
Interaction Protocols and Capabilities:
A Preliminary Report�

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, and Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino, Italy

{baldoni, baroglio, mrt, patti, schi}@di.unito.it

Abstract. A typical problem of the research area on Service-Oriented
Architectures is the composition of a set of existing services with the
aim of executing a complex task. The selection and composition of the
services are based on a description of the services themselves and can ex-
ploit an abstract description of their interactions. Interaction protocols
(or choreographies) capture the interaction as a whole, defining the rules
that entities should respect in order to guarantee the interoperability;
they do not refer to specific services but they specify the roles and the
communication among the roles. Policies (behavioral interfaces in web
service terminology), instead, focus on communication from the point
of view of the individual services. In this paper we present a prelimi-
nary study aimed to allow the use of public choreography specifications
for generating executable interaction policies for peers that would like
to take part in an interaction. Usually the specifications capture only
the interactive behavior of the system as a whole. We propose to enrich
the choreography by a set of requirements of capabilities that the parties
should exhibit, where by the term “capability” we mean the skill of doing
something or of making some condition become true. Such capabilities
have the twofold aim of connecting the interactive behavior to be shown
by the role-player to its internal state and of making the policy exe-
cutable. A possible extension of WS-CDL with capability requirements
is proposed.

1 Introduction

In various application contexts there is a growing need of being able to compose
a set of heterogeneous and independent entities with the general aim of executing
a task, which cannot be executed by a single component alone. In an application
framework in which components are developed individually and can be based on

� This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net), and it has also been
supported by MIUR PRIN 2005 “Specification and verification of agent interaction
protocols” national project.

J.J. Alferes et al. (Eds.): PPSWR 2006, LNCS 4187, pp. 63–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 M. Baldoni et al.

various technologies, it is mandatory to find a flexible way for glueing compo-
nents. The solution explored in some in some research areas, like web services
(WS) and multi-agent systems (MAS), is to compose entities based on dialogue.
In web services the language WS-BPEL [20] has become the de facto standard
for building executable composite services on top of already existing services by
describing the flow of information in terms of exchanged messages. On the other
hand, the problem of aggregating communicating agents into (open) societies is
well-known in the research area about MASs, where a lot of attention has been
devoted to the issues of defining interaction policies, verifying the interoperabil-
ity of agents based on dialogue, and checking the conformance of policies w.r.t.
global communication protocols [28,17,11].

As observed in [27,5], the MAS and WS research areas show convergences
in the approach by which systems of agents, on a side, and composite services,
on the other, are designed, implemented and verified. In both cases it is in fact
possible to distinguish two levels. On the one hand we have a global view of
the system as a whole, which is independent from the specific agents/services
which will take part to the interaction (the design of the system). In the case
of MASs [14] the design level often corresponds to a shared interaction protocol
(e.g. represented in AUML [21]). In the case of web services this level corresponds
to a choreography of the system (e.g. expressed in WS-CDL). In general, at this
level a set of roles, which will be played by some peers, are defined. On the
other hand we have the level concerning the implementation of the policies of
the entities that will play the roles. These interactive behaviors must be given
in some executable language, e.g. WS-BPEL in the case of web services.

In this proposal, we consider choreographies as shared knowledge among the
parties. We will, then, refer to them as to public and non-executable specifi-
cations. The same assumption cannot be made about the interactive behavior
of specific parties (be they services or agents). The behavior of a peer will be
considered as being private, i.e. non-transparent from outside. Nevertheless, if
we are interested in coordinating the interaction of a set of parties as specified
by a given choreography, we need to associate parties to roles. Suppose that a
service publishes the fact that it acts according to the role “seller” of a public
choreography. In order to interact with that service it will be necessary to play
another role, e.g. “customer”, of the specified choreography, but for playing it,
the service interactive behavior must conform to the specification given by the
role [1,13,3]. Checking the conformance is a way for guaranteeing that the service
can interact with services playing the other roles in the choreography [3].

Let us, now, suppose that a peer does not have a conformant policy for play-
ing a certain role, but that is needs to take part to the interaction ruled by the
choreography anyway. A possible solution is to define a method for generating,
in an automatic way, a conformant policy from the role specification. The role
specification, in fact, contains all the necessary information about what send-
ing/receiving to/from which peer at which moment. As a first approximation, we
can, then, think of translating the role as expressed in the specification language
in a policy (at least into a policy skeleton) given in an executable language.

Interaction Protocols and Capabilities: A Preliminary Report 65

This is, however, not sufficient. In fact, it is necessary to bind the interactive
(observable) behavior that is encoded by the role specification with the internal
(unobservable) behavior that the peer must anyway have and with its internal
state. For instance, the peer must have some means for retrieving or building the
information that it sends. This might be done in several ways, e.g. by querying a
local data base or by querying another service. The way in which this operation
is performed is not relevant, the important point is to be sure that in princi-
ple the peer can execute it. For completing the construction of the policy, it is
necessary to have a means for checking whether the peer can actually play the
policy, in other words, if it has the required capabilities. This can only be done
if we have a specification of which capabilities are required in the choreography
itself. The capability verification can be accomplished role by role by the specific
party willing to take part to the interaction.

This paper presents a work aimed to introduce the concept of capability in the
global/local system/entity specifications, in such a way that capabilities can be
accounted for during the processes that are applied for dynamically building and
possibly customizing policies. Section 2 defines the setting of the work. Moreover,
a first example of protocol (the well-known FIPA Contract Net protocol), that
is enriched with capabilities, is reported. Section 3 introduces our notion of
capability test, making a comparison with systems in which this notion is implicit.
The use of reasoning techniques that can be associated with the capability test
for performing a customization of the policy being constructed is also discussed.
In Section 4 a possible extension of WS-CDL [29] with capability capability
requirements is sketched. Conclusions follow.

2 Interaction Protocols and Capabilities

The concept of “interaction protocol” derives from the area of MASs. MASs often
comprise heterogeneous agents, that differ in the way they represent knowledge
about the world and about other agents, as well as in the mechanisms used for
reasoning about it. In general, every agent in a MAS is characterized by a set
of actions and/or a set of behaviors that it uses to achieve a specific goal. In
order to interact with the others, an agent specification must describe also the
communicative behavior.

When a peer needs to play a role in some interaction ruled by a protocol but it
does not own a conformant policy, it is necessary that it adopts a new interaction
policy. In an agent-framework, one might think of enriching the set of behaviors
of the agent, which failed the conformance test, by asking other agents to supply
a correct interaction policy. This solution has been proposed from time to time
in the literature; recently it was adopted in Coo-BDI architectures [2]. CooBDI
extends the BDI (Belief, Desire, Intention) model so that agents are enabled
to cooperate through a mechanism of plan exchange. Such a mechanism is used
whenever it is not possible to find a plan for pursuing a goal of interest by just
exploiting the current agent’s knowledge. The ideas behind the CooBDI theory
have been implemented by means of WS technologies, leading to CooWS agents

66 M. Baldoni et al.

[8]. Another recent work in this line of research is [26]: in the setting of the DALI
language, agents can cooperate by exchanging sets of rule that either define a
procedure, or constitute a module for coping with some situation, or are just a
segment of a knowledge base. Moreover, agents have reasoning techniques that
enable them to evaluate how useful the new information is. These techniques,
however, cannot be directly imported in the context of Service-oriented Com-
puting. The reason is that, while in agent systems it is not a problem to find
out during the interaction that an agent does not own all the necessary actions,
when we compose web services it is fundamental that the analogous knowledge
is available before the interaction takes place.

A viable alternative is to use the protocol definition for supplying the service
with a new policy that is obtained directly from the definition of the role, that
the peer would like to play. A policy skeleton could be directly synthesized in a
semi-automatic way from the protocol description. A similar approach has been
adopted, in the past, for synthesizing agent behaviors from UML specifications in
[18]. However, a problem arises: protocols only concern communication patterns,
i.e. the interactions of a peer with others, abstracting from all references to the
internal state of the player and from all actions/instructions that do not concern
observable communication. Nevertheless, in our framework we are interested in a
policy that the peer will execute and, for permitting the execution, it is necessary
to express to some extent also this kind of information. The conclusion is that if
we wish to use protocols for synthesizing policy skeletons, we need to specify some
more information, i.e. actions that allow us the access to the peer’s internal state.
Throughout this work we will refer to such actions as capability requirements.

The term “capability” has recently been used by Padgham et al. [22] (the work
is inspired by JACK [9] and it is extended in [23]), in the BDI framework, for
identifying the “ability to react rationally towards achieving a particular goal”.
More specifically, an agent has the capability to achieve a goal if its plan library
contains at least one plan for reaching the goal. The authors incorporate this
notion in the BDI framework so as to constrain an agent’s goals and intentions to
be compatible with its capabilities. This notion of capability is orthogonal w.r.t.
what is proposed in our work. In fact, we propose to associate to a choreography
(or protocol) specification, aimed at representing an interaction schema among
a set of yet unspecified peers, a set of requirements of capabilities. Such require-
ments specify “actions” that peers, willing to play specific roles in the interaction
schema, should exhibit. In order for a peer to play a role, some verification must
be performed for deciding if it matches the requirements.

In this perspective, our notion of capability resembles more closely (some-
times unnamed) concepts, that emerge in a more or less explicit way in various
frameworks/languages, in which there is a need for defining interfaces. One ex-
ample is Jade [15], the well-known platform for developing multi-agent systems.
In this framework policies are supplied as partial implementations with “holes”
that the programmer must fill with code when creating agents. Such holes are
represented by methods whose body is not defined. The task of the programmer
is to implement the specified methods, whose name and signature is, however,

Interaction Protocols and Capabilities: A Preliminary Report 67

fixed in the partial policy. Another example is powerJava [6,7], an extension
of the Java language that accounts for roles and institutions. Without getting
into the depths of the language, a role in powerJava represents an interlocutor
in the interaction schema. A role definition contains only the implementation
of the interaction schema and leaves to the role-player the task of implement-
ing the internal actions. Such calls to the player’s internal actions are named
“requirements” and are represented as method prototypes.

Checking whether a peer has the capability corresponding to a requirement
is, in a way, a complementary test w.r.t. checking conformance. With a rough
approximation, when I check conformance I abstract away from the behavior
that does not concern the communication described by the protocol of interest,
focussing on the interaction with a set of other peers that are involved, whereas
checking capabilities means to check whether it is possible to tie the description
of a policy to the execution environment defined by the peer.

2.1 An Example: The Contract Net Protocol

For better explaining our ideas, in this section we consider as a choreography
the well-known FIPA ContractNet Protocol [12], pinpointing the capabilities
that are required to a peer which would like to play the role of Participant.
ContractNet is used in electronic commerce and in robotics for allowing enti-
ties, which are unable to do some task, to have it done. The protocol captures
a pattern of interaction, in which the initiator sends a call-for-proposal to a
set of participants. Each participant can either accept (and send a proposal) or
refuse. The initiator collects all the proposals and selects one of them. Figure 1
describes the interactions between the Initiator and one of the Participants in
a UML notation, that is enriched with dotted rectangles representing capability
requirements. The capability requirements act as connecting points between the
external, communicative behavior of the candidate role player and its internal
behavior. In the example, three different capabilities can be detected, one for
the role of Initiator and two for the Participant. Starting from an instance of
the concept Task, the Participant must be able to evaluate it by performing the
evaluateTask capability, returning an instance of the concept Proposal. More-
over, if its proposal is accepted by the Initiator, it must be able to execute the
task by using the capability executeTask, returning an instance of concept Re-
sult. On the other side, the Initiator must have the capability evaluateProposal
that chooses a proposal among those received from the participants.

In order to play the role of Participant a peer will, then, need to have the ca-
pabilities evaluateTask and executeTask, whereas it needs to have the capability
evaluateProposal if it means to play the role of Initiator. As it emerges from the
example, a capability identifies an action (in a broad sense) that might require
some inputs and might return a result. This is analogous to defining a method
or a function or a web service. So, for us, a capability will be specified by its
name, a description of its inputs and a description of its outputs. This is not
the only possible representation, for instance if we interpret them as actions, it
would make sense to represent also their preconditions and effects.

68 M. Baldoni et al.

Fig. 1. The FIPA ContractNet Protocol, represented by means of UML sequence dia-
grams, and enriched with capability specifications

3 Checking Capabilities
In this section we discuss about possible implementations of the capability test,
intended as the verification that a service satisfies the capability requirements
given by a role. The capability test obviously depends on the way in which
the policy is developed and therefore it depends on the adopted language. In
Jade [15] there is no real capability test because policies already supply empty
methods corresponding to the capabilities, the programmer can just redefine
them. In powerJava the check is performed by the compiler, which verifies the
implementation of a given interface representing the requirements. For further
details see [6], in which the same example concerning the ContractNet protocol
is described. In the scenario outlined in the previous section, the capability test
is done a priori w.r.t. all the capabilities required by the role specification but
the way in which the test is implemented is not predefined and can be executed
by means of different matching techniques. We could use a simple signature
matching, like in classical programming languages and in powerJava, as well
more flexible forms of matching.

We consider particularly promising to adopt semantic matchmaking tech-
niques proposed for matching web service descriptions with queries, based on
ontologies of concepts. In fact semantic matchmaking supports the matching of
capabilities with different names, though connected by an ontology, and with
different numbers (and descriptions) of input/output parameters. For instance,
let us consider the evaluateProposal capability associated to the role Initiator of
the ContractNet protocol (see Figure 1). This capability has an input parameter
(a proposal) and is supposed to return a boolean value, stating whether the pro-
posal has been accepted or refused. A first example of flexible, semantics-based
matchmaking consists in allowing a service to play the part of Initiator even
though it does not have a capability of name evaluateProposal. Let us suppose
that evaluateProposal is a concept in a shared ontology. Then, if the service has

Interaction Protocols and Capabilities: A Preliminary Report 69

a capability evaluate, with same signature of evaluateProposal, and evaluate is
a concept in the shared ontology, that is more general than evaluateProposal,
we might be eager to consider the capability as matching with the description
associated to the role specification.

Semantic matchmaking has been thoroughly studied and formalized also in the
Semantic Web community, in particular in the context of the DAML-S [24] and
WSMO initiatives [16]. In [24] a form of semantic matchmaking concerning the
input and output parameters is proposed. The ontological reasoning is applied
to the parameters of a semantic web service, which are compared to a query. The
limit of this technique is that it is not possible to perform the search on the basis
of a goal to achieve. A different approach is taken in the WSMO initiative [16],
where services are described based on their preconditions, assumptions, effects
and postconditions. Preconditions concern the structure of the request, assump-
tions are properties that must hold in the current state, as well as effects will
hold in the final state, while postconditions concern the structure of the answer.
These four sets of elements are part of the “capability” construct used in WSMO
for representing a web service. Moreover, each service has its own choreography
and orchestration, although these terms are used in a different way w.r.t. our
work. In fact, both refer to subjective views, the former recalls a state chart
while the latter is a sequence of if-then rules specifying the interaction with
other services. On the other hand, users can express goals as desired postcondi-
tions. Various matching techniques are formalized, which enable the search for
a service that can satisfy a given goal; all of them presuppose that the goal and
the service descriptions are ontology-based and that such ontologies, if different,
can be aligned by an ontology mediator. Going back to our focus concerning
capability matching, in the WSMO framework it would be possible to represent
a “capability requirement”, associated with a choreography, as a WSMO goal, to
implement the “capabilities” of the specific services as WSMO capabilities, and
then apply the existing matching techniques for deciding whether a requirement
is satisfied by at least one of the capabilities of a service.

In order to ground our proposal to the reality of web services, in Section4, we
will discuss a first possible extension of WS-CDL with capability requirements
expressed as input and output parameters. For performing the capability test
on this extension, it will be possible to exploit some technique for the semantic
matchmaking based on input and output parameters, e.g. the one in [24].

3.1 Reasoning on Capabilities

In the previous sections we discussed the simple case when the capability test
is performed w.r.t all the capabilities required by the role specification. In this
case, based on some description of the required capabilities for a playing the role,
we perform the matching among all required and actual service capabilities, thus
we can say that the test allows to implement policies that perfectly fit the role,
by envisioning all the execution paths foreseen by the role. This is, however, just
a starting point. Further customization of the capability test w.r.t. some charac-
teristic or goal of the service that intend to play a given role can be achieved by

70 M. Baldoni et al.

combining the test with a reasoning phase on capabilities. For instance, by rea-
soning on capabilities from the point of view of the service candidate for playing
the role, it would be possible to find out policies that implement the role but
do not envision all the execution paths and thus do not require the entire list of
capabilities associated to the role to be implemented.

Let us take the abstraction of a policy implementing a role w.r.t. all the capa-
bilities required as a procedure with different execution traces. Each execution
trace corresponds to a branch in the policy. It is likely that only a subset of
the capabilities associated to a role will be used along a given branch. As an
example, Figure 2 shows three alternative execution traces for a given policy,
which contain references to different capabilities: one trace exploits capabilities
C1 and C3, the second one exploits C1 and C4, the third one contains only C2.

We can think of a variant of the capability test in which only the execu-
tion traces concerning the specific call, that the service would like to enact, are
considered. This set will tell us which capabilities are actually necessary in our
execution context (i.e. given the specified input parameter values). In this per-
spective, it is not compulsory that the service has all the capabilities associated
to the role but it will be sufficient that it has those used in this set of execution
traces. Consider Figure 2 and suppose that for some given input values, only the
first execution trace (starting from left) might become actually executable. This
trace relies on capabilities C1 and C3 only: it will be sufficient that the service
owns such capabilities for making the policy call executable.

Such kind of reasoning could be done by describing the ideal complete policy
for a service aiming at implementing a given role in a declarative language that
supports a-priori reasoning on the policy executions. In fact, if a declarative rep-
resentation of the complete policy were given, e.g. see [4], it would be possible to
perform a rational inspection of the policy, in which the execution is simulated.
By reasoning we could select the execution traces that allow the service to com-
plete the interaction for the inputs of the given call. Finally we could collect the
capabilities used in these traces only (C1, C3, and C4 but not C2) and restrict
the capability test to that subset of capabilities.

Another possible customization task consists on reasoning about those exe-
cution traces that, after the execution, make a certain condition become true in

Goal1 Goal1

C4C3

C1

No Goal1

C1
C2

Fig. 2. Execution traces for a policy: two traces allow to reach a final state in which
goal1 is true but exploiting different capabilities

Interaction Protocols and Capabilities: A Preliminary Report 71

the service internal state. For instance, with reference to Figure 2, two out of
the three possible executions lead to a final situation in which goal1 holds. As
a simple example of this case, let us suppose that a peer that wishes to play
the role of “customer” with the general goal of purchasing an item of interest
from a seller of interest, has a second goal, i.e. to avoid the use of credit cards.
This goal can actually be seen as a constraint on the possible interactions. If the
policy implementing the complete role allows three alternatives forms of pay-
ment (by credit card, by bank transfer and by check), the candidate customer
is likely to desire to continue the interaction because some of the alternatives
allow reaching the goal of purchasing the item of interest without using credit
cards. It can, then, customize the policy by deleting the undesired path. If some
of the capabilities are to be used only along the discarded execution path, it is
not necessary for the candidate customer to have it.

Nevertheless a natural question arises: if I remove some of the possible execu-
tion paths of a policy, will it still be conformant to the specification? To answer
to this question we can rely on our conformance test. In the specific case of the
example, the answer would be positive. It would not be positive if we had a
candidate seller that, besides having the general goal of selling items, has the
second requirement of not allowing a specific form of payment (e.g. by bank
transfer) and deletes the undesired path from the policy. Indeed, a customer
that conforms to the shared choreography might require this form of payment,
which is foreseen by the specification, but the candidate seller would not be able
to handle this case leading to a deadlock.

It is also possible to generalize this approach and selecting the set of the
execution traces that can possibly be engaged by a given service by using the
information about the actual capabilities of the services. In fact, having the
possibility of inspecting the possible evolutions of an ideal policy implementing
the complete role, one could single out those execution traces that require the
subset of capabilities that the service actually can execute. In this way, the
policy can be customized w.r.t. the characteristic of the service, guaranteeing
the success under determined circumstances.

Last but not least, the set of capabilities of a service could be not completely
predefined but depending on the context and on privacy or security policies
defined by the user: I might have a capability which I do not want to use in that
circumstance. Also this kind of reasoning can be integrated in the capability test.
In this perspective, it would be interesting to explore the use of the notion of
opportunity proposed by Padmanabhan et al. [23] in connection with the concept
of capability (but with the meaning proposed in [22], see Section 1).

4 A Case Study: Introducing Capability Requirements in
WS-CDL

The most important formalism used to represent interaction protocols is WS-
CDL (Web Services Choreography Description Language) [29]: an XML-based
language that describes peer-to-peer collaborations of heterogeneous entities

72 M. Baldoni et al.

from a global point of view. In this section, we propose a first proposal of exten-
sion of the WS-CDL definition where capability requirements are added in order
to enable the automatic synthesis of policies described in the previous sections.
Capability requirements are expressed as input and output parameters, then se-
mantic matchmaking based on input and output parameters could be exploited
as technique for performing the capability checking. The schema that defines this
extension can be found at http://www.di.unito.it/~ alice/WSCDL Cap v1/.

1 <silentAction roleType="Participant">
2 <capability name="evaluateTask">
3 <input>
4 <parameter variable="cdl:getVariable(’tns:t’,’’,’’)"/>
5 </input>
6 <output>
7 <parameter variable="cdl:getVariable(’tns:p’,’’,’’)"/>
8 </output>
9 </capability>
10 </silentAction>

Fig. 3. Representing a capability in the extended WS-CDL. The tag input is used to
define one of the input parameters, while output is used to define one of the output
parameters.

In this scenario an operation executed by a peer often corresponds to an
invocation of a web service, in a way that is analogous to a procedure call.
Coherently, we can think of representing the concept of capability in the WS-
CDL extension as a new tag element, the tag capability (see for instance Figure 3),
which is characterized by its name, and its input and output parameters. Each
parameter refers to a variable defined inside the choreography document. The
notation variable="cdl:getVariable(’tns:t’,’’,’’)" used in Figure 3 is a
reference to a variable, according to the definition of WS-CDL. In this manner
inputs and outputs can be used in the whole WS-CDL document in standard
ways (like Interaction, Workunit and Assign activities). In particular parameters
can be used in guard conditions of Workunits inside a Choice activities in order
to choose alternative paths (see below for an example). Notice that each variable
refers also to a concept in a defined ontology.

A capability represents an operation (a call not a declaration) that must be
performed by a role and which is non-observable by the other roles; this kind of
activity is described in WS-CDL by SilentAction elements. The presence of silent
actions is due to the fact that WS-CDL derives from the well-known pi-calculus
by Milner et al. [19], in which silent actions represent the non-observable (or
private) behavior of a process. We can, therefore, think of modifying the WS-
CDL definition by adding capabilities as child elements of this kind of activity 1.
1 Since in WS-CDL there is not the concept of observable action, capability require-

ments can describe only silent actions.

Interaction Protocols and Capabilities: A Preliminary Report 73

Returning to Figure 3, as an instance, it defines the capability evaluateTask for
the role Participant of the Contract Net protocol. More precisely, evaluateTask
is defined within a silent action and its definition comprises its name plus a list
of inputs and outputs. The tags capability, input, and output are defined in our
extension of WS-CDL. It is relevant to observe that each parameter refers to a
variable that has been defined in the choreography.

1 <choice>
2 <workunit name="informResultWorkUnit"
3 guard="cdl:getVariable(’tns:rst’, ’’, ’’, ’tns:Participant’) !=

’failure’ ">
4 <interaction name="informResultInteraction">
5 ...
6 </interaction>
7 </workunit>
8 <interaction name="failureExecuteInteraction">
9 ...
10 </interaction>
11 </choice>

Fig. 4. Example of how output parameters can be used in a choice operator of a
choreography

Choreographies not only list the set of capabilities that a service should have
but they also identify the points of the interaction at which such capabilities
are to be used. In particular, the values returned by a call to a capability (as a
value of an output parameter) can be used for controlling the execution of the
interaction. Figure 4 shows, for example, a piece of a choreography code for the
role Participant, containing a choice operator. The choice operator allows two
alternative executions: one leading to an inform speech act, the other leading
to a failure speech act. The selection of which message will actually be sent is
done on the basis of the outcome, previously associated to the variable rst, of the
capability executeTask. Only when such variable has a non-null value the inform
will be sent. The guard condition at line 3 in Figure 4 amounts to determine
whether the task that the Participant has executed has failed.

To complete the example we sketch in Figure 5 a part of the ContractNet
protocol as it is represented in our proposal of extension for WS-CDL. In this
example we can detect three different capabilities, one for the role of Initiator
and two for the role Participant. Starting from an instance of the type Task, the
Participant must be able to evaluate it by performing the evaluateTask capability
(lines 4-9), returning an instance of type Proposal. Moreover, it must be able to
execute the received task (if its proposal is accepted by the Initiator) by using
the capability executeTask (lines 26-31), returning an instance of type Result.
On the other side, the Initiator must have the capability evaluateProposal, for
choosing a proposal out of those sent by the participants (lines 15-20).

74 M. Baldoni et al.

1 <sequence>

2 <interaction name="callForProposalInteraction"> ...

3 </interaction>

4 <silentAction roleType="Participant">

5 <capability name="evaluateTask">

6 <input> ... </input>

7 <output> ... </output>

8 </capability>

9 </silentAction>

10 <choice>

11 <workunit name="proposeWorkUnit" guard=... >

12 <sequence>

13 <interaction name="proposeInteraction">

14 </interaction>

15 <silentAction roleType="Initiator">

16 <capability name="evaluateProposal">

17 <input> ... </input>

18 <output> ... </output>

19 </capability>

20 </silentAction>

21 <choice>

22 <workunit name="acceptProposalWorkUnit" guard=... >

23 <sequence>

24 <interaction name="proposeInteraction">

25 </interaction>

26 <silentAction roleType="Participant">

27 <capability name="executeTask">

28 <input> ... </input>

29 <output> ... </output>

30 </capability>

31 </silentAction>

32 <choice>

33 <workunit name="informResultWorkUnit"

34 guard=... >

35 <interaction name="informResultInteraction">

36 </interaction>

37 </workunit>

38 <interaction name="failureExecuteInteraction">

39 </interaction>

40 </choice>

41 </sequence>

42 </workunit>

43 <interaction name="rejectProposalInteraction">

44 </interaction>

45 </choice>

46 </sequence>

47 </workunit>

48 <interaction name="evaluateTaskRefuseInteraction">

49 </interaction>

50 </choice>

51 </sequence>

Fig. 5. A representation of the FIPA ContractNet Protocol in the extended WS-CDL

Interaction Protocols and Capabilities: A Preliminary Report 75

As we have seen in the previous sections, it is possible to start from a repre-
sentation of this kind for performing the capability test and check if a service
can play a given role (e.g. Initiator). Moreover, given a similar description it is
also possible to synthesize the skeleton of a policy, possibly customized w.r.t.
the capabilities and the goals of the service that is going to play the role. To this
aim, it is necessary to have a translation algorithm for turning the XML-based
specification into an equivalent schema expressed in the execution language of
interest.

5 Conclusions

This work presents a preliminary study aimed to allow the use of public choreog-
raphy specifications for automatically synthesizing executable interaction poli-
cies for peers that would like to take part in an interaction but that do not own
an appropriate policy themselves. To this purpose it is necessary to link the ab-
stract, communicative behavior, expressed at the protocol level, with the internal
state of the role player by means of actions that might be non-communicative
in nature (capabilities). It is important, in an open framework like the web, to
be able to take a decision about the possibility of taking part to a choreography
before the interaction begins. This is the reason why we have proposed the intro-
duction of the notion of capability at the level of choreography specification. A
capability is the specification of an action in terms of its name, and of its input
and output parameters. Given such a description it is possible to apply matching
techniques in order to decide whether a service has the capabilities required for
playing a role of interest. In particular, we have discussed the use of semantic
matchmaking techniques, such as those developed in the WSMO and DAML-S
initiatives [24], for matching web service descriptions to queries.

We have shown how, given a (possibly) declarative representation of the policy
skeletons, obtained from the automatic synthesis process, it is possible to apply
further reasoning techniques for customizing the implemented policy to the spe-
cific characteristic of the service that will act as a player. Reasoning techniques
for accomplishing this customization task are under investigation. In particular,
the techniques that we have already used in previous work concerning the per-
sonalization of the interaction with a web service [4] seem promising. In that
work, in fact, we exploited a kind of reasoning known as procedural planning,
relying on a logic framework. Procedural planning explores the space of the pos-
sible execution traces of a procedure, extracting those paths at whose end a goal
condition of interest holds. It is noticeable that in presence of a sensing action,
i.e. an action that queries for external input, all of the possible answers are to be
kept (they must all lead to the goal) and none can be cut off. In other words, it
is possible to cut only paths that correspond to some action that are under the
responsibility of the agent playing the policy. The waiting for an incoming mes-
sage is exactly a query for an external input, as such the case of the candidate
seller that does not allow a legal form of payment cannot occur.

76 M. Baldoni et al.

Our work is close in spirit to [25], where the idea of keeping separate proce-
dural and ontological descriptions of services and to link them through semantic
annotations is introduced. In fact our WS-CDL extension can be seen as pro-
cedural description of the interaction enriched with capabilities requirements,
while semantic annotations of capability requirements enable the use of ontolog-
ical reasoning for the capability test phase. Presently, we are working at more
thorough formalization of the proposal that will be followed by the implemen-
tation of a system that turns a role represented in the proposed extension of
WS-CDL into an executable composite service, for instance represented in WS-
BPEL. WS-BPEL is just a possibility, actually any programming language by
means of which it is possible to develop web services could be used.

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. In Proc. of the
Workshop on Logic and Communication in Multi-Agent Systems, LCMAS 2003,
volume 85(2) of ENTCS, 2003. Elsevier.

2. D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI Model with Cooper-
ativity. In Proceedings of the 1st Declarative Agent Languages and Technologies
Workshop (DALT’03), pages 109–134. Springer-Verlag, 2004. LNAI 2990.

3. M. Baldoni, C. Baroglio, A. Martelli, and Patti. Verification of protocol confor-
mance and agent interoperability. In Post-Proc. of CLIMA VI, volume 3900 of
LNCS State-of-the-Art Survey, pages 265–283. Springer, 2006.

4. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction
protocols for customizing web service selection and composition. J. of Logic and
Algebraic Programming, special issue on WS and Formal Methods, 2006. To appear.

5. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the
conformance of web services to global interaction protocols: a first step. In Proc. of
2nd Int. Workshop on Web Services and Formal Methods, WS-FM 2005, volume
3670 of LNCS, pages 257–271. Springer, September, 2005.

6. M. Baldoni, G. Boella, and L. van der Torre. Bridging Agent Theory and Object
Orientation: Importing Social Roles in Object Oriented Languages. In Post-Proc.
of the Int. Workshop on Programming Multi-Agent Systems, ProMAS 2005, volume
3862 of LNCS, pages 57–75. Springer, 2006.

7. M. Baldoni, G. Boella, and L. van der Torre. powerjava: Ontologically Founded
Roles in Object Oriented Programming Languages. In Proc. of 21st SAC 2006, Spe-
cial Track on Object-Oriented Programming Languages and Systems, 2006. ACM.

8. L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. CooWS: Adaptive BDI
agents meet service-oriented computing. In Proc. of the Int. Conference on
WWW/Internet, pages 205–209, 2005.

9. P. Busetta, N. Howden, R. Ronquist, and A. Hodgson. Structuring BDI agents in
functional clusters. In Proc. of the 6th Int. Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL99), 1999.

10. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration: a synergic approach for system design. In Proc. of 4th International
Conference on Service Oriented Computing (ICSOC 2005), 2005.

11. F. Dignum, editor. Advances in agent communication languages, volume 2922 of
LNAI. Springer-Verlag, 2004.

Interaction Protocols and Capabilities: A Preliminary Report 77

12. Foundation for Intelligent Physical Agents. http://www.fipa.org.
13. F. Guerin and J. Pitt. Verification and Compliance Testing. In Communication

in Multiagent Systems, volume 2650 of LNAI, pages 98–112. Springer, 2003.
14. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In Communication

in Multiagent Systems, volume 2650 of LNAI, pages 179–193. Springer, 2003.
15. Jade. http://jade.cselt.it/.
16. U. Keller, R. Laraand A. Polleres, I. Toma, M. Kifer, and D. Fensel. D5.1 v0.1

wsmo web service discovery. Technical report, WSML deliverable, 2004.
17. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-

velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.

18. M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO
and rule-based languages to specify, implement and execute agents. In Proc. of the
8th APPIA-GULP-PRODE Joint Conf. on Declarative Programming (AGP’03),
pages 275–286, 2003.

19. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

20. OASIS. Business process execution language for web services.
21. J. H. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interac-

tion protocols in UML. In Agent-Oriented Software Engineering, pages 121–140.
Springer, 2001. http://www.fipa.org/docs/input/f-in-00077/.

22. L. Padgham and P. Lambrix. Agent capabilities: Extending BDI theory. In
AAAI/IAAI, pages 68–73, 2000.

23. V. Padmanabhan, G. Governatori, and A. Sattar. Actions made explicit in BDI.
In Advances in AI, number 2256 in LNCS, pages 390–401. Springer, 2001.

24. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First International Semantic Web Conference, 2002.

25. M. Pistore, L. Spalazzi, and P. Traverso. A minimalist approach to semantic
annotations for web processes compositions. In ESWC, pages 620–634, 2006.

26. Arianna Tocchio and S. Costantini. Learning by knowledge exchange in logical
agents. In Proc. of WOA 2005: Dagli oggetti agli agenti, simulazione e analisi
formale di sistemi complessi, november 2005. Pitagora Editrice Bologna.

27. W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, H. M. W.
Verbeek, and P. Wohed. Life after BPEL? In Proc. of WS-FM’05, volume 3670 of
LNCS, pages 35–50. Springer, 2005. Invited speaker.

28. Michael Wooldridge and Simon Parsons. Issues in the design of negotiation proto-
cols for logic-based agent communication languages. In Agent-Mediated Electronic
Commerce III, Current Issues in Agent-Based Electronic Commerce Systems, vol-
ume 2003 of LNCS. Springer, 2001.

29. WS-CDL. http://www.w3.org/tr/ws-cdl-10/.

	Introduction
	Interaction Protocols and Capabilities
	An Example: The Contract Net Protocol

	Checking Capabilities
	Reasoning on Capabilities

	A Case Study: Introducing Capability Requirements in WS-CDL
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

