
Bridging Agent Theory and Object Orientation:
Agent-like Communication among Objects

Matteo Baldoni1, Guido Boella1 and Leendert van der Torre2

1Dipartimento di Informatica. Università di Torino - Italy.
E-mail: {baldoni,guido}@di.unito.it

2University of Luxembourg. e-mail: leendert@vandertorre.com

Abstract. This paper begins with the comparison of the message-sending
mechanism, for communication among agents, and the method-invocation
mechanism, for communication among objects. Then, we describe an ex-
tension of the method-invocation mechanism by introducing the notion
of “sender” of a message, “state” of the interaction and “protocol” using
the notion of “role”, as it has been introduced in the powerJava exten-
sion of Java. The use of roles in communication is shown by means of an
example of protocol.

1 Introduction

The major differences of the notion of agent w.r.t. the notion of object are often
considered to be “autonomy” and “proactivity” [24]. Less attention has been
devoted to the peculiarities of the communication capabilities of agents, which
exchange messages while playing roles in protocols. For example, in the contract
net protocol (CNP) an agent in the role of initiator starts by asking for bids,
while agents playing the role of participants can propose bids which are either
accepted or rejected by the Initiator.

The main features of communication among agents which emerge from the
CNP example are the following:

1. The message identifies both its sender and its receiver. E.g., in FIPA the
acceptance of a proposal is:
(accept-proposal :sender i :receiver j :in-reply-to

bid089 :content X :language FIPA-SL).
2. The interaction with each agent is associated to a state which evolves ac-

cording to the messages that are exchanged. The meaning of the messages is
influenced by the state. E.g., in the FIPA iterated contract net protocol, a
“call for proposal” is a function of the previous calls for proposals, i.e., from
the session.

3. Messages are produced according to some protocol (e.g., a call for proposal
must be followed by a proposal or a reject).

4. The sender and the receiver play one of the roles specified in the protocol
(e.g., initiator and participant in the contract net protocol).



5. Communication is asynchronous: the response to a message does not nec-
essarily follow it immediately. E.g., in the contract net protocol, a proposal
must follow a call for proposal and it must arrive, no matter when, before a
given deadline.

6. The receiver autonomously decides to comply with the message (e.g., making
a proposal after a call for proposal).

The message metaphor has been originally used also for describing method
calls among objects, but it is not fully exploited. In particular, message-exchange
in the object oriented paradigm has the following features:

1. The message is sent to the receiver without any information concerning the
sender.

2. There is no state of the interaction between sender and receiver.
3. The message is independent from the previous messages sent and received.
4. The sender and the receiver do not need to play any role in the message

exchange.
5. The interaction is synchronous: an object waits for the result of a method

invocation.
6. The receiver always executes the method invoked if it exists.

These two scenarios are rather different but we believe that the object-
oriented (OO) paradigm can learn something from the agent-oriented world.
The research question of this paper is thus: is it profitable to introduce in the
OO paradigm concepts taken from agent communication? how can we introduce
in the OO paradigm the way agents communicate? And as subquestions: which
of the above properties can be imported and which cannot? How to translate
the properties which can be imported in the OO paradigm? What do we learn
in the agent-oriented world from this translation?

The methodology that we use in this paper is to map the properties of agent
communication to an extension of Java, powerJava [4, 3, 5], which adds roles to
objects. Roles are used to represent the sender of a message (also known as the
“player of the role”), to represent the state of the interaction via role instances,
allowing the definition of protocols and asynchronous communication as well as
the representation of the different relations between objects.

The choice of the Java language is due to the fact that it is one of the pro-
totypical OO programming languages; moreover, MAS systems are often imple-
mented in Java and some agent programming languages are extensions of Java,
e.g., see the Jade framework [7] or the JACK software tool [23]. In this way we
can directly use complex interaction and roles offered by our extension of Java
when building MAS systems or extending agent programming languages.

Furthermore, we believe that in order to contribute to the success of the
Autonomous Agents and Multiagent Systems research, the theories and concepts
developed in this area should be applicable also to more traditional views. It is
a challenge for the agent community to apply its concepts outside strictly agent-
based applications. The OO paradigm is central in Computer Science and, as



observed and suggested also by Juan and Sterling [17], before AO can be widely
used in industry, its attractive theoretical properties must be first translated to
simple, concrete constructs and mechanisms that are of similar granularity as
objects.

The paper is organized as follows. In Section 2 we show which properties
of agent communication can be mapped to objects. In Section 3 we introduce
how we model interaction in powerJava and in Section 4 we discuss how to use
roles in order to model complex forms of interaction between object inspired
by agent interaction, we also illustrate the contract net protocol among objects
using powerJava. Conclusions end the paper.

2 Communication between objects

When approaching an extension of a language or of a method, the first issue that
should be answered is whether that extension brings along some advantages. In
our specific case, the question can be rephrased as: Is it useful for the OO
paradigm to introduce a notion of communication as developed in MAS? We
argue that there are several acknowledged limitations in OO method invocation
which could be overcome, thus realizing what we could call a “session-aware
interaction”.

First of all, objects exhibit only one state in all interactions with any other
object. The methods always have the same meaning, independently of the iden-
tity or type of the object from which they are called.

Second, the operational interface of Abstract Data Types induces an asym-
metrical semantic dependency of the callers of operations on the operation
provider: the caller takes the decision on what operation to perform and it re-
lies on the provider to carry out the operation. Moreover, method invocation
does not allow to reach a minimum level of “control from the outside” of the
participating objects [2].

Third, the state of the interaction is not maintained and methods always
offer the same behavior to all callers under every circumstance. This limit could
be circumvented by passing the caller as a further parameter to each method
and by indexing, in each method, the possible callers.

Finally, even though asynchronous method calls can be simulated by using
buffers, it is still necessary to keep track of the caller explicitly.

The above problems can be solved by using the way communication is man-
aged between agents and defining it as a primitive of the language. By adopting
agent-like communication, in fact, the properties presented in Section 1 – with
the only exception of autonomy, (6), which is a property distinguishing agents
from objects – can be rewritten as in the following:

1. When methods are invoked on an object also the object invoking the method
(the “sender”) must be specified.

2. The state of the interaction between two objects must be maintained.



3. In presence of state information, it is possible to implement interaction pro-
tocols because methods are enabled to adapt their behavior according to
the interaction that has occurred so far. So, for instance, a proposal method
whose execution is not preceded by a call for proposals can detect this fact
and raise an exception.

4. The object whose method is invoked and the object invoking the method play
each one of the roles specified by the other, and they respect the requirements
imposed on the roles. Intuitively, requirements are the capabilities that an
object must have in order to be able to play the role.

5. The interaction can be asynchronous, thanks to the fact that the state of
the interaction is maintained.

For a better intuition, let us consider as an example the case of a simple
interaction schema which accounts for two objects. We expect the first object
to wait for a “call for proposal” by the other object; aferwards, it will invoke
the method “propose” on the caller. The idea is that the call for proposal can
be performed by different callers and, depending on the caller, a different infor-
mation (e.g. the information that it can understand) should be returned by the
first object. More specifically, we can, then, imagine to have an object a, which
exposes a method cfp and waits for other objects to invoke it. After such a call
has been performed, the object a invokes a method propose on the caller. Let
us suppose that two different objects, b and c, do invoke cfp. We desire the data
returned by a to be different for the two callers.

Since we look at the agent paradigm the solution is to have two different
interaction states, one for the interaction between a and b and one for the in-
teraction between a and c. In our terminology, b and c interact with a in two
distinct roles (or better, role instances) which have distinct states: thus it is
possible to have distinct behaviors depending on the invoker. If the next move
is to “accept” a proposal, then we must be able to associate the acceptance to
the right proposal.

In order to implement these properties we use the notion of role introduced
in the powerJava language in a different way with respect to how it has been
designed for.

3 Modelling interaction with powerJava

In [22, 1, 11, 20] the concept of “role” has been proved extremely useful in pro-
gramming languages for several reasons. These reasons range from dealing with
the separation of concerns between the core behavior of an object and its interac-
tion possibilities, reflecting the ontological structure of domains where roles are
present, from modelling dynamic changes of behavior in a class to fostering co-
ordination among components. In [4, 3, 5] the language powerJava is introduced:
powerJava is an extension of the well-known Java language, which accounts for
roles, defined within social entities like institutions, organizations, normative
systems, or groups [6, 13, 25]. The name powerJava is due to the fact that the



key feature of the proposed model is that institutions use roles to supply the
powers for acting (empowerment). In particular, three are the properties that
characterize roles, according to the model of normative multiagent systems [8–
10]:

Foundation: a (instance of) role must always be associated with an instance
of the institution it belongs to (see Guarino and Welty [15]), besides being
associated with an instance of its player.

Definitional dependence: The definition of the role must be given inside the
definition of the institution it belongs to. This is a stronger version of the
definitional dependence notion proposed by Masolo et al. [18], where the
definition of a role must include the concept of the institution.

Institutional empowerment: the actions defined for the role in the definition
of the institution have access to the state and actions of the institution and
to the other roles’ state and actions: they are powers.

Roles require to specify both who can play the role and which powers are
offered by the institution in which the role is defined. The objects which can play
the role might be of different classes, so that roles can be specified independently
of the particular class playing the role. For example a role customer can be
played both by a person and by an organization. Role specification is a sort
of double face interface, which specifies both the methods required to a class
playing the role (requirements, keyword “playedby”) and the methods offered to
objects playing the role (powers keyword “role”). An object, which plays a role,
is empowered with new methods as specified by the interface.

To make an example, let us suppose to have a printer which supplies two dif-
ferent ways of accessing to it: one as a normal user, and the other as a superuser.
Normal users can print their jobs and the number of printable pages is limited
to a given maximum. Superusers can print any number of pages and can query
for the total number of prints done so far. In order to be a user one must have
an account which is printed on the pages. The role specification for the user is
the following:

role User playedby AccountedPerson {

int print(Job job);

int getPrintedPages();

}

interface AccountedPerson {

Login getLogin();

}

The superuser, instead:

role SuperUser playedby AccountedPerson {

int print(Job job);

int getTotalPrintedPages();

}

Requirements must be implemented by the objects which act as players.



class Person implements AccountedPerson {

Login login; // ...

Login getLogin() {

return login;

}

}

Instead, powers are implemented in the class defining the institution in which
the role itself is defined. To implement roles inside an institution we revise the
notion of Java inner class, by introducing the new keyword definerole instead
of class followed the name of the role definition that the class is implementing.

class Printer {

final static int MAX_PAGES_PER_USER;

private int totalPrintedPages = 0;

private void print(Job job, Login login) {

totalPrintedPages += job.getNumberPages();

// performs printing

}

definerole User {

int counter = 0;

public int print(Job job) {

if (counter > MAX_PAGES_USER)

throws new IllegalPrintException();

counter += job.getNumebrPages();

Printer.this.print(job, that.getLogin());

return counter;

}

public int getPrintedPages(){

return counter;

}

}

definerole SuperUser {

public int print(Job job) {

Printer.this.print(job, that.getLogin());

return totalPrintedPages;

}

public int getTotalPrintedpages() {

return totalPrintedPages;

}

}

}

Roles cannot be implemented in different ways in the same institution and
we do not consider the possibility of extending role implementations (which is,
instead, possible with inner classes), see [5] for a deeper discussion.



As a Java inner class, a role implementation has access to the private fields
and methods of the outer class (in the above example the private method print
of Printer used both in role User and in role SuperUser) and of the other roles
defined in the outer class. This possibility does not disrupt the encapsulation
principle since all roles of an institution are defined by who defines the institution
itself. In other words, an object that has assumed a given role, by means of it,
has access and can change the state of the corresponding institution and of the
sibling roles. In this way, we realize the powers envisaged by our analysis of the
notion of role.

The class implementing the role is instantiated by passing to the construc-
tor an instance of an object satisfying the requirements. The behavior of a role
instance depends on the player instance of the role, so in the method implemen-
tation the player instance can be retrieved via a new reserved keyword: that,
which is used only in the role implementation. In the example the invocation of
that.getLogin() as a parameter of the method print.

All the constructors of all roles have an implicit first parameter which must
be passed as value the player of the role. The reason is that to construct a
role we need both the institution the role belongs to (the object the construct
new is invoked on) and the player of the role (the first implicit parameter). For
this reason, the parameter has as its type the requirements of the role. A role
instance is created by means of the construct new and by specifying the name
of the “inner class” implementing the role which we want to instantiate. This
is like it is done in Java for inner class instance creation. Differently than other
objects, role instances do not exist by themselves and are always associated to
their players.

Methods can be invoked from the players, given that the player is seen in its
role. To do this, we introduce the new construct

receiver <-(role) sender

This operation allows the sender (player of the role) to use the powers given
by “role” when it interacts with the receiver (institution) the role belongs to.
It is similar to role cast as introduced in [3–5] but it stresses more strongly the
interaction aspect of the two involved objects: the sender uses the role defined
by the receiver for interacting with it. Let us see how to use this construct in
our running example. The first instructions in the main create a printer object
hp8100 and two person objects, chris and sergio. chris is a normal user
while sergio is a superuser. Indeed, instructions four and five define the roles of
these two objects w.r.t. the created printer. The two users invoke method print
on hp8100. They can do this because they have been empowered of printing
by their roles. The act of printing is carried on by the private method print.
Nevertheless, the two roles of User and SuperUser offer two different way to
interact with it: User counts the printed pages and allows a user to print a job if
the number of pages printed so far is less than a given maximum; SuperUser does
not have such a limitation. Moreover, SuperUser is empowered also for viewing
the total number of printed pages. Notice that the page counter is maintained
in the role state and persists through different calls to methods performed by a



same sender/player towards the same receiver/institution as long as it plays the
role.

class PrintingExample {

public static void main(String[] args) {

Printer hp8100 = new Printer();

Person chris = new Person();

Person sergio = new Person();

hp8100.new User(chris);

hp8100.new SuperUser(sergio);

(hp8100 <-(User) chris).print(job1);

(hp8100 <-(SuperUser) sergio).print(job2);

(hp8100 <-(User) chris).print(job3);

System.out.println("Chris has printed " +

(hp8100 <-(User) chris).getPrintedPages() + " pages");

System.out.println("The printer hp8100 has printed a total of " +

(hp8100 <-(User) sergio).getTotalPrintedPages() + " pages");

}

}

By maintaining a state, a role can be seen as realizing a session-aware in-
teraction, in a way that is analogous to what done by cookies or Java sessions
for JSP and Servlet. So in our example, it is possible to visualize the number of
currently printed pages, as in the above example. Note that, when we talk about
playing a role we always mean playing a role instance (or qua individual [18] or
role enacting agent [12]) which maintains the properties of the role.

An object has different (or additional) properties when it plays a certain role,
and it can perform new activities, as specified by the role definition. Moreover,
a role represents a specific state which is different from the player’s one, which
can evolve with time by invoking methods on the roles. The relation between the
object and the role must be transparent to the programmer: it is the object which
has to maintain a reference to its roles. However, a role is not an independent
object, it is a facet of the player.

Since an object can play multiple roles, the same method will have a different
behavior, depending on the role which the object is playing when it is invoked.
It is sufficient to specify which the role of a given object, we are referring to, is.
In the example chris can become also superuser of hp8100, besides being a
normal user

hp8100.new SuperUser(chris);

(hp8100 <-(SuperUser) chris).print(job4);

(hp8100 <-(User) chris).print(job5);

Notice that in this case two different sessions will be kept: one for chris as
normal user and the other for chris as superuser. Only when it prints its jobs
as a normal user the page counter is incremented.



(d)

6

6

6 6

66

6 6

66
-¾

6

?

6

?

(a) (b) (c)

Fig. 1. The possible uses of roles.

4 Uses of roles in powerJava

In this paper we exploit the language powerJava in a new way which allows
modelling the agent inspired vision of interaction among objects. The basic idea
of powerJava is that objects (e.g. hp8100), called institutions, are composed of
roles which can access the state of the institution and of other sibling roles and,
thus, can coordinate with each other [4]. However, since an institution is just an
object which happens to contain role implementations, nothing prevents us to
consider every object as an institution, and to consider the roles as different ways
of interacting with it. Many objects can play the same role (a printer can have
many users) as well as the same object can play different roles (chris is both
a user and a superuser). Each role instance has its own state, which represents
the state of the interaction with the player of the role.

Figure 1 illustrates the different interaction possibilities given by roles, which
do not exclude the traditional direct interaction with the object when roles are
not necessary. Other possibilities like sessions shared by multiple objects are not
considered for space reasons.

Arrows represent the relations between players and their respective roles,
dashed arrows represent the access relation between objects, i.e., their powers.

– Drawing (a) illustrates the situation where an object interacts with another
one by means of the role offered by it. This is, for instance, the case of sergio
being a SuperUser of hp8100.

– Drawing (b) illustrates an object (e.g., chris) interacting in two different
roles with another one (hp8100 in the example). This situation is used when
an object implements two different interfaces for interacting with it, which
have methods (like print) with the same signature but with different mean-
ing. In our model the methods of the interfaces are implemented in the roles
offered by the objects to interact with them. The role represent also the
different sessions of the interaction with the different objects.



– Drawing (c) illustrates the case of two objects which interact by means of the
roles of an institution (which can be considered as the context of execution).
This is the original case, powerJava has been developed for [4]; in this paper,
we used as a running example the well-known 5 philosophers scenario. The
institution is the table, at which philosophers are sitting and coordinate to
take the chopsticks and eat since they can access the state of each other. The
coordinated objects are the players of the role chopstick and philosopher.
The former role is played by objects which produce information, the latter by
objects which consume them. None of the players contains the code necessary
to coordinate with the others, which is supplied by the roles.

– In drawing (d) two objects interact with each other, each playing a role
offered by the other. This is often the case of interaction protocols: e.g., an
object can play the role of initiator in the Contract Net Protocol if and only
if the other object plays the role of participant. Indeed, the Contract Net
Protocol is reported as an example in the following section.

The four cases can be combined to represent more complex interaction schemas.
This view of roles inspires a new vision of the the OO paradigm, whose

object metaphor has been accepted too acritically and it has not been subject to
a deep analysis. In particular, it is a naive view of the notion of object and it does
not consider the analysis of the way humans conceptualize objects performed in
philosophy and above all in cognitive science [14]. In particular, cognitive science
has highlighted that properties of objects are not objective properties of the
world, but they depend on the properties of the agent conceptualizing the object:
objects are conceptualized on the basis of what they “afford” to the actions of
the entities interacting with them. Thus, different entities conceptualize the same
object in different ways. We translate this intuition in the fact that an object
offers different methods according to which type of object it is calling it: the
methods offered (the powers of a role) depend on the requirements offered by
the caller.

4.1 The Contract Net Protocol example

Hereafter, we report an example set in the framework of interaction protocols,
describing an implementation of the well-known contract net protocol. The ex-
ample follows the interaction schema (d), reported in the previous section, and
it is substantially different than the analogous example reported in a previous
paper [3]. In fact, the solution proposed here is distributed instead of being cen-
tralized (let us denote by this name a solution respecting case (c) in the previous
section). The advantage of the old solution was that players did not need to
know anything about the coordination mechanism. In this case, instead, each
object also supplies a role for its counterpart, which describes the powers that
are given to the counterpart in the interaction. For instance, the object that will
play the initiator role will define the powers of the participants, and vice
versa. The powers are the messages that the initiator will understand; this
is very different than our previous proposal, where the powers only allowed to



start a negotiation or to take part to a negotiation, depending on the role, and
the exchanged messages were hidden inside the institution.

In this new version, roles are also used for maintaining interaction sessions. In
the following example, refuseProposal can be executed only if cfp has already
been executed, this can be tracked thanks to the role state and, in particular,
thanks to variable state.

Observe that when the object, offering a role, is supposed to answer some-
thing, it needs to invoke a method, which is supplied as a power of a role, which
is in turn offered by the object to which it is responding. In the contract net, a
possible answer to a cfp is the performative propose. In this case, see also the
code reported at the end of this section, the above interaction is implemented
by the instruction:

(that <-(Participant) Peer.this).propose(getProposal(task))

Here, Peer.this refers to the object offering the role initiator; such an object
means to play the role of Participant and, in particular, to invoke the power
propose offered by this role. The role participant is offered by the object which
is currently playing the initiator (identified in the above code line by that), see
Fig. 2.

Partecipant

Peer

evaluateTask

propose

Peer

cfp

Peer.this that

Initiator

Fig. 2. Description of the interaction between an Initiator and a Participant, when,
after a “cfp” performative, the answer will be a “propose” performative.

The communication is asynchronous, since the proposal is not returned by
the cfp method.

Notice that an object which is currently playing the role of participant in
a given interaction, can at the same time play the role of initiator in another
interaction. See the method evaluateTask, in which a new interaction is started
for executing a subtask by creating the two roles in the respective objects and
by linking players to them:

role Initiator playedby InitiatorReq {

void cfp(Task task);

void rejectProposal(Proposal proposal);

void acceptProposal(Proposal proposal);

}

interface InitiatorReq { // must implement the role specification Participant



}

role Participant playedby ParticipantReq {

void propose(Proposal proposal);

void refuse(Task task);

void inform(Object result);

void failure(Object error);

}

interface ParticipantReq { // must implement the role specification Initiator

}

class Peer implements ParticipantReq, InitiatorReq

{

definerole Initiator {

final static int STATE_1 = 1;

final static int STATE_2 = 2;

int state = STATE_1;

public void cfp(Task task) {

if (state != STATE_1)

throws new IllegalPerfomativeException();

state = STATE_2;

if (evaluateTask(task))

(that <-(Participant) Peer.this).propose(getProposal(task));

else

(that <-(Participant) Peer.this).refuse(task);

}

public void refuseProposal(Proposal proposal) {

if (state != STATE_2)

throws new IllegalPerformativeException();

removeProposal(proposal);

state = STATE_1;

}

public void acceptProposal(Proposal proposal) {

if (state != STATE_2)

throws new IllegalPerfomativeException();

try {

(that <-(Participant) Peer.this).inform(performTask(proposal, task));

} catch(TaskExecException err) {

(that <-(Participant) Peer.this).failure(err);

}

state = STATE_1;

}

}



private boolean evaluateTask(Task task) {

Task subTask; // ...

this.new Participant(peer);

peer.new Initiator(this);

(peer <-(Initiator) this).cfp(subTask); // ...

}

definerole Initiator { ... }

}

5 Conclusion

In this work, we have proposed the introduction of a form of interaction between
objects, in the OO paradigm, which borrows from the theory about agent com-
munication. The main advantage is to allow session-aware interactions in which
the history of the occurred method invocations can be taken into account and,
thus, introducing the possibility of realizing, in a quite natural way, agent inter-
action protocols. The key concept which allows communication is the role played
by an object in the interaction with another object. Besides proposing a model
that describes this form of interaction, we have also proposed an extension of
the language powerJava that accounts for it.

One might wonder whether the introduction of agent-like communication
between objects gives us some feedback to the agent world. We believe that the
following lessons can be learnt, in particular, concerning roles:

– Roles must be distinguished in role types and role instances: role instances
must be related to the concept of session of an interaction.

– The notion of role is useful not only for structuring institutions and organi-
zations but for dealing with interaction among agents.

– The notion of affordance can be used to allow agents to interacts in different
ways with different kind of agents.

In this paper, we show a different way of using powerJava exploiting roles to
model communications where: the method call specifies the caller of the object,
the state of the interaction is maintained, methods can be part of protocols,
objects play roles in the interaction and method calls can be asynchronous as in
agent protocols.

This proposal builds upon the experience that the authors gathered on the
language powerJava [4, 3, 5], which is implemented by means of a precompiler.
Basically powerJava shares the idea of gathering roles inside wider entities with
languages like Object Teams [16] and Ceasar [19]. These languages emerge as
refinements of aspect oriented languages aiming at resolving practical limitations
of other languages. In contrast, our language starts from a conceptual modelling
of roles and then it implements the model as language constructs. Differently
than these languages we do not model aspects. The motivation is that we want to
stick as much as possible to the Java language. However, aspects can be included



in our conceptual model as well, under the idea that actions of an agent playing a
role “count as” actions executed by the role itself. In the same way, the execution
of methods of an object can give raise by advice weaving to the execution of a
method of a role. On the other hand, these languages do not provide the notion
of role casting we introduce in powerJava. Roles as double face interfaces have
some similarities with Traits [21] and Mixins. However, they are distinguished
because roles are used to extend instances and not classes. Finally, C# allows
for multiple implementations of interfaces. None of the previous works, however,
considers the fact that roles work as sessions of the interaction between objects.

By implementing agent like communication in an OO programming language,
we gain in simplicity in the language development, importing concepts that
have been developed by the agent community inside the Java language itself.
This language is, undoubtedly, one of the most successful currently existing
programming languages, which is also used to implement agents even though it
does not supply specific features for doing it. The language extension that we
propose is a step towards the overcoming of these limits.

At the same time, introducing theoretically attractive agent concepts in a
widely used language can contribute to the success of the Autonomous Agents
and Multiagent Systems research in other fields. Developers not interested in the
complexity of agent systems can anyway benefit from the advances in this area
by using simple and concrete constructs in a traditional programming language.

Future work concerns making explicit the notion of state of a protocol so to
make it transparent to the programmer and allow to define the same method
with different meanings in each state. Finally, the integration of centralized and
decentralized approaches to coordination among roles (drawings (c) and (d) of
Figure 1) must be studied.

References

1. A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Procs. of VLDB’93, pages 39–51, 1993.

2. F. Arbab. Abstract behavior types: A foundation model for components and their
composition. In Formal Methods for Components and Objects, LNCS 2852, pages
33–70. Springer Verlag, Berlin, 2003.

3. M. Baldoni, G. Boella, and L. van der Torre. Bridging agent theory and object
orientation: Importing social roles in object oriented languages. In Procs. of PRO-
MAS’05 workshop at AAMAS’05, 2005.

4. M. Baldoni, G. Boella, and L. van der Torre. Roles as a coordination construct: In-
troducing powerJava. In Procs. of MTCoord’05 workshop at COORDINATION’05,
2005.

5. M. Baldoni, G. Boella, and L. van der Torre. Powerjava: ontologically founded roles
in object oriented programming language. In Procs. of OOOPS Track of SAC’06,
2006.

6. B. Bauer, J.P. Muller, and J. Odell. Agent UML: A formalism for specifying
multiagent software systems. Int. Journal of Software Engineering and Knowledge
Engineering, 11(3):207–230, 2001.



7. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a
FIPA-compliant agent framework. Software - Practice And Experience, 31(2):103–
128, 2001.

8. G. Boella and L. van der Torre. Attributing mental attitudes to roles: The agent
metaphor applied to organizational design. In Procs. of ICEC’04. IEEE Press,
2004.

9. G. Boella and L. van der Torre. A game theoretic approach to contracts in mul-
tiagent systems. IEEE Transactions on Systems, Man and Cybernetics - Part C,
2006.

10. G. Boella and L. van der Torre. Security policies for sharing knowledge in virtual
communities. IEEE Transactions on Systems, Man and Cybernetics - Part A,
2006.

11. M. Dahchour, A. Pirotte, and E. Zimanyi. A generic role model for dynamic
objects. In Procs. of CAiSE’02, volume 2348 of LNCS, pages 643–658. Springer,
2002.

12. M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent societies.
In Procs. of AAMAS’03, pages 489–496, New York (NJ), 2003. ACM Press.

13. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organi-
zational view of multiagent systems. In LNCS n. 2935: Procs. of AOSE’03, pages
214–230. Springer Verlag, 2003.

14. J. Gibson. The Ecological Approach to Visual Perception. Lawrence Erlabum
Associates, New Jersey, 1979.

15. N. Guarino and C. Welty. Evaluating ontological decisions with ontoclean. Com-
munications of ACM, 45(2):61–65, 2002.

16. S. Herrmann. Object teams: Improving modularity for crosscutting collaborations.
In Procs. of Net.ObjectDays, 2002.

17. T. Juan and L. Sterling. Achieving dynamic interfaces with agents concepts. In
Procs. of AAMAS’04, 2004.

18. C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and
N. Guarino. Social roles and their descriptions. In Procs. of KR’04, pages 267–277.
AAAI Press, 2004.

19. M. Mezini and K. Ostermann. Conquering aspects with caesar. In Procs. of the
2nd International Conference on Aspect-Oriented Software Development (AOSD),
pages 90–100. ACM Press, 2004.

20. M.P. Papazoglou and B.J. Kramer. A database model for object dynamics. The
VLDB Journal, 6(2):73–96, 1997.

21. N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of
behavior. In Springer Verlag, editor, LNCS, vol. 2743: Procs. of ECOOP’03, pages
248–274, Berlin, 2003.

22. F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering, 35:83–848, 2000.

23. M. Winikoff. JACK - intelligent agents: An industrial strength platform. In R. H.
Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming, pages 175–193. Springer Verlag, Berlin, 2005.

24. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

25. F. Zambonelli, N.R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. IEEE Transactions of Software Engineering and
Methodology, 12(3):317–370, 2003.


