
Using Graph Matching Techniques to Wrap Data from PDF
Documents∗

Tamir Hassan
Database and Artificial Intelligence Group

Vienna University of Technology
Favoritenstraße 9-11, A-1040 Wien, Austria

hassan@dbai.tuwien.ac.at

Robert Baumgartner
Database and Artificial Intelligence Group

Vienna University of Technology
Favoritenstraße 9-11, A-1040 Wien, Austria

baumgart@dbai.tuwien.ac.at

ABSTRACT
Wrapping is the process of navigating a data source, semi-
automatically extracting data and transforming it into a
form suitable for data processing applications. There are
currently a number of established products on the market
for wrapping data from web pages. One such approach is
Lixto [1], a product of research performed at our institute.

Our work is concerned with extending the wrapping func-
tionality of Lixto to PDF documents. As the PDF format is
relatively unstructured, this is a challenging task. We have
developed a method to segment the page into blocks, which
are represented as nodes in a relational graph. This paper
describes our current research in the use of relational match-
ing techniques on this graph to locate wrapping instances.

Categories and Subject Descriptors: I.7.5 [Document
and Text Processing]: Document Capture—document anal-

ysis; H.3.3 [Information Systems]: Information Search and
Retrieval

General Terms: Algorithms, Experimentation

Keywords: Wrapping, PDF, Document understanding,
Logical structure, Graph matching

1. INTRODUCTION
The popularity of the PDF format can be attributed to

its roots as a page-description language. Its main advantage
is that it preserves the visual presentation of a document
between screen and printer, and across different computing
platforms, thus making it a useful format for the exchange
of documents on the Web. However, this is also its main
drawback; PDF files contain little or no explicit structuring
information to help us locate wrapping instances.

In HTML, on the other hand, the structure of the code
somewhat corresponds to the logical structure of the docu-
ment. This has led to the development of a number of tools
that use this structure to locate data items. One such prod-
uct is the Lixto Visual Wrapper, which allows the user to
interactively select data items from a visual rendition of the

∗This work is partly funded by the Austrian Federal Min-
istry for Transport, Innovation and Technology under the
FIT-IT programme line as part of the NEXTWRAP project,
and by the REWERSE network of excellence.

Copyright is held by the author/owner.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

web page. The system then generates a wrapping program

to automatically extract this data from similarly structured
sources, or from sources whose content changes over time.

2. OUR APPROACH
Much of our previous work has been concerned with

converting PDF files to HTML, which can be directly
understood by the Lixto VW. There are many “off-the-
shelf” packages that purport to do this, such as Archisoft

PDF2HTML1. However, we found that most of these pack-
ages simply use <div> elements to recreate the layout of
the original PDF, sidestepping the document understand-
ing process. The resulting HTML contains no structure,
and is therefore of no use to us for wrapping.

We therefore developed our own HTML conversion pro-
cess, which attempts to represent the logical structure of the
PDF in the resultant HTML code. This now gives us limited
wrapping functionality in many documents, although this
is heavily dependent on the accuracy of the document un-
derstanding process, which is inherently an imprecise task.
There are many complex documents, such as the example in
Fig. 1, a real use-case example of quality management data
from the automotive domain.2 Such documents can not be
fully understood without additional input from the user.

We have identified three main data structures within a
PDF document that could be used to locate instances of
data to be wrapped:

• geometric structure (explicit in the co-ordinates)

• logical structure (inferred from the layout)

• content and content attributes (the text itself, as well
as font, style, size, etc.)

Whilst our HTML conversion allows us to use the content
and logical structure to identify wrapping instances, it does
not give us direct access to the document’s geometric struc-
ture. The graph matching method described in this paper
allows us to use a combination of all three structures, essen-
tially shifting some of the burden of the document under-
standing process to the user. We expect this to compensate
for the inherent inaccuracies and limitations of document
understanding.

1http://www.archisoftint.com/logiciels/recr us.htm
2In this example, confidential data has been altered or oblit-
erated for publication.

Figure 1: A sample page of data to be wrapped.
Brackets indicate the individual wrapping instances.

3. IMPLEMENTATION

3.1 Obtaining PDF data
We use the PDFBox3 library to parse the raw PDF file

and return the visual PDF data as a set of text and graphic
objects. PDFBox returns these text blocks in the same way
as they have been written to the PDF file, i.e. as a set of
individual blocks, usually with no more than 2–3 charac-
ters per block. The first step is to merge these blocks into
complete lines of text, and a set of heuristics achieves this.

3.2 Page segmentation
Our next step is to merge the line objects into blocks that

can be said to correspond to one logical entity in the doc-
ument’s structure. These blocks correspond to paragraphs,
headings, single table cells and other miscellaneous items of
text (such as captions). We believe this provides us with suf-
ficient granularity for logical selection of wrapping instances.

3.3 Graph representation
We represent these blocks as nodes in an attributed rela-

tional graph. Initially, the graph is built with just the adja-
cency relation being present, which links all blocks to their
neighbours. Our document understanding process then pro-
duces other geometric relations, such as alignment; and log-
ical relations, such as reading order and superiority (which,
for example, relates a title to its body text). An example of
this graph on a single wrapping instance is shown in Fig. 2.

As each of the nodes has a set of co-ordinates, this rep-
resentation maps easily onto the visual domain, where the
user can interactively select an example wrapping instance,
and its corresponding sub-graph is found automatically.

3PDFBox, http://www.pdfbox.org

TC716M

6872134/04

FEHLER

FEHLERDATUM

:

:

TE- MI N:

FEDERBEIN-STOSSDAEMPFER

30

1X Passt ni cht

AVS- I D: 1903817112

Fal scher Bar codeauf k l eber 619137134 vor handen

TE: 30

19. 11. 2005

ENTSCHEI DUNG : Rück l i ef er ung oder Gef ahr gut

KOST: 4135

1 *

Figure 2: Sub-graph for one record (wrapping in-
stance) from Fig. 1. Note that edges with arrows
represent superior-to-inferior relationships.

3.4 Similarity measures
Once the user has selected the example instance, it must

be matched to other similar occurrences on the page, and
possibly from other pages in the document. There are many
algorithms in the literature for graph matching. However,
in our case, it is obvious that an algorithm that finds exact
matches is of little use to us. Instead, we require a signifi-
cant and specific error tolerance to match objects that are
somehow logically or visually similar.

The familiar notion of edit cost can be used to define the
similarity of two sub-graphs. Allowed operations would in-
clude not just additions and deletions of single nodes or
edges, but additions and deletions of complete rows of ele-
ments. For example, a certain paragraph may be one line
longer or a certain table might have an extra row added.
Yet, the logical structure with relation to shape would re-
main the same. Thus we are finding wrapping instances
using both logical and visual similarity.

Furthermore, this method could be further extended to
discriminate between headings and data. The logical rela-
tions present in the graph enable us to determine, with some
degree of certainty, which blocks contain headings and which
blocks contain just “data” (plain body text). Any “edits”
that affect heading elements would therefore correspond to
a change in logical structure, and this would carry a higher
edit cost than the equivalent operation to only body text.

3.5 The matching process
We require an error-tolerant algorithm for relational sub-

graph matching. The most popular algorithms, such as [3],
are tree-based. We are currently developing such an algo-
rithm that uses a branch-and-bound strategy. The benefit of
this approach is its adaptability to our definition of graph
similarity. Although the complexity is exponential in the
worst case, the use of application-specific heuristics to prune
the search can make the problem tractable. If this turns out
not to be the case, there are many other approaches, such
as [2], that proclaim to reduce the complexity even further.

4. REFERENCES
[1] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web

information extraction with lixto. In The VLDB Journal, pages
119–128, 2001.

[2] W. J. Christmas, J. Kittler, and M. Petrou. Structural matching
in computer vision using probabilistic relaxation. IEEE Tran.

on Pattern Anal. and Mach. Intel., 17(8):749–764, Aug. 1995.

[3] J. Llados, E. Marti, and J. J. Villanueva. Symbol recognition by
error-tolerant subgraph matching between region adjacency
graphs. IEEE Tran. on Pattern Anal. and Mach. Intel.,
23(10):1137–1143, Oct. 2001.

