom ObjectTerm

12..*

1 2..*

Figure 11: Equality and inequality atoms

DataClassificationAtomDataTerm

11

*

1

RDF::DataType

Figure 12: Data classification atoms

DataTerm

2..*1 *

DataPredicateAtom
dataPredicateID : URIRef
DatatypePredicate

Figure 13: Datatype predicate atoms

Atom

2..*

2..* 1

QF::AndOrNafNegFormula

QF::Negation

QF::Conjunction QF::Disjunction

Figure 14: AndOrNafNegFormula

LogicalFormula

QuantifiedFormula

ExistentiallyQuantifiedFormula UniversallyQuantifiedFormula

VariableDeclaration

1..*

1

Atom

Naf NegDisjunctionConjunction

1
1

2..*

2..*

Implication

2

Figure 15: Logical formula

Kleene’s 3-valued logic). Under the minimal/stable model
semantics [2] weak negation captures the computational con-
cept of negation-as-failure (or closed-world negation) [1].

6. ACTIONS
The REWERSE I1 Rule Markup Language (R2ML) offers

support both for production rules and reaction rules. With
this respect it defines the concept of an action. Following
the OMG Production Rule Representation submission, an
action (Fig. 16) is either an InvokeActionExpression or an
AssignActionExpression or a CreateActionExpression or a
DeleteActionExpression. R2ML also provides message ac-
tions in the form of a concrete SOAPAction.

All actions refer to a context which is an R2ML object
term.

InvokeActionExpression models the receipt by an object
of a request invoking a call of an operation. It refers to an
R2ML Operation and contains an ordered, possible empty
list of arguments represented as R2ML terms. The execution
of this action is done by the corresponding operation-call.

AssignActionExpression refers to an UML Property and
contains a DataTerm as a value. This action assigns a value
to a property.

CreateAction refers to an R2ML Class and contains a list
of slots (object slots and/or data slots). The execution of
this action is a constructor call for creation of a new object
in the system.

DeleteActionExpression refers to an UML Class and con-
tains an ObjectTerm. This action removes an instance of the
Class.

7. RULES

7.1 Integrity Rules
Integrity rules, also known as (integrity) constraints, con-

sist of a constraint assertion, which is a sentence in a logical
language such as first-order predicate logic or OCL (see Fig-
ure 17). R2ML framework supports two kinds of integrity
rules: the alethic and the deontic ones. The alethic integrity
rule can be expressed by a phrase, such as ”it is necessar-
ily the case that” and the deontic one can be expressed by
phrases, such as ”it is obligatory that” or ”it should be the
case that”. A LogicalStatement is a LogicalFormula that has
no free variables i.e. all the variables from this formula are
quantified.

7.2 Derivation Rules
R2ML derivation rules have ”conditions” and ”conclu-

sions” (see Figure 18). Conditions of a derivation rule are

ActionExpression

InvokeActionExpression AssignActionExpression CreateActionExpression DeleteActionExpression

*
{ordered}

Property
propertyID : URIRef

*
1

1
1

value

1

*
1

Operation
operationID : URIRef

*
1

*

Class
classID : URIRef

Term

ObjectSlot DataSlot

ObjectTerm

Slot

*

1

*

contextArgument 1

SOAPAction

MessageAction

SOAPRPCAction

* 1
1

arguments *
{ordered}

Figure 16: Actions

IntegrityRule

1

constraint

1

AlethicIntegrityRule DeonticIntegrityRule

LogicalStatement

Figure 17: Integrity rule metamodel

conclusions

1..*conditions

1..*

DerivationRuleqf::AndOrNafNegFormula qf::LiteralConjunction

Figure 18: Derivation rule metamodel

AndOrNafNegFormula, as defined in Figure 14. Conclusions
are restricted to DNF conjuncts (disjunction of literal con-
junctions).

7.3 Production Rules
Production rules have ”conditions”, ”post-conditions” and

a ”produced action” (see Figure 19). Conditions and post-
conditions of a production rule are LogicalFormula, as de-
fined in Figure 15. Production rule may execute an Action.
The actions are defined in Figure 16.

8. RULEML, SWRL AND OCL
The terminological correspondence between SWRL, RuleML,

OCL and R2ML is presented in Tables 1 and 2.

9. RULE EXAMPLES

Example 3. The following integrity rule is based on the
business vocabulary, depicted on Fig. 20: ”If rental is not
a one way rental then return branch of rental must be the
same as pick-up branch of rental.”

<r2ml:AlethicIntegrityRule r2ml:id="AIT1001">

R2ML::ProductionRule

QF::AndOrNafNegFormula

ActionExpression
conditions

1..* postcondition

0..1

producedAction1{or}

Figure 19: Production rule metamodel

rentalbranch

/one way rental

return branch 1 *

pick up branch1 *

Figure 20: Business vocabulary

<r2ml:constraint>
<r2ml:Implication>
<r2ml:Conjunction>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:Rental">
<r2ml:ObjectVariable r2ml:name="rental1"/>
</r2ml:ObjectClassificationAtom>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:OneWayRental"
r2ml:isNegated="true">

<r2ml:ObjectVariable r2ml:name="rental1"/>
</r2ml:ObjectClassificationAtom>
</r2ml:Conjunction>
<r2ml:Conjunction>
<r2ml:ReferencePropertyAtom

r2ml:refPropertyID="srv:returnBranch">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="rental1"/>

</r2ml:subject>
<r2ml:object>
<r2ml:ObjectVariable r2ml:name="returnBranch"/>

</r2ml:object>
</r2ml:ReferencePropertyAtom>
<r2ml:ReferencePropertyAtom

r2ml:refPropertyID="srv:pickupBranch">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="rental1"/>

</r2ml:subject>
<r2ml:object>
<r2ml:ObjectVariable r2ml:name="pickupBranch"/>

</r2ml:object>
</r2ml:ReferencePropertyAtom>
<r2ml:EqualityAtom>
<r2ml:ObjectVariable r2ml:name="returnBranch"/>
<r2ml:ObjectVariable r2ml:name="pickupBranch"/>
</r2ml:EqualityAtom>
</r2ml:Conjunction>

</r2ml:Implication>
</r2ml:constraint>

Table 1: Basic language constructs for vocabularies
R2ML RuleML SWRL UML/OCL

data variable variable data variable Variable
object variable variable individual variable Variable
data term term data term Literal
object term term object term Object
association predicate n/a n/a Association
class n/a owl description Class
attribute n/a iObject Property
data predicate rel n/a Property

Table 2: Accommodating different atoms concepts
R2ML RuleML SWRL UML/OCL
ObjectDescriptionAtom SlotAtom n/a n/a
ObjectClassificationAtom PositionalAtom classAtom � instanceOf �
AssociationAtom PositionalAtom n/a link
AttributionAtom PositionalAtom datavaluedPropertyAtom property instance
ReferencePropertyAtom PositionalAtom individualPropertyAtom link
BuiltinPredicate n/a builtinAtom Operation
DataClassificationAtom n/a dataRangeAtom property instance
EqualityAtom n/a sameIndividualAtom ==
InequalityAtom n/a differentIndividualsAtom !=

</r2ml:AlethicIntegrityRule>

Moreover, our language permits to rewrite the same con-
straint in a functional style:

<r2ml:AlethicIntegrityRule r2ml:id="AIT1001">
<r2ml:constraint>
<r2ml:Implication>
<r2ml:Conjunction>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:Rental">
<r2ml:ObjectVariable r2ml:name="rental1"/>
</r2ml:ObjectClassificationAtom>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:OneWayRental"
r2ml:isNegated="true">

<r2ml:ObjectVariable r2ml:name="rental1"/>
</r2ml:ObjectClassificationAtom>
</r2ml:Conjunction>
<r2ml:Conjunction>
<r2ml:EqualityAtom>

<r2ml:RoleFunctionTerm
r2ml:refPropertyID="returnBranch">

<r2ml:argument>
<r2ml:ObjectVariable r2ml:name="rental1"/>
</r2ml:argument>
</r2ml:RoleFunctionTerm>
<r2ml:RoleFunctionTerm

r2ml:refPropertyID="pickupBranch">
<r2ml:argument>
<r2ml:ObjectVariable r2ml:name="rental1"/>
</r2ml:argument>
</r2ml:RoleFunctionTerm>

</r2ml:EqualityAtom>
</r2ml:Conjunction>
</r2ml:Implication>
</r2ml:constraint>

</r2ml:AlethicIntegrityRule>

Example 4. The following derivation rule is based on the
business vocabulary, depicted on Fig. 21:

A car is available for rental if it is not assigned
to any rental and is not scheduled for service.

rental rental car

0..1* is assigned to

/rental car
scheduled for service

/available car

Figure 21: Business vocabulary

The first condition of this rule ”a rental car is not assigned
to a rental”, corresponds to a negation-as-failure, which is
expressed by the tag <WeakNegation>. The second condition,
not scheduled for service is a categorization and corre-
sponds to a strong negation, because it requires the value to
be explicitly false.

<r2ml:DerivationRule
r2ml:id="DR001"
xmlns:srv="http://www.services.org/EU-Rent/">

<r2ml:conditions>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:RentalCar">
<r2ml:ObjectVariable r2ml:name="rentalCar1"/>
</r2ml:ObjectClassificationAtom>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:RentalContract">
<r2ml:ObjectVariable r2ml:name="rentalContract"/>
</r2ml:ObjectClassificationAtom>
<r2ml:qf.WeakNegation>
<r2ml:ReferencePropertyAtom

r2ml:refPropertyID="srv:isAssignedTo">
<r2ml:subject>

<r2ml:ObjectVariable r2ml:name="rentalCar1"/>
</r2ml:subject>
<r2ml:object>

<r2ml:ObjectVariable r2ml:name="rentalContract"/>
</r2ml:object>

</r2ml:ReferencePropertyAtom>
</r2ml:qf.WeakNegation>

<r2ml:ObjectClassificationAtom
r2ml:classID="srv:rentalCarScheduledForService"
r2ml:isNegated="true">

<r2ml:ObjectVariable r2ml:name="rentalCar1"/>
</r2ml:ObjectClassificationAtom>

</r2ml:conditions>
<r2ml:conclusion>
<r2ml:qf.LiteralConjunction>
<r2ml:ObjectClassificationAtom

r2ml:classID="srv:isAvailable">
<r2ml:ObjectVariable r2ml:name="r1"/>
</r2ml:ObjectClassificationAtom>
</r2ml:qf.LiteralConjunction>
</r2ml:conclusion>

</r2ml:DerivationRule>

Example 5 (Production Rule: Assign Discount).
”If the order has value greater than 1000 and the order’s cus-
tomer type is not ”gold” then assign a discount of 10%.”

<r2ml:ProductionRule
xmlns="http://www.services.org/EU-Rent/">

<r2ml:conditions>
<r2ml:qf.Conjunction>
<r2ml:DataPredicateAtom

r2ml:dataPredicateID="swrlb:greaterThan">
<r2ml:dataArguments>
<r2ml:AttributeFunctionTerm

r2ml:attributeID="orderValue">
<r2ml:contextArgument>
<r2ml:ObjectVariable

r2ml:name="order"
r2ml:classID="srv:Order"/>

</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>
<r2ml:TypedLiteral

r2ml:lexicalValue="1000"
r2ml:typeLiteral="xs:positiveInteger"/>

</r2ml:dataArguments>
</r2ml:DataPredicateAtom>
<r2ml:DataPredicateAtom

r2ml:dataPredicateID="swrlb:equal"
r2ml:isNegated="true">

<r2ml:dataArguments>
<r2ml:AttributeFunctionTerm

r2ml:attributeID="customerRating">
<r2ml:contextArgument>
<r2ml:ObjectVariable

r2ml:name="order"
r2ml:classID="srv:Order"/>

</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>
<r2ml:TypedLiteral

r2ml:lexicalValue="gold"
r2ml:typeLiteral="xs:string"/>

</r2ml:dataArguments>
</r2ml:DataPredicateAtom>
</r2ml:qf.Conjunction>
</r2ml:conditions>
<r2ml:producedAction>
<r2ml:AssignActionExpression

r2ml:propertyID="srv:discount">
<r2ml:contextArgument>
<r2ml:ObjectVariable

r2ml:name="order"
r2ml:classID="srv:Order"/>

</r2ml:contextArgument>
<r2ml:TypedLiteral

r2ml:lexicalValue="10"
r2ml:typeLiteral="xs:positiveInteger"/>

</r2ml:AssignActionExpression>
</r2ml:producedAction>

</r2ml:ProductionRule>

Acknowledgment
This research has been funded by the European Commission
and by the Swiss State Secretariat for Education and Re-
search within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net).

10. CONCLUSION
In this paper, we have presented a usable interchange for-

mat that integrates the rule markup languages RuleML and
SWRL with OCL.

The rich syntax of our interchange format allows to map
many language constructs directly without translating them
to different kinds of expressions. This increases the usabil-
ity of the interchange format and also allows loss-free inter-
change in many cases.

11. REFERENCES
[1] Clark, K.L., Negation as Failure, in: Gallaire, H., and

Minker, J. (eds.), Logic and Data Bases, Plenum
Press, NY, pp.293-322, 1978.

[2] Gelfond, M., Lifschitz, V., The stable model semantics
for logic programming In Proc. of ICLP-88, pp.
1070-1080.

[3] Gelfond, M., Lifschitz, V., Classical Negation in Logic
Programs and Disjunctive Databases, New Generation
Computing, vol. 9, pp. 365-385, 1991.

[4] Wagner, G., Antoniou, G., Tabet, S., and Boley,
H.,The Abstract Syntax of RuleML - Towards a
General Web Rule Language Framework, Rule
Markup Initiative (RuleML), http://www.ruleml.org

[5] Wagner, G., Web Rules Need Two Kind of Negations,
in Proc. of Principles and Practice of Semantic Web
Reasoning, PPSWR 2003, pp.33-50.

[6] DOM Model, W3C Recommendation,
http://www.w3.org/DOM/

[7] Jess, Sandia Lab., http://herzberg.ca.sandia.gov/jess/

[8] Model Driven Architecture (MDA), OMG,
http://www.omg.org/cgi-bin/doc?mda-guide

[9] MS OutLook, Microsoft Corp.,
http://www.microsoft.com

[10] Object Constraint Language (OCL), v2.0,
http://www.omg.org/docs/ptc/03-10-14.pdf

[11] Object Management Group (OMG),
http://www.omg.org

[12] Oracle Views, Oracle Corp., http://oracle.com

[13] Resource Description Framework (RDF), W3
Recommendation, http://www.w3.org/RDF/

[14] Semantic Web Rule Language (SWRL),
http://www.daml.org/swrl

[15] Standard Query Language (SQL1999),

[16] Web Ontology Language (OWL), W3
Recommendation, http://www.w3.org/2004/OWL/

[17] XML Metadata Interchange (XMI),
http://www.omg.org/technology/documents/formal/xmi.htm

[18] XSB, http://xsb.sourceforge.net/

[19] W3C Workgroup on RIF Charter,
http://www.w3.org/2005/rules/wg/charter

