
A High-Level Query Language for Events

François Bry
University of Munich, Institute for Informatics
http://www.pms.ifi.lmu.de, bry@pms.ifi.lmu.de

Michael Eckert
University of Munich, Institute for Informatics

http://www.pms.ifi.lmu.de, eckert@pms.ifi.lmu.de

Abstract

Nowadays events are omnipresent and exchanged as mes-
sages over networks. Characteristic for applications in-
volving advanced (or complex) event processing is the need
to (1) utilize data contained in the events, (2) detect pat-
terns made up of multiple events (so-called composite events),
(3) reason about temporal and causal relationships of events,
(4) accumulate events for negation and data aggregation.

This article describes a high-level language approach for
expressing queries to events. Its foundations are: embedding
of a query language for XML and other Web data formats,
support for rule-based reasoning, and a complete coverage of
the four dimensions mentioned above.

1. Introduction

In distributed computer systems, events are omnipresent
and exchanged as messages over networks. Business applica-
tions use events to interact with other applications or human
users. Increasing business demands and advances in technol-
ogy make the current techniques for processing events insuf-
ficient. Amongst others, interest in complex event processing
(CEP) is driven by:
• a need to understand the dynamic behavior in distributed

large-scale information systems [20],
• increased generation of events from sensors due to dras-

tic cost reductions in technology (e.g., RFID),
• a need to monitor log data generated in computer sys-

tems (e.g., fraud detection in credit card transaction logs)
• service-oriented architecture (e.g., accounting for on-

demand services, synchronization of activities in busi-
ness processes, monitoring of service level agreements),
• the emergence of event-driven architecture (e.g., detect

and react to advantageous or dangerous situations) [12].
For many emerging applications it is not sufficient any-

more to query and react to only single, atomic events (i.e.,
events signified by a single message). Instead, events have
to be considered with their relationship to other events in a
stream of events. Such events (or situations) that do not con-
sist of one single atomic event but have to be inferred from
some pattern of several events are calledcomposite events.

Composite events as patterns of events do not exist ex-
plicity “by themselves” in an event stream (as single mes-
sages). Rather they are implicit and the patterns are conve-
niently specified by event queries.

Querying events has much in common with querying
database data (using languages such as SQL or XQuery). In
particular, events usually contain data and the messages used
to transmit them are in a conventional data format such as
XML; a key example of this are XML-based SOAP messages
[18] used to communicate with Web Services. Processing of
such message events comprises querying data in events and
constructing new events or data.

There are, however, also important differences between
querying database data and events:
• Events are received over time in a stream-like manner,

while in a database all facts are available at once and
stored on disk.
• Event streams are unbounded, potentially infinite, into

the future, whereas databases are finite. This has es-
pecially consequences for non-monotonic query features
such as negation or aggregation.
• Relationships between events such as temporal order or

causality play an important role for querying events. In
databases, relationships between facts are usually part of
the data (e.g., functional dependencies)
• Timing of answers has to be considered when querying

events: event queries are evaluated continously against
the event stream and generate answers at different times.
These answers may trigger actions such as updates to
a database. Typically actions are sensitive to ordering;
hence it is importantwhenan answer to an event query
is detected.
• Query evaluation and optimization for event streams re-

quires different methods than for databases. In event
streams a large number of (standing) queries are eval-
uated against small pieces of incoming data (events).
Evaluation is thus usually data-driven, rather than query-
driven. Optimization relies on exploiting similarities be-
tween queries rather than indexing data.

This article describes work in progress on a high-level
event query language, focusing in particular on the language
design. Our language is well-suited for use in enterprise ap-
plications built upon Web Service standards. In particular, it



supports events that are received as SOAP (or other XML)
messages. It can be deployed as a stand-alone event media-
tion component in an event-driven architecture [12], as event
component of the framework for reactivity and evolution on
the Web described in [21] and [22], and as part (sub-language)
of the reactive Web language XChange [4, 8].1

Our new approach to an event query language is motivated
by previous work on XChange, a language employing Event-
Condition-Action rules to program distributed, reactive Web
applications and services. XChange includes composite event
query capabilities [8, 7] that are similar to those found in ac-
tive databases [17, 16, 11, 10, 1]. Our experience in XChange
has taught us that there is a considerable gap between the re-
quirements posed by applications and the expressivity of cur-
rent event query languages.

There are (at least) the following four complementary di-
mensions that need to be considered in designing a suffi-
ciently expressive event query language:

Data extraction: Events contain data that is relevant to
whether and how to react. For events that are received as
SOAP messages (or in other XML formats), the data can
be structured quite complex (semi-structured). The data of
events must be extracted and provided (typically as bind-
ings for variables) to construct new events or trigger reactions
(e.g., database updates).

Event composition: To support composite events, i.e.,
events that are made up out of several events, event queries
must support composition constructs such as the conjunction
and disjunction of events (or more precisely of event queries,
since composite events can only be defined through compos-
ite event queries).

Temporal (and causal) relationships: Time plays an im-
portant role in event-driven applications. Event queries must
be able to express temporal conditions such as “eventsA and
B happen within 1 hour, andA happens beforeB.” For some
applications, it is also interesting to look at causal relation-
ships, e.g., to express queries such as “eventsA andB hap-
pen, andA has causedB.” (In this article we concentrate only
on temporal relationships, causality is future work)

Event accumulation: Event queries must be able to ac-
cumulate events to support non-monotonic features such as
negation (absence) of events, aggregation of data, or repeti-
tive events. The reason for this is that the event stream is (in
contrast to extensional data in a database) infinite; one there-
fore has to define a scope (e.g., a time interval) over which
events are accumulated when aggregating data or querying
the absence of events. Application examples where event ac-
cumulation is required are manifold. A business activity mon-
itoring application might watch out for situations where “a
customer’s order hasnot been fulfilled within 2 days” (nega-
tion). A stock market application might require notification
if “the averageof the reported stock prices over the last hour
raises by 5%” (aggregation).

1The new event query language described in this article is considered as a
replacement of the previous composite event query language[7] of XChange.

The foundations of the high-level event query language de-
scribed in this article are:
• It embeds the XML query language Xcerpt to specify

classes of relevant events, extract data (in the form of
variable bindings) from them, and construct new events.
• It supports rules as an abstraction and reasoning mecha-

nism, for the same reasons and with the same benefits of
views in traditional database systems.
• Its syntax enforces a separation of the four querying di-

mensions described above, yielding a clear language de-
sign, making queries easy to read and understand, and
giving programmers the benefit of a separation of con-
cerns. Even more importantly, this separation allows to
argue that the language reaches a certain degree of ex-
pressive completeness.

Our language is in the combination of these foundations
quite different from previous composite event query lan-
guages. We improve on previous work on composite event
query languages in the following ways: It is a high-level lan-
guage with a clear design that is easy to use and provides
the appropriate abstractions for querying events. It empha-
sizes the necessity to query data in events, in particular semi-
structured XML messages. Being targeted towards SOAP and
Web Services, it is particularly suitable for use in business ap-
plications domains. We make an attempt towards expressive
completeness by completely covering all four query dimen-
sions explained earlier. Finally, with the separation of con-
cerns, we hope to avoid misinterpretations of queries, as they
can happen easily with other languages (see the discussions
in [27, 15, 1]).

Using the example of a stock market application, we intro-
duce our event query language incrementally, starting from
queries to single (atomic) events (Section 2). We add com-
plexity and expressivity with deductive and reactive rulesfor
events (Section 3), the composition of (several) events (Sec-
tion 4), temporal conditions on events (Section 5), and event
accumulation (Section 6). We end with a short discussion of
semantics and evaluation methods (Section 7), and conclu-
sions and future work (Section 8).

2. Querying Atomic Events

Application level events in distributed enterprise systems
are nowadays often represented as XML messages, especially
as SOAP messages. Where this is not the case (e.g., sensor
events in proprietary data formats), events can still conve-
niently be represented and queried as XML.2

In our stock market example we will be using four atomic
events: stock buys, stock sells, and orders to buy or sell
stocks. Involved applications could also generate further
events; these would not affect our example queries. The left
side of Figure 1 depicts the buy and buy order events in XML

2It is not necessary to actually materialize the XML representation for ev-
ery incoming non-XML event, of course: instead queries can be translated for
this non-XML format, much like one can rewrite queries to database views
instead of materializing views.



<order>
<o rde r Id>4711</ o rde r Id>

<cus tomer>John</ cus tomer>
<buy>

<s tock>IBM</ s tock>
<l i m i t >3.14</ l i m i t >

<volume>40S00</volume>
</buy>

</ o rder>

<buy>
<o rde r Id>4711</ o rde r Id>

<t r a d e I d>4242</ t r a d e I d>
<cus tomer>John</ cus tomer>
<s tock>IBM</ s tock>
<p r i c e >2.71</ p r i c e>

<volume>4000</volume>
</buy>

o r d e r [
o r d e r I d { 4711 } ,
cus tomer { ” John ” } ,
buy [

s t o c k { ”IBM” } ,
l i m i t { 3 . 14 } ,
volume { 4000 }

]
]

buy [
o r d e r I d { 4711 } ,
t r a d e I d { 4242 } ,
cus tomer { ” John ” } ,
s t o c k { ”IBM” } ,
p r i c e { 2 . 71 } ,
volume { 4000 }

]

Fig. 1. XML and term representation of an event

buy {{
t r a d e I d { va r I } ,
cus tomer { va r C } ,
s t o c k { va r S } ,
p r i c e { va r P } ,
volume { va r V }

}}
where { va r P ∗ va r V >= 10000 }

Fig. 2. Atomic event query

(sell and sell order are analogous). Details such as SOAP en-
velopes are skipped in this article.

For conciseness and human readability, we use a “term
syntax” for data, queries, and construction of data. The right
side of Figure 1 depicts the XML events as (data) terms. The
term syntax is slightly more general than XML, indicating
whether the order of children is relevant (square brackets[]),
or not (curly braces{}).

Querying such single event messages is a two-fold task:
one has to (1) specify a class of relevant events (e.g., all buy
events) and (2) extract data from the events (e.g., the price).
We embed the XML query language Xcerpt to both specify
classes of relevant events and extract data from the events.
Figure 2 shows an event query that recognizes buy events with
a price total of$10 000 or more.

Xcerpt queries describe a pattern that is matched against
the data. Query terms can be partial (indicated by double
brackets or braces), meaning that a matching data term can
contain subterms not specified in the query, or total (indicated
by single brackets or braces). The queries can contain vari-
ables (keywordvar), which will be bound to the matching
data, and awhere-clause can be attached to specify non-
structural (e.g., arithmetic) conditions.

In this article, we will stick to simple queries as above.
Note however that Xcerpt supports more advanced features
such as subterm negation, optional subterm specification, sub-
terms at arbitrary depth, and queries to graph-shaped data
such as RDF [14]. An introduction to Xcerpt is given in [25].

The result of evaluating an Xcerpt query on an event mes-
sage is the setΣ of all possible substitutions for the free vari-
ables in the query (non-matching is signified byΣ = ∅). Our

t i m e r : d a t e t i m e {{
d a t e { ”2006−09−18” } ,
t ime { ” 9 :00 ” }

}}

c a t t s : t ra d ingDa y{{
dayOfWeek { va r D }

}}

Fig. 3. Queries for absolute timer events

example query does not match the order event from Figure 1,
but matches the buy event withΣ = {σ1}, σ1 = {I 7→
4242, C 7→ John, S 7→ IBM, P 7→ 2.71, V 7→ 4000}.

Xcerpt has the following advantages over other XML
query languages such as XQuery [5] for querying events:
(1) The notion of an event matching or not matching a query
gives a straight-forward notion for defining classes of rele-
vant events using queries. (2) Unlike XQuery, Xcerpt has a
clear separation of querying (selecting) data and constructing
new data. So far, we have only used the query-part of Xcerpt.
(3) Due to the separation, Xcerpt provides clear semantics for
the variable bindings using the concept of substitution sets;
this is especially convenient when composing events. In com-
parison, in XQuery a variable takes different values at differ-
ent steps (e.g., iterations of a FOR-loop).

In addition to event messages, event queries can query for
timer events. Absolute timer events are time points or inter-
vals defined without reference to the occurrence time of some
other event. They are specified just like queries to event mes-
sages. The left of Figure 3 shows a query for a given time and
date. Restrictions apply on the structure and on the places
where variables can be used. For example, it is not allowed
to skiptime in thedatetime event query or use a variable
inside it — otherwise the timer would fire continously. How-
ever, one may skip thedate specification, yielding a periodic
event.

Various calendar systems such as CaTTS [9] can be used
to define application-specific calendar events that are more
complex than the simpledatetime event. An example is
the query for trading days on the right of Figure 3. This timer
event stretches over a whole time interval of a trading day
(e.g., 9am to 5pm); the event is detected at the end of the
interval.

Relative timer events, i.e., time points or intervals defined
in relation to some other event will be looked at in Section 4
on event composition.

3. Reactive and Deductive Rules for Events

Our language uses two kinds of rules: deductive rules and
reactive rules. Deductive rules allow to define new, “virtual”
events from the events that are received. They have no side ef-
fects and are analogous to the definition of views for database
data. The arguments why rules for events are required are
basically the same as why views are required in databases:
(1) Rules serve as an abstraction mechanism, making query
programs more readable (especially important when event
queries get long, as they do for SOAP messages). (2) Rules al-
low to define higher-level application events from lower-level
(e.g., database or network) events. (3) Different rules canpro-



DETECT b igbuy {
t r a d e I d { va r I } ,
cus tomer { va r C } ,
s t o c k { va r S } }

ON buy {{
t r a d e I d { va r I } ,
cus tomer { va r C } ,
s t o c k { va r S } ,
p r i c e { va r P } ,
volume { va r V }

}} where { va r P ∗ va r V >= 10000 }
END

Fig. 4. Deductive rule

RAISE t o ( r e c i p i e n t =” h t t p : / / a u d i t o r . com ” ,
t r a n s p o r t =” h t t p : / / . . . / soap / b i n d i n g s / HTTP/ ” ){

va r B
}

ON va r B −> b igbuy {{ }}
END

Fig. 5. Reactive rule

vide different perspectives (e.g., of end-user, system admin-
istrator, corporate management) on the same (event-driven)
system. (4) Rules allow to mediate between different schemas
for event data.

Additionally, rules can be beneficial when reasoning about
causal relationships of events [20].

Figure 4 shows a deductive rule deriving a new event “big-
buy” from buy events satisfying the earlier event query of
Figure 2. Deductive rules follow the syntaxDETECT event
constructionON event queryEND. The event construction in
the rule head is simply a data term augmented with variables
which will be replaced by their values obtained from evaluat-
ing the event query in the rule body. The event construction is
also called a construct term; more involved construction will
be seen in Section 6 when we look at aggregation of data.

At present we do not allow recursive rules and rule sets;
relaxations of this restriction (e.g., stratified rule sets) are a
matter for future work.

Reactive rules are used for specifying a reaction to the oc-
currence of an event. The usual (re)action is constructing a
new event message (as with deductive rules) and use it to call
some Web Service. For tasks involving accessing and updat-
ing persistent data, the event queries can be used in the Event-
Condition-Action rules of the reactive language XChange.

An example for a reactive rule is in Figure 5; it forwards
every bigbuy event (as derived in Figure 4) to a Web Ser-
vice http://auditor.com using SOAP’s HTTP trans-
port binding. The syntax for reactive rules is similar to de-
ductive rules, only they start with the keywordRAISE, and
in the rule headto() is used together withrecipient and
transport to specifywherethe message goes andhow. Al-
ternatively toto(), addressing information can be specified
in the header of a SOAP message using WS-Addressing [6].

The distinction between deductive and reactive rules is im-
portant. While it is possible to “abuse” reactive rules to sim-
ulate deductive rules (by sending oneself the result), thisis
undesirable: it is misleading for programmers, less efficient
in the evaluation, and by allowing recursion and cycles risky.

DETECT f e e s {
cus tomer { va r C } ,
amount { 0 . 01 ∗ va r P ∗ va r V } }

ON or {
buy {{

cus tomer { va r C } ,
p r i c e { va r P } ,
volume { va r V } }} ,

s e l l {{
cus tomer { va r C } ,
p r i c e { va r P } ,
volume { va r V } }} }

END

Fig. 6. Disjunction of event queries

4. Composition of Events

So far, we have only been looking at queries to single
events. Since temporal conditions are dealt with separately,
only two operators,or andand, are necessary to compose
event queries intocomposite event queries. (Negation falls
under event accumulation, see Section 6.) Both composition
operators are multi-ary, allowing to compose any (positive)
number of event queries, and written in prefix notation.

When event queries are composed withor, every answer
to one of the constituent queries is also an answer to the com-
posite query. The rule in Figure 6 gives an example: every
time it recognizes a buy or sell event, it generates a new event
signaling the fees (1% of the total), the customer has to pay
for the transaction.

Disjunctions are not strictly necessary: Instead of one rule
a← b∨c, one could simply write two rulesa← b anda← c.
As the example shows however, they are quite convenient and
avoid redundancy.

Conjunctions on the other hand do increase the expres-
sivity. When two event queries are composed withand, an
answer to the composite event query is generated for every
pair of answers to the constituent queries. If the constituent
queries share free variables, only pairs with “compatible”
variable assignments are considered.

Figure 7 illustrates the use of theand operator. The “or-
derfulfilled” event is detected for every corresponding pair of
buy order and buy event as well as for every corresponding
pair of sell order and sell event. The events have to agree
on variablesO (theorderId) andT (which is bound to an
XML element name being eitherbuy or sell). The occur-
rence time of the detected “orderfulfilled” event is (by default)
the time interval enclosing the respective constituent events.

Event queries composed withor andand can be nested.
Since the operators are associative, the multi-ary generaliza-
tions are obvious. For example,and{a, b, c} can be un-
derstood asand{and{a, b}, c}.

Composition of events gives rise to defining relative timer
events, i.e., time points or intervals defined in relation tothe
occurrence time of some other event. Figure 8 shows a com-
posite event query querying for an order event and a timer
covering the whole time interval between the order event and
one minute after the order event. We will see this timer event
be used later in Section 6 when querying for the absence of a



DETECT o r d e r f u l f i l l e d {
o r d e r I d { va r O } ,
t r a d e I d { va r I } ,
s t o c k { va r S } ,
t ype { va r T } }

ON and {
o r d e r {

o r d e r I d { va r O } ,
va r T {{

s t o c k { va r S } }} } ,
va r T {{

o r d e r I d { va r O } ,
t r a d e I d { va r I } }} }

END

Fig. 7. Conjunction of event queries

and {
e ve n t o : o r d e r{{ o r d e r I d { va r O } }} ,
e ve n t t : e x te nd [ e ve n t o , 1 min ] }

Fig. 8. Composition with relative timer event

corresponding buy event in this time interval.
An event identifier (o) is given to the left of the event query

after the keywordevent. It is then used in the definition
of the relative timerextend[event o, 1 min] which
specifies a time interval one minute longer than the occur-
rence interval ofo. (The time point at whicho occurs is under-
stood for this purpose as a degenerated time interval of zero
length.) The event identifiert is not necessary here, but can be
specified anyway. Event identifiers will also be used in tem-
poral conditions and event accumulation (Sections 5 and 6).

The following constructors for relative timers are currently
supported: extend[e,d] (adding the durationd to the
end of e’s time interval),shorten[e,d] (subtractingd

from the end ofe), extend-begin[e,d], shorten-
begin[e,d] (adding/subtractingd from the begin of
e), shift-forward[e,d], shift-backward[e,d]
(movinge forward/backward byd).

5. Temporal Conditions

Temporal conditions on events and causal relationships be-
tween events play an important role in querying events. We
concentrate in this paper on temporal conditions, though the
approach generalizes to causal relationships.

Reasoning about occurrence times of events and their tem-
poral order is less demanding both in requirements posed
on event sources and computation resources than reasoning
about causality. Temporal relationships between events can
be determined only by looking at the occurrence times of
events, which come “for free” with the event stream. Causal
relationships require assistance by or intimate knowledge
about the applications reacting to and generating events (event
sources). They either have to be maintained extensionally
(e.g., as tables in a database or as part of the event data) or
defined intensionally (e.g., by defining causal relationships
again as some form of composite event queries).

The event identifiers that we have introduced in the previ-
ous section are also used when specifying temporal conditions
on events. Just like conditions on event data, temporal condi-

DETECT e a r l y R e s e l l W i t h L o s s{
cus tomer { va r C } ,
s t o c k { va r S }

}
ON and {

e ve n t b : buy {{
cus tomer { va r C } ,
s t o c k { va r S } ,
p r i c e { va r P1 } }} ,

e ve n t s : s e l l {{
cus tomer { va r C } ,
s t o c k { va r S } ,
p r i c e { va r P2 } }}

} where {b b e f o r e s , t i m e D i f f ( b , s)<1hour , va r P1>va r P2}
END

Fig. 9. Event query with temporal conditions

tions are specified in thewhere-clause of an event query.
An example of an event query involving temporal condi-

tions is given in Figure 9. It detects situations where a cus-
tomer first buys stocks and then sells them again within a short
time (less than 1 hour) at a lower price. The query shows that
both qualitative conditions (b before s) and quantitative
(or metric) conditions (timeDiff(b,s) < 1 hour) are
required. In addition, the query also includes a data condition
for the price (var P1 > var P2).

In principle, various external calendar and time reasoning
systems could be used to specify and evaluate temporal con-
ditions. However, many optimizations for the evaluation of
event queries require knowledge about temporal conditions.
In the example above, using the conditionb before s al-
lows to (1) completely avoid evaluating the sell query until
a buy event is received and (2) use the values for variables
C andS obtained from buy events when evaluating the sell
query.

Our language deals with non-periodic time intervals (time
points are treated as degenerated intervals of zero length),
periodic time intervals (i.e., sequences of non-periodic inter-
vals), and durations (lengths of time) and provides the follow-
ing built-in constructs for specifying temporal conditions:

• Event identifiers (event e). They give as value the oc-
currence time (a non-periodic time interval) of the event
they are bound to.
• Constructors for absolute time points and time intervals

such as datetime("2006-09-18T09:00").
Periodic intervals are allowed and application-
dependent constructors can be specified externally,
e.g.,catts:tradingDay().3

• Constructors for durations such as3 min 14 sec.
• Functions for creating durations from time intervals such

astimeDiff(i,j) andlength(i).
• Functions for manipulating time intervals such as
extend(i,d), shift-forward(i,d).
• Relations for durations:>, <, <=, >=, =, e.g., as in
timeDiff(i,j) < 1 hour.

3The requirement for externally defined periodic time intervals is that an
iterator delivers the individual intervals in system time,ordered by their start-
ing time. Thus a periodic interval liketradingday can be understood as a
functiont : N → T × T with begin(t(i)) < begin(t(i + 1)).



and {
e ve n t s : s e l l {{ }} ,
e ve n t t : t i m e r : d a t e t i m e{{

d a t e { ”2006−09−18” } ,
t ime { ” 9 :00 ” }

}}
} where { s b e f o r e t }

e ve n t s : s e l l {{ }}
where {

s b e f o r e d a t e t i m e (
”2006−09−18T09 : 0 0 ” )

}

Fig. 10. Timer events vs. time constructors

• Allen’s 13 relations for time intervals [3] such as
before, after, during, contains, overlaps.4

When comparing two time intervals at least one of them
has to be non-periodic, and the relationsbefore and
after should not be used for periodic intervals at all.

Note that there is an important difference between timer
events used in queries and references to time as part of
where-conditions. Timer events have to happen for the event
query to yield an answer (i.e., they are waited for), while time
references in conditions can lie in the future and only restrict
the possible answers to an event query. In Figure 10, all an-
swers to the event query on the left are detected at the same
time (2006-09-18T09:00), while the answers to the event
query on the right occur at different times (whenever a sell
event is received).

Our language differs significantly from most other event
query languages5 in the respect that temporal relationships
between events are specified as temporal conditions sepa-
rately from the event composition itself and that thus only the
two composition operatorsand andor are needed. Previous
work on event query languages tended to have an “algebraic”
flavor with lots of different event composition operators (in-
cluding a sequence operator). Apart from giving a separa-
tion of concerns and being easily extensible to application-
dependent calendars, our approach thus avoids some prob-
lems with the semantics and intuitive understanding of many
composition operators.

To illustrate the last point, consider an event query ask-
ing for eventsa, b, c to happen, wherea happens beforec
andb happens beforec. Using the temporal condition in our
approach, this is straight-forward. Using a sequence compo-
sition operator (usually denoted;) as well as an (temporal)
conjunction operator (with the same semantics as ourand-
operator; often denoted with∧ or△), one might be tempted
to write an event query(a; c)△(b; c). This however does not
yield the intended result sincedifferentc-events can be used
in answering the query. (A correct way to write the query
would be(a△b); c.) Similar examples are in [27, 15, 1].

From this toy example, it might seem that for small com-
posite event queries (detecting only two or three events, say),
the separation makes queries a bit lengthy. However in real-
life, already atomic event queries are much longer (usually
several lines) than thewhere-clause and event identifiers.

4“Exact” relationships such asstarts or equals are less useful since
different events rarely begin or end at exactly the same time[27], but are
included for the sake of completeness.

5Cf. references [17, 16, 11, 23, 28, 27, 20, 19, 2, 1, 7]

DETECT a nd the n [ va r X, va r Y]
ON and {

e ve n t x : va r X,
e ve n t y : va r Y

} where {x b e f o r e y}
END

Fig. 11. Rules simulating a sequence operator

DETECT buyOrderOverdue{ o r d e r I d { va r I } }
ON and {

e ve n t o : o r d e r{{
o r d e r I d { va r I } }} ,

e ve n t t : e x te nd ( o , 1 min ) ,
wh i l e t : no t buy {

o r d e r I d { va r I } }
}

END

Fig. 12. Event accumulation for negation

Further, deductive rules can be used to define syntactic sugar
for common cases as illustrated in Figure 11.

6. Event Accumulation

Event querying displays its differences to database query-
ing most perspicuously in non-monotonic query features such
as negation or aggregation. For database queries, the data to
be considered for negation or aggregation is readily available
in the database and this database isfinite.6 In contrast, events
are received over time in an event stream which is potentially
infinite. To be able to query with negation or aggregation, one
first has to restrict the infinite event stream to a finite extract.
Once such a restriction (window or scope) is made, nega-
tion and aggregation of events can be applied to the events
accumulated in this window and differ not much from their
database counterparts.7

Such an accumulation window has to be of finite temporal
extent, i.e., be given by a finite interval. It should be possi-
ble to determine this window dynamically depending on the
event stream received so far. Typical examples are the time
windows “from eventa until eventb,” “one minute until event
b,” “from eventa for one minute,” and (since events can oc-
cur over time intervals, not just time points) “while eventc.”
The last example of a window subsumes the first three since
they can in turn be defined as composite events (using rela-
tive timers, see Section 4). We hence content ourselves with
only looking at this case. (Syntactic sugar for the simpler but
common cases will be defined as the language matures.)

Negation is supported by applying thenot operator to an
event query. A time window is specified with the keyword
while and the event identifier of the event defining the win-
dow. The meaning is as one might expect: the negated event
querywhile t: not q is successful if and only if no event
satisfyingq occurs during the time interval given byt. An

6Recursive rules or views may allow to define infinite databases inten-
sionally. However, the extensional data (the “base facts”)is still finite.

7Keep in mind that accumulation here refers to the way we specify
queries, not the way evaluation is actually performed. Keeping all events
in the accumulation windows in memory is generally neither desirable nor
necessary for query evaluation.



RAISE t o ( r e c i p i e n t =” h t t p : / / example . com ” ,
t r a n s p o r t =” h t t p : / / . . . / soap / b i n d i n g s / HTTP/ ” ){

re po r tO fDa i l yAve ra g e s {
a l l e n t r y {

s t o c k { va r S } ,
a vgPr i c e { avg ( a l l va r P ) }

} group−by va r S }
}

ON and {
e ve n t t : c a t t s : t ra d ingDa y{{ }} ,
wh i l e t : c o l l e c t s e l l {

s t o c k { va r S }
p r i c e { va r P } }

END

Fig. 13. Event accumulation for aggregation

example can be seen in Figure 12: it detects stocks orders
that are overdue, i.e., where no matching buy or sell transac-
tion has taken place within one minute after placing the order.
The accumulation window is specified by the event queryt,
which is a timer relative to the order event. Observe that the
negated query can contain variables (I here) that are also used
outside the negation; the example reveals the strong need to
support this.8

Let us now turn to aggregation. As common in rule-based
languages, aggregation constructs are used in theheadof a
rule, since it is related to the construction of new data. The
task of thebodyis onlycollectingthe necessary data or events.
Collecting events in the body of a rule is similar to the nega-
tion and indicated by the keywordcollect. The rule in
Figure 13 shows in the body an event query collecting sell
events over a full trading day.

The actual aggregation takes place in the head of the rule,
where all sales prices (P ) for the same stock (S) are averaged
and a report containing one entry for each stock is generated.
The report is sent at the end of the trading day; this is reflected
in the syntax by the fact thatcatts:tradingDay{{ }} is
written as an event, i.e., has to actually occur.

The aggregation in the head of the rule follows the syntax
and semantics of the Web query language Xcerpt, again show-
ing that it is beneficial to base an event query language on a
data query language. The keywordall indicates a structural
aggregation, generating anentry element for each distinct
value of the variableS (indicated withgroup-by). Inside
theentry-element an aggregation functionavg is used to
compute the average price for each individual stock. For a
full account of aggregation syntax, see work on Xcerpt [24].

We have seen in this section how negation and aggregation
in event queries can be treated just like in database queriesin
our approach, once a window or scope has been introduced
(with the keywordwhile) limiting the event stream to a fi-
nite extract. The window is specified by a (composite) event,
making our approach more general than negation operators in
many related works, where the window is given by a start-

8Such variables occurring in negated and non-negated form make evalu-
ation slightly more complicated and less efficient, especially if the negated
query applies to a time windowbeforethe variable is bound in some other
event query. See work on thewithout-operator in XChange [7] for an ac-
count how the situation can be treated.

ing and an ending event. Aggregation has rarely been con-
sidered in work on composite events. A notable exception
is [23], which however applies only to relational data (not
semi-structured or XML) and does not have the benefits of a
separation of the query dimensions as our approach.

7. Approaches for Semantics and Evaluation

Formal and declarative semantics, especially model-
theoretic semantics, are as desirable for an event query lan-
guage as they are for data query languages. Formal semantics
of languages provide a reference to implementors and help
greatly in standardization efforts. They allow to prove cor-
rectness of evaluation methods, which is particularly impor-
tant for research on optimization. They give rise to proofs
about properties of the language in general, certain classes of
queries, or individual queries. An example for such a prop-
erty is the “bounded lifespan property” for the class of “legal
event queries” defined and proven in [8]. Finally, an easy to
understand and “mathematically aesthetic” model theory is
an indication of a good language design and helps identifying
design flaws.

A model-theoretic semantics for our language can be de-
fined along the lines of the model theory of the data query
language Xcerpt [24] by extending it with temporal features.
This is however outside the scope of this paper, where we
concentrate on the general design of the language and syntax.

Related work on semantics for event queries usually has
an “algebraic flavor” (as the languages themselves do), where
the semantics for operators are given as functions between se-
quences (or histories or traces) of events, e.g., [28, 19]. Alge-
bras can be argued to be less declarative than model theories,
expressinghow an event is to be detected rather thanwhat
event is to be detected. They are however a very valuable step
towards evaluation and optimization.

Evaluation of event queries differs strongly from database
queries. Query evaluation in databases is usually query-
driven. In contrast, evaluation of composite event querieson
an event stream should be data-driven (or “event-driven”) and
incremental for efficency reasons. Data-driven approaches
used in the past include finite automata [17], special petri nets
[16], and event trees or graphs with inner nodes storing “semi-
composed” events and a bottom-up flow of events [11].

For event queries putting an emphasis on data in the form
of variable bindings, an event graph approach seems most fit-
ting. Inner nodes in the graph need to perform joins on vari-
ables shared between different constituent queries of a com-
posite query [7]. This makes event graphs much similar to
rete [13], which is primarily used for production rules sys-
tems. Scalability of such approaches is indicated in [2].

8. Conclusions and Future Work

In this article, we have introduced a high-level event query
language. It deviates from previous languages in a separa-
tion of the query dimensions data extraction, event compo-



sition, temporal and other relationships, and event accumu-
lation. This separation allows a complete coverage of each
of the dimensions, yielding a language that can be argued to
have reached a degree of expressive completeness.

We have put emphasis on queries to events represented in
XML and other Web formats, making our event query lan-
guage suited for use in service-oriented and event-driven ar-
chitectures based on Web Services. Important for practical
use, rules are supported as an abstraction mechanism. Queries
and rules for events are also relevant in efforts to bring rules,
including reactive rules, to the (Semantic) Web [26].

A limitation of the language so far is that it does not sup-
port event instance selection and event instance consumption
[28]. It could be argued that they are of less importance for
business-level events, where similar effects can be achieved
by considering the data contained in the events. However, in-
stance selection can, e.g., be quite important for sensor events.

Investigation of this limitation is planned for the future.
We are also considering restrictions on queries keeping de-
mands on event storage constant (see also [8]). Causal rela-
tionships between events have only been touched on briefly in
this article and will be treated in more detail in the future.

Implementation of our language in the scope of XChange
is ongoing work. (The current prototype of XChange [29]
still uses the event language described in [7], but the evalua-
tion method used is similar to the one outlined in Section 7.)
Optimization methods for evaluating large numbers of event
queries are also being explored.

Acknowledgments

This research has been funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REW-
ERSE number 506779 (http://rewerse.net).

References

[1] R. Adaikkalavan and S. Chakravarthy. SnoopIB: Interval-based
event specification and detection for active databases.Data and
Knowledge Engineering, 2005. In press.

[2] A. Adi and O. Etzion. Amit — the situation manager.Int. J. on
Very Large Data Bases, 13(2), 2004.

[3] J. F. Allen. Maintaining Knowledge About Temporal Intervals.
Communications of the ACM, 26(11), 1983.

[4] J. Bailey, F. Bry, M. Eckert, and P.-L. Pătrânjan. Flavours of
XChange, a rule-based reactive language for the (Semantic)
Web. InProc. Intl. Conf. on Rules and Rule Markup Languages
for the Semantic Web. Springer, 2005.

[5] S. Boag et al. XQuery 1.0: An XML query language. W3C
candidate recommendation, 2005.

[6] D. Box et al. Web services addressing (WS-Addressing). W3C
member submission, 2004.

[7] F. Bry, M. Eckert, and P.-L. Pătrânjan. Querying composite
events for reactivity on the Web. InProc. Int. Workshop on
XML Research and Applications. Springer, 2006.

[8] F. Bry, M. Eckert, and P.-L. Pătrânjan. Reactivity on the Web:
Paradigms and applications of the language XChange.J. of Web
Engineering, 5(1), 2006.

[9] F. Bry, F.-A. Rieß, and S. Spranger. CaTTS: Calendar types and
constraints for Web applications. InProc. Int. World Wide Web
Conf.ACM Press, 2005.

[10] A. P. Buchmann, J. Zimmermann, J. A. Blakeley, and D. L.
Wells. Building an integrated active OODBMS: Requirements,
architecture, and design decisions. InProc. Int. Conf. on Data
Engineering. IEEE, 1995.

[11] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K.Kim.
Composite events for active databases: Semantics, contexts and
detection. InProc. Int. Conf. on Very Large Data Bases, 1994.

[12] O. Etzion. Towards an event-driven architecture: An infras-
tructure for event processing (position paper). InProc. Intl.
Conf. on Rules and Rule Markup Languages for the Semantic
Web. Springer, 2005.

[13] C. L. Forgy. A fast algorithm for the many pattern/many object
pattern match problem.Artif. Intelligence, 19(1), 1982.

[14] T. Furche, F. Bry, and O. Bolzer. Marriages of convenience:
Triples and graphs, RDF and XML in Web querying. InInt.
Workshop on Principles and Practice of Semantic Web Reason-
ing. Springer, 2005.

[15] A. Galton and J. C. Augusto. Two approaches to event def-
inition. In Proc. Int. Conf. on Database and Expert Systems
Applications. Springer, 2002.

[16] S. Gatziu and K. R. Dittrich. Events in an active object-oriented
database system. InWorkshop on Rules in Database Systems.
Springer, 1993.

[17] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite
event specification in active databases: Model & implementa-
tion. In Int. Conf. on Very Large Data Bases, 1992.

[18] M. Gudgin et al. SOAP 1.2. W3C recommendation, 2003.
[19] A. Hinze and A. Voisard. A parameterized algebra for event

notification services. InProc. Int. Symp. on Temporal Repre-
sentation and Reasoning. IEEE, 2002.

[20] D. C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, 2002.

[21] W. May, J. J. Alferes, and R. Amador. Active rules in the Se-
mantic Web: Dealing with language heterogeneity. InProc. Int.
Conf. on Rules and Rule Markup Languages for the Semantic
Web. Springer, 2005.

[22] W. May, J. J. Alferes, and R. Amador. Ontology- and
resources-based approach to evolution and reactivity in the Se-
mantic Web. InProc. Int. Conf. on Ontologies, Databases, and
Applications of Semantics. Springer, 2005.

[23] I. Motakis and C. Zaniolo. Temporal aggregation in active
database rules. InProc. Int. Conf. on Management of Data
(SIGMOD). ACM Press, 1997.

[24] S. Schaffert.Xcerpt: A Rule-Based Query and Transformation
Language for the Web. PhD thesis, Inst. f. Informatics, U. of
Munich, 2004.

[25] S. Schaffert and F. Bry. Querying the Web reconsidered:A
practical introduction to Xcerpt. InProc. Extreme Markup Lan-
guages, 2004.

[26] W3C. Rule interchange format working group charter.http:
//www.w3.org/2005/rules/wg/charter.

[27] D. Zhu and A. S. Sethi. SEL, a new event pattern specifica-
tion language for event correlation. InInt. Conf. on Computer
Communications and Networks. IEEE, 2001.

[28] D. Zimmer and R. Unland. On the semantics of complex events
in active database management systems. InProc. Int. Conf. on
Data Engineering. IEEE, 1999.

[29] http://www.reactiveweb.org/xchange.


