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Abstract: 
Semantic web technologies promise to ease the pain of data and system 
integration in the life sciences. The semantic web consists of standards such as 
XML for mark-up of contents, RDF for representation of triplets, and OWL to 
define ontologies. We discuss three approaches for querying semantic web 
contents and building integrated bioinformatics applications, which allows 
bioinformaticians to make an informed choice for their data integration needs. 
Besides already established approach such as XQuery, we compare two novel 
rule-based approaches, namely Xcerpt - a versatile XML and RDF query 
language, and Prova - a language for rule-based Java scripting. We 
demonstrate the core features and limitations of these three approaches 
through a case study, which comprises an ontology browser, which supports 
retrieval of protein structure and sequence information for proteins annotated 
with terms from the ontology. 
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1. INTRODUCTION  

Bioinformatics is a rapidly growing field in which innovation and 
discoveries often arise by the correlative analysis of massive amounts of data 
from widely different sources. The Semantic Web and its promises of 
intelligent integration of services and of information through 'semantics' can 
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only be fulfilled in the life sciences and beyond if its technologies satisfy a 
minimum set of pragmatic requirements: 

 
• Ease of use - A language must be as simple as possible. Users will go for 

a not so powerful but comfortable solution instead of a very rich 
language that is too complicated to use. 
     

• Platform independence - Operating system idiosyncrasies are 
increasingly becoming a nuisance, the internet is universal, and so must 
be a language for the semantic web.   
 

• Tool support - Nowadays, it is not enough to provide language 
specifications and the corresponding compilers and/or interpreters. 
Programmers require proper support tools like code-aware editors, 
debuggers, query builders and validation tools. 

 
• Scalability - The volume of information being manipulated in 

bioinformatics is increasing exponentially, the runtime machinery of a 
language for integrating such data must be able to scale and cope with the 
processing needs of today and tomorrow. 

 
• Modularity - Modularity is a very fundamental idea in software 

engineering and should be part of any modern programming language.  
 
• Extensibility - Languages should be as user extensible as possible to 

accommodate unforeseen but useful extensions that users might need and 
be able to implement. 

 
• Declarativeness - The language should be high-level and support the 

specification of what needs to be computed rather than how. 
 

2. DATA INTEGRATION IN BIOINFORMATICS  

The amount of available data in the life sciences increases rapidly and so 
does the variety of data formats used. Bioinformatics has a tradition for 
legacy text-based dataformats and databases such as UniProt [2] for protein 
sequences, PDB [3] for 3D structures of proteins, or PubMed [4] for 
scientific literature.  

 
 UniProt, PDB, PubMed  
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Today, many databases, including the above are available in Extensible 
Markup Language (www.w3.org/XML/).  

Due to its hierarchical structure, XML is a flexible data format. It is a 
text-based format, is human-readable, and its support for Unicode ensures 
portability throughout systems. Together with XML a whole family of 
languages (www.w3.org/TR) support querying and transformation (XPath, 
XQuery, and XSLT). Additionally APIs such as JDOM (www.jdom.org), an 
implementation of the Document Object Model (DOM), and the Simple API 
for XML (www.saxproject.org) were developed in support of XML. 

Beside the need of technologies for data handling, a major task in 
bioinformatics is the one of data integration. The required mapping between 
entities from different data sources can be managed through the use of an 
ontology. 

 
Ontologies in Bioinformatics 
Currently there is no agreed vocabulary used in molecular biology. For 

example, gene names are not used in a consistent way. EntrezGene [4]  
addresses this problem by providing aliases. EntrezGene lists for example 
eight aliases for a gene that is responsible for breast cancer (BRCAI; BRCC1; 
IRIS; PSCP; RNF53; breast cancer 1, early onset; breast and ovarian cancer 
susceptibility protein 1;  and breast and ovarian cancer susceptibility protein 
variant). 

At the time of writing, searching PubMed for PSCP returns 2417 relevant 
articles. Searching for papillary serous carcinoma of the peritoneum, returns 
89 articles. However, searching for both terms returns only 19 hits. In 
general, there is a pressing need in molecular biology to use common 
vocabularies.  This need has been addressed through the ongoing 
development of biomedical ontologies. Starting with the GeneOntology 
(www.geneontology.org) [1], the Open Biomedical Ontologies effort 
(obo.sourceforge.net) currently hosts 59 biomedical ontologies ranging from 
anatomy over chemical compounds to organism specific ontologies. 

 
Gene Ontology (GO) 
A core ontology is the Gene Ontology [1], which contains over 20000 

terms describing biological processes, molecular functions, and cellular 
components for gene products. The biological process ontology deals with 
biological objectives to which the gene or gene product contributes. A 
process is accomplished via one or more ordered assemblies of molecular 
functions. The molecular function ontology deals with the biochemical 
activities of a gene product. It describes what is done without specifying 
where or when the event takes place. The cellular component ontology 
describes the places where a gene product can be active.  The GO ontologies 
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have become a de facto standard and are used by many databases as 
annotation vocabulary and are available in various formats: flat files, the 
Extensible Mark-up Language (XML), the resource description format 
(RDF), and as a MySQL database. 

 

3. CASE STUDY: PROTEINBROWSER 

Biological databases are growing rapidly. Currently there is much effort 
spent on annotating these databases with terms from controlled, hierarchical 
vocabularies such as the Gene Ontology. It is often useful to be able to 
retrieve all entries from a database, which are annotated with a given term 
from the ontology. The ProteinBrowser use-case shows how typically one 
needs to join data from different sources. The starting point is the Gene 
Ontology (GO), from which a hierarchy of terms is obtained. Using the Gene 
Ontology Annotation (GOA) database, the user can link GO terms to the 
UniProt identifiers of proteins that have been annotated with biological 
processes, molecular functions, and cellular components. After choosing a 
specific protein, the user can, remotely, query additional information from 
the UniProt database, for example the sequence of the protein. In turn, the 
PDB database can be remotely queried for still additional information. 
Finally, using the PubMed identifier of the publication in which the structure 
of the protein was published, one can query PubMed and obtain the title and 
abstract of the publication. 

As shown in Fig. 0-1, the ProteinBrowser example is specified by the 
following workflow:  

 

 

Figure 0-2. ProteinBrowser Workflow: from GO to PubMed via GOA, UniProt and PDB. 
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• A term is chosen from the Gene Ontology tree. The Gene Ontology exists 
in various formats: MySql database, XML, RDF. 

 
• All relevant proteins associated through the GOA 

(http://www.ebi.ac.uk/GOA/) database are listed. 
 
• A protein is chosen from the list. 
 
• UniProt is queried for information about this protein. The protein's name, 

its sequence length, mass, sequence, and corresponding PDB identifier 
can be retrieved by querying the XML file linked by the following 
parameterized URL: 
  http://www.ebi.uniprot.org/entry/<UniprotId>? format=xml&ascii  

 
• PDB is queried for additional information. The three lengths width, 

height and depth and the PubMed identifier of the publication in which 
the structure was described, can be obtained by querying the XML file 
linked by the following parameterized URL: 
 http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&structureId=<PDBid> 

  
• Retrieve PubMed abstract title and text where the structure was 

published. This uses the Pubmed ID (if available) and queries the website 
of NCBI with the PubMed Id at this address: 
 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml 
             &rettype=full&id=<PubMedId> 
  
As shown in Fig. 0-3, this workflow involves accessing local and remote 

databases, in the form of files, possibly in XML format and of 'pragmatic' 
web-services in the form of parametrized URLs linking to XML files (also 
known as REST-style Web Services). 
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Figure 0-4. ProteinBrowser: integrates data from GO, UniProt, PDB and PubMed. 

 
 
We will compare three approaches to implement this workflow. The first 

is based on a novel hybrid object-oriented and declarative programing 
language, Prova. The second is based on standard XML technologies such as 
XQuery and XPath. The third is based on a novel declarative query language 
for XML documents: Xcerpt. 

 
•  Prova     http://www.prova.ws 
•  XQuery/XPath http://www.w3.org 
•  Xcerpt    http://www.xcerpt.org 

 

3.1 Prova 

Prova [5] is a rule-based Java scripting language.  The use of rules allows 
the declarative specification of integration needs at a high-level, separately 
from implementation details. The transparent integration of Java caters for 
easy access and integration of database access, web services, and many other 
Java services.  This way Prova combines the advantages of rule-based 
programming and object-oriented programming. Prova satisfies the 
following design goals: 

 
• Combine the benefits of declarative and object-oriented programming; 
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• Merge the syntaxes and semantics of Prolog, as rule-based language, and 

Java as object-oriented languages; 
• Expose logic as rules; 
• Access data sources via wrappers written in Java or command-line shells 

like Perl; 
• Make all Java API from available packages directly accessible from 

rules; 
• Run within the Java runtime environment; 
• Be compatible with web- and agent-based software architectures; 
• Provide functionality necessary for rapid application prototyping and low 

cost maintenance. 
 
Workflow solved with Prova 
The Prova code closely resembles a declarative logic program. Rules are 

written down in the form  conclusion :- premise  where :- is read 
'if'. Instead of relying on an internal knowledge base, which needs to be 
loaded entirely into memory, Prova can access external knowledge wrapped 
as predicates. Thus there is a clean separation between the details needed to 
access the external data and the way this data is joined in the workflow. 
Prova applies so-called backward-chaining to evaluate queries. 

 
Wrapping the Gene Ontology and the Gene Ontology Annotation 
For the Prova implementation of the ProteinBrowser we use the Gene 

Ontology and the protein annotations in their relational database format. As 
shown on Fig. 0-5 accessing databases from Prova is very simple. 
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% Imports some utility functions 
:-eval(consult("utils.prova")). 
 
% Define database location 
location(database,"GO","jdbc:mysql://server","guest","guest"). 
 
% T2 is-a T1 if in the term2term table of the database 
isaDB(T2,T1) :- 
 dbopen("GO",DB), 
 concat(["term1_id=",T1," and relationship_type_id=2"], 

WhereClause), 
 sql_select(DB,term2term,[term2_id,T2],[where, WhereClause]). 
 
% A term T is-a T 
isa(T,T). 
 
% Recursive definition of is-a:  
% A term T2 is a T1 if T3 is a T1 and T2 is a T3 
isa(T2,T1) :- 
 isaDB(T3,T1), 
 isa(T2,T3). 

 
Figure 0-6. Wrapping the Gene Ontology database and the isa relationship. 

After importing some utility predicates for connecting to databases, the 
location predicate is used to define a database location, the dbopen 
predicate is used to open a connection to the database, and the 
sql_select predicate provides a nice and practical declarative wrapping 
of the select statement of relational databases. In order to obtain all sub-
terms of a given term, we simply compute the transitive closure of the sub-
term relationship defined by the recursive predicate isa. 

Finally, in order to retrieve the UniProt identifiers corresponding to a 
given gene ontology term, we need the name2uniProtId predicate (see 
Fig. 0-7 ). 
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name2UniProtId(Term,UniProtId) :- 
 dbopen("GO",DB), 
 concat(["uni.GOid = ", Term],Where), 
 concat(["go.term as term, goa.goa_human as uni"],From), 
 sql_select(DB,From,['uni.DB_Object_ID',UniProtId], 
[where,Where]). 

 
Figure 0-8. Wrapping the Gene Ontology Annotation database. 

 
Wrapping UniProt, PDB and Medline 
The three databases UniProt, PDB and Medline can be remotely accessed 

through a very simple web interface: a parameterized URL links to an XML 
file containing the relevant information for a given identifier.  

As shown in Figure 0-9 The three predicates queryUniProt, 
queryPDB, queryPubMed, wrap the downloading and parsing of the 
XML files in a few lines: 
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urlUniProtPrefix("http://www.ebi.uniprot.org/entry/") 
urlUniProtPostfix("?format=xml&ascii") 
urlPDB("http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&s
tructureId=") 
urlPubMed("http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.
fcgi?db=pubmed&retmode=xml&rettype=full&id=") 
 
% Query UniProt by giving a UniProt Id and getting the length, 
mass, sequence, and PDB id 
queryUniProt(UniProtId,Name,Length,Mass,Sequence,PDBId):- 
 urlUniProtPrefix(URLpre), 
 urlUniProtPostfix(URLpost),   
 concat([URLpre,UniProtId,URLpost],URLString), 
 retrieveXML(URLString,Root), 
 children(Root,"entry",EntryNode), 
 children(EntryNode,"protein",ProteinNode), 
 descendantValue(ProteinNode,"name",Name),!, 
 descendant(EntryNode,"sequence",SequenceNode), 
 nodeAttributeByName(SequenceNode,"length", Length), 
 nodeAttributeByName(SequenceNode,"mass", Mass),  
 nodevalue(SequenceNode,Sequence). 
  
% Query PDB by giving a PDB Id and getting three lengths a,b,c 
and a PubMed id of a publication 
queryPDB(PDBId,LA,LB,LC,PMID):- 
 urlPDB(URL), 
 concat([URL,PDBId],URLString), 
 retrieveXML(URLString,Root), 
 descendantValue(Root,"PDBx:length_a",LA),!, 
 descendantValue(Root,"PDBx:length_b",LB),!, 
 descendantValue(Root,"PDBx:length_c",LC),!, 
 descendantValue(Root,"PDBx:pdbx_database_id_PubMed",PMID). 
  
% Query pubMed by giving a PubMed Id and getting the text of 
the abstract 
queryPubMed(PMID,AbstractTitle, AbstractText):- 
 urlPubMed(URL), 
 concat([URL,PDBId],URLString), 
 retrieveXML(URLString,Root), 
 descendantValue(Root,"ArticleTitle",AbstractTitle),!, 
 descendantValue(Root,"AbstractText",AbstractText),!. 

Figure 0-10. Wrapping UniProt, PDB and Medline. 

The previous predicates use the following utility predicates: 
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retrieveXML(URLString,Root):- 
 URL = java.net.URL(URLString), 
 Stream = URL.openStream(), 
 ISR = java.io.InputStreamReader(Stream), 
 XMLResult = XML(ISR), 
 Root = XMLResult.getDocumentElement(). 

 
Figure 0-11. XML retrieval. 

The retrieveXML predicate downloads an XML file from a specified 
URL, and returns the root DOM (Document Object Model) tree 
representation of the XML file. 

In Fig. 0-12, a set of predicates provide functionality to query nodes and 
values from the DOM tree: 
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% Simulates an XPath traversal. 
descendantsValue(Current,Name,Value):- 
 descendants(Current,Name,Node), 
 nodeValue(Node,Value),!. 
   
% Descendant (any depth), similar XPath: //* 
descendants(Node,Node). 
descendants(Element,S2):- 
 children(Element,S1), 
 descendants(S1,S2). 
 
% Descendant with given name, similar XPath: //Name 
descendants(Node,Name,Descendant):- 
 descendants(Node,Descendant), 
 nodeName(Descendant,Name). 
  
% Definition for a direct child, similar XPath: /* 
children(Element,Child):- 
 Childs = Element.getChildNodes(), 
 Childs.nodes(Child). 
 
% Child with a given name, similar XPath: /Name 
children(Node,Name,Child):- 
 children(Node,Child), 
 nodeName(Child,Name). 
  
nodeName(Node,Name):- 
 Name = Node.getNodeName(). 
 
nodeValue(Node,Value):- 
 Data = Node.getFirstChild(), 
 Raw = Data.getNodeValue(), 
 Value = Raw.trim().  

Figure 0-13. XML Querying. 

 
 
 
Assembling the Workflow 
Now that we have wrapped the GO and GOA databases, as well as the 

remote XML ressources for UniProt, PDB and PubMed. We can proceed 
with the assembly of the ProteinBrowser workflow, as shown in Fig. 0-14. 
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workflowStep1(GoTermName,UniProtId):- 
  name2term(GoTermName,GoTerm), 
  isa(GoTerm,Descendant), 
  name2UniProtId(Descendant,UniProtId), 
  java.lang.System.out.println(UniProtId). 
   
workflowStep2(UniProtId):- 
  queryUniProt(UniProtId,Name,Length,Mass,Sequence,PDBId), 
  java.lang.System.out.println(Name), 
  java.lang.System.out.println(Length),   
  java.lang.System.out.println(Mass), 
  java.lang.System.out.println(Sequence), 
  queryPDB(PDBId,LA,LB,LC,PMID), 
  java.lang.System.out.println(LA),   
  java.lang.System.out.println(LB), 
  java.lang.System.out.println(LC), 
  queryPubMed(PMID,AbstractTitle, AbstractText), 
  java.lang.System.out.println(AbstractTitle), 
  java.lang.System.out.println(AbstractText). 
   
  % Given the name N, get the term id T 
name2term(N,T) :- 
  dbopen("GO",DB), 
  concat(["name like ",N],WhereClause), 
  sql_select(DB,term,[id,T],[where, WhereClause]). 

Figure 0-15. Workflow. 

 
The first step is simply to enumerate all UniProt identifiers UniProtId 

annotated with terms and subterms of a given Gene Ontology term 
GoTermName. The second step uses the chosen protein UniProt identifier 
and starts a cascade of three remote queries to the UniProt, PDB and 
PubMed web sites. All relevant information collected is printed out. 

 
 

3.2  XQuery and XPath 

 
XPath allows the user to address certain parts of an XML document. 

Beside many applications it is used in XQuery, which is a declarative query- 
and transformation language for semi-structured data. It is widely used to 
formulate queries on RDF and XML documents. These documents can be 
provided as XML files, as XML views onto a XML database or created by a 
middleware. XQuery 1.0 is a W3C Candidate Recommendation and is 
already supported by many software vendors (e.g. IBM DB2, Oracle 10g 
Release 2, Tamino XML Server). 
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The Workflow Solved with XQuery 
An XQuery implementation of the workflow works on XML data only 

and can be realized with all program logic specified as XQuery. We note that 
XQuery as described in the language standard is expressive enough to 
aggregate data from different data sources, locally or remotely.  

 
Recursive traversal of the Gene Ontology 
With XQuery the recursive traversal of the GO has to be programmed 

explicitely. In Fig. 0-16 the functions local:getDescendants and 
local:getChildren show how this simple recursion can be specified 
with XQuery. The locally available GO OWL file is loaded using the doc() 
function, which also works for remote resources of plain XML content. By 
using XQuery from within Java it is possible to preserve the DOM tree, so 
that it only has to be loaded once. 

 

 

declare function local:getChildren( $term , $context) 
{ 
 for $my_term in $context//go:term 
 where $my_term/go:is_a/@rdf:resource = $term/@rdf:about 
 return 
  $my_term 
}; 
 
declare function local:getDescendants( $term, $context) 
{ 
 for $my_term in local:getChildren($term, $context) 
  return 
  <descendants> 
  {  
   local:getDescendants($my_term , $context), $my_term 
  } 
  </descendants> 
}; 

Figure 0-17. Recursive XQuery to create the transitive closure over the sub-class relations. 

 
Assembling the Workflow 
Fig. 0-18 shows the complete workflow as a batch process. Given a GO 

accession number like ''GO:0000001'' an XML document is created which 
contains all proteins associated with the specified term or any of its child 
terms. For all these proteins additional information is retrieved from 
UniProt. Further, database references to structural data in PDB is used, if 
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found in UniProt. For the interactive browser these parts are separated and 
the functions are called once the GO term or protein is selected in the GUI. 

 

xquery version "1.0"; 
declarenamespace go = "http://www.geneontology.org/dtds/go.dtd#"; 
declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"; 
declare namespace fn = "http://www.w3.org/2005/xpath-functions"; 
declare namespace uniprot = "http://uniprot.org/uniprot"; 
declare namespace PDBx = "http://deposit.pdb.org/pdbML/pdbx.xsd"; 
declare namespace xsi="http://www.w3.org/2001/XMLSchema-instance"; 
 
declare variable $GO as xs:string external; 
 
(: function from www.w3c.org :) 
declare function local:distinct-nodes-stable ($arg as node()*) as node()*  
{  
   for $a at $apos in $arg  
   let $before_a := fn:subsequence($arg, 1, $apos - 1)  
   where every $ba in $before_a satisfies not($ba is $a)  
   return $a  
}; 
 
declare function local:getChildren( $term , $context) { ... }; 
declare function local:getDescendants( $term, $context) { ... }; 
declare function local:queryUniprot($uniprotID) { ... }; 
declare function local:queryPDB($pdbID) { ... }; 
 
(: Construct a result set for one GO term :) 
<terms> 
{ 
    let $root :=doc("/data/go_200605-assocdb.rdf-xml") 
    for $term in $root//go:term 
    where $term/go:accession/text() = $GO 
    return 
        <result query_term_acc="{$term/go:accession/text()}"> 
         { 
         let $terms := ($term, local:getDescendants($term,$root)) 
         for $d_term in $terms 
         return 
             for $dbxref in $d_term//go:dbxref 
             where $dbxref/go:database_symbol/text()="UniProt" 
             return 
                     for $uniprot_id in local:distinct-nodes-

stable($dbxref/go:reference) 
                     return 
                            local:queryUniprot($uniprot_id/text()) 
        } 
        </result> 
} 
</terms> 

 

Figure 0-19. Recursive XQuery to aggregate proteins associated with a GO term or any of its 
children. The result gets enriched with Uniprot and PDB data. 
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Obtain additional information for proteins 
For all proteins identified, the UniProt database is queried selecting data 

sets for a specific UniProt identifier (see Fig. 0-20). Additional information 
from the PDB is retrieved as shown in Fig. 0-21. 

 

 

declare function local:queryUniprot($uniprotID) 
{     
    let $url := concat(concat("http://www.ebi.uniprot.org/entry/", 

$uniprotID), "?format=xml&amp;ascii") 
    for $entry  in doc($url)//uniprot:entry 
    let $sequence:= $entry/uniprot:sequence 
    return 
        <protein uniprot_id="{$uniprotID}"> 
            { 
            for $name in $entry/uniprot:protein//uniprot:name 
            return 
                <name>{$name/text()}</name> 
             } 
            <sequence_length>{$sequence/@length}</sequence_length> 
            <sequence_mass>{$sequence/@mass}</sequence_mass> 
            <sequence>{ $sequence/text() }</sequence> 
             { 
                 For $pdbID in $entry//uniprot:dbReference[@type="PDB"]/@id 
                 return 
                    local:queryPDB($pdbID) 
             } 
        </protein> 
}; 
 

Figure 0-22. Querying the Uniprot database with XQuery for information on the names, 
sequence, sequence length, sequence mass and structures of a protein 
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declare function local:queryPDB($pdbID) 
{ 
    let $url := concat("http://www.rcsb.org/pdb/downloadFile.do? 

fileFormat=xml&amp;compression=NO&amp;struc
tureId=",$pdbID)  

    for $item  in 
doc($url)/PDBx:datablock/PDBx:cellCategory/PDBx:cell 

    return 
        <pdb_structure pdb_id="{$pdbID}"> 
            <length_a>{$item/PDBx:length_a/text()}</length_a> 
            <length_b>{$item/PDBx:length_b/text()}</length_b> 
            <length_c>{$item/PDBx:length_c/text()}</length_c> 
        </pdb_structure> 
};  

Figure 0-23. Querying the PDB database with XQuery. 

 

3.3 Xcerpt 

Xcerpt [7] is a declarative rule based query- and transformation language 
for semi-structured data in general and for RDF and XML in particular. 
Xcerpt does not natively query relational data bases, but relies on the XML, 
RDF or OWL serializations of the Gene Ontology and the Protein Databank. 
These serializations in general being graph structured and highly 
heterogeneous, Xcerpt provides a comfortable way to query possibly 
incomplete subpatterns of the data. 

Xcerpt builds upon simulation unification and rule chaining for program 
evaluation. Xcerpt uses three kinds of terms to carry out its computations: 
data terms, query terms and construct terms. Data terms are semi-structured 
data serving as an abstraction from various tree- and graph shaped data-
formats such as RDF and XML. Dataterms can be used to represent any kind 
of semi-structured data, while still taking care of XML specificities such as 
attributes, namespaces and references. 

Query terms are data terms augmented by logical variables and enriched 
by constructs that allow the specification of various forms of 
incompleteness, which are used to match highly heterogeneous data. 
Incompleteness specifications include incompleteness in depth (the 
descendant construct and arbitrary length traversal path expressions), 
incompleteness in breadth (there may be more subterms in the queried data 
than which are specified by the query term) and optional subterms.  Query 
terms are matched with data terms via simulation unification to produce 
\emph{substitution sets} (sets of sets of variable bindings). Substitution sets 
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are then applied to construct terms by filling in the bindings for variable 
occurrences.  

 
The Workflow solved with Xcerpt 
In order to select all proteins produced by a certain term referenced in the 

Gene Ontology, the following Xcerpt rules could be used. Since we are not 
only interested in the proteins produced by exactly the term provided by the 
user, but also in those proteins which are produced by processes which are 
subterms of the given term, and in additional information obtained from 
UniProt, PDB and PubMed, the task is split into several parts: 

 
Extracting subterm relationships from the Gene Ontology Database 
In a first step (realized by Fig. 0-24), the direct subterm relationships are 

extracted from the database. They are retrieved from the is_a elements 
given in the Gene Ontology. In the special attributes-element the form 
of the rdf:resource-attribute of the is_a-element is specified, 
demanding that it ends with a GO-Term identifier. Note that since Xcerpt 
programs are evaluated in a backward chaining manner, the binding of the 
logical variable Term2 is passed on from the second and third rule below. 
Curly braces in the query term indicate that the order in which the siblings 
occur within the data is not important. This concept is called Incompleteness 
with respect to order. 

Double curly braces are used to allow also further siblings in the data 
besides those explicitly specified - this concept is known as incompleteness 
in breadth in Xcerpt. Xcerpt's desc construct matches with descendants of 
the enclosing term that exhibit the specified pattern (incompleteness in 
depth). Since there is no enclosing element for the go:term element in the 
query term, it matches with all data nodes that have at least a 
go:accession and a go:is_a sub-element (of the specified form). 
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Figure 0-27. Computing the transitive closure of the subterm-relationship with an Xcerpt rule. 

 

CONSTRUCT 
  subterm { var Term1, var Term2 } 
FROM 
  in {  
     resource {  
       "http://archive.godatabase.org/full/2006-05-01/ 
 go_200605-assocdb.rdf-xml.gz" }, 
     desc go:term {{ 
       go:accession { var Term1 }, 
       go:is_a{{  
     attributes{{  
       rdf:resource { 
         "http://www.geneontology.org/go#"++var Term2  
     } 
       }} 
     }} 
  } 
END 
 

Figure 0-25. Extracting subterm relationships from the Gene Ontology. 

 
 
 
Computing the transitive closure of the subterm relationship 
In a second rule (given in Fig. 0-26), the transitive closure of the subterm 

relationship is computed. Since all direct subterms are considered as 
transitive subterms, the second disjunct of the body of this second rule 
matches with the head of the first rule.  

 
 

CONSTRUCT 
  transitive_subterm { var Term1, var Term3 } 
FROM 
  or { 
    and { 
      subterm { var Term1, var Term2 }, 
      transitive_subterm { var Term2, var Term3 } 
    }, 
    subterm { var Term1, var Term3 } 
  } 
END 
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Finding all the proteins associated with a term of the Gene Ontology 
In the third rule (see Fig. 0-28) for each of the subterms of the given term 

 
 

 

PROTEIN
 

tim

Term, the associated proteins are looked up in the GOA database and 
rendered as a list of links to their Uniprot entries in an HTML file. The 
binding for the variable Term is provided by the user as a command line
parameter (e.g. xcerpt -D Term=GO:0051260, where GO:0051260
is the identifier of  protein homooligomerization).  

The first conjunct of the body of this rule matches with the second rule 
above and passes the Term-variable on to the head of the second rule. In this
way, all of its subterms are bound to the variable SubTerm.  

The second conjunct of the rule looks up all associated proteins for the 
subterm, which have a Gene Ontology database symbol of type UNIPROT. 
Each of these proteins is bound to the variable .  

Note that also the second conjunct of the query term may match multiple
es with the database for a single binding of the variable SubTerm, thus 

producing a set of pairs of variable bindings in which SubTerm is always 
bound to the same variable given in the query, and Protein is bound once 
for each protein produced by the given concept. 

In the construct part of the rule (framed by the keywords GOAL and 
FROM) the proteins are grouped by the subterms which they are associated 
with in the Gene Ontology. This is achieved by the grouping construct all. 
The string-concatenation function “++”' is used to construct the URL 
pointing at the Uniprot entry. The construct term is a template of the HTML 
page rendered by the browser to form part of the user-interface.  
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GOAL 
  html [ 
    head [ title [ "Proteins produced by" ++ var Term ] ], 
    body [  
      all span [ 
 h3 [ "Proteins produced by the subterm " ++ var SubTerm ], 
 ul [ 
   all li [  
     attributes{ href { 
       "http://www.ebi.uniprot.org/entry/" ++ var Protein ++  
  "?format=xml&ascii" } },  
     var Protein ] 
 ] 
      ] 
  ] ] 
FROM 
  and { 
    transitive_subterm { var SubTerm, var Term }, 
    in { 
      resource {  
 "http://archive.godatabase.org/full/2006-05-01/ 
  go_200605-assocdb.rdf-xml.gz" }, 
      desc go:term{{ 
 go:accession{ var SubTerm }, 
 go:association{{ 
   go:gene_product{{ 
     desc go:database_symbol{ "UNIPROT" }, 
     desc go:reference{ var Protein } 
   }} 
 }} 
      }} 
    } 
  } 
END 

Figure 0-29. Constructing an HTML list of proteins for a GO term. 

 
 
Extracting relevant information about Proteins from the Uniprot 

and PDB Files 
Xcerpt's patterns are well-suited to extract the name, length, mass and the 

sequence of amino acids for a given protein from the UniProt database and 
to reassemble them within an HTML fragment as specified in Fig. 0-30.  The 
second conjunct of the same rule is used to additionally extract information 
from the PDB database about the physical dimensions of the crystals of the 
Protein and PubMed identifiers of research papers dealing with the given 
protein. This data is to be combined with the information from UniProt. Note 
that the PDB_ID is extracted from the UniProt database, which means that 
the first conjunct is evaluated before the second one. The rule could be 
called via a system call from within a CGI script. Many of the PDB files 
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about proteins additionally supply PubMed identifiers of research articles 
treating the protein, but this is not mandatory. Xcerpt's  optional-
construct allows to select optional data that does not have to be present for 
the query to succeed. Since their may be multiple references to PubMed 
identifiers, these references are wrapped into an unordered HTML list using 
the grouping construct all. These references could be easily encoded as 
hyperlinks in a similar way as in Fig. 0-31, which has been omitted for 
brevity. 
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CONSTRUCT 
  div [ 
    h3 [ 'Information about protein', span[ var Protein ] ], 
    p [ "Name: " ++ var Name ], 
    p [ "Length: " ++ var Length ], 
    p [ "Mass: " ++ var Mass ], 
    p [ "Sequence: " ++ var Sequence ], 
    p [ "length_a: " ++ var LengthA ], 
    p [ "length_b: " ++ var LengthB ], 
    p [ "length_c: " ++ var LengthC ], 
    optional p [ 'PubMed References', ul [ all li[ var PubMedID  

       ] ] ] 
  ] 
FROM 
  and { 
    in { 
      resource {  
 "http://www.ebi.uniprot.org/entry/" ++ var SubTerm ++  
   "?format=xml&ascii" }, 
      entry {{ 
 protein {{ name {{ var Name }} }}, 
 sequence {{  
   attributes {{ length { var Length }, mass { var Mass } }}, 
   var Sequence 
 }} 
 dbReference { attributes {{  
   type { "pdb accesion" }, 
   value { var PDB_ID } 
 }} } 
      }} 
    }, 
    in {  
      resource {  
 "http://www.rcsb.org/pdb/downloadFile.do?fileFormat=xml& 
   compression=NO&structureId=" ++ var PDB_ID }, 
      PDBx:datablock {{ 
 desc PDBx:cell {{ 
   PDBx:length_a{{ var LengthA }}, 
   PDBx:length_b{{ var LengthB }}, 
   PDBx:length_c{{ var LengthC }} 
 }}, 
 optional PDBx:pdbx_database_id_PubMed { var PubMedID } 
    } 
  } 
END 

Figure 0-32. Combining information from the PDB and the UniProt database for the same 
Protein. 

Retrieving the PubMed Abstract and Title 
The final step in the workflow of the Protein Browser consists of 

retrieving the PubMed abstract and title for a given PubMed identifier 
retrieved by the rule in Fig. 0-33. The PubMed identifiers may either be 
queried directly from the PDB file of a given protein or they may originate 
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from the results of the previous rule. In Fig. 0-34 the second alternative is 
presented. 

 

 

CONSTRUCT 
  html [ head [ title [ 'Articles for Protein' ++ var Protein ] ], 
  body [ 
    all p [ h3 [ var Title ], div [ var Abstract ] ] 
  ] 
  ] 
FROM 
  and ( 
    div [[ h3 [[ span [ var Protein ] ]], 
    p [[ ul [[ li [ var PubMedId ] ]] ]] 
    ]], 
    in {  
       resource{ 

'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&ret
mode=xml&rettype=full&id=' ++ var PubMedId }, 

       PubMedArticle {{  
  desc AbstractText { var Abstract }, 
  desc ArticleTitle { var Title } 
       }} 
    } 
END 
 

Figure 0-35. Retrieval of Abstract and Titles of PubMed entries. 

 
 
The given rule finds all PubMed identifiers from the previously created 

HTML fragment, retrieves the PubMed documents for these articles and 
assembles a new HTML page containing a list of article titles and abstracts. 

 
 

4. COMPARISON 

In the following, we compare the three approaches according to several 
criteria. Some criteria are subjective, for example how easy or difficult it is 
to learn and use the approach. Other criteria are of a pragmatic nature and 
relate to the availability of supporting tools like editors and debuggers. From 
a technical point of view, it is also important to evaluate the scalability, 
modularity, and extensibility of an approach. 
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earning curve 
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sform any XML application, thus 
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latform independence 
 such is platform-independent. 

ble as libraries 
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vailability 
NU Lesser General Public License (LGPL) open source 

pro

 RQL are available within commercial products or for 
fre

s  
NU General 

Pu

ool support 
 of its relative youth, has almost no support for editing or 

debugging tools. 

L
Prova requires ba
ke it more complicated to understand than Java or Prolog separately. The 

Prova syntax integrates aspects from both paradigms in a very elegant way. 
If one assumes basic knowledge in both Java and Prolog, Prova is then a 
good way to profit from both worlds. 

XQuery adapts standard programm
EN-ELSE statements and uses XPath to address nodes in the Document 

Object Model (DOM) tree. Nevertheless the syntax and especially the usage 
of functions requires some time to learn. 

Xcerpt can be used to query and tran
o XML serializations of RDF and Topic Maps. Therefore it is very well-

suited for data integration. Being a very declarative pattern- and rule-based 
language, potential errors are kept to a minimum and authoring queries in 
Xcerpt is straightforward. Xcerpt is especially easy to learn for users with 
experience in logic programming or with pattern based query languages such 
as Query By Example or to a certain extent XPath. 

 
P
Prova is Java-based and as
XQuery and XPath standard implementations are availa

itten in Java (http://saxon.sourceforge.net/) and can be used from any 
platform which supports Java. Additionally many database systems come 
with XPath or XQuery build in. Xcerpt is currently implemented in Haskell 
and compiled with the Glasgow Haskell Compiler, which is available for 
Linux, Solaris, Windows, FreeBSD and MacOS X.  Thus Xcerpt can be 
used on any of these platforms. Future versions of Xcerpt will be written in 
Java to further  increase platform independence. 

 
A
Prova is a G
ject and thus can be used in any context, it can be freely downloaded 

from www.prova.ws.  
XQuery, XPath and

e under the Berkeley Software Distribution (BSD) license. 
Xcerpt is current at a prototype stage of development and i
available at www.xcerpt.org under the terms of the G

blic License. 
 
T
Prova, because
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mended to use specialized editors for XQuery. There exist 
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ed graphical interface, running on 
top

a is arguably at most as scalable as Java and its libraries. Java is 
itse ture language in terms of performance. Starting with version 
1.3

ds to prepare the 300 MB large Gene Ontology 
RD

unts of XML data. With 512 megabytes of 
ran

rova inherits the modularity of Java. XQuery allows for user-defined 
fun an be used to modularize the code and improve its 
ma

rova is based on Java and can construct Java objects and call any of 
the erpt being available under an open source license, it can be 
eas

XPath is simple enough to be written with a plain text editor. However it 
is strongly recom

ture tools for several software platforms which come with editing support, 
validation and debugging functionalities.  

Xcerpt is accompanied by a visual query authoring and execution tool 
called visXcerpt. It features a web-bas

 of a web server such as the Apache HTTP server 
(http://www.apache.org/) and allows to dynamically browse both 
XML data and the Xcerpt rules. Support for debugging and code completion 
in Xcerpt is not available yet. 

  
Scalability 
Prov
lf a very ma
, the Java Virtual Machine has been based on HotSpot, a technology that 

allows dynamic compilation of performance bottlenecks at execution time. 
For this reason Java itself cannot be thought as an interpreted language. So 
even though the rule engine behind Prova is essentially interpreted, all the 
heavy duty work can be delegated to Java classes and one can thus expect 
near-compiled performance. 

On a machine powered by a Intel Xeon 3GHz, Saxon's XQuery engine 
needs approximately 50 secon

F file for XQuery execution.  
Xcerpt programs are currently being evaluated in memory. Thus it is not 

yet possible to process large amo
dom access memory, an XML file of a size at most 40 megabytes can be 

effectively processed. Research geared toward more efficient 
implementations is being carried out. 

 
Modularity 
P
ctions that c
intainability. Xcerpt is being developed with a module system. 
 
Extensibility 
P
ir methods. Xc
ily extended and adapted to ones own needs. 
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5. DISCUSSION AND CONCLUSION 

In this article we have shown how the combination and integration of 
biological data from different resources on the Web may be realized with 
different technologies. XML is a suitable way for sharing and exchanging 
data across different systems interconnected over the Internet. XML query 
languages are an accepted means for extracting relevant information and for 
processing and transforming XML data.  

 
XML and best practices. 
Biological data is often stored in relational database engines and must be 

serialized before it can be processed by XML query languages. Additionally, 
huge amounts of biological data are already available and transferring entire 
databases over the network takes a significant amount of time. As a result, 
XML queries should be processed close to the data they operate on as far as 
possible, taking advantage of relational database indexes. Several 
commercial database products already support the local execution of XQuery 
programs. To minimize transfer and processing time, only the results of 
locally executed queries should be transferred over the network as XML. In 
many cases, however, queries cannot be executed locally in their entirety, 
because joins over entries located at different sites are necessary. 

 
As can be seen in the exemplary workflow described previously, several 

transformations of XML data may be stringed together to achieve complex 
restructuring tasks. In such cases it is advisable to minimize intermediate 
serializations of XML data independently of the query language being used. 
In other words embedding several Xcerpt, XQuery or XSLT programs taking 
XML as input and producing XML as output in a host language is inefficient 
when compared to joining these programs to a single one, because 
processing time is lost for parsing and serializing XML data. 

 
The advantages of using XML query languages for data integration 

versus the direct usage of relational databases increase with the amount of 
different data sources that must be integrated and with the degree of 
heterogeneity of the encountered data. The more heterogeneous the data, the 
harder it is to fit it into a relational database schema. Moreover, XML query 
languages (especially Xcerpt) provide a rich set of language constructs to 
deal with various kinds of heterogeneity of the data, which means that 
several SQL queries operating on a relational database can be combined to 
form a single Xcerpt query on XML data. 

 



28 Chapter 0
 

In picking the right XML technology for a bioinformatics project, 
maturity of the language is an important issue. Xcerpt being a research 
prototype, is currently not recommended for use in large projects. On the 
other hand XQuery is a W3C recommendation and several robust 
implementations are already available. 

 
Beyond XML ? 
It is not yet clear if XML will eventually become the universal format for 
data exchange. Relational databases, flat files, and other idiosyncratic 

formats might subsist and limit, in practice, the applicability of pure XML 
query languages. We have shown how practical Prova is for assembling 
workflows involving heterogeneous sources of data. Prova is also able to 
delegate XML processing tasks to XQuery which has itself a Java 
implementation based on the Saxon library (http://saxon.sourceforge.net/). 
Xcerpt will also be eventually reimplemented in Java, and thus it will also be 
possible in the future to run Xcerpt queries from a Prova program. It can be 
argued that the need for a generic and possibly declarative programming 
language will remain. Simply because from a pragmatic point of view, there 
will always be some tasks that will be simply too cumbersome to deal with 
any specialized languages. A user should always be able to fall-back to a 
standard programming approach. 

 
Conclusion 
In all cases, it is clear that independently of the technologies used, the 

trend is toward remote querying of data. Maintaining and synchronizing 
local databases is cumbersome and should not be necessary. As we have 
seen, several databases like UniProt, PDB and PubMed offer their data 
through URL links in XML format. Prova, Xquery/Xpath and Xcerpt are 
ready to process them. 
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