
Integrazione di semantiche multiple in un framework con
semantica answer set

Integration of Multiple Semantics in an Answer Set Framework 1

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits

SOMMARIO/ABSTRACT

Questo lavoro riporta lo stato attuale dello sviluppo di
dlvhex, un sistema di ragionamento automatico per pro-
grammi HEX. I programmi HEX sono programmi logici
a semantica non monotonica arricchiti con la nozione di
atomo higher order e di atomo esterno. Gli atomi higher
order sono ampiamente riconosciuti come utili in svariati
contesti come ad esempio il meta-ragionamento. Inoltre
la possibilità di scambiare conoscenza con sorgenti esterne
di ragionamento in un framework puramente dichiarativo
basato sulla Answer Set Programming è particolarmente
importante in vista delle future applicazioni Semantic Web.
Attraverso gli atomi esterni, i programmi HEX possono ma-
nipolare conoscenza esterna e altri sistemi di ragionamento
di varia natura, come ad esempio ontologie RDF oppure
ontologie basate sulla logica descrittiva.

We briefly report on the development status of dlvhex, a
reasoning engine for HEX-programs, which are nonmono-
tonic logic programs with higher-order atoms and external
atoms. Higher-order features are widely acknowledged as
useful for various tasks and are essential in the context of
meta-reasoning. Furthermore, the possibility to exchange
knowledge with external sources in a fully declarative
framework such as answer-set programming (ASP) is par-
ticularly important in view of applications in the Semantic-
Web area. Through external atoms, HEX-programs can
deal with external knowledge and reasoners of various na-
ture, such as RDF datasets or description logics bases.

Keywords: Knowledge representation, nonmonotonic rea-
soning

∗This work was partially supported by the Austrian Science
Fund (FWF) under grant P17212-N04, and by the European Commission
through the IST Networks of Excellence REWERSE (IST-2003-506779).

1 Introduction

Nonmonotonic semantics is often requested by Semantic-
Web designers in cases where the reasoning capabilities
of the Ontology layer of the Semantic Web turn out to
be too limiting, since they are based on monotonic log-
ics. The widely acknowledged answer-set semantics of
nonmonotonic logic programs [5], which is arguably the
most important instance of the answer-set programming
(ASP) paradigm, is a natural host for giving nonmonotonic
semantics to the Rules and Logic layers of the Semantic
Web.

In order to address problems such as meta-reasoning in
the context of the Semantic Web and interoperability with
other software, in [3], we have extended the answer-set se-
mantics to HEX-programs, which are higher-order logic
programs (which accommodate meta-reasoning through
higher-order atoms) with external atoms for software in-
teroperability. Intuitively, a higher-order atom allows to
quantify values over predicate names, and to freely ex-
change predicate symbols with constant symbols, like in
the rule

C (X) ← subClassOf (D, C), D(X).

An external atom facilitates the assignment of a truth value
of an atom through an external source of computation. For
instance, the rule

t(Sub, Pred,Obj)← &RDF [uri](Sub, Pred,Obj)

computes the predicate t taking values from the predicate
&RDF . The latter extracts RDF statements from the set of
URIs specified by the extension of the predicate uri ; this
task is delegated to an external computational source (e.g.,
an external deduction system, an execution library, etc.).
External atoms allow for a bidirectional flow of informa-
tion to and from external sources of computation such as
description logics reasoners. By means of HEX-programs,
powerful meta-reasoning becomes available in a decidable

setting, e.g., not only for Semantic-Web applications, but
also for meta-interpretation techniques in ASP itself, or for
defining policy languages.

Other logic-based formalisms, like TRIPLE [13] or F-
Logic [8], feature also higher-order predicates for meta-
reasoning in Semantic-Web applications. Our formalism
is fully declarative and offers the possibility of nondeter-
ministic predicate definitions with higher complexity in a
decidable setting. This proved already useful for a range
of applications with inherent nondeterminism, such as on-
tology merging [14] or matchmaking, and thus provides a
rich basis for integrating these areas with meta-reasoning.

2 HEX-Programs
2.1 Syntax

HEX programs are built on mutually disjoint sets C, X , and
G of constant names, variable names, and external pred-
icate names, respectively. Unless stated otherwise, ele-
ments fromX (resp., C) are written with first letter in upper
case (resp., lower case), and elements from G are prefixed
with “ & ”. Constant names serve both as individual and
predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-
order atom (or atom) is a tuple (Y0, Y1, . . . , Yn), where
Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively,
Y0 is the predicate name; we thus also use the familiar no-
tation Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a
constant. For example, (x, rdf :type, c) and node(X) are
ordinary atoms, while D(a, b) is a higher-order atom. An
external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms
(called input list and output list, respectively), and &g is
an external predicate name.

It is possible to specify molecules of atoms in F-Logic-
like syntax. For instance, gi [father → X,Z → iu] is a
shortcut for the conjunction father(gi,X), Z(gi, iu).

HEX-programs are sets of rules of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, (2)

where m, k ≥ 0, α1, . . . , αk are higher-order atoms,
and β1, . . . , βm are either higher-order atoms or external
atoms. The operator “not” is negation as failure (or de-
fault negation).

2.2 Semantics

The semantics of HEX-programs is given by generalizing
the answer-set semantics [3]. The Herbrand base of a pro-
gram P , denoted HBP , is the set of all possible ground
versions of atoms and external atoms occurring in P ob-
tained by replacing variables with constants from C. An

interpretation relative to P is any subset I ⊆ HBP con-
taining only atoms.

We say that an interpretation I ⊆ HBP is a model of
an atom a ∈ HBP iff a∈ I . Furthermore, I is a model of
a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm)
iff f&g(I, y1, . . . , yn, x1, . . . , xm)= 1, where f&g is an
(n+m+1)-ary Boolean function associated with &g,
called oracle function, assigning each element of HBP ×
Cn+m either 0 or 1.

Let r be a ground rule. We define (i) I |= H(r) iff
there is some a ∈ H(r) such that I |= a, (ii) I |= B(r) iff
I |= a for all a∈B+(r) and I 6|= a for all a∈B−(r), and
(iii) I |= r iff I |=H(r) whenever I |=B(r). We say that I
is a model of a HEX-program P , denoted I |= P , iff I |= r
for all r∈ grnd(P).

The FLP-reduct of P w.r.t. I ⊆HBP , denoted fP I , is
the set of all r ∈ grnd(P) such that I |= B(r). I ⊆HBP

is an answer set of P iff I is a minimal model of fP I . By
ans(P) we denote the set of answer sets of P .

Note that the answer-set semantics may yield no, one,
or multiple models (i.e., answer sets) in general. There-
fore, for query answering, brave and cautious reasoning
(truth in some resp. all models) is considered in practice,
depending on the application.

In practice, it is useful to differentiate between two kinds
of input attributes for external atoms. For an external pred-
icate &g (exploited, say, in an atom &g[p](X)), a term ap-
pearing in an attribute position of type predicate (in this
case, p) means that the outcomes of f&g are dependent
from the current interpretation I , for what the extension of
the predicate named p in I is concerned. An input attribute
of type constant does not imply a dependency of f&g from
some portion of I . An external predicate whose input at-
tributes are all of type constant does not depend from the
current interpretation.

Example 1 The external predicate &RDF introduced be-
fore is implemented with a single input argument of type
predicate, because its associated function finds the RDF-
URIs in the extension of the predicate uri :

tr(S, P, O)← &RDF [uri](S, P, O),
uri(“file://foaf .rdf ”)← .

Should the input argument be of type constant, an equiva-
lent program would be:

tr(S, P, O) ← &RDF [“file://foaf .rdf ”](S, P, O).

or

tr(S, P, O)← &RDF [X](S, P, O), uri(X),
uri(“file://foaf .rdf ”)← .

2.3 Usability of HEX-Programs

An interesting application scenario, where several features
of HEX-programs come into play, is ontology alignment.

Merging knowledge from different sources in the context
of the Semantic Web is a crucial task [1] that can be sup-
ported by HEX-programs in various ways:

Importing external theories. This can be achieved by
fragments of code such as:

triple(X, Y, Z)← &RDF [uri](X, Y, Z),
triple(X, Y, Z)← &RDF [uri2](X, Y, Z),
proposition(P)←

triple(P, rdf :type, rdf :statement).

Searching in the space of assertions. In order to choose
nondeterministically which propositions have to be
included in the merged theory and which not, state-
ments like the following can be used:

pick(P) ∨ drop(P) ← proposition(P).

Translating and manipulating reified assertions. For
instance, it is possible to choose how to put RDF
triples (possibly including OWL assertions) in an
easier manipulable and readable format, and to make
selected propositions true such as in the following
way:

(X, Y, Z)← pick(P), triple(P, rdf :subject , X),
triple(P, rdf :predicate, Y),
triple(P, rdf :object , Z),

C(X)← (X, rdf :type, C).

Defining ontology semantics. The semantics of the on-
tology language at hand can be defined in terms of
entailment rules and constraints expressed in the lan-
guage itself or in terms of external knowledge, like
in

D(X)← subClassOf (D, C), C(X),
← &inconsistent [pick],

where the external predicate &inconsistent takes a
set of assertions as input and establishes through an
external reasoner whether the underlying theory is in-
consistent.

Performing default and closed-world reasoning.
Assuming that a generic external atom &DL[C](X)
is available for querying the concept C in a given
description logics base, the closed-world assumption
(CWA) can be stated as follows:

C ′(X)← not &DL[C](X), concept(C),
cwa(C, C ′),

where concept(C) is a predicate which holds for all
concepts and cwa(C,C ′) states that C ′ is the CWA of
C.

Inconsistency of the CWA can be checked by pushing
back inferred values to the external knowledge base:

set false(C, X)← cwa(C, C ′), C ′(X),
inconsistent ← &DL1 [set false](b),

where &DL1 [N](X) effects a check whether a
knowledge base, augmented with all negated facts
¬c(a) such that N(c, a) holds, entails the empty con-
cept ⊥ (entailment of ⊥(b), for any constant b, is tan-
tamount to inconsistency).

3 Implementation

The challenge of implementing a reasoner for HEX-
programs lies in the interaction between external atoms
and the ordinary part of a program. Due to the bidirec-
tional flow of information represented by its input list, an
external atom cannot be evaluated prior to the rest of the
program. However, the existence of established and effi-
cient reasoners for answer-set programs led us to the idea
of splitting and rewriting the program such that an exist-
ing answer-set solver can be employed alternatingly with
the external atoms’ evaluation functions. In the following,
we will outline methods that are already implemented in
our prototype HEX reasoner dlvhex. We will partly refer
to [4], modifying the algorithms and concepts presented
there where it is appropriate in the view of an actual im-
plementation.

3.1 Dependency Information

Taking the dependency between heads and bodies into ac-
count is a common tool for devising an operational seman-
tics for ordinary logic programs, e.g., by means of the no-
tions of stratification or local stratification [11], or through
modular stratification [12] or splitting sets [10]. In [4],
we defined novel types of dependencies, considering that
in HEX programs, dependency between heads and bod-
ies is not the only possible source of interaction between
predicates. Contrary to the traditional notion of depen-
dency based on propositional programs, we consider re-
lationships between nonground, higher-order atoms. In the
view of an actual implementation of a dependency graph
processing algorithm, we will present in the following a
generalized definition of atom dependency of [4].

Definition 1 Let P be a program and a, b atoms occurring
in some rule of P . Then, a depends positively on b (a→pb),
if one of the following conditions holds:

1. There is some rule r ∈ P such that a ∈ H(r) and
b ∈ B+(r).

2. There are some rules r1, r2 ∈ P such that a ∈ H(r1)
and b ∈ B(r2) and there exists a partial substitution
θ of variables in a such that either aθ = b or a = bθ.
E.g., H(a, Y) unifies with p(a, X).

3. There is some rule r ∈ P such that a, b ∈ H(r). Note
that this relation is symmetric.

4. a is an external predicate of form &g[X̄](Ȳ) where
X̄ = X1, . . . , Xn, and b is of form p(Z̄), and,
for some i, Xi = p and of type predicate
(e.g., &count[item](N) is externally dependent on
item(X)).

Moreover, a depends negatively on b (a→nb), if there is
some rule r ∈ P such that a ∈ H(r) and b ∈ B−(r). We
say that a depends on b, if a→b, where → = →p ∪ →n.
The relation →+ denotes the transitive closure of →.

These dependency relations let us construct a graph,
which we call dependency graph of the corresponding pro-
gram.

Example 2 Consider the following program P , modeling
the search for personal contacts that stem from a FOAF-
ontology,1 which is accessible by a URL.

url(“http://www .kr .tuwien.ac.at /staff /roman/foaf .rdf ”) ←;
url(“http://www .mat .unical .it /̃ ianni /foaf .rdf ”) ← .
¬input(X) ∨ ¬input(Y) ← url(X), url(Y), X 6= Y ;
input(X)← not¬input(X), url(X);
triple(X, Y, Z)← &RDF [A](X, Y, Z), input(A);
name(X, Y)←

triple(X, “http://xmlns.com/foaf /0 .1 /name”, Y);
knows(X, Y)← name(A, X),name(B, Y),

triple(A, “http://xmlns.com/foaf /0 .1 /knows”, B);

The first two facts specify the URLs of the FOAF ontolo-
gies we want to query. Rules 3 and 4 ensure that each
answer set will be based on a single URL only. Rule 5
extracts all triples from an RDF file specified by the exten-
sion of input . Rule 6 converts triples that assign names to
individuals into the predicate name. Finally, the last rule
traverses the RDF graph to construct the relation knows .

Figure 1 shows the dependency graph of P .2

3.2 Evaluation Strategy

The principle of evaluation of a HEX-program relies on
the theory of splitting sets. Intuitively, given a program
P , a splitting set S is a set of ground atoms that in-
duce a sub-program grnd(P ′) ⊂ grnd(P) whose models
M = {M1, . . . , Mn} can be evaluated separately. Then,
an adequate splitting theorem shows how to plug in M in
a modified version of P \P ′ so that the overall models can
be computed. Here, we use a modified notion of splitting
set, accomodating non-ground programs and suited to our
definition of dependency graph.

1“FOAF” stands for “Friend Of A Friend”, and is an RDF vocabulary
to describe people and their relationships.

2Long constant names have been abbreviated for the sake of compact-
ness.

triple(X,Y,Z)

input(A)

p &RDF[A](X,Y,Z)

p

-input(X)

p

-input(Y)

p

input(X)

p

knows(X,Y)

triple(A,"knows",B)

p

name(A,X)

p

name(B,Y)

p

p

name(X,Y)

pp

triple(X,"name",Y)

p

p

p

url(X)

p

url(Y)

p

p

p p

n

p

p

Figure 1: FOAF program graph.

Definition 2 A global splitting set for a HEX-program P
is a set of atoms A appearing in P , such that whenever
a ∈ A and a→b for some atom b appearing in P , then
also b ∈ A.

In [4], we already defined an algorithm based on splitting
sets. However, there we used a general approach, decom-
posing P into strongly connected components (SCC in the
following), which leads to a potentially large number of
splitting sets (considering that a single atom that does not
occur in any cycle is a SCC by itself). Moving towards a
more efficient approach w.r.t. a practical implementation,
we now modify and specialize the notions and methods
given there.

Definition 3 A local splitting set for a HEX-program P is
a set of atoms A appearing in P , such that for each atom
a ∈ A there is no atom b /∈ A such that a→b and b→+a.

Thus, contrary to a global splitting set, a local splitting set
does not necessarily include the lowest layer of the pro-
gram, but it never “breaks” a cycle.

Definition 4 The bottom of P w.r.t. set of atoms A is the
set of rules bA(P) = {r ∈ P | H(r) ∩A 6= ∅}.

We define the concept of external component, which
represents a part of the dependency graph including at least
one external atom. Intuitively, an external component is
the smallest possible local splitting set that contains one
or more external atoms. We distinguish between different
types of external components, each with a specific proce-
dure of evaluation, i.e., computing its model(s) w.r.t. to a
set of ground atoms I . Before these are laid out, we need
to introduce some auxiliary notions.

From the viewpoint of program evaluation, it turns out
to be impractical to define the semantics of an exter-
nal predicate by means of a Boolean function. Again
restricting the concepts presented in [4] for our practi-
cal needs, we define F&g : 2HBP × D1, . . . , Dn →
2Rm

C with F&g(I, y1, . . . , yn) = 〈x1, . . . , xm〉 iff
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where Rm

C is the set
of all tuples of arity m that can be built with symbols from
C. If the input list y1, . . . , yn is not ground in the original
program, safety restrictions for HEX-programs ensure that
its values can be determined from the remaining rule body.

A ground external atom &g is monotonic providing I |=
a implies I ′ |= a, for I ⊆ I ′⊆HBP .

With Phex, we denote the ordinary logic program hav-
ing each external atom &g[y](x) in P replaced by d&g(x)
(we call this kind of atoms replacement atoms), where d&g

is a fresh predicate symbol. The input list y does not ap-
pear in the replacement atom, but will be considered when
creating a ground fact d&g(c) w.r.t. a specific interpretation
(see below).

The categories of external component we consider are:

• A single external atom &g that does not occur in any
cycle. Its evaluation method returns for each tuple
〈x1, . . . , xm〉 in F&g(I, y1, . . . , yn) a ground replace-
ment atom d&g(x1, . . . , xm) as result. The external
atom in Figure 1, surrounded by a box, represents
such a component.

• A strongly connected component C without negative
dependency and only monotonic external atoms. A
simple method for computing the (unique) model of
such a component is given by the fixpoint operation of
the operator Λ : 2HBP → 2HBP , defined by Λ(I) =
M(Phex ∪DP (I)) ∩HBP , where:

– Phex is an ordinary logic program as defined
above, with P = bC .

– DP (I) is the set of all facts d&g(c) ← such that
I |= &g[y](c) for all external atoms &g in P ;
and

– M(Phex ∪ DP (I)) is the single answer set of
Phex ∪DP (I); since Phex is stratified, this an-
swer set is guaranteed to exist and to be unique.

• A strongly connected component C with negative de-
pendencies or nonmonotonic external atoms. In this
case, we cannot rely on an iterative approach, but are
forced to guess the value of each external atom be-
forehand and validate each guess w.r.t. the remaining
atoms:

– Construct Phex from P = bC as before and add
for each replacement atom d&g(x) all rules

d&g(c) ∨ ¬d&g(c) ← (3)

such that &g[y](c) is a ground instance of
&g[y](x). Intuitively, the rules (3) “guess” the
truth values of the external atoms of C. Denote
the resulting program by Pguess .

– Compute the answer sets Ans =
{M1, . . . , Mn} of Pguess .

– For each answer set M ∈ Ans of Pguess , test
whether the original “guess” of the value of
d&g(c) is compliant with f&g. That is, for each
external atom a, check whether M |= &g[y](c).
If this condition does not hold, remove M from
Ans.

– Each remaining M ∈ Ans is an answer set of P
iff M is a minimal model of fPM

hex.

Note that a cyclic subprogram must preserve certain safety
rules in order to bound the number of symbols to be taken
into account to a finite extent. To this end, we defined in [4]
the notion of expansion-safety, which avoids a potentially
infinite ground program while still allowing external atoms
to bring in additional symbols to the program.

The evaluation algorithm (Figure 2) uses the following
subroutines:

solve(P, I) Creates for each interpretation (i.e., set of
ground atoms) i ∈ I a program P ′ = P ∪ a and
computes the answer sets of each P ′.

eval(comp, i) Computes the models of an external com-
ponent comp (which is of one of the types described
above) for each set of ground atoms a ∈ i.

Intuitively, the algorithm traverses the dependency
graph from bottom to top, gradually pruning it while com-
puting the respective models. Step (a) singles out all ex-
ternal components that do not depend on any further atom
or component, i.e., that are on the “bottom” of the depen-
dency graph. Those components are evaluated against the
current known models in Step (b) and can be removed from
the list of external components that are left to be solved.
Moreover, Step (b) ensures that all rules of these compo-
nents are removed from the program. From the remain-
ing part, Step(d) extracts the largest possible subprogram

EVALUATION ALGORITHM
(Input: a HEX-program P ; Output: a set of models M)

1. Determine the dependency graph G for P .

2. Find all external components Ci of P and build
Comp = {C1, . . . , Cn}.

3. Set T := Comp and M := {F}, where F is the set
of all facts originally contained in P . The set M will
eventually contain ans(P) (which is empty, in case
inconsistency is detected).

4. While P 6= ∅ do

(a) Let T = {C | C ∈ T, ∀a ∈ C : if ∃a→b then
b ∈ C}.

(b) For each C from T :

- let M :=
⋃

M∈M eval(C,M),
- remove C from Comp and
- let P = P \ bc(P).

(c) if M = ∅ then halt.

(d) Let M :=
⋃

M∈M solve(P ′,M), where P ′ =
Phex \ bC with C = {u | u→+c, c ∈ C or
u ∈ C for any C ∈ Comp}; let P = P \P ′ and
remove all atoms from the graph that are not in
C.

Figure 2: Evaluation algorithm.

that does not depend on any remaining external compo-
nent, computes its models and removes it from the program
resp. dependency graph.

Let us exemplarily step through the algorithm with Ex-
ample 2 as input program P . First, the graph G is con-
structed as shown in Figure 1. Since P contains only a
single external atom, the set Comp constructed in Step 2
contains just one external component C, the &RDF -atom
itself. Step (a) extracts those components of Comp that
form a global splitting set, i.e., that do not depend on any
atom not in the component. Clearly, this is not the case
for C and hence, T is empty. Step (d) constructs an aux-
iliary program P ′ by removing the bottom of C, which
contains each component that is still in Comp and every
atom “above” it in the dependency graph:

¬input(X) ∨ ¬input(Y) ← url(X), url(Y), X 6= Y ;
¬input(X)← not¬input(X), url(X);

solve(P ′,M) in Step (d) yields the answer sets of P ′,
where M is the set of the original facts from P (the two
URIs). P ′ is removed from P and C from the dependency
graph (the resulting subgraph is shown in Figure 3). Con-
tinuing with (a), now the external component C is con-
tained in Tc, and therefore in Step (b) evaluated for each
set in M. After removing C from Comp, C is empty in

triple(X,Y,Z)

&RDF[A](X,Y,Z)

p

knows(X,Y)

triple(A,"knows",B)

p

name(A,X)

p

name(B,Y)

p

p

name(X,Y)

p p

triple(X,"name",Y)

p

p

Figure 3: Pruned dependency graph.

Step (d) and P ′ = Phex, i.e., an ordinary, stratified pro-
gram, which is evaluated against each set in M - note that
these sets now also contain the result of the external atom,
represented as ground replacement atoms. At this point, P
is empty and the algorithm terminates, havingM as result.

We obtain the following property:

Theorem 1 Let P be a HEX-program and M the output
of the evaluation algorithm from Figure 2. Then, M is an
answer set of P iff M ∈M.

3.3 Available External Atoms

External Atoms are provided by so-called plugins, i.e., li-
braries that define one or more external atom functions.
Currently, we implemented the RDF plugin, the Descrip-
tion Logics Plugin and the String Plugin.

3.3.1 The RDF Plugin

RDF (Resource Description Framework) is a language
for representing information about resources in the
World-Wide Web and is intended to represent meta-data
about Web resources which is machine-readable and -
processable. RDF is based on the idea of identifying ob-
jects using Web identifiers (called Uniform Resource Iden-
tifiers, or URIs), and describing resources in terms of sim-
ple properties and property values. The RDF plugin pro-
vides a single external atom, the &RDF atom, which en-
ables the user to import RDF-triples from any RDF knowl-
edge base. It takes a single constant as input, which de-
notes the RDF-source (a file path or Web address).

3.3.2 The Description-Logics Plugin

Description logics are an important class of formalisms
for expressing knowledge about concepts and concept hi-
erarchies (often denoted as ontologies). The basic build-
ing blocks are concepts, roles, and individuals. Concepts
describe the common properties of a collection of indi-
viduals and can be considered as unary predicates inter-
preted as sets of objects. Roles are interpreted as binary
relations between objects. In previous work [2], we in-
troduced dl-programs as a method to interface description-
logic knowledge bases with answer-set programs, allowing
a bidirectional flow of information. To model dl-programs
in terms of HEX-programs, we developed the description-
logics plugin, which includes three external atoms (these
atoms, in accord to the semantics of dl-programs, also al-
low for extending a description logic knowledge base, be-
fore submitting a query, by means of the atoms’ input pa-
rameters):

• the &dlC atom, which queries a concept (specified
by an input parameter of the atom) and retrieves its
individuals,

• the &dlR atom, which queries a role and retrieves its
individual pairs, and

• the &dlConsistent atom, which tests the (possibly
extended) description logic knowledge base for con-
sistency.

The description-logics plugin can access OWL ontologies,
i.e., description logic knowledge bases in the language
SHOIN (D), utilizing the RACER reasoning engine [6].

3.3.3 The String Plugin

For simple string manipulation routines, we provide the
string plugin. It currently consists of a single atom, the
&concat atom, which lets the user specify two constant
strings in the input list and returns their concatenation as a
single output value.

3.4 Current Prototype

dlvhex has been implemented as a command-line applica-
tion. It takes one or more HEX-programs as input and di-
rectly prints the resultant models as output. Both input and
output are given in classical textual logic-programming no-
tation. For the core reasoning process, dlvhex itself needs
the answer-set solver DLV [9] (and DLT [7] if F-Logic syn-
tax is used).

Assuming that the program from Example 2 is repre-
sented by the file rdf.lp, dlvhex is called as follows:

user@host:˜> dlvhex --filter=friend rdf.lp

The --filter switch reduces the output of facts to the
given predicate names. The result contains two answer
sets:

{knows("Giovambattista Ianni",
"Axel Polleres"),

{knows("Giovambattista Ianni",
"Francesco Calimeri"),

{knows("Giovambattista Ianni",
"Wolfgang Faber"),

{knows("Giovambattista Ianni",
"Roman Schindlauer")}

{knows("Roman Schindlauer",
"Giovambattista Ianni"),

{knows("Roman Schindlauer",
"Wolfgang Faber"),

{knows("Roman Schindlauer",
"Hans Tompits")}

We will make dlvhex available both through source and
binary packages. To ease becoming familiar with the sys-
tem, we also offer a simple Web-interface available at

http://www.kr.tuwien.ac.at/research/dlvhex.

It allows for entering a HEX-program and filter predi-
cates and displays the resultant models. On the same Web-
page, we also supply a toolkit for developing custom plu-
gins, embedded in the GNU autotools environment, which
takes care for the low-level, system-specific build process
and lets the plugin author concentrate his or her efforts on
the implementation of the plugin’s actual core functional-
ity.

REFERENCES

[1] D. Calvanese, G. De Giacomo, and M. Lenzerini. A
Framework for Ontology Integration. In Proceedings
of the First Semantic Web Working Symposium, pages
303–316, 2001.

[2] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits.
Nonmonotonic Description Logic Programs: Imple-
mentation and Experiments. In Logic for Program-
ming, Artificial Intelligence, and Reasoning, 11th In-
ternational Conference, LPAR 2004, pages 511–527,
2004.

[3] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A
Uniform Integration of Higher-Order Reasoning and
External Evaluations in Answer Set Programming.
In Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI-05). Morgan
Kaufmann, 2005.

[4] Thomas Eiter, Giovambattista Ianni, Roman Schind-
lauer, and Hans Tompits. Effective Integration of
Declarative Rules with external Evaluations for Se-
mantic Web Reasoning. In European Semantic Web
Conference 2006, Proceedings, 2006. To appear.

[5] M. Gelfond and V. Lifschitz. Classical Negation in
Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365–385, 1991.

[6] V. Haarslev and R. Möller. RACER System Descrip-
tion. In Proceedings IJCAR-2001, volume 2083 of
LNCS, pages 701–705, 2001.

[7] G. Ianni, G. Ielpa, A. Pietramala, M. C. Santoro, and
F. Calimeri. Enhancing Answer Set Programming
with Templates. In J. P. Delgrande and T. Schaub,
editors, Proceedings NMR, pages 233–239, 2004.

[8] M. Kifer, G. Lausen, and J. Wu. Logical Foundations
of Object-Oriented and Frame-Based Languages. J.
ACM, 42(4):741–843, 1995.

[9] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gott-
lob, S. Perri, and F. Scarcello. The DLV System
for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic, 2005. To ap-
pear.

[10] V. Lifschitz and H. Turner. Splitting a Logic Pro-
gram. In Proceedings ICLP-94, pages 23–38, Santa
Margherita Ligure, Italy, June 1994. MIT-Press.

[11] T. Przymusinski. On the declarative semantics of de-
ductive databases and logic programs. In Founda-
tions of Deductive Databases and Logic Program-
ming., pages 193–216. Morgan Kaufmann, 1988.

[12] Kenneth A. Ross. Modular stratification and magic
sets for datalog programs with negation. J. ACM,
41(6):1216–1266, 1994.

[13] M. Sintek and S. Decker. TRIPLE - A Query, Infer-
ence, and Transformation Language for the Seman-
tic Web. In International Semantic Web Conference,
pages 364–378, 2002.

[14] K. Wang, G. Antoniou, R. W. Topor, and A. Sattar.
Merging and Aligning Ontologies in dl-Programs.
In A. Adi, S. Stoutenburg, and S. Tabet, editors,
Proceedings First International Conference on Rules
and Rule Markup Languages for the Semantic Web
(RuleML 2005), Galway, Ireland, November 10-
12, 2005, volume 3791 of LNCS, pages 160–171.
Springer, 2005.

