
Visually Guided Bottom-Up Table Detection and
Segmentation in Web Documents ∗

Bernhard Krüpl
Vienna University of Technology
Institute of Information Systems

Database and Artificial Intelligence Group

kruepl@dbai.tuwien.ac.at

Marcus Herzog
Vienna University of Technology
Institute of Information Systems

Database and Artificial Intelligence Group

herzog@dbai.tuwien.ac.at

ABSTRACT
In the AllRight project, we are developing an algorithm for
unsupervised table detection and segmentation that uses the
visual rendition of a Web page rather than the HTML code.
Our algorithm works bottom-up by grouping word bounding
boxes into larger groups and uses a set of heuristics. It has
already been implemented and a preliminary evaluation on
about 6000 Web documents has been carried out.

Categories and Subject Descriptors: H.3.4 [Informa-
tion Storage and Retrieval]: Systems and Software; I.7.5
[Document and Text Processing]: Document Capture

General Terms: Algorithms, Experimentation.

Keywords: Web information extraction, table detection.

1. INTRODUCTION
Identifying tables containing product data in Web docu-

ments is more difficult than it appears to be at first sight. By
just selecting all the HTML table elements, not only data
tables are returned, but also tables that are only relevant
for formatting reasons (non-genuine tables). On the other
hand, authors do not have to use table elements for tabu-
lar data presentation (genuine tables) at all, as more and
more people choose to do all their formatting based on CSS.
While both extremes are not really according to Web stan-
dards, they appear abundantly in the real world and should
be taken care of by a robust table extraction algorithm.

We based our work on the idea of using the visual ren-
dition of a Web page rather than the HTML code [1] and
implemented a genuine table extraction architecture (details
in section 2) to produce results as shown in Fig. 1. Section 3
will explain the bottom-up table extraction.

2. ARCHITECTURE
Our table extraction architecture has been built to enable

the extraction of visually salient entities. Because most Web
pages are designed for an average human audience, the for-
matting and visual presentation usually also contribute to
the semantics of the content.

Analysis of just the HTML (or even XML) source code
of a Web document is not sufficent, because the final for-

∗

This research is supported in part by the Austrian Federal Ministry
for Transport, Innovation and Technology under the FIT-IT contract
FFG 809261 and by the REWERSE Network of Excellence.

Copyright is held by the author/owner.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

mat of a page is also determined by embedded media and
the application of associated style sheets. In the world of
Web 2.0, pages can even be constructed dynamically by ex-
ecuting client-side Javascript code. We therefore decided to
use a standard Mozilla Web browser that comes with all the
interpretation and rendering capabilities already built in.

The extraction algorithms in our architecture operate on
the pixel positions of all the words on a Web page: after
some investigation, we found that extracting just the ren-
dered bounding boxes for all text elements was not sufficient.
We therefore implemented a simple word tokenisation as a
first step. Following these considerations, our group im-
plemented a C++ Mozilla component that, for any given
URL, returns the bounding boxes of all the words on the
corresponding page as rendered by the browser.

In order to come up with a truly robust system, we chose
to completely isolate the rendering process from the extrac-
tion process. Therefore, we run our Mozilla component as a
TCP/IP server that waits for requests and returns all word
bounding boxes of a page in the form of an XML docu-
ment. These results are then read by the actual extraction
component that is implemented in Java and allows different
algorithms to be plugged in.

3. TABLE EXTRACTION
Because of our approach of using the visual rendition of a

Web page, we can base our work on lessons learnt from doc-
ument image analysis literature. The methods there can be
classified along two different dimensions: the direction the
algorithms take to construct document hierarchies (bottom-
up or top-down), and the strategies they employ in con-
structing the hierarchies (rule-based or statistical-based) [2].
After experimentation with variants of the classical X-Y cut
algorithm [3] (which is top-down) as described in [1], we are
now presenting an algorithm that operates bottom-up, start-
ing from the word box document entities retrieved from the
browser component. As statistical based methods require
an additional offline training process for the estimation of
the extraction parameters, we chose rather to implement a
set of heuristics that can run completely unsupervised.

Table Types. We are interested in the extraction of
tables that we consider to be eupeptic, i.e., easy to digest
(understand) for our system. This means that we concen-
trate on those occurences where we are able to reconstruct
the underlying semantics: items in the same row are some-
how related to each other, as are items in the same column.
While we do not deal with nested tables at this stage, we
do handle tables that are divided into sections, usually with



<Attribute>
<path>Image Quality</path><name>Camera Resolution</name>

<value>3.3 Megapixel</value>
</Attribute>

<Attribute>
<path>Image Quality</path><name>Image Resolutions</name>
<value>640x480, 2048x1536, 1600x1200, 1024x768</value>

</Attribute>
<Attribute>

<path>Video</path><name>Video Resolutions</name>
<value>640x480 (VGA), 320x240 (QVGA), 160x120</value>

</Attribute>

Figure 1: XML output of the table extraction algo-

rithm.

the occurence of intermediate headings.
Common Extraction Functions. Some functions are

of universal use to all of the extraction heuristics we apply
later on in the process. We defined a set of common methods
that can function as a base for more specialised algorithms.

A basic need for all bottom-up heuristics is the ability
to group single word boxes into larger clusters. By doing
this clustering first, we can not only reduce the computing
time needed, but also identify groups of words belonging
together early on in the extraction process. This clustering is
done by simply looking at word box neighbourhoods, joining
adjacent boxes into larger cells (see step ➀ in Fig. 2). Since
there is inherently no noise in our data (we can rely that
the browser rendering is pixel exact; there is no skew), this
process is much easier than the equivalent process in a more
traditional OCR document understanding context.

We also define some additional distance measures for word
boxes and cells. As well as the pixel distance, we can count
how many boxes lie in between two given coordinates. This
enables us to rule out outliers and account for intermediate
headings in a data table.

Table Extraction Heuristics. Our extraction algo-
rithm applies a set of extraction heuristics in two stages.

First, we try to identify possible genuine table columns.
In our simplified approach, we define genuine table columns
as sets of word cells that, with some small tolerance, share a
common coordinate on the horizontal axis. Since table cells
can be left-, centre- or right-aligned within their column, we
try to map all three properties (left, centre, right coordinate)
of all cells to other cells and thus derive column candidates
(➁ in Fig. 2). If any two column candidate cells are sepa-
rated by more than one cell from the next column candidate
cell, the column candidate is broken apart to form two inde-
pendent columns. If there is exactly one cell separating two
column candidate cells, we find out if the separating cell is
an intermediate table heading. We collect all intermediate
heading candidates of a column candidate and test if they
themselves share a common coordinate (➂). If they do, we
have found a column candidate; if not, we separate the col-
umn candidate at the now-imaginary intermediate headings.
At this stage we can report back a set of column candidates
that must also to fulfil a minimal length requirement.

In the second stage, we try to find the best column candi-
date combination that could possibly form a data table. We
have developed a strategy that we term comb alignment of

columns (step ➃): we look for adjacent columns where there
is cell overlap only in one direction. This means that have
detected a genuine table, and that we can extract the con-
tents of the segmented table into XML as shown in Fig. 1.

L C R
L C R

L C R

11

2 23

444

Figure 2: Table extraction algorithm in action.

4. EVALUATION
We performed a preliminary evaluation of our method on

about 6000 automatically retrieved Web pages containing
keywords from a target product domain. On manual inspec-
tion, about 40 per cent of these pages contained genuine data
tables. Our system was able to extract these tables correctly
in about 70 per cent of all cases.

Limitations. Only those table types that are known in
advance are supported by our algorithm. E.g., if there is a
vertical gap in table cells, the algorithm currently does not
deliver correct results. Also, the process is relatively slow,
because it has to wait for Mozilla to render a page.

5. CONCLUSION AND FUTURE WORK
We have introduced a method for genuine table detec-

tion and segmentation that follows a visual approach and
works completely unsupervised. We believe this to have
advantages over methods that just operate on the HTML
code level, because we operate on the (visual) layer actually
meant to be read.

For the future, we plan to formalise the heuristics using
an external representation, thus enabling reasoning and a
more systematic way of finding the best combination of the
different rules. We also believe that it may be useful to look
at additional rendered page characteristics, such as borders
and separator graphics.

6. REFERENCES
[1] B. Krüpl, M. Herzog, and W. Gatterbauer. Using Visual Cues

for Extraction of Tabular Data from Arbitrary HTML
Documents. In Proc. of the 14th Int. World Wide Web Conf.,
pages 1000–1001, 2005.

[2] J. Liang, I. Phillips, R. Haralick. An Optimization
Methodology for Document Structure Extraction on Latin
Character Documents. In IEEE Trans. on Pattern Analysis

and Machine Intelligence, Vol. 23, No. 7, pages 719–734, 2001.

[3] G. Nagy and S. Seth. Hierarchical representation of optically
scanned documents. In Proc. of the 7th Int. Conf. on Pattern
Recognition, pages 347–349, 1984.


