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Abstract. In this work we propose the introduction of a decoupling
between personalized curricula and curricula models. A curricula model
is formalized as a set of time constraints, while personalized curricula
are formalized by means of an action theory. Given this framework, it is
possible to make various interesting verification tasks automatic. In par-
ticular, we will discuss the possibility of verifying the compliance of per-
sonalized curricula to models, by using temporal reasoning. Compliance
verification allows to check the soundness of a curriculum customized
w.r.t. available resources and user goals against a model that expresses
temporal learning dependencies at the knowledge level.

1 Introduction

The Semantic Web is concerned with adding a semantic layer to resources that
are accessible over the internet in order to enable sophisticated forms of re-use
and reasoning. In the last years standard models, languages, and tools for dealing
with machine-interpretable semantic descriptions of Web resources have been
developed. In this context a strong new impulse to research on personalization
can be given: the introduction of machine-processable semantics makes the use of
a variety of reasoning techniques for implementing personalization functionalities
possible, widening the range of the forms that personalization can assume.

Learning resources are particular kind of resources specifically useful in an ed-
ucational framework. Especially with the development of peer-2-peer and service
oriented e-learning architectures, it become fundamental to explore solutions for
personalizing w.r.t. the user’s needs the retrieval and the composition of learn-
ing web resources. In our opinion sophisticated personalization functionalities
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should combine lesson learnt in the community of traditional educational sys-
tems (especially for what concerns the re-use of learning resources), and the new
possibility of running reasoning techniques developed in the AI community over
the semantically annotated learning resources.

In recent years, the educational systems community has focussed greater and
greater attention to the problem of separating the contents of learning resources,
from the means that is necessary for taking advantage of the contents. The chief
goal is to enable a reuse of the learning resources, where re-use is more and
more often intended as a process by which the contents of a new complex learn-
ing resource, e.g. a course, are assembled, at least partly, starting from already
encoded contents, the optimal situation being a complete decoupling of the re-
sources from the platforms used for playing them. A first significant step in this
direction is represented by the birth of SCORM [1] and of Learning Design [13,
14]. The former allows to build a new course (formally, a new SCO) on top
of existing SCOs or assets. The latter, is focussed on the design of processes
and workflows among a group of actors that take part to the learning activi-
ties. These tools, however, suffer the lack of a machine-interpretable information
about the learning resources, for enabling forms of automatic composition and
of verification, possibly based on reasoning.

Standard languages for semantic annotation like RDF [16] and LOM [12]
can be used for filling this lack and adding some meta-data to the resources. In
particular by meta-data we can supply information on the learning resources at
the knowledge level, e.g. knowledge about the learning objectives of the resource
and its prerequisites. Given such kind of annotation, we can interpret a learning
resource as an action, that can profitably be used if the learner has a given set
of competences (preconditions); by using it, the learner will acquire a new set
of competences (effects). As we have shown in previous work [3, 2], given an an-
notation of resources with preconditions and effects one can rely on a classical
theory of actions and applying different reasoning techniques for offering differ-
ent kind of personalization functionalities. For instance, one could use classical

planning for performing curriculum sequencing, i.e. for selecting and sequencing
a set of resources which will allow a user to achieve her/his learning goal [3].
Moreover it possible to exploit temporal projection for validate a student-given
curriculum verifying whether all the preconditions are respected [2]. Last but
not least it is possible to exploit procedural planning for performing curriculum
sequencing at the level of university courses, in order to help a student to cus-
tomize a curriculum offered by the University w.r.t his/her interest [2]. In our
previous work all these tasks were accomplished by exploiting the metaphor of
learning resources as actions and the representation at the knowledge level of
the student learning goal and knowledge profile. We exploited a reasoning engine
based of the logic language DyLOG [4], that provided a unified framework for
performing both classical and procedural planning and temporal projection.

In this work we aim at taking a step further on this line of research and
we focus on a kind of verification that can be profitably combined with the
curriculum sequencing personalization functionalities investigated in previous



work, by leading to implement sophisticated personalization applications in a
unified framework. Given a semantic annotation of the resources based on the
metaphor of resources as actions, we will focus on a new kind of reasoning, which
can be accounted as a compliance verification of personalized curricula w.r.t. a
curricula model. Personalized curricula are intended as learning paths through
learning resources personalized w.r.t. specific user need, e.g. they could be the
result of a curriculum sequencing method that exploits the planning techniques
mentioned above. Curricula models specify general rules for building such paths
and can be interpreted as constraints. These constraints are to be expressed
in terms of knowledge elements, and maybe also on features that characterize
the resources. If such resources are courses, they should not be based, generally
speaking, on specific course names. So a constraint might impose a lab course
to be attended after a theory course on the same topics but not that the course
C123 should follow C122.

Verifying the compliance a curriculum to a model means checking: first of
all, that the resources are sequenced in such a way that their preconditions are
respected, that the learning goal is achieved in the end, and that along the
sequence the constraints imposed by the model are satisfied. In the following
we present a preliminary proposal for a knowledge representation that suits the
outlined problem domain and sketch the techniques by which the comparison of
courses to constraint-based schemas can be performed.

Compliance verification can be useful in many practical cases where the need
of personalizing learning resource sequencing w.r.t. to the student desire has to
be combined with the ability to check that the result of personalization fit some
abstract constraints, possibly imposed by a third party. A given University could,
for instance, certify that the specific curricula that it offers for achieving a cer-
tain educational goal -that built upon the local university courses- respect some
European schemes defined at the abstract level of competence. Such automatic
checking of compliance combined with curriculum sequencing techniques could
be used for implementing processes like cooperation in curriculum design and
curricula integration which are actually the focus of the so called Bologna Process

[8], promoted by the EU ministers responsible for higher education: “Curriculum
design means drawing up of a common study path aimed at reaching the educa-
tional goals that have been jointly defined. In these schemes the partners offer
specific segments which complement the overall curriculum designed”. Further
use cases are sketched in the conclusions.

2 Knowledge representation and verification

In this section we discuss about the possible formal representations of specific

curricula, intended as sequences of learning resources (be they documents or
other forms of learning materials or, at a higher level, entire courses) and curric-

ula models, intended as specifications of general schemata for achieving a certain
educational goal, where relationships among competencies are described.



2.1 Description of resources based on an action theory

Let us consider a specific curriculum as a sequence of resources, that are homo-
geneous in their representation. Based on work done in previous research [2, 3],
we can represent such resources in an action theory, taking the abstraction of
resources as simple actions. The idea is to introduce at the level of the learning
resources, some semantic annotation that describe both their pre-requisites and
effects, as done in the curriculum sequencing application in [3]. Regarding the
semantic annotation, it could be done by LOM, that allows the annotation of
the learning objects by means of an ontology of interest by using the attribute
classification as suggested in [3].

Let us summarize our intuition of resources as actions. An action can be
executed given that a set of pre-conditions holds; by executing it, a set of post-
conditions -called also effects- will become true.

In our domain of application we can interpret a learning resource as the ac-
tion of acquiring some knowledge elements (effects). According to this metaphor,
a resource can be used only if the user owns given knowledge elements or compe-
tencies (preconditions). Thus, a resource can be described in terms of knowledge
elements. For instance let us use a classical STRIPS-like notation for describ-
ing the resource called db for biotech with prerequisites relational databases and
effects scientific databases as:

ACTION: db for biothec(),
PREREQ: relational db, EFFECTS: scientific db

A curriculum is a sequence of actions of the kind reported above.

Fig. 1. The labels on the edges, r1, r2, ... rn, represent learning resources. The states
Si represent sets of competences that are available at a given time.

Actions in the sequence cause transitions from a state to another, starting
from an initial state up to a final state. The initial state represents the initial
set of competences that we suppose available before the curriculum is taken (e.g.
the basic knowledge that the student already has). This set can also be empty.
The subsequent states are obtained by applying the actions (resources) that
tag the transitions. Each of such actions has a set of preconditions that must
hold in the state to which the action is applied and cause some modifications
that consist in an update of the state. The prerequisites of action ri must hold
in the state Si−1. The state Si is obtained by adding to Si−1 the effects of
ri. See Figure 1. We assume that competences can only be added to a state



after executing the action of attending a course (or more in general reading a
learning material). The intuition behind this assumption is that no new course
will ever erase from the students memory the concepts acquired in previous
courses, thus knowledge grows incrementally. Formally, it correspond to assume
that the domain is monotonic.

2.2 Curricula models

Curricula models are to be defined on the basis of knowledge elements as well.
In particular, we would like to restrict the set of possible sequences of resources,
by imposing constraints on the order by which knowledge elements are added to
the states. For instance, that a knowledge element α is to be acquired before a
knowledge element β or that a knowledge element α is guaranteed to be acquired,
or that the acquisition of α implies that also β will be acquired subsequently.
Therefore we will represent a curriculum model as a set of temporal constraints.
Being defined on knowledge elements, a curriculum model is independent from
the specific resources that are taken into account, then, it can be used in an open
and dynamic world like the web. A set of similar constraints defines a schema
that can be used for checking user specific curricula intended as sequences of
actual resources.

A natural choice for representing temporal constraints on action paths is
linear-time temporal logic (LTL) [7]. This kind of logic allows the verification
that a property of interest is true for all the possible executions of a model, which
in our case corresponds to the specific curriculum. This is often done by means of
model checking techniques [6]. ***INSERIRE QUI MOTIVAZIONE sull’uso di
LTL**** The curriculum that we mean to check is, indeed, a Kripke structure; as
thus, it is easy to verify properties expressed as temporal logic formulas. Briefly,
a Kripke structure identifies a set of states and transition relation that allows
passing from a state to another (see Figure 1). In our case, the states correspond
to the competencies that are owned at a certain moment. Since we assume the
domain is monotonic in the sense pointed out in the previous subsection, states
will contain all the competencies acquired up to that moment. The transition
relation is given by the actions that are contained in the curriculum that is being
checked. Since the sequence is linear and shows no branch, then, it is possible
to reason on the states and with LTL logic it is possible to verify that a given
formula holds starting from a state or that it holds for a set of states.

Fig. 2. β can hold only after α becomes true, therefore, in the states that follow S3 β

can either hold or not hold.



For example, the fact that a knowledge element β cannot be acquired before
the knowledge element α is acquired, can be written as the LTL temporal formula
¬β U α, where U is the weak until operator (see Figure 2). Given a set of
knowledge elements to be acquired, such constraints specify a partial ordering
of the same elements. Other kinds of constraints might be taken into account.
For instance, that a knowledge element will be acquired sooner or later (3α,
eventually operator). A curriculum model is meant to allow the achievement of

Fig. 3. A curriculum that allows the acquisition of the learning goal G.

a given learning goal, that consists in a set of knowledge elements. We expect
that the learning goal will hold in the final state of every curriculum that matches
with the model (see Figure 3).

2.3 Compliance Verification

Given a representation of a user specific curriculum as sequence of actions/resources
(r1, r2, ..., rn) with preconditions and effects, based on knowledge elements in an
action theory (A), and a representation of a curricula model, based on temporal
constraints (T ) and a learning goal (G), it is possible to apply different reason-
ing techniques for performing various interesting tasks. Besides planning, that
we have already explored in previous works [2, 3], in this formal framework we
can verify the compliance of s user specific curriculum to a model. The verifica-
tion could be based on temporal reasoning techniques, like temporal projection,
and on model checking techniques. Verifying the compliance means, in simple
words, to check whether the curriculum respects the model, i.e that the se-
quence r1, ..., rn is sound w.r.t. the precondition and effect relations specified in
A, that the sequence allows reaching the goal G, and that the sequence respects
the temporal constraints in T . Intuitively, we can think of combining temporal
projection and model checking by verifying

A �AL G after r1, ..., rn (∗)

where AL is any action logic that supports temporal projection, and

r1, ..., rn �LTL T (∗∗)

where LTL is a linear-time temporal logic.



3 Possible implementation

In the following we discuss the possibility of exploiting existing technology and
languages for developing a system that can perform the forms of verifications
described above. In particular we will deal both with the selection of languages
for the representation of models and of curricula, and with the exploitation of
existing tools for performing the verifications.

A semantic representation of an action is quite simple and mostly consists of
two lists of knowledge elements: those required for using the resource and those
supplied by the resource. In order for the knowledge elements themselves to have
a semantic value, they can be implemented as terms in shared vocabulary (the
simplest form of ontology). RDF can be used as an implementation language.
Resources are used to define curricula. In this work we focus on curricula ob-
tained by sequencing resources, therefore we represent a curriculum as an action
sequence. This sequence can be considered as a simple kind of program that
contains no branch or loop or recursive call. For what concerns action represen-
tation, there is a wide choice of action languages that are valuable candidates:
we could use a logic programming action language, like A by Gelfond and Lif-
schitz [9], DyLOG [4], or GOLOG [15], all of which provide proof procedures
that support temporal projection (*).

Given that a curriculum has passed the temporal projection test, we can
use a model checker to verify the temporal constraints (**). Model checking is
the algorithmic verification of the fact that a finite state system complies to
its specification. In our case the specification is given by the curriculum model
and consists of a set of temporal constraints, while the finite state system is
the curriculum to be verified. Among the various model checkers that have been
developed, it is worthwhile to mention SPIN [11] and NuSMV [5]. SPIN, in
particular, is used for verifying systems that can be represented by finite state
structures, where the specification is given in an LTL logic. The verification
algorithm is based on the exploration of the state space. This is exactly what
we need for performing the second step of our compliance test, provided that we
can translate the curriculum in the internal representation used by the model
checker. In the case of SPIN, the internal representation is given in the Promela
language. For example, we can represent the knowledge elements as boolean
variables, therefore actions as transitions that modify the values of some of these
variables. The constraints will be temporal formulas that use such variables. The
verification that the constraint should along the whole curriculum is performed
automatically by the model checker.

In the case of linear curricula it would be easy to integrate in the tempo-
ral projection algorithm the direct verification of the constraints. The opposite
solution of integrating the temporal projection into a model checker, which is
the one that we mean to pursue, has the advantage of allowing the extension
of the compliance test to curricula that have a more complex structure. In fact,
curricula might contain tests, branching points, and repetitions. For example, if
the curriculum corresponds to a learning resource that has been assembled on
the basis of other learning resources (for instance a SCORM object), it might



contain, as well as a program, also loops. As well as in the two-steps solution
described above, it would be necessary to have a translation mechanism that al-
lows turning the representation of the action theory into the internal formalism,
used by the model checker [10].

For the sake of completeness, hereafter, we report a part of the Promela
code for an example. The code allows the execution of both temporal projection
and model checking. Temporal projection is handled as a deadlock verification:
if the sequence is correct w.r.t. the action theory, no deadlock arises, other-
wise a deadlock will be detected. The complete example and an explanation of
it are available at http://www.di.unito.it/~alice/ccompliance/. This cur-
riculum passes the compliance test under the temporal constraints ¬f7 U f5
and ¬f8 U f5. In the web site it is possible to retrieve alse examples of curricula
which fail the test.

mtype = { course1, course2, course3, course4, course5 };

mtype = { done, stop, success, fail }

chan attend = [0] of { mtype };

chan feedback = [0] of { mtype };

bool f1, f2, f3, f4, f5, f6, f7, f8;

init { f1 = true; f2 = false; f3 = false; f4 = false;

f5 = false; f6 = false; f7 = false; f8 = false;

run TestCompliance();

run UpdateState(); }

inline Curriculum4() {

attend!course1; feedback?done;

attend!course2; feedback?done;

attend!course5; feedback?done;

}

proctype TestCompliance() {

Curriculum4()

feedback!stop; feedback?success;

}

proctype UpdateState() {

do

:: attend?course1 -> if

:: (f1) -> f2 = true; f3 = true; f4 = true; feedback!done;

fi;

:: attend?course2 -> if

:: (f3) -> f4 = true; f5 = true; feedback!done;

fi;

:: attend?course3 -> if

:: (f2 && f6) -> f7 = true; f8 = true; feedback!done;

fi;

:: attend?course4 -> if

:: (f2 && f5) -> f7 = true; feedback!done;

fi;



:: attend?course5 -> if

:: (f2 && f4) -> f7 = true; f8 = true; feedback!done;

fi;

:: feedback?stop -> if

:: (f4 && f5 && f8) -> feedback!success;

:: else -> feedback!fail;

fi;

break;

od }

The above program is hand-coded but, as the modularity of the example
witnesses, it would be easy to produce an automatic translator able to turn the
description of sets of courses and the description of sequences of resources into
Promela code. Such code could, then, be validated according to curricula models
encoded as sets of temporal constraints.

4 Conclusions

In this work we have presented a two-level representation of curricula, aimed at
capturing the distinction between curricula and models of curricula that define
general rules or constraints to be satisfied. We have shown that by implementing
curricula models as temporal constraints, and curricula as sequences of actions,
it is possible to verify the compliance of a curriculum to a model by exploiting
reasoning techniques that combine temporal projection and model checking.

The possibility of verifying the compliance of curricula to models is extremely
important in many applicative contexts where the need of personalizing learning
resource sequencing w.r.t. to the student desire has to be combined with the
ability to check that the result of personalization fit some abstract models. In
this sense we can say that the compliance verification we propose is complemen-
tary w.r.t the capability of applying planning techniques for building from a set
of available resources, personalized curricula aimed at reaching a given learning
goal. Representing models as sets of constraints gives great freedom in the defi-
nition of specific curricula because it cuts away the undesired curricula without
imposing unnecessary constraints. The same freedom is not supplied if we repre-
sent, as in [2], models as procedures. Procedures have a prescriptive nature that
over-rules the possible solutions; the greater flexibility introduced by the use of
temporal constraints has a positive effect on the possible personalization of the
solutions, by allowing a greater autonomy in selecting among alternatives.

Concerning use cases, we have already mentioned the Bologna process. An-
other practical application could be helping a teacher that must teach a same
topic to different classes, with background and purposes that vary. For instance,
to teach Java to a University class as well as to professionals that work in an
information technology enterprise. The teacher might be interested in the fact
that all students of both classes acquire a same set of competences, with known
time constraints, however, since the target students are so different it is useful to
prepare two different courses exploiting different learning resources. The Univer-
sity students must, in fact, be taught also the theoretical background concerning



object-oriented programming. On the other hand, the professionals will surely be
more interested in more practical lessons, containing many real-world examples
of application. The teacher might select public-domain (semantically annotated)
learning resources from on-line repositories and use them to compose two differ-
ent curricula personalized w.r.t. the different student targets. Nevertheless, by
applying the approach that we have proposed he would have the possibility of
verifying that the built curricula respect an abstract curriculum schema, derived
from the expertise and the experience of the teacher himself.

We are working at the actual development of a system on the line of the sketch
described in the previous section. Moreover, we are thinking to an extension
(both from a formal and an implementation perspective), in which hierarchies
of knowledge elements are used instead of plain vocabularies. Hierarchies allow
a representation of knowledge elements at different levels of abstraction, thus
they would allow other forms of verification. In order to include them, it might
be necessary to integrate forms of ontological reasoning in the framework.
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