
Implementation of a Complex Event Engine for the Web

José Júlio Alferes
CENTRIA - Universidade Nova de Lisboa

Quinta da Torre
2829-516 Caparica, Portugal

jja@di.fct.unl.pt

Gastón E. Tagni
CENTRIA - Universidade Nova de Lisboa

Quinta da Torre
2829-516 Caparica, Portugal

gastoneduardo.tagni@stud-inf.unibz.it

Abstract

One of the key aspects in the implementation of reac-
tive behaviour in the web and, most importantly, in the se-
mantic web is the development of event detection engines.
An event engine detects events occurring in a system and
notifies their occurrences to its clients. Although primitive
events are useful for modelling a good number applications,
certain other applications require the combination of prim-
itive events in order to support reactive behaviour. This pa-
per presents the implementation of an event detection en-
gine that detects composite events specified by expressions
of an illustrative sublanguage of the SNOOP event algebra.

1. Introduction

Rather than a Web of data sources, the current Web and
the Semantic Web, call for a Web of Information Systems,
where each such system, besides being capable of gathering
information, can possibly update persistent data, communi-
cate the changes, request changes of persistent data in other
systems, and be able to react to requests from and changes
on other systems. As a practical example, consider a set
of data resources in the Web of music and books selling,
publishers, artists, etc. It should be possible to query the
resources e.g. about existing CD of artists, availability of
stock in a particular seller. But in such an evolving Web, it
should also be possible for a seller to announce special of-
fers, and interesting buyer be able to detect such offers, or
for instance be aware of new books by the favorite writer.

This vision of an evolving Web calls for reactive declar-
ative languages capable of dealing with such a dynamic be-
havior. Recently some reactive languages have been pro-
posed, that allow for updating Web data and are capable of
reacting-to some forms of events, evaluate conditions, and
upon that act by updating data [7, 5, 15, 8, 4] The com-
mon aspect of all of these languages is the use of Event-

Condition-Action (ECA) declarative rules for specifying re-
activity and evolution. Such kind of rules (also known
as triggers, active rules, or reactive rules), that have been
widely used in other fields (e.g. active databases [16]) have
the general form:

on event if condition do action

They are intuitively easy to understand, and provide a well-
understood formal semantics: when an event (atomic or
composite) occurs, evaluate a condition, and if the condi-
tion (depending on the event, and possibly requiring further
data) is satisfied then execute an action (or a sequence of
actions, a program, a transaction, or even start a process).

However, in our opinion these languages fall short in
what regards the kinds of events they deal with, and the way
they (do not) deal with heterogeneity of data formats and
languages. Regarding the former, except for [8, 4], the lan-
guages above only deal with atomic events, where these are
either incoming messages or (implicit) changes of XML or
RDF data. In this respect, there is some preliminary work
on composite events in the Web [6], but that only consid-
ers composition of events of modification of XML-data in
a single document. Detection of composite events in dis-
tributed environments has also been considered in [1]. In
this system, the Situation Manager component is a run-time
monitor that processes incoming events (produced by event
sources), detects the situations to which applications must
react and reports the detected situations to its clients (other
applications).

Regarding heterogeneity, it is our stance that none of the
languages above properly deals with it. In an open and
highly distributed domain such as the Web, it is quite un-
likely that there will be a unique language for expressing
and detecting events, for querying data, and for specify-
ing actions throughout the Web. Since the Web nodes are
prospectively based on different concepts such as data mod-
els and languages, it is important that ECA-based frame-
works for the (Semantic) Web are modular, and that the
concepts and the actual languages for events, conditions



and actions are independent. Such a general ontology-based
framework has been defined in [13], and the corresponding
language markup, communication and rule execution model
in [12]1. In this framework, different languages for specify-
ing and detecting events, for querying (static) data and for
performing actions in the Web may be combined in ECA
rules. Such a rule has an event part defined in an event lan-
guage (properly identified in the corresponding rule part),
a condition part and an action part. The engine associ-
ated with the framework relies on delegating the detection
of events (resp. evaluation of conditions, which possibly
involves gathering (static) data from the Web) and execu-
tion of actions) to appropriate event detection engines (resp.
query engines, and action execution engines). The commu-
nication between the various rule parts is made by binding
variables, and relies on a specific markup (see [2] for de-
tails).

In this paper we report on the implementation of a com-
plex event detection engine that can be used together with
the above mentioned general framework. As such, the event
detection engine assumes that events are registered by a
general ECA engine, and are marked up in a markup lan-
guage that we present below. Moreover, all the communica-
tion between the event engine and its outside will be made
by variable bindings, also marked up accordingly. The en-
gine detects composite events by processing and combin-
ing atomic events. Atomic events are detected by events
evaluators operating outside the system and then signaled
to our system once they have been detected. Composite
events are detected by considering the language operator’s
semantics, where the considered language is a sublanguage
of the SNOOP event algebra. We use event trees to repre-
sent expressions and they are reused to exploit commonali-
ties among several (sub)expressions.

The engine was fully implemented in Java, as a Web ser-
vice. As such, though thought to work with the above men-
tioned framework, it can also be used by other services and
frameworks, if the markup for the communication of results
is respected.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the event engine, introduces the event alge-
bra implemented by the detector and describes the markup
language used to represent event expressions of the lan-
guage. Section 3 presents the most important aspects of
the event engine’s implementation. Finally, in section 4 we
present the conclusions and future research directions.

2. Overview of the system

The event engine presented in this paper detects com-
posite events specified by event expressions of an illustra-
tive sublanguage of the SNOOP event algebra [10]. Clients

1For a more detailed description of the whole framework see [2].

(ECA engines or other event evaluators) register event ex-
pressions with the engine when they want to be notified
of the occurrence of events. Along with the expressions,
clients define the variables (input and output) associated
with the expressions they register. All the data necessary
to detect an event is passed to the engine by using input
variables (variable-value pairs). Output variables are used
by the event engine in order to communicate the result of
an event occurrence. The communication mechanism be-
tween the engine and its clients is implemented by means
of these variable bindings. The event engine stores expres-
sions and then, when a composite event is detected, the sys-
tem notifies its clients of the occurrence of the event. The
result of an event evaluation comprises the binding of vari-
ables (output variables) specified in the expression and the
set of event instances that contribute to the detection of the
event. For example, consider an atomic event reservation-
Cancelled(flightNumber,date,from,to,time); upon detection
of a cancellation, the engine notifies the client and sends it
the bindings of the variables specifying the number of the
flight, date, etc, of the cancelled flight. Some of the vari-
ables may be bound from the start (input variables), e.g. to
detect events of a pre-specified flight (number) in the exam-
ple above.

The result of the bindings is marked up using a XML-
based markup language. Alternative, the result of an event
evaluation could be empty, meaning that the composite
event cannot be detected either because a constituent atomic
event will never occur or because the expression is syntac-
tically incorrect.

Composite events are detected when their constituent
atomic events are detected outside the system by atomic
event evaluators and then signaled to the engine. Incoming
atomic events are processed by the event engine and com-
bined according to the semantics of the language’s operators
used to define the composite events. Atomic event evalua-
tors are invoked by the event engine in order to evaluate re-
quired atomic events. The result of such evaluation is again
a set of variable bindings and the atomic event instance that
was detected.

2.1. Events

In our context, an event is a happening that occurs some-
where in the web, at some location and at some point in
time. An event can be the insertion of a tuple in a database
or the update of an XML or RDF repository. Also, events
can be high-level application-dependent happenings such
as the cancellation of a reservation on a flight from Lis-
bon to Chicago on September 17. Events are classified as
atomic events or composite events. Atomic events repre-
sent those events that occur outside the system and are no-
tified (in a push manner) to the system by messages. From



the event detector’s point of view, an atomic event is some-
thing that happens in the web and is received along with
the event’s information. An example of an atomic event
is the reservationCancelled(flightNumber,date,from,to,time)
event given before. Composite events are complex events
specified by event expressions written in some event algebra
and defined in terms of atomic and composite events. They
are detected by the event engine. For example, the event
newCD(title,artist)OR newBook(title,author) is a composite
event.

2.2. Definition of the language SNOOP-R

The event detection engine presented in this paper imple-
ments an illustrative subset of the SNOOP event language.
The sublanguage defined here is referred to as the SNOOP-
R event algebra and includes the disjunctive operator OR,
the sequence operator SEQ (also denoted as ‘;’) and the
conjunctive operator ANY. Although the expressiveness of
this sublanguage is limited, it is expressive enough for in-
vestigating several aspects of events detection in distributed
environments. In the following we briefly describe the se-
mantics of these operators (composers). For a formal spec-
ification of the semantics, the reader is referred to [9].

Disjunctive operator OR. The disjunctive operator al-
lows us to express a composite event that occurs ev-
ery time one of its constituent events occurs. For ex-
ample, suppose we want to be notified when either a
book whose author’s name is “Cortazar” or “Borges” is
on sale. In order to express this we need to use an op-
erator to combine these two atomic events. In our lan-
guage this can be done by using the OR operator. Here,
the time of occurrence of a composite event OR is the
time of occurrence of the constituent event that has oc-
curred. As an example consider the composite expression
OR(newBook(BT1,”Borges”),newBook(BT2,”Cortazar”)).

Sequence operator SEQ. The sequence operator is used
to define composite events where the order of its constituent
events is relevant. Suppose E1 and E2 are events (atomic
or composite). The composite event SEQ(E1, E2) occurs
when E2 occurs provided E1 has already occurred. This
means that the time of occurrence of E1 has to be less than
the time of occurrence of E2. Note that, in contrast with
the OR operator, composite events expressed with the se-
quence operator occur when all the constituent events oc-
curs and the time restriction holds. In this case, the occur-
rence time of the composite event is the occurrence time of
the operator’s right-hand side event. As an example con-
sider the composite expression SEQ(newCD(CDT1,”Laura
Pausini”),newCD(CDT2,”U2”)).

Conjunctive operator ANY. A composite event
ANY (n,E1, E2, . . . , Em) occurs when n out of m
events (distinct events) occur provided n < m. If
n >= m, the composite event ANY occurs when all
its constituent events occur. In this case we can write
this as ALL(n,E1, E2, . . . , Em). With the conjunction
operator the order among the constituent events is not
relevant, as long as all the required n events occur.
The occurrence time of a composite event ANY is the
occurrence time of the last constituent event that has oc-
curred. As an example consider the composite expression
ANY(1,newCD(CDT1,”U2”),newCD(CDT2,”The Corrs”)).

2.3. A Markup language for events

Events are specified by event expressions. In our case,
we distinguish among three types of event expressions.
Atomic, composite and opaque expressions. Atomic and
composite expressions specify atomic and composite events
respectively, as discussed above. Composite expressions
use the language’s operators to define complex events based
on atomic events and previously defined composite events.
Finally, in the context of our event engine, opaque expres-
sions are also atomic, in the sense that they cannot be fur-
ther decomposed into more basic events and that can also be
combined to form composite expressions, but differ from
atomic expressions in that they are written in some exter-
nal language (understood by some other language engine).
For example, an opaque expression may define an event
using Java code, Prolog code, SQL code or any other lan-
guage, provide that an engine for evaluating such language
is known.

Evaluation of event expressions (and hence detection of
composite events) relies on the exchange of expressions
among different event evaluators and ECA engines. The
event engine implemented here accepts and processes event
expressions represented using an XML-based markup lan-
guage based on the one proposed in [2, 3]. Below we de-
scribe how expressions are marked up and at the end of the
section we show an illustrative example.

Atomic expressions. Atomic expressions are represented
by specifying the construct’s name (using the operator at-
tribute), the variables declaration (with element), the con-
struct’s parameters (using having and parameter elements)
and, the relationship between variables and parameters.

Opaque expressions. Opaque expressions are repre-
sented by specifying the language’s URI, the opaque con-
tent to be evaluated and the variables declaration.

Composite expressions. Composite expressions of the
SNOOP-R algebra are represented by specifying the opera-



tor’s name, the language’s URI, the arguments (sub expres-
sions) to which the operator is applied, the variables dec-
laration (input and output variables) and, the operator’s pa-
rameters if needed. An example of a composite expression
built out from atomic and opaque expressions is presented
below.

Variable declaration. Variables are represented by spec-
ifying their name, their value and their mode (to define in-
put and output variables). Input variables are defined by
setting the attribute mode’s value to use and in this case,
the variable’s value must be specified (using the literal ele-
ment). Output variables are defined by setting the mode to
bind. Additionally, variables are related to the parameters of
atomic events using the attribute bindVar in the parameter
element.

<expression operator="OR" language="http://snoop-r.org">
<argument name="left">
<solve>
<expression operator="newBook"

language="http://ecommerce.com">
<with>
<Variable name="X" mode="use">
<literal>HTML in 21 days</literal>

</Variable>
</with>
<having>
<parameter name="title" bindVar="X"/>

</having>
</expression>

</solve>
</argument>
<argument name="right">
<solve>
<expression language="http://languages.org/prolog">
<literal>
?- newCD(ListOfCDs), member(cd(myCD),ListOfCDs).
</literal>

</expression>
</solve>

</argument>
</expression>

3. Implementation

The event engine’s public interface includes an operation
to evaluate event expressions, an operation to signal atomic
event instances, and an operation to unregister event expres-
sions. By invoking these operations, other evaluators and
ECA engines can be notified of the occurrence of compos-
ite events expressed by expressions in the language, notify
atomic events occurrences and unregister a previous regis-
tered expression. The system was fully implemented in Java
as a Web Service. By doing this, the event detector is avail-
able throughout the Web, thus allowing for the detection of
composite events whose constituent atomic events occur at
different locations. In the implementation we used the API
provided by [3]. This Java library implements an evaluation
engine according to the framework introduced before and it
provides the set of classes implementing expressions in our
language as well as the web services functionality.

3.1. Event trees and event graph

In our case we follow the same approach used in other
systems (see [10, 14, 17, 6, 11]) and represent event expres-
sions using event trees. In the tree-based approach, every
expression is represented as an event tree where the leaves
denote atomic event types, internal nodes represent the lan-
guage’s operators and the tree’s root is the outermost oper-
ator of the expression.

Since different event expressions registered with the
event engine may use the same subexpressions and different
clients may register the same expression, the detector uses
an event graph in order to combine different event trees and
support the reuse of common (sub)expressions. That is, if
two event expressions A and B use the same subexpression
C, the event tree representing the expression C is shared
by the event trees representing the expressions A and B.
This means that the event graph will store the information
associated with the event tree being reused only once, as
opposed to creating the same (sub)tree more than once. As
a result of this combination, every leaf in the event graph
may have several parents. The event graph is thus a col-
lection of event trees. For example, consider the follow-
ing two composite expressions where newBook, newCd and
newMovieDVD represent atomic event types:

A = OR(newBook(BT,"Dan Brown"),newCD(CDT1,"U2"))
B = SEQ(newCD(CDT2,"The Corrs"),newMovieDVD(MT,"2006"))

Both expressions share the subexpression C = newCD,
i.e. the atomic event type newCD. As a result of this, the
event trees representing the expressions A and B will share
the (sub)tree associated with C (a leaf node in this case).
Figure 1 illustrates the event trees and the resulting event
graph.

3.2. Building the event graph

When a client registers an event expression, the event
engine tries to construct the event tree that represents the
expression. The construction of event trees is an incremen-
tal, bottom-up procedure that starts at the leaf nodes repre-
senting the atomic event types defined in the expression and
ends at the root node (an operator node). Once this process
reaches the tree’s root, the event engine adds the event tree
to the event graph and the registration process ends.

Independently of its type, if an expression is syntactically
incorrect, the event engine aborts the registration process
and starts a cleaning process in order to delete incomplete
event trees. Here, care is taken in order to avoid eliminat-
ing nodes that are being used by other (older) expressions,
since, as mentioned above, nodes can be reused by different
event trees.



Processing atomic expressions. When an atomic expres-
sion is processed, the detector checks (based on the opera-
tor’s name) whether the leaf node representing the atomic
event type described by the expression is already in the
graph. If that is the case, the event engine reuses the node,
otherwise a new leaf node is created and added to the event
tree being constructed. Every leaf node stores information
about the events it represents. This information includes the
variables to be bound as a result of the event occurrence
(output variables), the rule or expression the event belongs
to, the parent to be activated when the event occurs and
an evaluation’s ID (implemented as an URI) that uniquely
identifies the evaluation of the expression. Every leaf may
store events from different expressions (all of them of the
same event type) as nodes can be shared. For example, con-
sider the following expressions:

A = OR(newBook(BT,"Dan Brown"),newCD(CDT1,"U2"))
B = SEQ(newCD(CDT2,"The Corrs"),newMovieDVD(MT,"2006"))

These expressions use the same atomic event type
newCD. When the event engine receives the expression A,
it creates a leaf node to represent the event type newCD and
stores at the node the event’s specific information. When
processing the expression B, the event detector reuses the
leaf created before and stores information about the event
newCD(CDT2,“The Corrs”). Figure 1 illustrates how the
event expressions are represented in the system. In the fig-
ure, every ellipse and dashed line from a leaf represent a
particular event definition stored at the leaf. For exam-
ple, A1 represents the information about the event new-
Book(BT,”Dan Brown”). Note that the leaf representing
the atomic event type newCD contains the information of
two events as both expressions use the event type newCD
(A2 represents the event newCD(CDT1,”U2”) and B1 rep-
resents newCD(CDT2,”The Corrs”)).

Processing composite expressions. The processing of a
composite expression depends on the class of composite ex-
pression being considered. Here we distinguish two cases.
In the first case, if the composite expression is part of the
SNOOP-R language, the event detector decomposes it into
smaller subexpressions and processes them recursively. In
the other case, if the expression belongs to a different lan-
guage (an external expression), the event engine treats the
event denoted by the expression as if it were an atomic event
and so it creates a leaf node to represent the event. From the
detector’s point of view, external expressions are treated as
expressions denoting atomic events; i.e the event engine will
issue a call to another evaluator to evaluate the expression
and then process the results (the variable bindings).

Processing opaque expressions. When the event detector
processes an opaque expression, it creates a new leaf node,

stores information about the variables used in the expression
(input and output variables) and then adds the event tree (a
single node) to the event graph. Since the event detector
does not know how to handle the content of an opaque ex-
pression, it is unable to compare them and hence it cannot
reuse previous registered opaque expressions.

newBook

OR

ETree A

SEQ

ETree B

newCD newMovieDVD

B1A2A1

Parent=OR 
Expression=A

B2

Figure 1. Representation of an event expres-
sion. Event trees and event graph

3.3. Detection of composite events

The detection of composite events follows a bottom-up
process that starts when an atomic event instance is signaled
to the system. Incoming atomic events are processed ac-
cording to the recent context defined in [10].

When the event detector receives a message indicating
that an event instance ei of an atomic event type Ei has oc-
curred, it computes the instance’s occurrence time, stores
the instance’s information (variable bindings) in the leaf
node associated with Ei and then activates the node. Event
instances are propagated from the leaves up to the event
tree’s root. When an event instance reaches the root the
event engine has detected a composite event.

Evaluating atomic expressions. Events denoted by
atomic expressions, opaque expressions and external com-
posite expressions are detected outside the system. The
event engine evaluates these expressions by invoking an-
other event evaluator (event provider) that is capable of de-
tecting the events denoted by them. In order to evaluate
these expressions, the detector sends to the event provider
the expression to be evaluated together with the variable
bindings for the input variables used in the expression. As
a result of this operation, the event detector receives either
an evaluation error or an evaluation ID (again an URI) that
uniquely identifies the expression’s evaluation. If the result
of such evaluation is a not-null evaluation ID, this means
that the event provider will evaluate the expression asyn-
chronously and then communicate the results. In this case,
what our event engine must do is to store this ID in order



to process future results. This ID is stored at the leaf rep-
resenting the event type denoted by the expression that was
just evaluated. On the other hand, if the detector receives an
evaluation error, it marks the event expression as failed and
starts a process to check whether the composite expression
is active or not.

Activating terminal nodes. When a leaf node is acti-
vated, the event engine must validate the event instance
stored at the node and then, if the validation is successful,
it must propagate the instance to the appropriate parent and
activate it. If an event instance is not valid, the event detec-
tor discards the instance. Here, an event instance is valid if
the variable bindings associated with it are valid. In order
to pass the event instance’s information to the parent, the
detector encapsulates the instance’s information into a data
structure representing the event instance. This data structure
contains information about the event instance’s occurrence
time, the expression (or rule) it belongs to, the event type
(composite, atomic or opaque) and the instance’s child order
to distinguish between left or right children in the sequence
operator.

Validating variable bindings. Let’s assume that after an
event instance is notified to the system the variable bind-
ings are available as a list in the variable Tuple. Let’s
also assume that the output variables of an atomic event ex-
pression are available as a list in the variable FreeVars
and that the input variables associated with a composite ex-
pression are stored in the variable Input. Then, the vari-
able bindings produced by an atomic event provider are
valid if every variable Vi in Tuple is either defined in
FreeVars or in Input. Additionally, every variable Vj

in FreeVars must be defined in Tuple. For example,
suppose that the event detector is waiting for the atomic
event newBook(Title,"Dan Brown",price) and
Title is an output variable in FreeVars. If the
event instance received by the detector is newBook("The
Da Vinci Code","Dan Brown","23.90") but no
variable bindings are produced, the event engine cannot
bind the variable Title and hence the event instance must
be discarded. In the same way if the variable bindings con-
tain something like Tuple = [<Price,"23.90">],
the event detector must discard the instance as the variable
Title is not bound and it should be.

Activating operator nodes. Although the computation
performed by an operator node depends on the operator’s
semantics, every operator must perform a series of common
tasks upon activation. These tasks include storing the event
instance propagated from its children, computing the vari-
able bindings associated with the composite event and noti-
fying composite events if needed.

Since an operator node could be reused by several event
expressions, it may have several parents. Therefore, the
event engine must be able to distinguish between them. I.e.,
how does the event engine know which parent to activate
when a composite event at the node is detected? For exam-
ple, consider the following event expressions:

A = SEQ(newMovieDVD(MvT,"Spike Lee"),E1)
B = SEQ(E2,newMusicDVD(MuT,"U2")

E1 = OR(newCD(CDT1,"U2"),newBook(BT1,"Dan Brown"))
E2 = OR(newCD(CDT2,"REM"),newBook(BT2,"Cortazar"))

In this case, when the atomic event
newCD(“Boy”,“U2”) occurs, the event detector is
able to detect the composite event A. Here, the detector
must activate operators OR and SEQ in expressions E1
and A respectively. Note that the operators OR and SEQ in
E2 and B should not be activated. In order to differentiate
among parents, the event engine associates with every
parent the rule (using the rule’s ID) to which the parent
belongs. Since every event instance contains a reference
to the expression it belongs to, the event detector can
easily identify the parent that must be activated. Figure 2
illustrates the approach.

newMovieDVD

SEQ
ETree A

SEQ
ETree B

newMusicDVD

A1

Parent=SEQ 
Rule=A

B3

newCD

OR

newBook
A2

A3B1 B2

Parent=SEQ 
Rule=B

Figure 2. Schema used to identify among par-
ents

Computing variable bindings. When an operator node
is activated, the event detector must compute the variable
bindings associated with the composite event being de-
tected. That is, variable bindings from all constituents
events must be joined. For example, in the expression de-
fined below, the values of the variable T in both atomic
events must coincide.

A = SEQ(newCD(T,"U2"),newMusicDVD(T,"U2"))

In other words, the output variable of the atomic event
newCD is an input variable for the event newMusicDVD.
Operators SEQ and ANY compute the variable bindings by
comparing the values of the variables in the variable bind-
ings of every constituent event (when they arrive). If any
two variables whose names coincide have different values,
the event detector discards the last instance received at the
node. The variable bindings at the operator OR are the ones
provided by the event instances that has occurred.



Notifying composite event occurrences. When a com-
posite event is detected, the system must return the variable
bindings associated with the composite event and the se-
quence of events that have contributed to its detection. Ad-
ditionally, the event engine informs the client whether the
composite event expression will produce future results or
not. To notify this, the event engine returns the expression’s
next evaluation ID that uniquely identifies the next evalu-
ation of the expression. In our case this value is always
the expression’s ID that was generated at the expression’s
registration time. So, if there is a future evaluation, the ex-
pression’s next evaluation ID is set to the expression’s ID.
But, if the event cannot occur anymore (e.g. because one
of its constituent events will not occur again), this value is
set to null. For example, suppose that the composite event
expression

A = OR(newCD(CDT,"U2"),newBook(BT,"Dan Brown"))

is registered in the system with ID=1 (although the ID is
an URI, we use numbers for simplicity) and that at time
t1 the event newCD(”Boy”,”U2”) occurs with variable
bindings Tuple=[<CDT,"Boy">] and events sequence
Literal=<expression operator="newCD"/>.
As a result of this, the event engine detects the composite
event OR at time t1 and returns a result where:

NewEvaluationID = 1
Bindings=[(CDT,"Boy")]
Sequence of events="
<expression operator="OR"><argument>
<expression operator="newCD"/></argument></expression>"

Implementing operator OR’s semantics. According to
the operator’s semantics, a composite event OR is detected
when one of its constituent events occur. When the node is
activated, the event instance propagated from one of its chil-
dren is stored at the node and a composite event instance is
created, containing the propagated instance as its only con-
stituent event. This composite instance is then propagated to
the node’s parents. Since we assume that event instances do
not occur simultaneously and we are using the recent con-
text, only one constituent event instance will be present at
the node at any given time, hence the event detector keeps
the instance’s information in a single variable, thus reducing
the memory requirements.

Implementing operator SEQ’s semantics. Upon activa-
tion, the SEQ operator stores the propagated event instance.
Since the operator might be shared by different expressions
the event detector keeps separate storage for instances of
different expressions. Moreover, since the order of the op-
erator’s constituent events matters, the event detector stores
left and right children separately. When the operator node
is activated, the event engine checks which child has oc-
curred. If the right child has occurred, it checks whether

the left child has occurred. If so, it compares the events’
occurrence time and, if the time constraints are satisfied; it
computes the variable bindings. If the left child has not oc-
curred yet, the right child is discarded.

Implementing operator ANY’s semantics. The storage
requirements for this node are similar to the SEQ opera-
tor’s. The only difference is that the order of the children
does not matter. When the operator node is activated, the
detector stores the event instance and then it checks whether
the number of constituent events already detected is equals
to the operator’s parameter (numberToDetect). If so, the
time restrictions are checked and, if they are satisfied, the
variable bindings are computed. After this, the event detec-
tor constructs a composite event instance and activates the
appropriate parent. If, on the other hand, the number of de-
tected events is less than the number of required events, the
event detector continues normally.

3.4. Deleting registered event expressions

Event expressions registered with the system can also be
unregistered. An expression is deleted from the system by
deleting from the event graph the event tree representing the
expression. Since an event tree may reuse leaves and sub-
trees of another event trees, the detector must check whether
a node in the event tree is being used by another tree before
deleting it. In order to delete an event tree, the detector
visits the tree in pre-order mode and processes every node
according to its type. If the node is a leaf and is not being
used by any other event tree, the event detector deletes the
node from the event graph. If the leaf belongs to another
event tree, it is left in the graph. In any case, the event en-
gine deletes the expression’s related information from the
leaf, i.e the event expression stored at it. Now, if the node
is an operator node, the event detector checks whether the
node is being used by another event tree. If the node is not
being used, the detector deletes the event trees associated
with the node’s children and then deletes the operator node
from the graph. If the node is used by other trees, the event
detector deletes the event trees associated with the node’s
children as well as any composite event instance stored at
the node but, it keeps the node in the graph. For example,
consider expressions A and B:

A = OR(newBook(BT,"Dan Brown"),newCD(CDT1,"U2"))
B = SEQ(newCD(CDT2,"The Corrs"),newMovieDVD(MT,"2006"))

Figure 3 illustrates how the event graph looks before and
after eliminating the expression B.

4. Conclusions and future work

In this paper we have presented the implementation
of an event detector engine that implements the language



ORETree A ETree B

A1

newCD

newBook

A2

newMovieDVD

B1

SEQ

B2

ORETree A

A1

newCDnewBook

A2

Figure 3. Event graph before and after delet-
ing expression B

SNOOP-R, a sublanguage of the SNOOP event algebra.
It detects composite events by processing and combining
atomic events. Atomic events are detected by events evalu-
ators operating outside the system and then signaled to our
system once they have been detected. Composite events
are detected by considering the language operator’s seman-
tics and using a bottom-up process that starts when atomic
event instances are signaled to the system. We use event
trees to represent expressions and they are reused to exploit
commonalities among several expressions. One innovative
feature of this event engine is the capability of detecting
events expressed by expressions written in other languages
(opaque expressions). Additionally, since atomic events are
signaled to the system by using messages, they can occur
anywhere in the Web. The event engine can be easily inte-
grated in the ECA framework of [2] presented before as it
implements the communication with other components by
means of variable bindings.

As for future work, we would like to extend the event
engine by implementing cumulative operators provided by
the SNOOP language. Although the language defined here
is suitable for a wide range of applications and is expressive
enough to analyze different aspects of event detection, the
implementation of such operators would provide a higher
expressivity, extending in this way the applicability of the
evaluator. Future extensions along this line could also con-
template the implementation of other parameter contexts.
Another aspect that we would like to investigate is the opti-
mization of event expressions. As pointed in [10], an event
can be expressed in different ways using the language’s
composers. In this sense, rewriting techniques may uncover
common subexpressions in the same expression or among
different expressions, hence reducing the space needed in
order to store them. Another aspect to consider is the vari-
able binding mechanism. In our case, variables are bound
to values without considering their types. This mechanism
can be extended in order to contemplate types. Finally, we
would also like to compare several techniques for event de-
tection in the Web. The analysis of several active languages
and in particular the way they employ event detectors may
suggest guidelines for the implementation of more complete
and powerful event engines for the Web.

References

[1] A. Adi and O. Etzion. Amit - the situation manager. The
VLDB Journal, 13(2):177–203, 2004.

[2] J. J. Alferes and W. May. Specification of a Model,
Language and Architecture for Reactivity and Evolution.
Technical Report IST506779/Lisbon/I5-D4/D/PU/a1, Au-
gust 2005.

[3] R. Amador. R3 Evaluation Engine Java Library.
http://rewerse.net/I5/spec/r3/2005/r3.java/r3.jar.

[4] J. Bailey, F. Bry, and P.-L. Pătrânjan. Composite event
queries for reactivity on the web. In WWW ’05: Special
interest tracks and posters of the 14th international confer-
ence on World Wide Web, pages 1082–1083, New York, NY,
USA, 2005. ACM Press.

[5] J. Bailey, A. Poulovassilis, and P. T. Wood. An Event-
Condition-Action Language for XML. In Int. WWW Con-
ference, 2002.

[6] M. Bernauer, G. Kappel, and G. Kramler. Composite events
for XML. In 13th. Int. Conference on World Wide Web
(WWW 2004), 2004.

[7] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Ac-
tive XQuery. In ”Intl. Conference on Data Engineering
(ICDE)”, pages 403–418, 2002.

[8] F. Bry and P.-L. Pătrânjan. Reactivity on the Web:
Paradigms and Applications of the Language XChange. In
20th ACM Symp. Applied Computing. ACM, 2005.

[9] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K.
Kim. Composite events for active databases: Semantics,
contexts and detection. In VLDB ’94: Proceedings of the
20th International Conference on Very Large Data Bases,
pages 606–617, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[10] S. Chakravarthy and D. Mishra. Snoop: An expressive event
specification language for active databases. Data Knowl.
Eng., 14(1):1–26, 1994.

[11] M. Mansouri-Samani and M. Sloman. Gem: A Generalized
Event Monitoring Language for Distributed systems. Dis-
tributed Systems Engineering, 4(2):96–108, 1997.

[12] W. May, J. J. Alferes, and R. Amador. Active rules in the
semantic web: Dealing with language heterogeneity. In
Rule Markup Languages (RuleML), number 3791 in LNCS.
Springer, 2005.

[13] W. May, J. J. Alferes, and R. Amador. An ontology- and
resources-based approach to evolution and reactivity in the
semantic web. In Ontologies, Databases and Semantics
(ODBASE), number 3761 in LNCS. Springer, 2005.

[14] D. Moreto and M. Endler. Evaluating composite events us-
ing shared trees. In IEE Proceedings - Software, volume
148, pages 1 – 10, 2001.

[15] G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL:
An Event-Condition-Action Rule Languages for RDF. In
HDMS’04, 2004.

[16] N. W. Paton, editor. Active Rules in Database Systems.
Monographs in Computer Science. Springer, 1999.

[17] R. J. Zhang and E. A. Unger. Event Specification and Detec-
tion. Technical Report TR CS-96-8, Department of Comput-
ing and Information Sciences, Kansas State University, June
1996.


